1
|
Ling X, Dong Z, He J, Chen D, He D, Guo R, He Q, Li M. Advances in Polymer-Based Self-Adjuvanted Nanovaccines. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409021. [PMID: 40079071 DOI: 10.1002/smll.202409021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Nanovaccines, as a new generation of vaccines, have garnered significant interest due to their exceptional potential in enhancing disease prevention and treatment. Their unique features, such as high stability, antigens protection, prolonged retention, and targeted delivery to lymph nodes, immune cells, and tumors, set them apart as promising candidates in the field of immunotherapy. Polymers, with their superior degradability, capacity to mimic pathogen characteristics, and surface functionality that facilitates modifications, serve as ideal carriers for vaccine components. Polymer-based self-adjuvanted nanovaccines have the remarkable ability to augment immune responses. The inherent adjuvant-like properties of polymers themselves offer a pathway toward more efficient exploitation of nanomaterials and the optimization of nanovaccines. This review article aims to summarize the categorization of polymers and elucidate their mechanisms of action as adjuvants. Additionally, it delves into the advantages and limitations of polymer-based self-adjuvanted nanovaccines in disease management and prevention, providing valuable insights for their design and application. This comprehensive analysis could contribute to the development of more effective and tailored nanovaccines for a wide range of diseases.
Collapse
Affiliation(s)
- Xiaoli Ling
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Ziyan Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiao He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Dan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Rong Guo
- West China College of Basic Medical Sciences and Forensic Science, Sichuan University, Chengdu, 610041, P. R. China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
2
|
Chua YC, Draper SL, Le S, de Menezes MN, Ganley M, Ge Z, Lee A, Phabmixay T, Hirschmann D, Robinson SA, Tan PS, Tullett KM, Anderson RJ, Jayasinghe D, Cozijnsen A, Lahoud MH, Caminschi I, Beattie L, McFadden GI, Larsen DS, Kaisho T, Gras S, Hermans IF, Compton BJ, Heath WR, Painter GF, Holz LE. Mechanistic insight into the induction of liver tissue-resident memory CD8 + T cells by glycolipid-peptide vaccination. Cell Rep 2025; 44:115295. [PMID: 39946236 DOI: 10.1016/j.celrep.2025.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/12/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
We recently demonstrated that vaccines comprising antigenic peptides conjugated to a glycolipid agonist, termed glycolipid-peptide (GLP) vaccines, efficiently generate substantial numbers of long-lived CD8+ liver-resident memory T (Trm) cells that are crucial for protection against malaria liver-stage infection. To understand the underlying mechanism, we examined the prerequisites for priming, differentiation, and secondary boosting of liver Trm cells using these GLP vaccines. Our study revealed that generation of long-lived liver Trm cells relies on CD8+ T cell priming by type 1 conventional dendritic (cDC1) cells, followed by post-priming exposure to a combination of vaccine-derived inflammatory and antigenic signals. Boosting of liver Trm cells is feasible using the same GLP vaccine, but a substantial delay is required for optimal responses due to natural killer T (NKT) cell anergy. Overall, our study unveils key requirements for the development of long-lived liver Trm cells, offering valuable insights for future vaccine design.
Collapse
Affiliation(s)
- Yu Cheng Chua
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Shirley Le
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Maria N de Menezes
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Mitch Ganley
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Zhengyu Ge
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ariane Lee
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Taylah Phabmixay
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Daria Hirschmann
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Sage A Robinson
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Peck Szee Tan
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Kirsteen M Tullett
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
| | - Anton Cozijnsen
- School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mireille H Lahoud
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - David S Larsen
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Stephanie Gras
- Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia; Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - William R Heath
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Lauren E Holz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
3
|
Wen Y, Ding D, Luo MQ, Peng XQ, Wang EY, Wu YH, Zhou SH, Guo J. Rationally Designed Highly Potent NKT Cell Agonists with Different Cytokine Selectivity through Hydrogen-Bond Interaction. J Med Chem 2024. [PMID: 39031770 DOI: 10.1021/acs.jmedchem.4c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Synthetic α-galactosylceramide (αGalCer) and its analogues as powerful agonists for natural killer T (NKT) cell manipulation have received significant attention in immunotherapy and adjuvant development. However, identifying new potent NKT cell agonists, especially those with Th1 selectivity that promote anticancer effects, remains a challenging task. In this work, we introduced a sulfonamide group into the acyl chain of αGalCer to form additional hydrogen bonds to intensify the glycolipid/CD1d interaction. Two compounds GCS-11 and GCS-12 demonstrated remarkable potency while exhibiting different cytokine induction patterns. Compared to αGalCer, the Th1-biased GCS-11 exhibited a 6-fold increase in IFN-γ but not IL-4, while the Th1/2-balanced GCS-12 elicited 7- and 5-fold increase in IFN-γ and IL-4, respectively, in vivo. These findings place them among the most potent NKT cell agonists, with superior antitumor effects. Therefore, hydrogen-bond-involved derivatization could be a powerful strategy to develop potent and polarized NKT cell agonists for various immunotherapies.
Collapse
Affiliation(s)
- Yu Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dong Ding
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Meng-Qiang Luo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiao-Qian Peng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - En-Yang Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ye-Hui Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shi-Hao Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
4
|
Mooney AH, Draper SL, Burn OK, Anderson RJ, Compton BJ, Tang C, Farrand KJ, Di Lucia P, Ravà M, Fumagalli V, Giustini L, Bono E, Godfrey DI, Heath WR, Yuan W, Chisari FV, Guidotti LG, Iannacone M, Sidney J, Sette A, Gulab SA, Painter GF, Hermans IF. Preclinical evaluation of therapeutic vaccines for chronic hepatitis B that stimulate antiviral activities of T cells and NKT cells. JHEP Rep 2024; 6:101038. [PMID: 38694959 PMCID: PMC11061331 DOI: 10.1016/j.jhepr.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 05/04/2024] Open
Abstract
Background & Aims Liver diseases resulting from chronic HBV infection are a significant cause of morbidity and mortality. Vaccines that elicit T-cell responses capable of controlling the virus represent a treatment strategy with potential for long-term effects. Here, we evaluated vaccines that induce the activity of type I natural killer T (NKT) cells to limit viral replication and license stimulation of conventional antiviral T-cells. Methods Vaccines were prepared by conjugating peptide epitopes to an NKT-cell agonist to promote co-delivery to antigen-presenting cells, encouraging NKT-cell licensing and stimulation of T cells. Activity of the conjugate vaccines was assessed in transgenic mice expressing the complete HBV genome, administered intravenously to maximise access to NKT cell-rich tissues. Results The vaccines induced only limited antiviral activity in unmanipulated transgenic hosts, likely attributable to NKT-cell activation as T-cell tolerance to viral antigens is strong. However, in a model of chronic hepatitis B involving transfer of naive HBcAg-specific CD8+ T cells into the transgenic mice, which typically results in specific T-cell dysfunction without virus control, vaccines containing the targeted HBcAg epitope induced prolonged antiviral activity because of qualitatively improved T-cell stimulation. In a step towards a clinical product, vaccines were prepared using synthetic long peptides covering clusters of known HLA-binding epitopes and shown to be immunogenic in HLA transgenic mice. Predictions based on HLA distribution suggest a product containing three selected SLP-based vaccines could give >90 % worldwide coverage, with an average of 3.38 epitopes targeted per individual. Conclusions The novel vaccines described show promise for further clinical development as a treatment for chronic hepatitis B. Impact and Implications Although there are effective prophylactic vaccines for HBV infection, it is estimated that 350-400 million people worldwide have chronic hepatitis B, putting these individuals at significant risk of life-threatening liver diseases. Therapeutic vaccination aimed at activating or boosting HBV-specific T-cell responses holds potential as a strategy for treating chronic infection, but has so far met with limited success. Here, we show that a glycolipid-peptide conjugate vaccine designed to coordinate activity of type I NKT cells alongside conventional antiviral T cells has antiviral activity in a mouse model of chronic infection. It is anticipated that a product based on a combination of three such conjugates, each prepared using long peptides covering clusters of known HLA-binding epitopes, could be developed further as a treatment for chronic hepatitis B with broad global HLA coverage.
Collapse
Affiliation(s)
- Anna H. Mooney
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sarah L. Draper
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Olivia K. Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Benjamin J. Compton
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Chingwen Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - William R. Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francis V. Chisari
- Department of Immunology & Microbial Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Luca G. Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shivali A. Gulab
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
- Avalia Immunotherapies Limited, Wellington, New Zealand
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
5
|
Weng W, Ren S, Teng C, Guo J, Guo Q, Zhang W, Zong C, Ding N. Chemoenzymatic synthesis and immunological evaluation of sialyl-Thomsen-Friedenreich (sTF) antigen conjugate to CRM197. Bioorg Med Chem 2024; 100:117615. [PMID: 38342079 DOI: 10.1016/j.bmc.2024.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/13/2024]
Abstract
sTF (sialyl-Thomsen-Friedenreich) is a type of tumor-associated carbohydrate antigens (TACAs) and is highly expressed in various human malignancies. To validate if sTF could be a valuable molecular target for future cancer vaccine development, in this work the sTF antigen was prepared by adopting a strategy combining chemical and enzymatic methods, and then was covalently conjugated to a carrier protein, CRM197. The preliminary immunological evaluation, performed on BALB/c mice, revealed that the sTF-CRM197 conjugate elicited high titers of specific IgG antibodies. FACS experiments showed that the antisera induced by sTF-CRM197 conjugate could specifically recognize and bind to sTF-positive cancer cells T-47D. Furthermore, the conjugate mediated effective and specific antibody-mediated complement-dependent cytotoxicity (CDC).
