1
|
Chen J, Dong X, Lin Y, Lv C. The critical role of GLP-1 signaling pathways in the pathology of Parkinson's disease and diabetes. Pathol Res Pract 2025; 270:155985. [PMID: 40279852 DOI: 10.1016/j.prp.2025.155985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
This review assesses the roles of GLP-1 and its receptor agonists (GLP-1RAs) in the treatment of diabetes and Parkinson's disease, integrating current theories and research. GLP-1, a vital endogenous hormone, regulates insulin secretion, delays gastric emptying, and promotes satiety, showing significant potential for diabetes management. However, its brief lifespan and restricted blood-brain barrier penetration limit its clinical application. To overcome these constraints, researchers have developed GLP-1 receptor agonists that prolong its action and exhibit high efficacy in diabetes treatment. Recent studies further reveal GLP-1's neuroprotective effects, notably its potential in managing neurodegenerative disorders such as Parkinson's disease. GLP-1RAs mitigate neuroinflammation, reduce oxidative stress, and enhance neuroprotection, suggesting substantial potential for treating neurodegenerative diseases. Additionally, to enhance GLP-1RAs' efficacy in the nervous system, researchers have introduced novel drug delivery approaches, including nanoparticle carriers and molecular modifications, to improve stability and targeting accuracy. In conclusion, this review comprehensively analyzes the mechanisms, clinical applications, and challenges of GLP-1 and its receptor agonists in managing diabetes and Parkinson's disease, while identifying future research and clinical opportunities.
Collapse
Affiliation(s)
- Jinhao Chen
- China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiang Dong
- China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | | | - Cunming Lv
- China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
2
|
Frei MS, Sanchez SA, He X, Liu L, Schneider F, Wang Z, Hakozaki H, Li Y, Lyons AC, Rohm TV, Olefsky JM, Shi L, Schöneberg J, Fraser SE, Mehta S, Wang Y, Zhang J. Far-red chemigenetic kinase biosensors enable multiplexed and super-resolved imaging of signaling networks. Nat Biotechnol 2025:10.1038/s41587-025-02642-8. [PMID: 40258957 DOI: 10.1038/s41587-025-02642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025]
Abstract
Fluorescent biosensors have advanced biomedical research by enabling direct live-cell measurements of signaling activities. However, current technology offers limited resolution and dimensionality, impeding our ability to resolve and interrogate spatiotemporally regulated networks of signaling activities. Here we introduce highly sensitive chemigenetic kinase activity biosensors that combine the genetically encodable self-labeling tag, HaloTag7, with far-red-emitting synthetic fluorophores. This technology enables both four-dimensional activity imaging and functional super-resolution imaging using stimulated emission depletion and other high-resolution microscopy techniques, permitting signaling activity to be detected across scales with the necessary resolution. Stimulated emission depletion imaging enabled the investigation of protein kinase A activity at individual clathrin-coated pits. We further demonstrate imaging of up to five analytes in single living cells, an increase in the dimensionality of biosensor multiplexing. Multiplexed imaging of cellular responses to the activation of different G-protein-coupled receptors (GPCRs) allowed quantitative measurements of spatiotemporal network states downstream of individual GPCR-ligand pairs.
Collapse
Affiliation(s)
- Michelle S Frei
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Samantha A Sanchez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Xinchang He
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Longwei Liu
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Falk Schneider
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Zichen Wang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Hiroyuki Hakozaki
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yajuan Li
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Anne C Lyons
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Theresa V Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Johannes Schöneberg
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Scott E Fraser
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Lee J, Lai S, Yang S, Zhao S, Blanco FA, Lyons AC, Merino-Urteaga R, Ahrens JF, Nguyen NA, Liu H, Liu Z, Lambert GG, Shaner NC, Chen L, Tolias KF, Zhang J, Ha T, St-Pierre F. Bright and photostable yellow fluorescent proteins for extended imaging. Nat Commun 2025; 16:3241. [PMID: 40185748 PMCID: PMC11971446 DOI: 10.1038/s41467-025-58223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
Fluorescent proteins are indispensable molecular tools for visualizing biological structures and processes, but their limited photostability restricts the duration of dynamic imaging experiments. Yellow fluorescent proteins (YFPs), in particular, photobleach rapidly. Here, we introduce mGold2s and mGold2t, YFPs with up to 25-fold greater photostability than mVenus and mCitrine, two commonly used YFPs, while maintaining comparable brightness. These variants were identified using a high-throughput pooled single-cell platform, simultaneously screening for high brightness and photostability. Compared with our previous benchmark, mGold, the mGold2 variants display a ~4-fold increase in photostability without sacrificing brightness. mGold2s and mGold2t extend imaging durations across diverse modalities, including widefield, total internal reflection fluorescence (TIRF), super-resolution, single-molecule, and laser-scanning confocal microscopy. When incorporated into fluorescence resonance energy transfer (FRET)-based biosensors, the proposed YFPs enable more reliable, prolonged imaging of dynamic cellular processes. Overall, the enhanced photostability of mGold2s and mGold2t enables high-sensitivity imaging of subcellular structures and cellular activity over extended periods, broadening the scope and precision of biological imaging.
Collapse
Affiliation(s)
- Jihwan Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shujuan Lai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shuyuan Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Shiqun Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
| | - Francisco A Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Anne C Lyons
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Raquel Merino-Urteaga
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - John F Ahrens
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Nathan A Nguyen
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Haixin Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Zhuohe Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerard G Lambert
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Nathan C Shaner
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Jin Zhang
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Moore's Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Taekjip Ha
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Qiao L, Getz M, Gross B, Tenner B, Zhang J, Rangamani P. Spatiotemporal orchestration of calcium-cAMP oscillations on AKAP/AC nanodomains is governed by an incoherent feedforward loop. PLoS Comput Biol 2024; 20:e1012564. [PMID: 39480900 PMCID: PMC11556706 DOI: 10.1371/journal.pcbi.1012564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 11/12/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
The nanoscale organization of enzymes associated with the dynamics of second messengers is critical for ensuring compartmentation and localization of signaling molecules in cells. Specifically, the spatiotemporal orchestration of cAMP and Ca2+ oscillations is critical for many cellular functions. Previous experimental studies have shown that the formation of nanodomains of A-kinase anchoring protein 79/150 (AKAP150) and adenylyl cyclase 8 (AC8) on the surface of pancreatic MIN6 β cells modulates the phase of Ca2+-cAMP oscillations from out-of-phase to in-phase. In this work, we develop computational models of the Ca2+/cAMP pathway and AKAP/AC nanodomain formation that give rise to the two important predictions: instead of an arbitrary phase difference, the out-of-phase Ca2+/cAMP oscillation reaches Ca2+ trough and cAMP peak simultaneously, which is defined as inversely out-of-phase; the in-phase and inversely out-of-phase oscillations associated with Ca2+-cAMP dynamics on and away from the nanodomains can be explained by an incoherent feedforward loop. Factors such as cellular surface-to-volume ratio, compartment size, and distance between nanodomains do not affect the existence of in-phase or inversely out-of-phase Ca2+/cAMP oscillation, but cellular surface-to-volume ratio and compartment size can affect the time delay for the inversely out-of-phase Ca2+/cAMP oscillation while the distance between two nanodomains does not. Finally, we predict that both the Turing pattern-generated nanodomains and experimentally measured nanodomains demonstrate the existence of in-phase and inversely out-of-phase Ca2+/cAMP oscillation when the AC8 is at a low level, consistent with the behavior of an incoherent feedforward loop. These findings unveil the key circuit motif that governs cAMP and Ca2+ oscillations and advance our understanding of how nanodomains can lead to spatial compartmentation of second messengers.
Collapse
Affiliation(s)
- Lingxia Qiao
- Department of Pharmacology, University of California San Diego, San Diego, California, United States of America
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| | - Michael Getz
- Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Ben Gross
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| | - Brian Tenner
- SomaLogic, San Diego, California, United States of America
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, San Diego, California, United States of America
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, United States of America
| | - Padmini Rangamani
- Department of Pharmacology, University of California San Diego, San Diego, California, United States of America
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
5
|
You C, Shen F, Yang P, Cui J, Ren Q, Liu M, Hu Y, Li B, Ye L, Shi Y. O-GlcNAcylation mediates Wnt-stimulated bone formation by rewiring aerobic glycolysis. EMBO Rep 2024; 25:4465-4487. [PMID: 39256595 PMCID: PMC11467389 DOI: 10.1038/s44319-024-00237-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Wnt signaling is an important target for anabolic therapies in osteoporosis. A sclerostin-neutralizing antibody (Scl-Ab), that blocks the Wnt signaling inhibitor (sclerostin), has been shown to promote bone mass in animal models and clinical studies. However, the cellular mechanisms by which Wnt signaling promotes osteogenesis remain to be further investigated. O-GlcNAcylation, a dynamic post-translational modification of proteins, controls multiple critical biological processes including transcription, translation, and cell fate determination. Here, we report that Wnt3a either induces O-GlcNAcylation rapidly via the Ca2+-PKA-Gfat1 axis, or increases it in a Wnt-β-catenin-dependent manner following prolonged stimulation. Importantly, we find O-GlcNAcylation indispensable for osteoblastogenesis both in vivo and in vitro. Genetic ablation of O-GlcNAcylation in the osteoblast-lineage diminishes bone formation and delays bone fracture healing in response to Wnt stimulation in vivo. Mechanistically, Wnt3a induces O-GlcNAcylation at Serine 174 of PDK1 to stabilize the protein, resulting in increased glycolysis and osteogenesis. These findings highlight O-GlcNAcylation as an important mechanism regulating Wnt-induced glucose metabolism and bone anabolism.
Collapse
Affiliation(s)
- Chengjia You
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Puying Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiaoyue Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Moyu Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Hu
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boer Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Johnson SC, Annamdevula NS, Leavesley SJ, Francis CM, Rich TC. Hyperspectral imaging and dynamic region of interest tracking approaches to quantify localized cAMP signals. Biochem Soc Trans 2024; 52:191-203. [PMID: 38334148 PMCID: PMC11115359 DOI: 10.1042/bst20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger known to orchestrate a myriad of cellular functions over a wide range of timescales. In the last 20 years, a variety of single-cell sensors have been developed to measure second messenger signals including cAMP, Ca2+, and the balance of kinase and phosphatase activities. These sensors utilize changes in fluorescence emission of an individual fluorophore or Förster resonance energy transfer (FRET) to detect changes in second messenger concentration. cAMP and kinase activity reporter probes have provided powerful tools for the study of localized signals. Studies relying on these and related probes have the potential to further revolutionize our understanding of G protein-coupled receptor signaling systems. Unfortunately, investigators have not been able to take full advantage of the potential of these probes due to the limited signal-to-noise ratio of the probes and the limited ability of standard epifluorescence and confocal microscope systems to simultaneously measure the distributions of multiple signals (e.g. cAMP, Ca2+, and changes in kinase activities) in real time. In this review, we focus on recently implemented strategies to overcome these limitations: hyperspectral imaging and adaptive thresholding approaches to track dynamic regions of interest (ROI). This combination of approaches increases signal-to-noise ratio and contrast, and allows identification of localized signals throughout cells. These in turn lead to the identification and quantification of intracellular signals with higher effective resolution. Hyperspectral imaging and dynamic ROI tracking approaches offer investigators additional tools with which to visualize and quantify multiplexed intracellular signaling systems.
Collapse
Affiliation(s)
- Santina C Johnson
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Naga S Annamdevula
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Department of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Silas J Leavesley
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL, U.S.A
| | - C Michael Francis
- Department of Physiology and Cell Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| | - Thomas C Rich
- Department of Pharmacology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
- Center for Lung Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, U.S.A
| |
Collapse
|
7
|
Hu M, Cai JY, He Y, Chen K, Hao F, Kang JS, Pan Y, Tie L, Li XJ. Protective effects of curcumin on desipramine-induced islet β-cell damage via AKAP150/PKA/PP2B complex. Acta Pharmacol Sin 2024; 45:327-338. [PMID: 37845344 PMCID: PMC10789796 DOI: 10.1038/s41401-023-01176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
Tricyclic antidepressants (TCAs) are widely used to treat depression and anxiety-related mood disorders. But evidence shows that TCAs elevate blood glucose levels and inhibit insulin secretion, suggesting that TCAs are a risk factor, particularly for individuals with diabetes. Curcumin is a bioactive molecule from the rhizome of the Curcuma longa plant, which has shown both antidepressant and anti-diabetic activities. In the present study, we investigated the protective effect of curcumin against desipramine-induced apoptosis in β cells and the underlying molecular mechanisms. In the mouse forced swimming test (FST), we found that lower doses of desipramine (5 and 10 mg/kg) or curcumin (2.5 mg/kg) alone did not affect the immobility time, whereas combined treatment with curcumin (2.5 mg/kg) and desipramine (5, 10 mg/kg) significantly decreased the immobility time. Furthermore, desipramine dose-dependently inhibited insulin secretion and elevated blood glucose levels, whereas the combined treatment normalized insulin secretion and blood glucose levels. In RIN-m5F pancreatic β-cells, desipramine (10 μM) significantly reduced the cell viability, whereas desipramine combined with curcumin dose-dependently prevented the desipramine-induced impairment in glucose-induced insulin release, most effectively with curcumin (1 and 10 μM). We demonstrated that desipramine treatment promoted the cleavage and activation of Caspase 3 in RIN-m5F cells. Curcumin treatment inhibited desipramine-induced apoptosis, increased mitochondrial membrane potential and Bcl-2/Bax ratio. Desipramine increased the generation of reactive oxygen species, which was reversed by curcumin treatment. Curcumin also inhibited the translocation of forkhead box protein O1 (FOXO1) from the cytoplasm to the nucleus and suppressed the binding of A-kinase anchor protein 150 (AKAP150) to protein phosphatase 2B (PP2B, known as calcineurin) that was induced by desipramine. These results suggest that curcumin protects RIN-m5F pancreatic β-cells against desipramine-induced apoptosis by inhibiting the phosphoinositide 3-kinase/AKT/FOXO1 pathway and the AKAP150/PKA/PP2B interaction. This study suggests that curcumin may have therapeutic potential as an adjunct to antidepressant treatment.
Collapse
Affiliation(s)
- Min Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jia-Ying Cai
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yao He
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Kui Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Feng Hao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jin-Sen Kang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Yan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
- Department of Pharmacology, School of Pharmacy, Shihezi University, Shihezi, 832002, China.
| |
Collapse
|
8
|
Posner C, Mehta S, Zhang J. Fluorescent biosensor imaging meets deterministic mathematical modelling: quantitative investigation of signalling compartmentalization. J Physiol 2023; 601:4227-4241. [PMID: 37747358 PMCID: PMC10764149 DOI: 10.1113/jp282696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Cells execute specific responses to diverse environmental cues by encoding information in distinctly compartmentalized biochemical signalling reactions. Genetically encoded fluorescent biosensors enable the spatial and temporal monitoring of signalling events in live cells. Temporal and spatiotemporal computational models can be used to interpret biosensor experiments in complex biochemical networks and to explore hypotheses that are difficult to test experimentally. In this review, we first provide brief discussions of the experimental toolkit of fluorescent biosensors as well as computational basics with a focus on temporal and spatiotemporal deterministic models. We then describe how we used this combined approach to identify and investigate a protein kinase A (PKA) - cAMP - Ca2+ oscillatory circuit in MIN6 β cells, a mouse pancreatic β cell system. We describe the application of this combined approach to interrogate how this oscillatory circuit is differentially regulated in a nano-compartment formed at the plasma membrane by the scaffolding protein A kinase anchoring protein 79/150. We leveraged both temporal and spatiotemporal deterministic models to identify the key regulators of this oscillatory circuit, which we confirmed with further experiments. The powerful approach of combining live-cell biosensor imaging with quantitative modelling, as discussed here, should find widespread use in the investigation of spatiotemporal regulation of cell signalling.
Collapse
Affiliation(s)
- Clara Posner
- Department of Pharmacology, University of California, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| |
Collapse
|
9
|
Ramanadham S, Turk J, Bhatnagar S. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes. Compr Physiol 2023; 13:5023-5049. [PMID: 37358504 PMCID: PMC10809800 DOI: 10.1002/cphy.c220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation of K ATP channels, plasma membrane depolarization, and increases in cytosolic concentrations of [Ca 2+ ] c . However, optimal insulin secretion requires amplification of GSIS by increases in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A (PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, gene expression, and trafficking and fusion of insulin granules to the plasma membrane for amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform of Ca 2+ -independent phospholipase A 2 enzyme (iPLA 2 β) participates in cAMP-stimulated insulin secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-specific deletion of iPLA 2 β reduces cAMP-mediated amplification of GSIS, the loss of iPLA 2 β in macrophages (MØ) confers protection against the development of glucose intolerance associated with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and novel noncanonical (iPLA 2 β and C1ql3) pathways and how they may affect β-cell (dys)function in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical pathways could be a more comprehensive approach for restoring β-cell function in T2D. © 2023 American Physiological Society. Compr Physiol 13:5023-5049, 2023.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sushant Bhatnagar
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
10
|
Gilad AA, Bar-Shir A, Bricco AR, Mohanta Z, McMahon MT. Protein and peptide engineering for chemical exchange saturation transfer imaging in the age of synthetic biology. NMR IN BIOMEDICINE 2023; 36:e4712. [PMID: 35150021 PMCID: PMC10642350 DOI: 10.1002/nbm.4712] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 05/23/2023]
Abstract
At the beginning of the millennium, the first chemical exchange saturation transfer (CEST) contrast agents were bio-organic molecules. However, later, metal-based CEST agents (paraCEST agents) took center stage. This did not last too long as paraCEST agents showed limited translational potential. By contrast, the CEST field gradually became dominated by metal-free CEST agents. One branch of research stemming from the original work by van Zijl and colleagues is the development of CEST agents based on polypeptides. Indeed, in the last 2 decades, tremendous progress has been achieved in this field. This includes the design of novel peptides as biosensors, genetically encoded recombinant as well as synthetic reporters. This was a result of extensive characterization and elucidation of the theoretical requirements for rational designing and engineering of such agents. Here, we provide an extensive overview of the evolution of more precise protein-based CEST agents, review the rationalization of enzyme-substrate pairs as CEST contrast enhancers, discuss the theoretical considerations to improve peptide selectivity, specificity and enhance CEST contrast. Moreover, we discuss the strong influence of synthetic biology on the development of the next generation of protein-based CEST contrast agents.