Collapse
Affiliation(s)
- Weizhao Weng
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Sumei Ren
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Changcai Teng
- School of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Jia Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiuyu Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chengli Zong
- School of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China.
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
6
|
Méndez Y, Vasco AV, Ebensen T, Schulze K, Yousefi M, Davari MD, Wessjohann LA, Guzmán CA, Rivera DG, Westermann B. Diversification of a Novel α-Galactosyl Ceramide Hotspot Boosts the Adjuvant Properties in Parenteral and Mucosal Vaccines. Angew Chem Int Ed Engl 2024; 63:e202310983. [PMID: 37857582 DOI: 10.1002/anie.202310983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α-galactosyl ceramide (α-GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B-cell activation. Herein, we introduce a novel derivatization hotspot at the α-GalCer skeleton, namely the N-substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self-adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen-specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α-GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α-GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.
Collapse
Affiliation(s)
- Yanira Méndez
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana, 10400, Cuba
| | - Aldrin V Vasco
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Thomas Ebensen
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Kai Schulze
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Mohammad Yousefi
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Carlos A Guzmán
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Daniel G Rivera
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana, 10400, Cuba
- Finlay Institute of Vaccines, 200 and 21 Street, Havana, 11600, Cuba
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| |
Collapse
|
7
|
Abstract
Natural killer T (NKT) cells are a population of innate-like T cells capable of enhancing both innate and adaptive immune responses. Co-delivering an NKT cell agonist and antigen can provide molecular signals to antigen-presenting cells, such as dendritic and B cells, that facilitate strong antigen-specific adaptive immune responses. Accordingly, there has been a significant number of developmental NKT cell-dependent vaccine therapies developed, particularly in the last decade, with many incorporating cancer antigens. In this review, we summarize studies that chemically conjugate the NKT cell agonist and antigen as an effective strategy for agonist-antigen co-delivery to drive antitumor responses.
Collapse
Affiliation(s)
- Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Ligthart NAM, de Geus MAR, van de Plassche MAT, Torres García D, Isendoorn MME, Reinalda L, Ofman D, van Leeuwen T, van Kasteren SI. A Lysosome-Targeted Tetrazine for Organelle-Specific Click-to-Release Chemistry in Antigen Presenting Cells. J Am Chem Soc 2023. [PMID: 37269296 DOI: 10.1021/jacs.3c02139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bioorthogonal deprotections are readily used to control biological function in a cell-specific manner. To further improve the spatial resolution of these reactions, we here present a lysosome-targeted tetrazine for an organelle-specific deprotection reaction. We show that trans-cyclooctene deprotection with this reagent can be used to control the biological activity of ligands for invariant natural killer T cells in the lysosome to shed light on the processing pathway in antigen presenting cells. We then use the lysosome-targeted tetrazine to show that long peptide antigens used for CD8+ T cell activation do not pass through this organelle, suggesting a role for the earlier endosomal compartments for their processing.
Collapse
Affiliation(s)
- Nina A M Ligthart
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mark A R de Geus
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Merel A T van de Plassche
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Diana Torres García
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marjolein M E Isendoorn
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Luuk Reinalda
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Daniëlle Ofman
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Tyrza van Leeuwen
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
9
|
Manco R, D’Apice L, Trovato M, Lione L, Salvatori E, Pinto E, Compagnone M, Aurisicchio L, De Berardinis P, Sartorius R. Co-Delivery of the Human NY-ESO-1 Tumor-Associated Antigen and Alpha-GalactosylCeramide by Filamentous Bacteriophages Strongly Enhances the Expansion of Tumor-Specific CD8+ T Cells. Viruses 2023; 15:v15030672. [PMID: 36992381 PMCID: PMC10059692 DOI: 10.3390/v15030672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Tumor-associated antigens (TAAs) represent attractive targets in the development of anti-cancer vaccines. The filamentous bacteriophage is a safe and versatile delivery nanosystem, and recombinant bacteriophages expressing TAA-derived peptides at a high density on the viral coat proteins improve TAA immunogenicity, triggering effective in vivo anti-tumor responses. To enhance the efficacy of the bacteriophage as an anti-tumor vaccine, we designed and generated phage particles expressing a CD8+ peptide derived from the human cancer germline antigen NY-ESO-1 decorated with the immunologically active lipid alpha-GalactosylCeramide (α-GalCer), a potent activator of invariant natural killer T (iNKT) cells. The immune response to phage expressing the human TAA NY-ESO-1 and delivering α-GalCer, namely fdNY-ESO-1/α-GalCer, was analyzed either in vitro or in vivo, using an HLA-A2 transgenic mouse model (HHK). By using NY-ESO-1-specific TCR-engineered T cells and iNKT hybridoma cells, we observed the efficacy of the fdNY-ESO-1/α-GalCer co-delivery strategy at inducing activation of both the cell subsets. Moreover, in vivo administration of fdNY-ESO-1 decorated with α-GalCer lipid in the absence of adjuvants strongly enhances the expansion of NY-ESO-1-specific CD8+ T cells in HHK mice. In conclusion, the filamentous bacteriophage delivering TAA-derived peptides and the α-GalCer lipid may represent a novel and promising anti-tumor vaccination strategy.
Collapse
Affiliation(s)
- Roberta Manco
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy
| | - Luciana D’Apice
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy
| | | | | | | | - Mirco Compagnone
- Takis Biotech, 00128 Rome, Italy
- Neomatrix Biotech, 00128 Rome, Italy
| | - Luigi Aurisicchio
- Takis Biotech, 00128 Rome, Italy
- Neomatrix Biotech, 00128 Rome, Italy
| | | | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0816132716
| |
Collapse
|
10
|
Alharbi N, Skwarczynski M, Toth I. The influence of component structural arrangement on peptide vaccine immunogenicity. Biotechnol Adv 2022; 60:108029. [PMID: 36028180 DOI: 10.1016/j.biotechadv.2022.108029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Peptide-based subunit vaccines utilise minimal immunogenic components (i.e. peptides) to generate highly specific immune responses, without triggering adverse reactions. However, strong adjuvants and/or effective delivery systems must be incorporated into such vaccines, as peptide antigens cannot induce substantial immune responses on their own. Unfortunately, many adjuvants are too weak or too toxic to be used in combination with peptide antigens. These shortcomings have been addressed by the conjugation of peptide antigens with lipidic/ hydrophobic adjuvanting moieties. The conjugates have shown promising safety profiles and improved immunogenicity without the help of traditional adjuvants and have been efficient in inducing desired immune responses following various routes of administration, including subcutaneous, oral and intranasal. However, not only conjugation per se, but also component arrangement influences vaccine efficacy. This review highlights the importance of influence of the vaccine chemical structure modification on the immune responses generated. It discusses a variety of factors that affect the immunogenicity of peptide conjugates, including: i) self-adjuvanting moiety length and number; ii) the orientation of epitopes and self-adjuvanting moieties in the conjugate; iii) the presence of spacers between conjugated components; iv) multiepitopic arrangement; and v) the effect of chirality on vaccine efficacy.