Collapse
Affiliation(s)
- Assaf A. Gilad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Zinia Mohanta
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michael T. McMahon
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Van Thillo T, Van Deuren V, Dedecker P. Smart genetically-encoded biosensors for the chemical monitoring of living systems. Chem Commun (Camb) 2023; 59:520-534. [PMID: 36519509 DOI: 10.1039/d2cc05363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetically-encoded biosensors provide the all-optical and non-invasive visualization of dynamic biochemical events within living systems, which has allowed the discovery of profound new insights. Twenty-five years of biosensor development has steadily improved their performance and has provided us with an ever increasing biosensor repertoire. In this feature article, we present recent advances made in biosensor development and provide a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Toon Van Thillo
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|
12
|
Zhu X, Liu H, Deng Z, Yan C, Liu Y, Yin X. Hesperidin Exerts Anxiolytic-like Effects in Rats with Streptozotocin- Induced Diabetes via PKA/CREB Signaling. Curr Mol Pharmacol 2023; 16:91-100. [PMID: 35289260 DOI: 10.2174/1573413718666220314140848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The mechanisms underlying synaptic injury and anxiety-like behavioral changes caused by diabetes and the strategies to reverse these changes are not well understood. OBJECTIVES This study examined the neuroprotective effects of hesperidin on anxiety-like behaviors in diabetic rats and investigated the underlying mechanisms from the perspective of the PKA/CREB pathway. METHODS Rats with streptozotocin-induced diabetes were treated orally with hesperidin (50 and 150 mg/kg) for 10 weeks. The elevated plus maze (EPM), hole board test (HBT), and marbleburying test (MBT) were used to assess anxiety-like behaviors. We further examined the effects of hesperidin on the PKA/CREB pathway in vivo and in vitro. RESULTS The results show that supplementation with hesperidin exerted anxiolytic effects on the diabetic rats, as evidenced by increased percentages of open arm entries and time spent in the open arms in the EPM; decreased numbers of hole visits in the HBT; decreased numbers of marbles buried; and increased expression of PKA, CREB, BDNF, and synaptic proteins in the amygdala and hippocampus of diabetic rats. Hesperidin was found to reverse the imbalance in the PKA/CREB/BDNF pathway. In vitro, we found that the PKA inhibitor H89 reversed the protective effects of hesperidin against cell injury and reversed the HG-induced expression of PKA, pCREB/CREB, and BDNF. CONCLUSION Our results demonstrated that hesperidin could ameliorate the anxiety-like behaviors of diabetic rats and that activating the PKA/CREB/BDNF pathway contributed to the beneficial effects. This study may provide important insights into the mechanisms underlying anxiety-like behaviors in diabetes and identify new therapeutic targets for clinical treatment.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Haiyan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Zongli Deng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Chuanzhi Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Yaowu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| |
Collapse
|
13
|
Arige V, Yule DI. Spatial and temporal crosstalk between the cAMP and Ca 2+ signaling systems. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119293. [PMID: 35588944 DOI: 10.1016/j.bbamcr.2022.119293] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/31/2022]
Abstract
The ubiquitous secondary messengers, Ca2+ and cAMP, play a vital role in shaping a diverse array of physiological processes. More significantly, accumulating evidence over the past several decades underpin extensive crosstalk between these two canonical messengers in discrete sub-cellular nanodomains across various cell types. Within such specialized nanodomains, each messenger fine-tunes signaling to maintain homeostasis by manipulating the activities of cellular machinery accountable for the metabolism or activity of the complementary pathway. Interaction between these messengers is ensured by scaffolding proteins which tether components of the signaling machinery in close proximity. Disruption of dynamic communications between Ca2+ and cAMP at these loci consequently is linked to several pathological conditions. This review summarizes recent novel mechanisms underlying effective crosstalk between Ca2+ and cAMP in such nanodomains.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA..
| |
Collapse
|
14
|
Kim H, Choi G, Suk ME, Kim TJ. Resource for FRET-Based Biosensor Optimization. Front Cell Dev Biol 2022; 10:885394. [PMID: 35794864 PMCID: PMC9251444 DOI: 10.3389/fcell.2022.885394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
After the development of Cameleon, the first fluorescence resonance energy transfer (FRET)-based calcium indicator, a variety of FRET-based genetically encoded biosensors (GEBs) have visualized numerous target players to monitor their cell physiological dynamics spatiotemporally. Many attempts have been made to optimize GEBs, which require labor-intensive effort, novel approaches, and precedents to develop more sensitive and versatile biosensors. However, researchers face considerable trial and error in upgrading biosensors because examples and methods of improving FRET-based GEBs are not well documented. In this review, we organize various optimization strategies after assembling the existing cases in which the non-fluorescent components of biosensors are upgraded. In addition, promising areas to which optimized biosensors can be applied are briefly discussed. Therefore, this review could serve as a resource for researchers attempting FRET-based GEB optimization.
Collapse
Affiliation(s)
- Heonsu Kim
- Institute of Systems Biology, Pusan National University, Busan, South Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Myung Eun Suk
- Department of Mechanical Engineering, IT Convergence College of Materials and Components Engineering, Dong-Eui University, Busan, South Korea
- *Correspondence: Myung Eun Suk, ; Tae-Jin Kim,
| | - Tae-Jin Kim
- Institute of Systems Biology, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
- Department of Biological Sciences, Pusan National University, Busan, South Korea
- *Correspondence: Myung Eun Suk, ; Tae-Jin Kim,
| |
Collapse
|
15
|
Fonseca JP, Aslankoohi E, Ng AH, Chevalier M. Analysis of localized cAMP perturbations within a tissue reveal the effects of a local, dynamic gap junction state on ERK signaling. PLoS Comput Biol 2022; 18:e1009873. [PMID: 35353814 PMCID: PMC9000136 DOI: 10.1371/journal.pcbi.1009873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 04/11/2022] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
Beyond natural stimuli such as growth factors and stresses, the ability to experimentally modulate at will the levels or activity of specific intracellular signaling molecule(s) in specified cells within a tissue can be a powerful tool for uncovering new regulation and tissue behaviors. Here we perturb the levels of cAMP within specific cells of an epithelial monolayer to probe the time-dynamic behavior of cell-cell communication protocols implemented by the cAMP/PKA pathway and its coupling to the ERK pathway. The time-dependent ERK responses we observe in the perturbed cells for spatially uniform cAMP perturbations (all cells) can be very different from those due to spatially localized perturbations (a few cells). Through a combination of pharmacological and genetic perturbations, signal analysis, and computational modeling, we infer how intracellular regulation and regulated cell-cell coupling each impact the intracellular ERK response in single cells. Our approach reveals how a dynamic gap junction state helps sculpt the intracellular ERK response over time in locally perturbed cells.
Collapse
Affiliation(s)
| | - Elham Aslankoohi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Andrew H. Ng
- Outpace Bio, Seattle, Washington, United States of America
| | - Michael Chevalier
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Fluorescent protein (FP)-based kinase activity biosensors are powerful tools for probing the spatiotemporal dynamics of signaling pathways in living cells. Yet, the limited sensitivity of most kinase biosensors restricts their reliable application in high-throughput detection modalities. Here, we report a protocol for using an ultrasensitive excitation-ratiometric PKA activity reporter, ExRai-AKAR2, to detect live-cell PKA activity via fluorescence microplate reading and epifluorescence microscopy. The high sensitivity of ExRai-AKAR2 is well suited to these high-throughput applications. For complete details on the use and execution of this protocol, please refer to Mehta et al. (2018) andZhang et al., 2021a) .