Collapse
Affiliation(s)
- Nedaa Alharbi
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; University of Jeddah, College of Science and Arts, Department of Chemistry, Jeddah, Saudi Arabia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
11
|
Burn OK, Farrand K, Pritchard T, Draper S, Tang CW, Mooney AH, Schmidt AJ, Yang SH, Williams GM, Brimble MA, Kandasamy M, Marshall AJ, Clarke K, Painter GF, Hermans IF, Weinkove R. Glycolipid-peptide conjugate vaccines elicit CD8 + T-cell responses and prevent breast cancer metastasis. Clin Transl Immunology 2022; 11:e1401. [PMID: 35795321 PMCID: PMC9250805 DOI: 10.1002/cti2.1401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022] Open
Abstract
Objectives Metastasis is the principal cause of breast cancer mortality. Vaccines targeting breast cancer antigens have yet to demonstrate clinical efficacy, and there remains an unmet need for safe and effective treatment to reduce the risk of metastasis, particularly for people with triple-negative breast cancer (TNBC). Certain glycolipids can act as vaccine adjuvants by specifically stimulating natural killer T (NKT) cells to provide a universal form of T-cell help. Methods We designed and made a series of conjugate vaccines comprising a prodrug of the NKT cell-activating glycolipid α-galactosylceramide covalently linked to tumor-expressed peptides, and assessed these using E0771- and 4T1-based breast cancer models in vivo. We employed peptides from the model antigen ovalbumin and from clinically relevant breast cancer antigens HER2 and NY-ESO-1. Results Glycolipid-peptide conjugate vaccines that activate NKT cells led to antigen-presenting cell activation, induced inflammatory cytokines, and, compared with peptide alone or admixed peptide and α-galactosylceramide, specifically enhanced CD8+ T-cell responses against tumor-associated peptides. Primary tumor growth was delayed by vaccination in all tumor models. Using 4T1-based cell lines expressing HER2 or NY-ESO-1, a single administration of the relevant conjugate vaccine prevented tumor colonisation of the lung following intravenous inoculation of tumor cells or spontaneous metastasis from breast, respectively. Conclusion Glycolipid-peptide conjugate vaccines that activate NKT cells prevent lung metastasis in breast cancer models and warrant investigation as adjuvant therapies for high-risk breast cancer.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research Wellington New Zealand.,Department of Pathology & Molecular Medicine University of Otago Wellington Wellington New Zealand
| | - Kathryn Farrand
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Tara Pritchard
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Sarah Draper
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand
| | - Ching-Wen Tang
- Malaghan Institute of Medical Research Wellington New Zealand
| | - Anna H Mooney
- Malaghan Institute of Medical Research Wellington New Zealand
| | | | - Sung H Yang
- School of Chemical Sciences University of Auckland Auckland New Zealand
| | | | - Margaret A Brimble
- School of Chemical Sciences University of Auckland Auckland New Zealand.,School of Biological Sciences University of Auckland Auckland New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Matheswaran Kandasamy
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine University of Oxford Oxford UK
| | - Andrew J Marshall
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand
| | - Kate Clarke
- Wellington Blood & Cancer Centre Capital & Coast District Health Board Wellington New Zealand
| | - Gavin F Painter
- Ferrier Research Institute Victoria University of Wellington Wellington New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research Wellington New Zealand.,Maurice Wilkins Centre Auckland New Zealand
| | - Robert Weinkove
- Malaghan Institute of Medical Research Wellington New Zealand.,Department of Pathology & Molecular Medicine University of Otago Wellington Wellington New Zealand.,Wellington Blood & Cancer Centre Capital & Coast District Health Board Wellington New Zealand
| |
Collapse
|
12
|
Romanò C, Clausen MH. Chemical Biology of αGalCer: a Chemist’s Toolbox for the Stimulation of Invariant Natural Killer T (iNKT) Cells. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cecilia Romanò
- Technical University of Denmark: Danmarks Tekniske Universitet Department of Chemisty Kemitorvet 207 2800 Kgs. Lyngby DENMARK
| | - Mads Hartvig Clausen
- Technical University of Denmark Department of Chemistry Kemitorvet, Building 201 2800 Kgs. Lyngby DENMARK
| |
Collapse
|
13
|
Wang J, Wen Y, Zhou SH, Zhang HW, Peng XQ, Zhang RY, Yin XG, Qiu H, Gong R, Yang GF, Guo J. Self-Adjuvanting Lipoprotein Conjugate αGalCer-RBD Induces Potent Immunity against SARS-CoV-2 and its Variants of Concern. J Med Chem 2022; 65:2558-2570. [PMID: 35073081 PMCID: PMC8806000 DOI: 10.1021/acs.jmedchem.1c02000] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 02/06/2023]
Abstract
Safe and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are the best approach to successfully combat the COVID-19 pandemic. The receptor-binding domain (RBD) of the viral spike protein is a major target to develop candidate vaccines. α-Galactosylceramide (αGalCer), a potent invariant natural killer T cell (iNKT) agonist, was site-specifically conjugated to the N-terminus of the RBD to form an adjuvant-protein conjugate, which was anchored on the liposome surface. This is the first time that an iNKT cell agonist was conjugated to the protein antigen. Compared to the unconjugated RBD/αGalCer mixture, the αGalCer-RBD conjugate induced significantly stronger humoral and cellular responses. The conjugate vaccine also showed effective cross-neutralization to all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results suggest that the self-adjuvanting αGalCer-RBD has great potential to be an effective COVID-19 vaccine candidate, and this strategy might be useful for designing various subunit vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- COVID-19/therapy
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/therapeutic use
- Female
- Galactosylceramides/chemistry
- Galactosylceramides/immunology
- Galactosylceramides/therapeutic use
- Immunity, Humoral/drug effects
- Immunity, Innate/drug effects
- Interferon-gamma/metabolism
- Liposomes/chemistry
- Liposomes/immunology
- Liposomes/therapeutic use
- Mice, Inbred BALB C
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptide Fragments/therapeutic use
- Protein Domains
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/therapeutic use
- Vaccines, Conjugate/chemistry
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/therapeutic use
- Mice
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Yu Wen
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hai-Wei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety,
Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Xiao-Qian Peng
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hong Qiu
- State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences,
Shanghai 201203, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety,
Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| |
Collapse
|
14
|
iNKT cell agonists as vaccine adjuvants to combat infectious diseases. Carbohydr Res 2022; 513:108527. [DOI: 10.1016/j.carres.2022.108527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 01/07/2023]
|
15
|
Built-in adjuvants for use in vaccines. Eur J Med Chem 2022; 227:113917. [PMID: 34688011 DOI: 10.1016/j.ejmech.2021.113917] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023]
Abstract
Vaccine refers to biological products that are produced using various pathogenic microorganisms for inoculation. The goal of vaccination is to induce a robust immune response against a specific antigen, thus preventing the organism from getting infected. In vaccines, adjuvants have been widely employed to enhance immunity against specific antigens. An ideal adjuvant should be stable, biodegradable, and low cost, not induce system rejection and promote an immune response. Various adjuvant components have been investigated across diverse applications. Typically, adjuvants are employed to meet the following objectives: (1) to improve the effectiveness of immunization with vaccines for specific populations, such as newborns and the elderly; (2) enhance the immunogenicity of highly purified or recombinant antigens; (3) allow immunization with a smaller dose of the vaccine, reducing drug dosage. In the present review, we primarily focus on chemically synthesized compounds that can be used as built-in adjuvants. We elaborate the classification of these compounds based on the induced immune activation mechanism and summarize their application in various vaccine types.
Collapse
|
16
|
Meijlink MA, Chua YC, Chan STS, Anderson RJ, Rosenberg MW, Cozijnsen A, Mollard V, McFadden GI, Draper SL, Holz LE, Hermans IF, Heath WR, Painter GF, Compton BJ. 6″-Modifed α-GalCer-peptide conjugate vaccine candidates protect against liver-stage malaria. RSC Chem Biol 2022; 3:551-560. [PMID: 35656478 PMCID: PMC9092427 DOI: 10.1039/d1cb00251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Self-adjuvanting vaccines consisting of peptide epitopes conjugated to immune adjuvants are a powerful way of generating antigen-specific immune responses. We previously showed that a Plasmodium-derived peptide conjugated to a rearranged form of α-galactosylceramide (α-GalCer) could stimulate liver-resident memory T (TRM) cells that were effective killers of liver-stage Plasmodium berghei ANKA (Pba)-infected cells. To investigate if similar or even superior TRM responses can be induced by modifying the α-GalCer adjuvant, we created new conjugate vaccine cadidates by attaching an immunogenic Plasmodium-derived peptide antigen to 6″-substituted α-GalCer analogues. Vaccine synthesis involved developing an efficient route to α-galactosylphytosphingosine (α-GalPhs), from which the prototypical iNKT cell agonist, α-GalCer, and its 6″-deoxy-6″-thio and -amino analogues were derived. Attaching a cathepsin B-cleavable linker to the 6″-modified α-GalCer created pro-adjuvants bearing a pendant ketone group available for peptide conjugation. Optimized reaction conditions were developed that allow for the efficient conjugation of peptide antigens to the pro-adjuvants via oxime ligation to create new glycolipid-peptide (GLP) conjugate vaccines. A single dose of the vaccine candidates induced acute NKT and Plasmodium-specific CD8+ T cell responses that generated potent hepatic TRM responses in mice. Our findings demonstrate that attaching antigenic peptides to 6″-modifed α-GalCer generates powerful self-adjuvanting conjugate vaccine candidates that could potentially control hepatotropic infections such as liver-stage malaria. Candidate vaccines comprised of peptide antigen conjugated to 6″-modified α-GalCer analogues generate potent hepatic TRM responses in mice with a single dose inducing protective immunity against malaria in a Plasmodium sporozoite challenge model.![]()
Collapse
Affiliation(s)
- Michael A. Meijlink
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Yu Cheng Chua
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Susanna T. S. Chan
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Matthew W. Rosenberg
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Anton Cozijnsen
- School of BioSciences, University of Melbourntie, Parkville, VIC, Australia
| | - Vanessa Mollard
- School of BioSciences, University of Melbourntie, Parkville, VIC, Australia
| | | | - Sarah L. Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Lauren E. Holz
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Avalia Immunotherapies Limited, Lower Hutt, New Zealand
| | - William R. Heath
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
- Avalia Immunotherapies Limited, Lower Hutt, New Zealand
| | - Benjamin J. Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| |
Collapse
|
17
|
Ariawan AD, van Eersel J, Martin AD, Ke YD, Ittner LM. Recent progress in synthetic self-adjuvanting vaccine development. Biomater Sci 2022; 10:4037-4057. [DOI: 10.1039/d2bm00061j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vaccination is a proven way to protect individuals against many infectious diseases, as currently highlighted in the global COVID-19 pandemic. Peptides- or small molecule antigen-based vaccination offer advantages over the...