Collapse
Affiliation(s)
- Jin-fan Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA,Corresponding author
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA,Corresponding author
| |
Collapse
|
17
|
Zhang YC, Xiong FR, Wang YY, Shen H, Zhao RX, Li S, Lu J, Yang JK. High bicarbonate concentration increases glucose-induced insulin secretion in pancreatic β-cells. Biochem Biophys Res Commun 2021; 589:165-172. [PMID: 34922198 DOI: 10.1016/j.bbrc.2021.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
Low serum bicarbonate is closely related to type 2 diabetes mellitus. However, the precise role of bicarbonate on glucose homeostasis and insulin secretion remains unknown. In this study, we investigated the effects of bicarbonate concentration on pancreatic β-cells. It was observed that the high bicarbonate concentration of the cell culture medium significantly increased the glucose-induced insulin secretion (GSIS) levels in mouse islets, MIN6, and the INS-1E β cells. MIN6 cells presented an impaired GSIS; the cells produced a lower bicarbonate concentration when co-cultured with Capan-1 than when with CFPAC-1. NBCe1, a major bicarbonate transporter was observed to block the increasing insulin secretions, which were promoted by a high concentration of bicarbonate. In addition, higher extracellular bicarbonate concentration significantly increased the intracellular cAMP level, pHi, and calcium concentration with a 16.7 mM of glucose stimulation. Further study demonstrated that a low concentration of extracellular bicarbonate significantly impaired the functioning of pancreatic β cells by reducing coupling Ca2+ influx, whose process may be modulated by NBCe1. Taken together, our results conclude that bicarbonate may serve as a novel target in diabetes prevention-related research.
Collapse
Affiliation(s)
- Ying-Chao Zhang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Feng-Ran Xiong
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ying-Ying Wang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China; Peking Union Medical College, Beijing, 100740, China
| | - Han Shen
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China; Beijing Sijiqing Hospital, Beijing, 100097, China
| | - Ru-Xuan Zhao
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Sen Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China; Department of Endocrinology, Liaocheng People's Hospital, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, China
| | - Jing Lu
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
18
|
Church TW, Tewatia P, Hannan S, Antunes J, Eriksson O, Smart TG, Hellgren Kotaleski J, Gold MG. AKAP79 enables calcineurin to directly suppress protein kinase A activity. eLife 2021; 10:e68164. [PMID: 34612814 PMCID: PMC8560092 DOI: 10.7554/elife.68164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
Interplay between the second messengers cAMP and Ca2+ is a hallmark of dynamic cellular processes. A common motif is the opposition of the Ca2+-sensitive phosphatase calcineurin and the major cAMP receptor, protein kinase A (PKA). Calcineurin dephosphorylates sites primed by PKA to bring about changes including synaptic long-term depression (LTD). AKAP79 supports signaling of this type by anchoring PKA and calcineurin in tandem. In this study, we discovered that AKAP79 increases the rate of calcineurin dephosphorylation of type II PKA regulatory subunits by an order of magnitude. Fluorescent PKA activity reporter assays, supported by kinetic modeling, show how AKAP79-enhanced calcineurin activity enables suppression of PKA without altering cAMP levels by increasing PKA catalytic subunit capture rate. Experiments with hippocampal neurons indicate that this mechanism contributes toward LTD. This non-canonical mode of PKA regulation may underlie many other cellular processes.
Collapse
Affiliation(s)
- Timothy W Church
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Parul Tewatia
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Saad Hannan
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - João Antunes
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
| | - Olivia Eriksson
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Matthew G Gold
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
19
|
Massengill CI, Day-Cooney J, Mao T, Zhong H. Genetically encoded sensors towards imaging cAMP and PKA activity in vivo. J Neurosci Methods 2021; 362:109298. [PMID: 34339753 PMCID: PMC8659126 DOI: 10.1016/j.jneumeth.2021.109298] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is a universal second messenger that plays a crucial role in diverse biological functions, ranging from transcription to neuronal plasticity, and from development to learning and memory. In the nervous system, cAMP integrates inputs from many neuromodulators across a wide range of timescales - from seconds to hours - to modulate neuronal excitability and plasticity in brain circuits during different animal behavioral states. cAMP signaling events are both cell-specific and subcellularly compartmentalized. The same stimulus may result in different, sometimes opposite, cAMP dynamics in different cells or subcellular compartments. Additionally, the activity of protein kinase A (PKA), a major cAMP effector, is also spatiotemporally regulated. For these reasons, many laboratories have made great strides toward visualizing the intracellular dynamics of cAMP and PKA. To date, more than 80 genetically encoded sensors, including original and improved variants, have been published. It is starting to become possible to visualize cAMP and PKA signaling events in vivo, which is required to study behaviorally relevant cAMP/PKA signaling mechanisms. Despite significant progress, further developments are needed to enhance the signal-to-noise ratio and practical utility of these sensors. This review summarizes the recent advances and challenges in genetically encoded cAMP and PKA sensors with an emphasis on in vivo imaging in the brain during behavior.
Collapse
Affiliation(s)
| | - Julian Day-Cooney
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
20
|
Raveh B, Sun L, White KL, Sanyal T, Tempkin J, Zheng D, Bharath K, Singla J, Wang C, Zhao J, Li A, Graham NA, Kesselman C, Stevens RC, Sali A. Bayesian metamodeling of complex biological systems across varying representations. Proc Natl Acad Sci U S A 2021; 118:e2104559118. [PMID: 34453000 PMCID: PMC8536362 DOI: 10.1073/pnas.2104559118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity. These input models are 1) converted to a standardized statistical representation relying on probabilistic graphical models, 2) coupled by modeling their mutual relations with the physical world, and 3) finally harmonized with respect to each other. To illustrate Bayesian metamodeling, we provide a proof-of-principle metamodel of glucose-stimulated insulin secretion by human pancreatic β-cells. The input models include a coarse-grained spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-stimulated insulin secretion signaling; a network model of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell population; and ordinary differential equations for systemic postprandial insulin response. Metamodeling benefits from decentralized computing, while often producing a more accurate, precise, and complete model that contextualizes input models as well as resolves conflicting information. We anticipate Bayesian metamodeling will facilitate collaborative science by providing a framework for sharing expertise, resources, data, and models, as exemplified by the Pancreatic β-Cell Consortium.
Collapse
Affiliation(s)
- Barak Raveh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190416, Israel
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kate L White
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Jeremy Tempkin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Dongqing Zheng
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Kala Bharath
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
| | - Jitin Singla
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
- Epstein Department of Industrial and Systems Engineering, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- Information Science Institute, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Chenxi Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jihui Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Angdi Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Carl Kesselman
- Epstein Department of Industrial and Systems Engineering, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
- Information Science Institute, The Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158;
- Quantitative Biosciences Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| |
Collapse
|
21
|
Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells 2021; 10:1658. [PMID: 34359828 PMCID: PMC8304079 DOI: 10.3390/cells10071658] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Lidija Križančić Bombek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| |
Collapse
|
22
|
Mehta S, Zhang J. Biochemical Activity Architectures Visualized-Using Genetically Encoded Fluorescent Biosensors to Map the Spatial Boundaries of Signaling Compartments. Acc Chem Res 2021; 54:2409-2420. [PMID: 33949851 DOI: 10.1021/acs.accounts.1c00056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All biological processes arise through the coordinated actions of biochemical pathways. How such functional diversity is achieved by a finite cast of molecular players remains a central mystery in biology. Spatial compartmentation-the idea that biochemical activities are organized around discrete spatial domains within cells-was first proposed nearly 40 years ago and has become firmly rooted in our understanding of how biochemical pathways are regulated to ensure specificity. However, directly interrogating spatial compartmentation and its mechanistic origins has only really become possible in the last 20 or so years, following technological advances such as the development of genetically encoded fluorescent biosensors. These powerful molecular tools permit a direct, real-time visualization of dynamic biochemical processes in native biological contexts, and they are essential for probing the spatial regulation of biochemical activities. In this Account, we review our lab's efforts in developing and using biosensors to map the spatial compartmentation of intracellular signaling pathways and illuminate key mechanisms that establish the boundaries of an intricate biochemical activity architecture. We first discuss the role of regulatory fences, wherein the dynamic activation and deactivation of diffusible messengers produce diverse signaling compartments. For example, we used biosensors for the Ca2+ effector calmodulin and its downstream target calcineurin to reveal a spatial gradient of calmodulin that controls the temporal dynamics of calcineurin signaling. Our studies using cyclic adenosine monophosphate (cAMP) biosensors have similarly elucidated fenced cAMP domains generated by competing production and degradation pathways, ranging in size from cell-spanning gradients to nanoscale hotspots. Second, we describe the role played by intracellular membranes in creating unique signaling platforms with distinctive pathway regulation, as revealed through studies using subcellularly targeted fluorescent biosensors. Using biosensors to visualize subcellular extracellular response kinase (ERK) pathway activity, for example, led us to discover a local signaling circuit that mediates distinct plasma membrane ERK dynamics versus global ERK signaling. Similarly, our work developing biosensors to monitor the subcellular mechanistic target of rapamycin complex 1 (mTORC1) signaling allowed us to not only clarify the presence of mTORC1 activity in the nucleus but also identify a novel mechanism governing the activation of mTORC1 in this location. Finally, we detail how molecular assemblies enable the precise spatial tuning of biochemical activity, through investigations enabled by cutting-edge advances in biosensor design. We recently identified liquid-liquid phase separation as a major factor in cAMP compartmentation aided by a new strategy for targeting biosensors to endogenously expressed proteins via genome editing, for instance, and have also been able to directly visualize nanometer-scale protein kinase signalosomes using an entirely new class of biosensors specifically developed for the dynamic super-resolution imaging of live-cell biochemical activities. Our work provides key insights into the molecular logic of spatially regulated signaling and lays the foundation for a broader exploration of biochemical activity architectures across multiple spatial scales.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Departments of Pharmacology, Bioengineering, and Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
23
|
Tenner B, Getz M, Ross B, Ohadi D, Bohrer CH, Greenwald E, Mehta S, Xiao J, Rangamani P, Zhang J. Spatially compartmentalized phase regulation of a Ca 2+-cAMP-PKA oscillatory circuit. eLife 2020; 9:e55013. [PMID: 33201801 PMCID: PMC7671691 DOI: 10.7554/elife.55013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/07/2020] [Indexed: 01/31/2023] Open
Abstract
Signaling networks are spatiotemporally organized to sense diverse inputs, process information, and carry out specific cellular tasks. In β cells, Ca2+, cyclic adenosine monophosphate (cAMP), and Protein Kinase A (PKA) exist in an oscillatory circuit characterized by a high degree of feedback. Here, we describe a mode of regulation within this circuit involving a spatial dependence of the relative phase between cAMP, PKA, and Ca2+. We show that in mouse MIN6 β cells, nanodomain clustering of Ca2+-sensitive adenylyl cyclases (ACs) drives oscillations of local cAMP levels to be precisely in-phase with Ca2+ oscillations, whereas Ca2+-sensitive phosphodiesterases maintain out-of-phase oscillations outside of the nanodomain. Disruption of this precise phase relationship perturbs Ca2+ oscillations, suggesting the relative phase within an oscillatory circuit can encode specific functional information. This work unveils a novel mechanism of cAMP compartmentation utilized for localized tuning of an oscillatory circuit and has broad implications for the spatiotemporal regulation of signaling networks.