Collapse
|
18
|
Gorantla JN, Santhi M, Hua Y, Ketudat Cairns JR. Total synthesis of ceramides and β- O-glucosylceramides via intramolecular fatty acyl group migration. NEW J CHEM 2022. [DOI: 10.1039/d1nj05372h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fatty acyl group utilized as both protection and migratory group for the synthesis of ceramides and glucosylceramides.
Collapse
Affiliation(s)
- Jaggaiah N. Gorantla
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Maniganda Santhi
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yanling Hua
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - James R. Ketudat Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
19
|
Immunological Assessment of Lung Responses to Inhalational Lipoprotein Vaccines Against Bacterial Pathogens. Methods Mol Biol 2021. [PMID: 34784043 DOI: 10.1007/978-1-0716-1900-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lipopeptides or lipoproteins show potential as safe and effective subunit vaccines for protection against bacterial pathogens. Provided suitable adjuvants are selected, such as the TLR2-stimulating molecules Pam2Cys and Pam3Cys, these may be formulated as inhalational vaccines to optimize localized pulmonary immune responses. Here, we present methods to assess antigen-specific memory lymphocyte responses to novel vaccines, with a focus on immune responses in the lung tissue and bronchoalveolar space. We describe detection of T-cell responses via leukocyte restimulation, followed by intracellular cytokine staining and flow cytometry, enzyme-linked immunosorbent spot assay (ELISpot), and sustained leukocyte restimulation for detection of antigen-specific memory responses. We also detail assessment of antibody responses to vaccine antigens, via enzyme-linked immunosorbent assay (ELISA)-based detection. These methods are suitable for testing a wide range of pulmonary vaccines.
Collapse
|
20
|
Burn OK, Pankhurst TE, Painter GF, Connor LM, Hermans IF. Harnessing NKT cells for vaccination. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab013. [PMID: 36845569 PMCID: PMC9914585 DOI: 10.1093/oxfimm/iqab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T cells capable of enhancing both innate and adaptive immune responses. When NKT cells are stimulated in close temporal association with co-administered antigens, strong antigen-specific immune responses can be induced, prompting the study of NKT cell agonists as novel immune adjuvants. This activity has been attributed to the capacity of activated NKT cells to act as universal helper cells, with the ability to provide molecular signals to dendritic cells and B cells that facilitate T cell and antibody responses, respectively. These signals can override the requirement for conventional CD4+ T cell help, so that vaccines can be designed without need to consider CD4+ T cell repertoire and major histocompatibility complex Class II diversity. Animal studies have highlighted some drawbacks of the approach, namely, concerns around induction of NKT cell hyporesponsiveness, which may limit vaccine boosting, and potential for toxicity. Here we highlight studies that suggest these obstacles can be overcome by targeted delivery in vivo. We also feature new studies that suggest activating NKT cells can help encourage differentiation of T cells into tissue-resident memory cells that play an important role in prophylaxis against infection, and may be required in cancer therapy.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand
| | - Theresa E Pankhurst
- The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone 5046, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lisa M Connor
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand,Correspondence address. Malaghan Institute of Medical Research, Wellington, New Zealand. Tel: +64 4 4996914; E-mail: (I.F.H.)
| |
Collapse
|
21
|
Yin XG, Lu J, Wang J, Zhang RY, Wang XF, Liao CM, Liu XP, Liu Z, Guo J. Synthesis and Evaluation of Liposomal Anti-GM3 Cancer Vaccine Candidates Covalently and Noncovalently Adjuvanted by αGalCer. J Med Chem 2021; 64:1951-1965. [PMID: 33539088 DOI: 10.1021/acs.jmedchem.0c01186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GM3, a typical tumor-associated carbohydrate antigen, is considered as an important target for cancer vaccine development, but its low immunogenicity limits its application. αGalCer, an iNKT cell agonist, has been employed as an adjuvant via a unique immune mode. Herein, we prepared and investigated two types of antitumor vaccine candidates: (a) self-adjuvanting vaccine GM3-αGalCer by conjugating GM3 with αGalCer and (b) noncovalent vaccine GM3-lipid/αGalCer, in which GM3 is linked with lipid anchor and coassembled with αGalCer. This demonstrated that βGalCer is an exceptionally optimized lipid anchor, which enables the noncovalent vaccine candidate GM3-βGalCer/αGalCer to evoke a comparable antibody level to GM3-αGalCer. However, the antibodies induced by GM3-αGalCer are better at recognition B16F10 cancer cells and more effectively activate the complement system. Our study highlights the importance of vaccine constructs utilizing covalent or noncovalent assembly between αGalCer with carbohydrate antigens and choosing an appropriate lipid anchor for use in noncovalent vaccine formulation.
Collapse
Affiliation(s)
- Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jie Lu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xi-Feng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Chun-Miao Liao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiao-Peng Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
22
|
Holz LE, Chua YC, de Menezes MN, Anderson RJ, Draper SL, Compton BJ, Chan STS, Mathew J, Li J, Kedzierski L, Wang Z, Beattie L, Enders MH, Ghilas S, May R, Steiner TM, Lange J, Fernandez-Ruiz D, Valencia-Hernandez AM, Osmond TL, Farrand KJ, Seneviratna R, Almeida CF, Tullett KM, Bertolino P, Bowen DG, Cozijnsen A, Mollard V, McFadden GI, Caminschi I, Lahoud MH, Kedzierska K, Turner SJ, Godfrey DI, Hermans IF, Painter GF, Heath WR. Glycolipid-peptide vaccination induces liver-resident memory CD8 + T cells that protect against rodent malaria. Sci Immunol 2021; 5:5/48/eaaz8035. [PMID: 32591409 DOI: 10.1126/sciimmunol.aaz8035] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/22/2020] [Indexed: 12/29/2022]
Abstract
Liver resident-memory CD8+ T cells (TRM cells) can kill liver-stage Plasmodium-infected cells and prevent malaria, but simple vaccines for generating this important immune population are lacking. Here, we report the development of a fully synthetic self-adjuvanting glycolipid-peptide conjugate vaccine designed to efficiently induce liver TRM cells. Upon cleavage in vivo, the glycolipid-peptide conjugate vaccine releases an MHC I-restricted peptide epitope (to stimulate Plasmodium-specific CD8+ T cells) and an adjuvant component, the NKT cell agonist α-galactosylceramide (α-GalCer). A single dose of this vaccine in mice induced substantial numbers of intrahepatic malaria-specific CD8+ T cells expressing canonical markers of liver TRM cells (CD69, CXCR6, and CD101), and these cells could be further increased in number upon vaccine boosting. We show that modifications to the peptide, such as addition of proteasomal-cleavage sequences or epitope-flanking sequences, or the use of alternative conjugation methods to link the peptide to the glycolipid improved liver TRM cell generation and led to the development of a vaccine able to induce sterile protection in C57BL/6 mice against Plasmodium berghei sporozoite challenge after a single dose. Furthermore, this vaccine induced endogenous liver TRM cells that were long-lived (half-life of ~425 days) and were able to maintain >90% sterile protection to day 200. Our findings describe an ideal synthetic vaccine platform for generating large numbers of liver TRM cells for effective control of liver-stage malaria and, potentially, a variety of other hepatotropic infections.
Collapse
Affiliation(s)
- Lauren E Holz
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Yu Cheng Chua
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Maria N de Menezes
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Susanna T S Chan
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Juby Mathew
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Jasmine Li
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Zhongfang Wang
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Matthias H Enders
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia.,LIMES Institute, University of Bonn, Bonn, Germany
| | - Sonia Ghilas
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Rose May
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Thiago M Steiner
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Joshua Lange
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ana Maria Valencia-Hernandez
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Taryn L Osmond
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Avalia Immunotherapies Limited, Lower Hutt, New Zealand
| | | | - Rebecca Seneviratna
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Catarina F Almeida
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Kirsteen M Tullett
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Patrick Bertolino
- Centenary Institute, The University of Sydney and AW Morrow Gastroenterology and Liver Centre, Liver Immunology Program, Newtown, NSW, Australia
| | - David G Bowen
- Centenary Institute, The University of Sydney and AW Morrow Gastroenterology and Liver Centre, Liver Immunology Program, Newtown, NSW, Australia
| | - Anton Cozijnsen
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Vanessa Mollard
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Irina Caminschi
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Mireille H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand. .,Avalia Immunotherapies Limited, Lower Hutt, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Wellington, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand. .,Avalia Immunotherapies Limited, Lower Hutt, New Zealand
| | - William R Heath
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Synthetic protein conjugate vaccines provide protection against Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A 2021; 118:2013730118. [PMID: 33468674 DOI: 10.1073/pnas.2013730118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The global incidence of tuberculosis remains unacceptably high, with new preventative strategies needed to reduce the burden of disease. We describe here a method for the generation of synthetic self-adjuvanted protein vaccines and demonstrate application in vaccination against Mycobacterium tuberculosis Two vaccine constructs were designed, consisting of full-length ESAT6 protein fused to the TLR2-targeting adjuvants Pam2Cys-SK4 or Pam3Cys-SK4 These were produced by chemical synthesis using a peptide ligation strategy. The synthetic self-adjuvanting vaccines generated powerful local CD4+ T cell responses against ESAT6 and provided significant protection in the lungs from virulent M. tuberculosis aerosol challenge when administered to the pulmonary mucosa of mice. The flexible synthetic platform we describe, which allows incorporation of adjuvants to multiantigenic vaccines, represents a general approach that can be applied to rapidly assess vaccination strategies in preclinical models for a range of diseases, including against novel pandemic pathogens such as SARS-CoV-2.
Collapse
|
24
|
Liu Y, Wang Z, Yu F, Li M, Zhu H, Wang K, Meng M, Zhao W. The Adjuvant of α-Galactosylceramide Presented by Gold Nanoparticles Enhances Antitumor Immune Responses of MUC1 Antigen-Based Tumor Vaccines. Int J Nanomedicine 2021; 16:403-420. [PMID: 33469292 PMCID: PMC7813472 DOI: 10.2147/ijn.s273883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Therapeutic tumor vaccines are one of the most promising strategies and have attracted great attention in cancer treatment. However, most of them have shown unsatisfactory immunogenicity, there are still few available vaccines for clinical use. Therefore, there is an urgent demand to develop novel strategies to improve the immune efficacy of antitumor vaccines. PURPOSE This study aimed to develop novel adjuvants and carriers to enhance the immune effect of MUC1 glycopeptide antigen-based antitumor vaccines. METHODS An antitumor vaccine was developed, in which MUC1 glycopeptide was used as tumor-associated antigen, α-GalCer served as an immune adjuvant and AuNPs was a multivalent carrier. RESULTS Immunological evaluation results indicated that the constructed vaccines enabled a significant antibody response. FACS analysis and immunofluorescence assay showed that the induced antisera exhibited a specific binding with MUC1 positive MCF-7 cells. Moreover, the induced antibody can mediate CDC to kill MCF-7 cells. Besides stimulating B cells to produce MUC1-specific antibodies, the prepared vaccines also induced MUC1-specific CTLs in vitro. Furthermore, the vaccines significantly delayed tumor development in tumor-bearing mice model. CONCLUSION These results showed that the construction of vaccines by presenting α-GalCer adjuvant and an antigen on gold nanoparticles offers a potential strategy to improve the antitumor response in cancer immunotherapy.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Neoplasm/immunology
- Antigens, Neoplasm/immunology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Female
- Galactosylceramides/chemical synthesis
- Galactosylceramides/chemistry
- Galactosylceramides/pharmacology
- Gold/pharmacology
- Humans
- Immune Sera/metabolism
- Melanoma/immunology
- Melanoma/pathology
- Metal Nanoparticles/chemistry
- Metal Nanoparticles/ultrastructure
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mucin-1/immunology
- Spleen/pathology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Mice
Collapse
Affiliation(s)
- Yonghui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Zhaoyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin300071, People’s Republic of China
| | - Mingjing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Haomiao Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Kun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin300353, People’s Republic of China
| |
Collapse
|
25
|
Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem 2021; 5:197-216. [PMID: 37117529 PMCID: PMC7829660 DOI: 10.1038/s41570-020-00244-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Modern subunit vaccines based on homogeneous antigens offer more precise targeting and improved safety compared with traditional whole-pathogen vaccines. However, they are also less immunogenic and require an adjuvant to increase the immunogenicity of the antigen and potentiate the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new, potent and safe adjuvants. Notably, a number of natural and synthetic carbohydrate structures have been used as adjuvants in clinical trials, and two have recently been approved in human vaccines. However, naturally derived carbohydrate adjuvants are heterogeneous, difficult to obtain and, in some cases, unstable. In addition, their molecular mechanisms of action are generally not fully understood, partly owing to the lack of tools to elucidate their immune-potentiating effects, thus hampering the rational development of optimized adjuvants. To address these challenges, modification of the natural product structure using synthetic chemistry emerges as an attractive approach to develop well-defined, improved carbohydrate-containing adjuvants and chemical probes for mechanistic investigation. This Review describes selected examples of natural and synthetic carbohydrate-based adjuvants and their application in synthetic self-adjuvanting vaccines, while also discussing current understanding of their molecular mechanisms of action.
Collapse
|
26
|
Zhang Y, Guo J, Xu X, Gao Q, Liu X, Ding N. A practical and scalable synthesis of KRN7000 using glycosyl iodide as the glycosyl donor. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820961018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
KRN7000 is particularly useful because it is a powerful and specific CD1d agonist and has prompted intense interest in the context of immunology in the past 25 years. Its limited commercial availability and high price has led to the publication of many different syntheses. However, almost all of them focused on the methodology development rather than a scalable synthesis. Herein, we have described a practical and scalable procedure for the synthesis of KRN7000 basing on the glycosyl iodide method. This procedure involves total of eight steps to obtain the highly pure product KNR7000 on gram scale from the commercially available starting materials (d-galactose and the phytosphingosine) with only three column chromatographic purifications.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Jia Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Xiaoyan Xu
- China State Institute of Pharmaceutical Industry, Shanghai, P.R. China
| | - Qi Gao
- China State Institute of Pharmaceutical Industry, Shanghai, P.R. China
| | - Xianglai Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, P.R. China
| |
Collapse
|
27
|
Feng S, Xiong C, Wang G, Wang S, Jin G, Gu G. Exploration of Recombinant Fusion Proteins YAPO and YAPL as Carrier Proteins for Glycoconjugate Vaccine Design against Streptococcus pneumoniae Infection. ACS Infect Dis 2020; 6:2181-2191. [PMID: 32687317 DOI: 10.1021/acsinfecdis.0c00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pneumolysin (Ply), pneumococcal surface protein A (PspA), and pneumococcal surface adhesin A (PsaA) are promising cell surface protein antigen targets for Streptococcus pneumoniae (Spn) vaccine development. Herein, we designed and recombined two fusion proteins, named YAPO and YAPL, which contained the main antigenic epitopes of Ply, PspA, and PsaA. In-depth immunological evaluations revealed that YAPO and YAPL had strong immunocompetence to be well-qualified potential carrier proteins. To verify this possibility, a serotype 3 Spn (ST3) CPS pentasaccharide was conjugated to each fusion protein to generate the resultant glycoconjugates. Immunological studies in mice revealed that, as compared with TT conjugate, YAPO and YAPL conjugates provoked robust T-cell dependent immune responses that could provide better recognition, in vitro efficient opsonophagocytosis, and in vivo effective protection against various serotypes of Spn. Collectively, YAPO and YAPL were identified as immunopotentiating carriers that could help convert immunologically inactive ST3 pentasaccharide into a T cell-dependent antigen and provide efficient and broad spectrum of immunoprotection coverage so as to formulate functional glycoconjugate vaccines against Spn infections.
Collapse
Affiliation(s)
- Shaojie Feng
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Chenghe Xiong
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guirong Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Subo Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guoxia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua Dong Lu, Jinan 250014, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
28
|
Zeng L, Liao Z, Li W, Yuan Q, Wu P, Gu Z, Liu Z, Liao G. Non-covalent glycosylated gold nanoparticles/peptides nanovaccine as potential cancer vaccines. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Grasso C, Field CS, Tang CW, Ferguson PM, J Compton B, Anderson RJ, Painter GF, Weinkove R, F Hermans I, Berridge MV. Vaccines adjuvanted with an NKT cell agonist induce effective T-cell responses in models of CNS lymphoma. Immunotherapy 2020; 12:395-406. [PMID: 32316797 DOI: 10.2217/imt-2019-0134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The efficacy of anti-lymphoma vaccines that exploit the cellular adjuvant properties of activated natural killer T (NKT) cells were examined in mouse models of CNS lymphoma. Materials & methods: Vaccines were prepared by either loading the NKT cell agonist, α-galactosylceramide onto irradiated and heat-shocked B- and T-lymphoma cells, or chemically conjugating α-galactosylceramide to MHC-binding peptides from a lymphoma-associated antigen. Vaccine efficacy was analyzed in mice bearing intracranial tumors. Results: Both forms of vaccine proved to be effective in preventing lymphoma engraftment through activity of T cells that accessed the CNS. Established lymphoma was harder to treat with responses constrained by Tregs, but this could be overcome by depleting Tregs prior to vaccination. Conclusion: Simply designed NKT cell-activating vaccines enhance T-cell responses and have the potential to protect against CNS lymphoma development or prevent CNS relapse. To be effective against established CNS lymphoma, vaccines need to be combined with Treg suppression.
Collapse
Affiliation(s)
- Carole Grasso
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| | - Cameron S Field
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| | - Ching-Wen Tang
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1042, New Zealand
| | - Peter M Ferguson
- Melanoma Institute Australia, 40 Rocklands Road, Wollstonecraft, NSW 2065, Australia
| | - Benjamin J Compton
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Lower Hutt 5046, New Zealand
| | - Regan J Anderson
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Lower Hutt 5046, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Lower Hutt 5046, New Zealand
| | - Robert Weinkove
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.,Wellington Blood & Cancer Centre, Capital & Coast District Health Board, P.O. Box 7902, Wellington 6242, New Zealand.,Department of Pathology & Molecular Medicine, University of Otago Wellington, P.O. Box 7343, Wellington 6242, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1042, New Zealand
| | - Michael V Berridge
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington 6242, New Zealand
| |
Collapse
|
30
|
Robinson SA, Yau J, Terabe M, Berzofsky JA, Painter GF, Compton BJ, Larsen DS. Synthetic preparation and immunological evaluation of β-mannosylceramide and related N-acyl analogues. Org Biomol Chem 2020; 18:2739-2746. [PMID: 32219267 DOI: 10.1039/d0ob00223b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of the invariant natural killer (iNK) T cell agonist β-mannosylceramide along with a series of fatty amide analogues is reported. Of the six β-glycosylation protocols investigated, the sulfoxide methodology developed by Crich and co-workers proved to be the most effective where the reaction of a mannosyl sulfoxide and phytosphingosine derivative gave a key glycolipid intermediate as a 95 : 5 mixture of β- to α-anomers in high yield. A series of mannosyl ceramides were evaluated for their ability to activate D32.D3 NKT cells and induce antitumour activity.