Collapse
Affiliation(s)
- Brian Tenner
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Michael Getz
- Chemical Engineering Graduate Program, University of California, San DiegoLa JollaUnited States
| | - Brian Ross
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Donya Ohadi
- Department of Mechanical and Aerospace Engineering, University of California, San DiegoLa JollaUnited States
| | - Christopher H Bohrer
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Eric Greenwald
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Sohum Mehta
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Padmini Rangamani
- Chemical Engineering Graduate Program, University of California, San DiegoLa JollaUnited States
- Department of Mechanical and Aerospace Engineering, University of California, San DiegoLa JollaUnited States
| | - Jin Zhang
- Department of Pharmacology, University of California, San DiegoLa JollaUnited States
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
24
|
Histamine-induced biphasic activation of RhoA allows for persistent RhoA signaling. PLoS Biol 2020; 18:e3000866. [PMID: 32881857 PMCID: PMC7494096 DOI: 10.1371/journal.pbio.3000866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 09/16/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022] Open
Abstract
The small GTPase RhoA is a central signaling enzyme that is involved in various cellular processes such as cytoskeletal dynamics, transcription, and cell cycle progression. Many signal transduction pathways activate RhoA—for instance, Gαq-coupled Histamine 1 Receptor signaling via Gαq-dependent activation of RhoGEFs such as p63. Although multiple upstream regulators of RhoA have been identified, the temporal regulation of RhoA and the coordination of different upstream components in its regulation have not been well characterized. In this study, live-cell measurement of RhoA activation revealed a biphasic increase of RhoA activity upon histamine stimulation. We showed that the first and second phase of RhoA activity are dependent on p63 and Ca2+/PKC, respectively, and further identified phosphorylation of serine 240 on p115 RhoGEF by PKC to be the mechanistic link between PKC and RhoA. Combined approaches of computational modeling and quantitative measurement revealed that the second phase of RhoA activation is insensitive to rapid turning off of the receptor and is required for maintaining RhoA-mediated transcription after the termination of the receptor signaling. Thus, two divergent pathways enable both rapid activation and persistent signaling in receptor-mediated RhoA signaling via intricate temporal regulation. The small GTPase RhoA is a central signaling enzyme that is involved in various cellular processes such as cytoskeletal dynamics, transcription, and cell cycle progression. This study shows that histamine induces biphasic activation of RhoA via two divergent signaling pathways, allowing for intricate regulation of cellular processes.
Collapse
|
25
|
Zhang Y, Li Z, Kholodkevich S, Sharov A, Feng Y, Ren N, Sun K. Microcystin-LR-induced changes of hepatopancreatic transcriptome, intestinal microbiota, and histopathology of freshwater crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134549. [PMID: 31810700 DOI: 10.1016/j.scitotenv.2019.134549] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
As a hepatotoxin, microcystin-LR (MC-LR) poses a great threat to aquatic organisms. In this research, the hepatopancreatic transcriptome, intestinal microbiota, and histopathology of Procambarus clarkii (P. clarkii) in response to acute MC-LR exposure were studied. RNA-seq analysis of hepatopancreas identified 372 and 781 differentially expressed genes (DEGs) after treatment with 10 and 40 μg/L MC-LR, respectively. Among the DEGs, 23 genes were immune-related and 21 genes were redox-related. GO functional enrichment analysis revealed that MC-LR could impact nuclear-transcribed mRNA catabolic process, cobalamin- and heme-related processes, and sirohydrochlorin cobaltochelatase activity of P. clarkii. In addition, the only significantly enriched KEGG pathway induced by MC-LR was galactose metabolism pathway. Meanwhile, sequencing of the bacterial 16S rRNA gene demonstrated that MC-LR decreased bacterial richness and diversity, and altered the intestinal microbiota composition. At the phylum level, after 96 h, the abundance of Verrucomicrobia decreased after treatment with 10 and 40 μg/L MC-LR, while Firmicutes increased in the 40 μg/L MC-LR-treated group. At the genus level, the abundances of 15 genera were significantly altered after exposure to MC-LR. Our research demonstrated that MC-LR exposure caused histological alterations such as structural damage of hepatopancreas and intestines. This research provides an insight into the mechanisms associated with MC-LR toxicity in aquatic crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zheyu Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sergey Kholodkevich
- Institute of Earth Sciences, Saint-Petersburg State University, Saint-Petersburg 199034, Russia; Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia
| | - Andrey Sharov
- Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia; Papanin Institute for Biology of the Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| | - Yujie Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
26
|
Laguerre A, Hauke S, Qiu J, Kelly MJ, Schultz C. Photorelease of 2-Arachidonoylglycerol in Live Cells. J Am Chem Soc 2019; 141:16544-16547. [PMID: 31560527 PMCID: PMC7607907 DOI: 10.1021/jacs.9b05978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is acting as a full agonist of cannabinoid receptor 1 and 2. Direct manipulation of 2-AG levels is a challenging task. The amphiphilic properties and the instability of 2-AG in aqueous media complicate its use as a drug-like molecule. Additionally, inhibition of the protein machinery that regulates 2-AG levels may also affect other monoacylglycerols. Therefore, we developed a novel method to elevate 2-AG levels with a flash of light. The resulting tool is a photoactivatable "caged" 2-arachidonoylglycerol (cg2-AG) allowing for the rapid photorelease of the signaling lipid in live cells. We characterized the mechanism of uncaging and the effect of 2-AG on the regulation of the β-cell signaling network. After uncaging of 2-AG, we monitored calcium levels, CB1-GIRK channel coupling, and CB1-mediated inhibition of adenylate cyclase and protein kinase A activity.