Collapse
Affiliation(s)
- Sage A Robinson
- Department of Chemistry, University of Otago, Dunedin, New Zealand.
| | - Jessica Yau
- Vaccine Branch, Centre for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Masaki Terabe
- Vaccine Branch, Centre for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jay A Berzofsky
- Vaccine Branch, Centre for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand.
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand.
| | - David S Larsen
- Department of Chemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
31
|
Abstract
Vaccines are powerful tools that can activate the immune system for protection against various diseases. As carbohydrates can play important roles in immune recognition, they have been widely applied in vaccine development. Carbohydrate antigens have been investigated in vaccines against various pathogenic microbes and cancer. Polysaccharides such as dextran and β-glucan can serve as smart vaccine carriers for efficient antigen delivery to immune cells. Some glycolipids, such as galactosylceramide and monophosphoryl lipid A, are strong immune stimulators, which have been studied as vaccine adjuvants. In this review, we focus on the current advances in applying carbohydrates as vaccine delivery carriers and adjuvants. We will discuss the examples that involve chemical modifications of the carbohydrates for effective antigen delivery, as well as covalent antigen-carbohydrate conjugates for enhanced immune responses.
Collapse
Affiliation(s)
- Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
32
|
Li Y, Woods K, Parry-Strong A, Anderson RJ, Capistrano C, Gestin A, Painter GF, Hermans IF, Krebs J, Gasser O. Distinct Dysfunctional States of Circulating Innate-Like T Cells in Metabolic Disease. Front Immunol 2020; 11:448. [PMID: 32231670 PMCID: PMC7082397 DOI: 10.3389/fimmu.2020.00448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/26/2020] [Indexed: 11/13/2022] Open
Abstract
The immune system plays a significant role in controlling systemic metabolism. Innate-like T (ILT) cells in particular, such as mucosal-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and γδ T cell receptor expressing cells, have been reported to promote metabolic homeostasis. However, these different ILT cell subsets have, to date, been generally studied in isolation. Here we conducted a pilot study assessing the phenotype and function of circulating MAIT, iNKT, and Vδ2+ T cells in a small cohort of 10 people with obesity and type 2 diabetes (T2D), 10 people with obesity but no diabetes, and 12 healthy individuals. We conducted phenotypic analysis by flow cytometry ex vivo, and then functional analysis after in vitro stimulation using either PMA/ionomycin or synthetic agonists, or precursors thereof, for each of the cell-types; use of the latter may provide important knowledge for the development of novel therapeutics aimed at activating human ILT cells. The results of our pilot study, conducted on circulating cells, show clear dysfunction of all three ILT cell subsets in obese and obese T2D patients, as compared to healthy controls. Importantly, while both iNKT and Vδ2+ T cell dysfunctions were characterized by diminished IL-2 and interferon-γ production, the distinct dysfunctional state of MAIT cells was instead defined by skewed subset composition, heightened sensitivity to T cell receptor engagement and unchanged production of all measured cytokines.
Collapse
Affiliation(s)
- Yanyan Li
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katherine Woods
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Regan J Anderson
- Ferrier Institute, Victoria University of Wellington, Wellington, New Zealand
| | | | - Aurelie Gestin
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Gavin F Painter
- Ferrier Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Jeremy Krebs
- School of Medicine, University of Otago, Wellington, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
33
|
Brezesinski G, Calow ADJ, Pereira CL, Seeberger PH. Thermodynamic and Structural Behavior of α-Galactosylceramide and C6-Functionalized α-GalCer in 2D Layers at the Air-Liquid Interface. Chembiochem 2020; 21:241-247. [PMID: 31544285 PMCID: PMC7004034 DOI: 10.1002/cbic.201900491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/12/2022]
Abstract
α-Galactosylceramide (α-GalCer; KRN7000) is a ligand for the glycoprotein CD1d that presents lipid antigens to natural killer T cells. Therefore, KRN7000 as well as some modified versions thereof have been widely investigated as part of novel immunotherapies. To examine the impact of structural modification, we investigated KRN7000 and C6-modified KRN7000 at the air-liquid interface using monolayer isotherms, BAM, IRRAS, GIXD, and TRXF. The amino group has no influence on the highly ordered sub-gel structures found at lateral pressures relevant for biological membranes. Neither lateral compression nor the protonation state of the amino group has a measurable effect on the lattice structure, which is defined by strong and rigid intermolecular hydrogen bonds. However, the first-order phase transition found for the C6-functionalized α-GalCer is connected with an extraordinary surface-inhibited nucleation. Our study demonstrates that KRN7000 can be functionalized at C6 without significantly changing the structural properties.
Collapse
Affiliation(s)
- Gerald Brezesinski
- Max Planck Institute of Colloids and InterfacesBiomolecular Systems DepartmentAm Mühlenberg 114476PotsdamGermany
| | - Adam D. J. Calow
- Max Planck Institute of Colloids and InterfacesBiomolecular Systems DepartmentAm Mühlenberg 114476PotsdamGermany
| | - Claney L. Pereira
- Max Planck Institute of Colloids and InterfacesBiomolecular Systems DepartmentAm Mühlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and InterfacesBiomolecular Systems DepartmentAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
34
|
Jiao JB, Wang GZ, Hu XL, Zang Y, Maisonneuve S, Sedgwick AC, Sessler JL, Xie J, Li J, He XP, Tian H. Cyclodextrin-Based Peptide Self-Assemblies (Spds) That Enhance Peptide-Based Fluorescence Imaging and Antimicrobial Efficacy. J Am Chem Soc 2020; 142:1925-1932. [PMID: 31884796 DOI: 10.1021/jacs.9b11207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a result of their high specificity for their corresponding biological targets, peptides have shown significant potential in a range of diagnostic and therapeutic applications. However, their widespread use has been limited by their minimal cell permeability and stability in biological milieus. We describe here a hepta-dicyanomethylene-4H-pyran appended β-cyclodextrin (DCM7-β-CD) that acts as a delivery enhancing "host" for 1-bromonaphthalene-modified peptides, as demonstrated with peptide probes P1-P4. Interaction between the fluorescent peptides P1-P3 and DCM7-β-CD results in the hierarchical formation of unique supramolecular architectures, which we term supramolecular-peptide-dots (Spds). Each Spd (Spd-1, Spd-2, and Spd-3) was found to facilitate the intracellular delivery of the constituent fluorescent probes (P1-P3), thus allowing spatiotemporal imaging of an apoptosis biomarker (caspase-3) and mitosis. Spd-4, incorporating the antimicrobial peptide P4, was found to provide an enhanced therapeutic benefit against both Gram-positive and Gram-negative bacteria relative to P4 alone. In addition, a fluorescent Spd-4 was prepared, which revealed greater bacterial cellular uptake compared to the peptide alone (P4-FITC) in E. coli. (ATCC 25922) and S. aureus (ATCC 25923). This latter observation supports the suggestion that the Spd platform reported here has the ability to facilitate the delivery of a therapeutic peptide and provides an easy-to-implement strategy for enhancing the antimicrobial efficacy of known therapeutic peptides. The present findings thus serve to highlight a new and effective supramolecular delivery approach that is potentially generalizable to overcome limitations associated with functional peptides.
Collapse
Affiliation(s)
- Jin-Biao Jiao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Rd. , Shanghai 200237 , P. R. China.,Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM , 61 av President Wilson , F-94235 Cachan , France
| | - Guan-Zhen Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 189 Guo Shoujing Rd. , Shanghai 201203 , P. R. China.,University of Chinese Academy of Sciences , No. 19A Yuquan Rd. , Beijing 100049 , P. R. China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Rd. , Shanghai 200237 , P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 189 Guo Shoujing Rd. , Shanghai 201203 , P. R. China
| | - Stéphane Maisonneuve
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM , 61 av President Wilson , F-94235 Cachan , France
| | - Adam C Sedgwick
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street-A5300 , Austin , Texas 78712-1224 , United States
| | - Jonathan L Sessler
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street-A5300 , Austin , Texas 78712-1224 , United States
| | - Juan Xie
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM , 61 av President Wilson , F-94235 Cachan , France
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 189 Guo Shoujing Rd. , Shanghai 201203 , P. R. China.,University of Chinese Academy of Sciences , No. 19A Yuquan Rd. , Beijing 100049 , P. R. China.,Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology (Qingdao) , 1 Wenhai Rd. , Aoshanwei , Jimo, Qingdao 266237 , P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Rd. , Shanghai 200237 , P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Rd. , Shanghai 200237 , P. R. China
| |
Collapse
|
35
|
Lin H, Hong H, Wang J, Li C, Zhou Z, Wu Z. Rhamnose modified bovine serum albumin as a carrier protein promotes the immune response against sTn antigen. Chem Commun (Camb) 2020; 56:13959-13962. [DOI: 10.1039/d0cc05263a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rhamnose and sTn antigen were co-conjugated to bovine serum albumin (BSA) for cancer vaccine development. The immune responses against sTn have been significantly augmented with the involvement of Rha-specific antibodies to enhance antigen uptake.
Collapse
Affiliation(s)
- Han Lin
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Haofei Hong
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Jinfeng Wang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Chen Li
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Zhifang Zhou
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
36
|
Chen PG, Hu HG, Sun ZY, Li QQ, Zhang BD, Wu JJ, Li WH, Zhao YF, Chen YX, Li YM. Fully Synthetic Invariant NKT Cell-Dependent Self-Adjuvanting Antitumor Vaccines Eliciting Potent Immune Response in Mice. Mol Pharm 2019; 17:417-425. [DOI: 10.1021/acs.molpharmaceut.9b00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pu-Guang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Hong-Guo Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Zhan-Yi Sun
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Qian-Qian Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Bo-Dou Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Jun-Jun Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (the Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
- Beijing Institute for Brain Disorders, 100069 Beijing, China
| |
Collapse
|
37
|
Xi J, Liu H. Recent Advances in the Design of Self‐Delivery Amphiphilic Drugs and Vaccines. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jingchao Xi
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
- Department of Oncology Wayne State University Detroit MI 48201 United States
- Tumor Biology and Microenvironment Program Barbara Ann Karmanos Cancer Institute Detroit MI 48201 United States
| |
Collapse
|
38
|
Marqvorsen MHS, Araman C, van Kasteren SI. Going Native: Synthesis of Glycoproteins and Glycopeptides via Native Linkages To Study Glycan-Specific Roles in the Immune System. Bioconjug Chem 2019; 30:2715-2726. [PMID: 31580646 PMCID: PMC6873266 DOI: 10.1021/acs.bioconjchem.9b00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Glycosylation plays a myriad of roles in the immune system: Certain glycans can interact with specific immune receptors to kickstart a pro-inflammatory response, whereas other glycans can do precisely the opposite and ameliorate the immune response. Specific glycans and glycoforms can themselves become the targets of the adaptive immune system, leading to potent antiglycan responses that can lead to the killing of altered self- or pathogenic species. This hydra-like set of roles glycans play is of particular importance in cancer immunity, where it influences the anticancer immune response, likely playing pivotal roles in tumor survival or clearance. The complexity of carbohydrate biology requires synthetic access to glycoproteins and glycopeptides that harbor homogeneous glycans allowing the probing of these systems with high precision. One particular complicating factor in this is that these synthetic structures are required to be as close to the native structures as possible, as non-native linkages can themselves elicit immune responses. In this Review, we discuss examples and current strategies for the synthesis of natively linked single glycoforms of peptides and proteins that have enabled researchers to gain new insights into glycoimmunology, with a particular focus on the application of these reagents in cancer immunology.
Collapse
Affiliation(s)
- Mikkel H. S. Marqvorsen
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Can Araman
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sander I. van Kasteren
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
39
|
Du JJ, Zou SY, Chen XZ, Xu WB, Wang CW, Zhang L, Tang YK, Zhou SH, Wang J, Yin XG, Gao XF, Liu Z, Guo J. Liposomal Antitumor Vaccines Targeting Mucin 1 Elicit a Lipid-Dependent Immunodominant Response. Chem Asian J 2019; 14:2116-2121. [PMID: 31042017 DOI: 10.1002/asia.201900448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Indexed: 12/30/2022]
Abstract
The tumor-associated antigen mucin 1 (MUC1) has been pursued as an attractive target for cancer immunotherapy, but the poor immunogenicity of the endogenous antigen hinders the development of vaccines capable of inducing effective anti-MUC1 immunodominant responses. Herein, we prepared synthetic anti-MUC1 vaccines in which the hydrophilic MUC1 antigen was N-terminally conjugated to one or two palmitoyl lipid chains (to form amphiphilic Pam-MUC1 or Pam2 -MUC1). These amphiphilic lipid-tailed MUC1 antigens were self-assembled into liposomes containing the NKT cell agonist αGalCer as an adjuvant. The lipid-conjugated antigens reshaped the physical and morphological properties of liposomal vaccines. Promising results showed that the anti-MUC1 IgG antibody titers induced by the Pam2 -MUC1 vaccine were more than 30- and 190-fold higher than those induced by the Pam-MUC1 vaccine and the MUC1 vaccine without lipid tails, respectively. Similarly, vaccines with the TLR1/2 agonist Pam3 CSK4 as an adjuvant also induced conjugated lipid-dependent immunological responses. Moreover, vaccines with the αGalCer adjuvant induced significantly higher titers of IgG antibodies than vaccines with the Pam3 CSK4 adjuvant. Therefore, the non-covalent assembly of the amphiphilic lipo-MUC1 antigen and the NKT cell agonist αGalCer as a glycolipid adjuvant represent a synthetically simple but immunologically effective approach for the development of anti-MUC1 cancer vaccines.
Collapse
Affiliation(s)
- Jing-Jing Du
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Shi-Yao Zou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xiang-Zhao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Wen-Bo Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Chang-Wei Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Lian Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Yuan-Kai Tang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
40
|
Chen XZ, Zhang RY, Wang XF, Yin XG, Wang J, Wang YC, Liu X, Du JJ, Liu Z, Guo J. Peptide-free Synthetic Nicotine Vaccine Candidates with α-Galactosylceramide as Adjuvant. Mol Pharm 2019; 16:1467-1476. [DOI: 10.1021/acs.molpharmaceut.8b01095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiang-Zhao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xi-Feng Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ya-Cong Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jing-Jing Du
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
41
|
Wu JJ, Li WH, Chen PG, Zhang BD, Hu HG, Li QQ, Zhao L, Chen YX, Zhao YF, Li YM. Targeting STING with cyclic di-GMP greatly augmented immune responses of glycopeptide cancer vaccines. Chem Commun (Camb) 2018; 54:9655-9658. [PMID: 30101273 DOI: 10.1039/c8cc04860f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclic di-GMP (CDG) was applied to MUC1 glycopeptide-based cancer vaccines with physical mixing and built-in (at 2'-OH of CDG) strategies for activating the STING pathway. CDG in both strategies behaved as a potent immunostimulant and contributed to high titers of IgG antibodies and the expression of multiple cytokines.
Collapse
Affiliation(s)
- Jun-Jun Wu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Broecker F, Götze S, Hudon J, Rathwell DCK, Pereira CL, Stallforth P, Anish C, Seeberger PH. Synthesis, Liposomal Formulation, and Immunological Evaluation of a Minimalistic Carbohydrate-α-GalCer Vaccine Candidate. J Med Chem 2018; 61:4918-4927. [PMID: 29742893 DOI: 10.1021/acs.jmedchem.8b00312] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fully synthetic glycan-based vaccines hold great potential as preventive and therapeutic vaccines against infectious diseases as well as cancer. Here, we present a two-component platform based on the facile conjugation of carbohydrate antigens to α-galactosylceramide (α-GalCer) to yield fully synthetic vaccine candidates. Formulation of the cancer-associated Tn antigen glycolipid model vaccine candidate into liposomes of different sizes and subsequent immunization of mice generated specific, high-affinity antibodies against the carbohydrate antigen with characteristics of T cell-dependent immunity. Liposome formulation elicited more reproducible glycan immunity than a conventional glycoconjugate vaccine bearing the same glycan antigen did. Further evaluation of the immune response revealed that the size of the liposomes influenced the glycan antibody responses toward either a cellular (Th1) or a humoral (Th2) immune phenotype. The glycolipid vaccine platform affords strong and robust antiglycan antibody responses in vivo without the need for an external adjuvant.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Sebastian Götze
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Jonathan Hudon
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Dominea C K Rathwell
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Claney L Pereira
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Pierre Stallforth
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| |
Collapse
|
43
|
Kowalczyk R, Harris PWR, Williams GM, Yang SH, Brimble MA. Peptide Lipidation - A Synthetic Strategy to Afford Peptide Based Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1030:185-227. [PMID: 29081055 PMCID: PMC7121180 DOI: 10.1007/978-3-319-66095-0_9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide and protein aberrant lipidation patterns are often involved in many diseases including cancer and neurological disorders. Peptide lipidation is also a promising strategy to improve pharmacokinetic and pharmacodynamic profiles of peptide-based drugs. Self-adjuvanting peptide-based vaccines commonly utilise the powerful TLR2 agonist PamnCys lipid to stimulate adjuvant activity. The chemical synthesis of lipidated peptides can be challenging hence efficient, flexible and straightforward synthetic routes to access homogeneous lipid-tagged peptides are in high demand. A new technique coined Cysteine Lipidation on a Peptide or Amino acid (CLipPA) uses a 'thiol-ene' reaction between a cysteine and a vinyl ester and offers great promise due to its simplicity, functional group compatibility and selectivity. Herein a brief review of various synthetic strategies to access lipidated peptides, focusing on synthetic methods to incorporate a PamnCys motif into peptides, is provided.