Collapse
Affiliation(s)
- Aurélien Laguerre
- Department of Chemical Physiology & Biochemistry, OHSU, Portland, Oregon, United States
| | - Sebastian Hauke
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | - Jian Qiu
- Department of Chemical Physiology & Biochemistry, OHSU, Portland, Oregon, United States
| | - Martin J. Kelly
- Department of Chemical Physiology & Biochemistry, OHSU, Portland, Oregon, United States
| | - Carsten Schultz
- Department of Chemical Physiology & Biochemistry, OHSU, Portland, Oregon, United States,European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany,Corresponding Author
| |
Collapse
|
27
|
Hameed A, Raza SA, Israr Khan M, Baral J, Adhikari A, Nur-E-Alam M, Ahmed S, Al-Rehaily AJ, Ashraf S, Ul-Haq Z, Hafizur RM. Tambulin from Zanthoxylum armatum acutely potentiates the glucose-induced insulin secretion via K ATP-independent Ca 2+-dependent amplifying pathway. Biomed Pharmacother 2019; 120:109348. [PMID: 31629954 DOI: 10.1016/j.biopha.2019.109348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
Tambulin, a flavonol isolated from Zanthoxylum armatum, showed potent insulin secretory activity in our preliminary anti-diabetic screening. Here, we explored the insulin secretory mechanism(s) of tambulin focusing in glucose-dependent, KATP ‒ and Ca2+‒channels dependent, and cAMP-PKA pathways. Mice islets and MIN6 cells were incubated with tambulin in the presence of pharmacological agonists/antagonists and the secreted insulin was measured using mouse insulin ELISA kit. The intracellular cAMP was measured by an acetylation cAMP ELISA kit. Tambulin (200 μM) showed potent insulin secretory activity only at stimulatory glucose (11-25 mM) concentrations; however, no change in insulin release was observed at basal glucose both in mice islets and MIN6 cells. Notably, in the presence of diazoxide, a KATP channel opener; the incomplete inhibition of tambulin-induced insulin secretion was observed whereas, complete inhibition was found using verapamil, an L-type Ca2+ channel blocker. Furthermore, the insulinotropic potential of tambulin was amplified in tolbutamide treated, and depolarized islets suggest tambulin's target other than tolbutamide. Tambulin showed no additive effect in the IBMX-induced intracellular cAMP; whereas, exerted an additive effect in the IBMX-induced insulin secretion. Furthermore, tambulin-induced insulin secretion was dramatically inhibited by PKA inhibitor (H-89), while moderate inhibition was found by using PKC inhibitor (calphostin C). Molecular docking studies also showed the best binding affinities of tambulin with PKA suggest the PKA dependent signaling cascade is involved more in tambulin-induced insulin secretion. Based on these findings, it is concluded that tambulin stimulates insulin secretion in a Ca2+ channel-dependent but KATP channel-independent manner, most likely by activating the cAMP-PKA pathway.
Collapse
Affiliation(s)
- Abdul Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Centre for Advanced Drug Research (CADR), COMSATS University Islamabad (CUI), Abbottabad 22060, Pakistan
| | - Sayed Ali Raza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Israr Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Janaki Baral
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Achyut Adhikari
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Mohammad Nur-E-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh 11451, Saudi Arabia
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh 11451, Saudi Arabia
| | - Adnan J Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh 11451, Saudi Arabia
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rahman M Hafizur
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
28
|
Hameed A, Hafizur RM, Khan MI, Jawed A, Wang H, Zhao M, Matsunaga K, Izumi T, Siddiqui S, Khan F, Adhikari A, Sharma KR. Coixol amplifies glucose-stimulated insulin secretion via cAMP mediated signaling pathway. Eur J Pharmacol 2019; 858:172514. [PMID: 31265841 DOI: 10.1016/j.ejphar.2019.172514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
Recently, we reported the role of coixol (6-methoxy-2(3H)-benzoxazolone), an alkaloid from Scoparia dulcis, in glucose-dependent insulin secretion; however, its insulin secretory mechanism(s) remained unknown. Here, we explored the insulinotropic mechanism(s) of coixol in vitro and in vivo. Mice islets were batch incubated, perifused with coixol in the presence of agonists/antagonists, and insulin secretion was measured by ELISA. Intracellular cAMP levels were measured using enzyme immunoassay. K+- and Ca2+-currents were recorded in MIN6 cells using whole-cell patch-clamp technique. The in vivo glucose tolerance and the insulinogenic index were evaluated in diabetic rats treated with coixol at 25 and 50 mg/kg, respectively. Coixol, unlike sulfonylurea, enhanced insulin secretion in batch incubated and perifused islets at high glucose, with no effect at basal glucose concentrations. Coixol showed no pronounced effect on the inward rectifying K+- and Ca2+-currents in whole-cell patch recordings. Moreover, coixol-induced insulin secretion was further amplified in the depolarized islets. Coixol showed an additive effect with forskolin (10 μM)-induced cAMP level, and in insulin secretion; however, no additive effect was observed with isobutylmethylxanthine (IBMX, 100 μM)-induced cAMP level, nor in insulin secretion. The PKA inhibitor H-89 (50 μM), and Epac2 inhibitor MAY0132 (50 μM) significantly inhibited the coixol-induced insulin secretion (P < 0.01). Furthermore, insulin secretory kinetics revealed that coixol potentiates insulin secretion in both early and late phases of insulin secretion. In diabetic animals, coixol showed significant improvement in glucose tolerance and on fasting blood glucose levels. These data suggest that coixol amplifies glucose-stimulated insulin secretion by cAMP-mediated signaling pathways.
Collapse
Affiliation(s)
- Abdul Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan; Centre for Advanced Drug Research (CADR), COMSATS University Islamabad (CUI), Abbottabad, 22060, Pakistan
| | - Rahman M Hafizur
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - M Israr Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Abira Jawed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Miaomiao Zhao
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Sonia Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Faisal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Achyut Adhikari
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
29
|
Spectrally filtered passive Si photodiode array for on-chip fluorescence imaging of intracellular calcium dynamics. Sci Rep 2019; 9:9083. [PMID: 31235791 PMCID: PMC6591417 DOI: 10.1038/s41598-019-45563-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/07/2019] [Indexed: 11/08/2022] Open
Abstract
On-chip fluorescence imaging devices are recognized for their miniaturized and implantable nature that can benefit the study of intracellular dynamics at a variety of settings. However, it is challenging to integrate a spectral filter onto such devices (to block the excitation light) that has similar performance to the state-of-the-art emission filters used in fluorescence microscopes. In this work, we report a 100%-yield, spectrally filtered passive Si photodiode array designed for on-chip fluorescence imaging of intracellular Ca2+ dynamics. Coated with a spectral filter layer that has a high extinction ratio (>103), our array features high wavelength selectivity (>102), high linearity (R2 > 0.98), and low detection limit (45.1 μW 640/30 nm light). Employing fluorescence microscopy as the reference, we demonstrate that our array can conduct on-chip Ca2+ imaging in C2C12 cells that were chemically triggered to increase their intracellular Ca2+ levels. Importantly, our array-level data qualitatively captured the static fluorescence image of the cells and the intracellular Ca2+ dynamics, both of which are correlated with the microscope-collected data. Our results suggest the possible use of the spectrally filtered array towards a miniaturized on-chip fluorescence imaging device, which may open up new opportunities in tissue-level pharmaceutical screening and fundamental studies on cell networks.
Collapse
|
30
|
MacKeil JL, Brzezinska P, Burke-Kleinman J, Theilmann AL, Nicol CJB, Ormiston ML, Maurice DH. Phosphodiesterase 3B (PDE3B) antagonizes the anti-angiogenic actions of PKA in human and murine endothelial cells. Cell Signal 2019; 62:109342. [PMID: 31176020 DOI: 10.1016/j.cellsig.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Recent reports show that protein kinase A (PKA), but not exchange protein activated by cAMP (EPAC), acts in a cell autonomous manner to constitutively reduce the angiogenic sprouting capacity of murine and human endothelial cells. Specificity in the cellular actions of individual cAMP-effectors can be achieved when a cyclic nucleotide phosphodiesterase (PDE) enzyme acts locally to control the "pool" of cAMP that activates the cAMP-effector. Here, we examined whether PDEs coordinate the actions of PKA during endothelial cell sprouting. Inhibiting each of the cAMP-hydrolyzing PDEs expressed in human endothelial cells revealed that phosphodiesterase 3 (PDE3) inhibition with cilostamide reduced angiogenic sprouting in vitro, while inhibitors of PDE2 and PDE4 family enzymes had no such effect. Identifying a critical role for PDE3B in the anti-angiogenic effects of cilostamide, silencing this PDE3 variant, but not PDE3A, markedly impaired sprouting. Importantly, using both in vitro and ex vivo models of angiogenesis, we show the hypo-sprouting phenotype induced by PDE3 inhibition or PDE3B silencing was reversed by PKA inhibition. Examination of the individual cellular events required for sprouting revealed that PDE3B and PKA each regulated angiogenic sprouting by controlling the invasive capacity of endothelial cells, more specifically, by regulating podosome rosette biogenesis and matrix degradation. In support of the idea that PDE3B acts to inhibit angiogenic sprouting by limiting PKA-mediated reductions in active cdc42, the effects of PDE3B and/or PKA on angiogenic sprouting were negated in cells with reduced cdc42 expression or activity. Since PDE3B and PKA were co-localized in a perinuclear region in human ECs, could be co-immunoprecipitated from lysates of these cells, and silencing PDE3B activated the perinuclear pool of PKA in these cells, we conclude that PDE3B-mediated hydrolysis of cAMP acts to limit the anti-angiogenic potential of PKA in ECs.
Collapse
Affiliation(s)
- Jodi L MacKeil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Paulina Brzezinska
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jonah Burke-Kleinman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Anne L Theilmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Christopher J B Nicol
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mark L Ormiston
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
31
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
32
|
SAD-A, a downstream mediator of GLP-1 signaling, promotes the phosphorylation of Bad S155 to regulate in vitro β-cell functions. Biochem Biophys Res Commun 2018; 509:76-81. [PMID: 30573363 DOI: 10.1016/j.bbrc.2018.12.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
The incretin hormone GLP-1 reduces β-cell failure in patients with type 2 diabetes. Previous studies demonstrated that GLP-1 activates SAD-A, a member of the AMPK family, to regulate glucose-stimulated secretion (GSIS), but the underlying mechanisms of SAD-A regulation of β-cell functions remain poorly understood. Here, we propose that activation of SAD-A by GLP-1 promotes the phosphorylation of Bad S155, which in turn positively affects GSIS and β-cell survival. Bad therefore appears to be a downstream molecule of a SAD-A pathway that mediates the GLP-1-triggered reduction in β-cell failure. Knockdown of endogenous SAD-A expression significantly exacerbated in vitro β-cell dysfunction under lipotoxic conditions and promoted lipotoxicity-induced apoptosis, whereas overexpression of SAD-A inhibited β-cell apoptosis. SAD-A silencing increased ER stress and inhibited the autophagic flux, which contributed to β-cell apoptosis. Thus, SAD-A appears to function as a downstream molecule of GLP-1 signaling that results in Bad S155 phosphorylation. This phosphorylation might therefore be involved in the GLP-1-linked protection against β-cell dysfunction and apoptosis.
Collapse
|
33
|
Frank JA, Broichhagen J, Yushchenko DA, Trauner D, Schultz C, Hodson DJ. Optical tools for understanding the complexity of β-cell signalling and insulin release. Nat Rev Endocrinol 2018; 14:721-737. [PMID: 30356209 DOI: 10.1038/s41574-018-0105-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Following stimulation, pancreatic β-cells must orchestrate a plethora of signalling events to ensure the appropriate release of insulin and maintenance of normal glucose homeostasis. Failure at any point in this cascade leads to impaired insulin secretion, elevated blood levels of glucose and eventually type 2 diabetes mellitus. Likewise, β-cell replacement or regeneration strategies for the treatment of both type 1 and type 2 diabetes mellitus might fail if the correct cell signalling phenotype cannot be faithfully recreated. However, current understanding of β-cell function is complicated because of the highly dynamic nature of their intracellular and intercellular signalling as well as insulin release itself. β-Cells must precisely integrate multiple signals stemming from multiple cues, often with differing intensities, frequencies and cellular and subcellular localizations, before converging these signals onto insulin exocytosis. In this respect, optical approaches with high resolution in space and time are extremely useful for properly deciphering the complexity of β-cell signalling. An increased understanding of β-cell signalling might identify new mechanisms underlying insulin release, with relevance for future drug therapy and de novo stem cell engineering of functional islets.
Collapse
Affiliation(s)
- James A Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Dmytro A Yushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dirk Trauner
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, New York University, New York, NY, USA
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany.
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
34
|
Hameed A, Ashraf S, Israr Khan M, Hafizur RM, Ul-Haq Z. Protein kinase A-dependent insulinotropic effect of selected flavonoids. Int J Biol Macromol 2018; 119:149-156. [DOI: 10.1016/j.ijbiomac.2018.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 01/21/2023]
|
35
|
Tewson P, Martinka S, Shaner N, Berlot C, Quinn AM, Hughes T. Assay for Detecting Gαi-Mediated Decreases in cAMP in Living Cells. SLAS DISCOVERY 2018; 23:898-906. [PMID: 29991302 DOI: 10.1177/2472555218786238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell-based assays to detect Gαi signaling are often indirect, frequently involve complex pharmacological interventions, and are usually blind to the kinetics of the signaling. Our goal was to develop a simple, direct measure of Gαi signaling in living cells. We previously reported our fluorescent cADDis assay and showed that it reliably detects Gαs-mediated increases in cAMP levels. Agonists that stimulate a Gs-coupled receptor produce changes in the intensity of bright green or red fluorescent protein sensors that can be followed over time using automated fluorescence plate readers or fluorescence imaging systems. Since the cADDis sensors can monitor Gαs-mediated increases in adenylyl cyclase activity, in theory they should also be capable of detecting Gαi-mediated decreases. Here we apply our green fluorescent cADDis sensor to the detection of Gαi-mediated inhibition of adenylyl cyclase activity. We validated and optimized the assay in living HEK 293T cells using several known Gαi-coupled receptors and agonists, and we report robust Z' statistics and consistent EC50 responses.
Collapse
Affiliation(s)
| | | | - Nathan Shaner
- 2 Department of Photobiology and Bioimaging, The Scintillon Institute, San Diego, CA, USA
| | | | | | - Thomas Hughes
- 1 Montana Molecular, Bozeman, MT, USA.,3 Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, USA
| |
Collapse
|
36
|
Ross BL, Tenner B, Markwardt ML, Zviman A, Shi G, Kerr JP, Snell NE, McFarland JJ, Mauban JR, Ward CW, Rizzo MA, Zhang J. Single-color, ratiometric biosensors for detecting signaling activities in live cells. eLife 2018; 7:e35458. [PMID: 29968564 PMCID: PMC6037473 DOI: 10.7554/elife.35458] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/16/2018] [Indexed: 11/22/2022] Open
Abstract
Genetically encoded fluorescent biosensors have revolutionized the study of signal transduction by enabling the real-time tracking of signaling activities in live cells. Investigating the interaction between signaling networks has become increasingly important to understanding complex cellular phenomena, necessitating an update of the biosensor toolkit to allow monitoring and perturbing multiple activities simultaneously in the same cell. We therefore developed a new class of fluorescent biosensors based on homo-FRET, deemed FLuorescence Anisotropy REporters (FLAREs), which combine the multiplexing ability of single-color sensors with a quantitative, ratiometric readout. Using an array of color variants, we were able to demonstrate multiplexed imaging of three activity reporters simultaneously in the same cell. We further demonstrate the compatibility of FLAREs for use with optogenetic tools as well as intravital two-photon imaging.
Collapse
Affiliation(s)
- Brian L Ross
- Department of PharmacologyUniversity of California, San DiegoSan DiegoUnited States
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUnited States
| | - Brian Tenner
- Department of PharmacologyUniversity of California, San DiegoSan DiegoUnited States
- Program in Molecular BiophysicsJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Michele L Markwardt
- Department of PhysiologyUniversity of Maryland BaltimoreBaltimoreUnited States
| | - Adam Zviman
- Department of PhysiologyUniversity of Maryland BaltimoreBaltimoreUnited States
| | - Guoli Shi
- Department of OrthopaedicsUniversity of Maryland BaltimoreBaltimoreUnited States
| | - Jaclyn P Kerr
- Department of OrthopaedicsUniversity of Maryland BaltimoreBaltimoreUnited States
| | - Nicole E Snell
- Department of PhysiologyUniversity of Maryland BaltimoreBaltimoreUnited States
| | | | - Joseph R Mauban
- Department of PhysiologyUniversity of Maryland BaltimoreBaltimoreUnited States
| | - Christopher W Ward
- Department of OrthopaedicsUniversity of Maryland BaltimoreBaltimoreUnited States
| | - Megan A Rizzo
- Department of PhysiologyUniversity of Maryland BaltimoreBaltimoreUnited States
| | - Jin Zhang
- Department of PharmacologyUniversity of California, San DiegoSan DiegoUnited States
- Program in Molecular BiophysicsJohns Hopkins University School of MedicineBaltimoreUnited States
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
37
|
Epicatechin potentiation of glucose-stimulated insulin secretion in INS-1 cells is not dependent on its antioxidant activity. Acta Pharmacol Sin 2018; 39:893-902. [PMID: 29417944 DOI: 10.1038/aps.2017.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/26/2017] [Indexed: 12/13/2022]
Abstract
Epicatechin (EC) is a monomeric flavan-3-ol. We have previously demonstrated that glucose-intolerant rats fed flavan-3-ols exhibit improved pancreatic islet function corresponding with an increase in circulating EC-derived metabolites. Thus, we speculate that EC may act as a cellular signaling molecule in vivo to modulate insulin secretion. In this study we further examined the effects of different concentrations of EC on H2O2 or hyperglycemia-induced ROS production, as well as on saturated fatty acid (SFA)-impaired glucose-stimulated insulin secretion (GSIS) in INS-1 cell line in vitro. We showed that EC at a high concentration (30 μmol/L), but not a low concentration (0.3 μmol/L), significantly decreased H2O2 or hyperglycemia-induced ROS production in INS-1 cells. However, EC (0.3 μmol/L) significantly enhanced SFA-impaired GSIS in INS-1 cells. Addition of KN-93, a CaMKII inhibitor, blocked the effect of EC on insulin secretion and decreased CaMKII phosphorylation. Addition of GW1100, a GPR40 antagonist, significantly attenuated EC-enhanced GSIS, but only marginally affected CaMKII phosphorylation. These results demonstrate that EC at a physiological concentration promotes GSIS in SFA-impaired β-cells via activation of the CaMKII pathway and is consistent with its function as a GPR40 ligand. The findings support a role for EC as a cellular signaling molecule in vivo and further delineate the signaling pathways of EC in β-cells.