Collapse
Affiliation(s)
- Renata Kowalczyk
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand. .,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.
| |
Collapse
|
44
|
Anderson RJ, Li J, Kedzierski L, Compton BJ, Hayman CM, Osmond TL, Tang CW, Farrand KJ, Koay HF, Almeida CFDSSE, Holz LR, Williams GM, Brimble MA, Wang Z, Koutsakos M, Kedzierska K, Godfrey DI, Hermans IF, Turner SJ, Painter GF. Augmenting Influenza-Specific T Cell Memory Generation with a Natural Killer T Cell-Dependent Glycolipid-Peptide Vaccine. ACS Chem Biol 2017; 12:2898-2905. [PMID: 29043774 DOI: 10.1021/acschembio.7b00845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a universal vaccine for influenza A virus (IAV) that does not require seasonal modification is a long-standing health goal, particularly in the context of the increasing threat of new global pandemics. Vaccines that specifically induce T cell responses are of considerable interest because they can target viral proteins that are more likely to be shared between different virus strains and subtypes and hence provide effective cross-reactive IAV immunity. From a practical perspective, such vaccines should induce T cell responses with long-lasting memory, while also being simple to manufacture and cost-effective. Here we describe the synthesis and evaluation of a vaccine platform based on solid phase peptide synthesis and bio-orthogonal conjugation methodologies. The chemical approach involves covalently attaching synthetic long peptides from a virus-associated protein to a powerful adjuvant molecule, α-galactosylceramide (α-GalCer). Strain-promoted azide-alkyne cycloaddition is used as a simple and efficient method for conjugation, and pseudoproline methodology is used to increase the efficiency of the peptide synthesis. α-GalCer is a glycolipid that stimulates NKT cells, a population of lymphoid-resident immune cells that can provide potent stimulatory signals to antigen-presenting cells engaged in driving proliferation and differentiation of peptide-specific T cells. When used in mice, the vaccine induced T cell responses that provided effective prophylactic protection against IAV infection, with the speed of viral clearance greater than that seen from previous viral exposure. These findings are significant because the vaccines are highly defined, quick to synthesize, and easily characterized and are therefore appropriate for large scale affordable manufacture.
Collapse
Affiliation(s)
- Regan J. Anderson
- The
Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower
Hutt 5046, New Zealand
| | - Jasmine Li
- Department
of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lukasz Kedzierski
- Department
of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Benjamin J. Compton
- The
Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower
Hutt 5046, New Zealand
| | - Colin M. Hayman
- The
Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower
Hutt 5046, New Zealand
| | - Taryn L. Osmond
- Malaghan Institute of Medical Research, PO Box
7060, Wellington 6242, New Zealand
| | - Ching-wen Tang
- Malaghan Institute of Medical Research, PO Box
7060, Wellington 6242, New Zealand
| | - Kathryn J. Farrand
- Malaghan Institute of Medical Research, PO Box
7060, Wellington 6242, New Zealand
| | - Hui-Fern Koay
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
- Australian
Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Catarina Filipa Dos Santos Sa E. Almeida
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
- Australian
Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lauren R. Holz
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
| | - Geoffrey M. Williams
- School
of Biological Sciences, The University of Auckland, 3 Symonds St, Auckland Central 1142, New Zealand
| | - Margaret A Brimble
- School
of Biological Sciences, The University of Auckland, 3 Symonds St, Auckland Central 1142, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland Central 1142, New Zealand
| | - Zhongfang Wang
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
| | - Marios Koutsakos
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
| | - Katherine Kedzierska
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
| | - Dale I. Godfrey
- Department
of Microbiology and Immunology, at the Doherty Institute for Infection
and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3010, Australia
- Australian
Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ian F. Hermans
- Malaghan Institute of Medical Research, PO Box
7060, Wellington 6242, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland Central 1142, New Zealand
- Avalia Immunotherapies Limited, Gracefield Innovation
Quarter, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
| | - Stephen J. Turner
- Department
of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Gavin F. Painter
- The
Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Lower
Hutt 5046, New Zealand
- Avalia Immunotherapies Limited, Gracefield Innovation
Quarter, 69 Gracefield Rd, Lower Hutt 5010, New Zealand
| |
Collapse
|
45
|
Liu Z, Guo J. NKT-cell glycolipid agonist as adjuvant in synthetic vaccine. Carbohydr Res 2017; 452:78-90. [DOI: 10.1016/j.carres.2017.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 01/07/2023]
|
46
|
Glycolipid-peptide conjugate vaccines enhance CD8 + T cell responses against human viral proteins. Sci Rep 2017; 7:14273. [PMID: 29079845 PMCID: PMC5660197 DOI: 10.1038/s41598-017-14690-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/16/2017] [Indexed: 01/23/2023] Open
Abstract
An important goal of vaccination against viruses and virus-driven cancers is to elicit cytotoxic CD8+ T cells specific for virus-derived peptides. CD8+ T cell responses can be enhanced by engaging help from natural killer T (NKT) cells. We have produced synthetic vaccines that induce strong peptide-specific CD8+ T cell responses in vivo by incorporating an NKT cell-activating glycolipid. Here we examine the effect of a glycolipid-peptide conjugate vaccine incorporating an NKT cell-activating glycolipid linked to an MHC class I-restricted peptide from a viral antigen in human peripheral blood mononuclear cells. The vaccine induces CD1d-dependent activation of human NKT cells following enzymatic cleavage, activates human dendritic cells in an NKT-cell dependent manner, and generates a pool of activated antigen-specific CD8+ T cells with cytotoxic potential. Compared to unconjugated peptide, the vaccine upregulates expression of genes encoding interferon-γ, CD137 and granzyme B. A similar vaccine incorporating a peptide from the clinically-relevant human papilloma virus (HPV) 16 E7 oncoprotein induces cytotoxicity against peptide-expressing targets in vivo, and elicits a better antitumor response in a model of E7-expressing lung cancer than its unconjugated components. Glycolipid-peptide conjugate vaccines may prove useful for the prevention or treatment of viral infections and tumors that express viral antigens.
Collapse
|
47
|
Yao D, Liu Y, Gao Q, Sui Q, Liu X, Ding N. A comparison of benzyl and 2-naphthylmethyl ethers as permanent hydroxyl protecting groups in the synthesis of α-galactoglycosphingolipids KRN7000 and PBS-57. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1375114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dongming Yao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yichu Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Qi Gao
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Qiang Sui
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xiaoping Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Liu Y, Xu X, Gao Q, Yan S, Li Y, Ding N. Rapid access to 6″-functionalized α-galactosyl ceramides by using 2-naphthylmethyl ether as the permanent protecting group. Bioorg Med Chem Lett 2017; 27:1795-1798. [DOI: 10.1016/j.bmcl.2017.02.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/25/2022]
|
49
|
From Immunologically Archaic to Neoteric Glycovaccines. Vaccines (Basel) 2017; 5:vaccines5010004. [PMID: 28134792 PMCID: PMC5371740 DOI: 10.3390/vaccines5010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/14/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Polysaccharides (PS) are present in the outermost surface of bacteria and readily come in contact with immune cells. They interact with specific antibodies, which in turn confer protection from infections. Vaccines with PS from pneumococci, meningococci, Haemophilus influenzae type b, and Salmonella typhi may be protective, although with the important constraint of failing to generate permanent immunological memory. This limitation has in part been circumvented by conjugating glycovaccines to proteins that stimulate T helper cells and facilitate the establishment of immunological memory. Currently, protection evoked by conjugated PS vaccines lasts for a few years. The same approach failed with PS from staphylococci, Streptococcus agalactiae, and Klebsiella. All those germs cause severe infections in humans and often develop resistance to antibiotic therapy. Thereby, prevention is of increasing importance to better control outbreaks. As only 23 of more than 90 pneumococcal serotypes and 4 of 13 clinically relevant Neisseria meningitidis serogroups are covered by available vaccines there is still tremendous clinical need for PS vaccines. This review focuses on glycovaccines and the immunological mechanisms for their success or failure. We discuss recent advances that may facilitate generation of high affinity anti-PS antibodies and confer specific immunity and long-lasting protection.
Collapse
|
50
|
Yin XG, Chen XZ, Sun WM, Geng XS, Zhang XK, Wang J, Ji PP, Zhou ZY, Baek DJ, Yang GF, Liu Z, Guo J. IgG Antibody Response Elicited by a Fully Synthetic Two-Component Carbohydrate-Based Cancer Vaccine Candidate with α-Galactosylceramide as Built-in Adjuvant. Org Lett 2017; 19:456-459. [DOI: 10.1021/acs.orglett.6b03591] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Xiang-Zhao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Wen-Mei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Xiao-Shan Geng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Xiao-Kang Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Pan-Pan Ji
- Department
of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P. R. China
| | - Zhong-Yin Zhou
- Department
of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P. R. China
| | - Dong Jae Baek
- College
of Pharmacy, Natural Medicine Research Institute, Mokpo National University, 1666 Youngsan-ro, Muan-gun, Jeonnam 534-729, Korea
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|