Collapse
|
38
|
O'Banion CP, Priestman MA, Hughes RM, Herring LE, Capuzzi SJ, Lawrence DS. Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase. Cell Chem Biol 2018; 25:100-109.e8. [PMID: 29104065 PMCID: PMC5777159 DOI: 10.1016/j.chembiol.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/27/2017] [Indexed: 11/30/2022]
Abstract
Although the cAMP-dependent protein kinase (PKA) is ubiquitously expressed, it is sequestered at specific subcellular locations throughout the cell, thereby resulting in compartmentalized cellular signaling that triggers site-specific behavioral phenotypes. We developed a three-step engineering strategy to construct an optogenetic PKA (optoPKA) and demonstrated that, upon illumination, optoPKA migrates to specified intracellular sites. Furthermore, we designed intracellular spatially segregated reporters of PKA activity and confirmed that optoPKA phosphorylates these reporters in a light-dependent fashion. Finally, proteomics experiments reveal that light activation of optoPKA results in the phosphorylation of known endogenous PKA substrates as well as potential novel substrates.
Collapse
Affiliation(s)
- Colin P O'Banion
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Melanie A Priestman
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert M Hughes
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Chemistry; East Carolina University, Greenville, NC 27858, USA
| | - Laura E Herring
- UNC Proteomics Core, Department of Pharmacology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephen J Capuzzi
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
39
|
Hameed A, Hafizur RM, Hussain N, Raza SA, Rehman M, Ashraf S, Ul-Haq Z, Khan F, Abbas G, Choudhary MI. Eriodictyol stimulates insulin secretion through cAMP/PKA signaling pathway in mice islets. Eur J Pharmacol 2017; 820:245-255. [PMID: 29229531 DOI: 10.1016/j.ejphar.2017.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
Abstract
Eriodictyol, a flavonoid isolated from Lyonia ovalifolia, was found to be the most potent insulin secretagogue in our preliminary studies. Here, we explored mechanism(s) of insulin secretory activity of eriodictyol in vitro and in vivo. Mice islets and MIN6 cells were incubated in basal and stimulatory glucose containing eriodictyol with or without agonist/antagonist. Secreted insulin and cAMP contents were measured using ELISA kits. K+- and Ca2+-channels currents were recorded with patch-clamp technique. Oral glucose tolerance test and plasma insulin was evaluated in non-diabetic and diabetic rats. Eriodictyol stimulated insulin secretion from mice islets and MIN6 cells only at stimulatory glucose concentrations with maximum effect at 200μM. Eriodictyol showed no pronounced effect on inward rectifying K+ and Ca2+ currents. Furthermore, in KCl depolarized islets, in the presence of diazoxide, insulin secretory ability of eriodictyol was enhanced. IBMX, a phosphodiesterase inhibitor, significantly (P<0.001) enhanced eriodictyol-induced insulin secretion at 16.7mM glucose in comparison to eriodictyol or IBMX alone. The cAMP content after eriodictyol exposure was also increased. Eriodictyol-induced insulin secretion was partially inhibited by adenylate cyclase inhibitor (SQ22536) and completely inhibited by PKA inhibitor (H-89), suggesting that the eriodictyol effect is more on PKA. Molecular docking studies showed the best binding affinities of eriodictyol with PKA. Eriodictyol improved glucose tolerance and enhanced plasma insulin in non-diabetic and diabetic rats. Eriodictyol also lowered blood glucose in diabetic rats upon chronic treatment. Taken together, it can be concluded that eriodictyol, a novel insulin secretagogue, exerts an exclusive glucose-dependent insulinotropic effect through cAMP/PKA pathway.
Collapse
Affiliation(s)
- Abdul Hameed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Rahman M Hafizur
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| | - Nusrat Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Sayed Ali Raza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb Rehman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Faisal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Ghulam Abbas
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah-21412, Saudi Arabia
| |
Collapse
|
40
|
Bae SA, Acevedo A, Androulakis IP. Asymmetry in Signal Oscillations Contributes to Efficiency of Periodic Systems. Crit Rev Biomed Eng 2017; 44:193-211. [PMID: 28605352 DOI: 10.1615/critrevbiomedeng.2017019658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oscillations are an important feature of cellular signaling that result from complex combinations of positive- and negative-feedback loops. The encoding and decoding mechanisms of oscillations based on amplitude and frequency have been extensively discussed in the literature in the context of intercellular and intracellular signaling. However, the fundamental questions of whether and how oscillatory signals offer any competitive advantages-and, if so, what-have not been fully answered. We investigated established oscillatory mechanisms and designed a study to analyze the oscillatory characteristics of signaling molecules and system output in an effort to answer these questions. Two classic oscillators, Goodwin and PER, were selected as the model systems, and corresponding no-feedback models were created for each oscillator to discover the advantage of oscillating signals. Through simulating the original oscillators and the matching no-feedback models, we show that oscillating systems have the capability to achieve better resource-to-output efficiency, and we identify oscillatory characteristics that lead to improved efficiency.
Collapse
Affiliation(s)
- Seul-A Bae
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey
| | - Alison Acevedo
- Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey
| | - Ioannis P Androulakis
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey; Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey; Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
41
|
Jha SK, Malik S, Sharma M, Pandey A, Pandey GK. Recent Advances in Substrate Identification of Protein Kinases in Plants and Their Role in Stress Management. Curr Genomics 2017; 18:523-541. [PMID: 29204081 PMCID: PMC5684648 DOI: 10.2174/1389202918666170228142703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/13/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation-dephosphorylation is a well-known regulatory mechanism in biological systems and has become one of the significant means of protein function regulation, modulating most of the biological processes. Protein kinases play vital role in numerous cellular processes. Kinases transduce external signal into responses such as growth, immunity and stress tolerance through phosphorylation of their target proteins. In order to understand these cellular processes at the molecular level, one needs to be aware of the different substrates targeted by protein kinases. Advancement in tools and techniques has bestowed practice of multiple approaches that enable target identification of kinases. However, so far none of the methodologies has been proved to be as good as a panacea for the substrate identification. In this review, the recent advances that have been made in the identifications of putative substrates and the implications of these kinases and their substrates in stress management are discussed.
Collapse
Affiliation(s)
- Saroj K Jha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Shikha Malik
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
42
|
Shahidullah M, Mandal A, Delamere NA. A Role for Calcium-Activated Adenylate Cyclase and Protein Kinase A in the Lens Src Family Kinase and Na,K-ATPase Response to Hyposmotic Stress. Invest Ophthalmol Vis Sci 2017; 58:4447-4456. [PMID: 28863406 PMCID: PMC6108779 DOI: 10.1167/iovs.17-21600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Na,K-ATPase activity in lens epithelium is subject to control by Src family tyrosine kinases (SFKs). Previously we showed hyposmotic solution causes an SFK-dependent increase in Na,K-ATPase activity in the epithelium. Here we explored the role of cAMP in the signaling mechanism responsible for the SFK and Na,K-ATPase response. Methods Intact porcine lenses were exposed to hyposmotic Krebs solution (200 mOsm) then the epithelium was assayed for cAMP, SFK phosphorylation (activation) or Na,K-ATPase activity. Results An increase of cAMP was observed in the epithelium of lenses exposed to hyposmotic solution. In lenses exposed to hyposmotic solution SFK phosphorylation in the epithelium approximately doubled as did Na,K-ATPase activity and both responses were prevented by H89, a protein kinase A inhibitor. The magnitude of the SFK response to hyposmotic solution was reduced by a TRPV4 antagonist HC067047 added to prevent TRPV4-mediated calcium entry, and by a cytoplasmic Ca2+ chelator BAPTA-AM. The Na,K-ATPase activity response in the epithelium of lenses exposed to hyposmotic solution was abolished by BAPTA-AM. As a direct test of cAMP-dependent SFK activation, intact lenses were exposed to 8-pCPT-cAMP, a cell-permeable cAMP analog. 8-pCPT-cAMP caused robust SFK activation. Using Western blot, two calcium-activated adenylyl cyclases, ADCY3 and ADCY8, were detected in lens epithelium. Conclusions Calcium-activated adenylyl cyclases are expressed in the lens epithelium and SFK activation is linked to a rise of cAMP that occurs upon hyposmotic challenge. The findings point to cAMP as a link between TRPV4 channel-mediated calcium entry, SFK activation, and a subsequent increase of Na,K-ATPase activity.
Collapse
Affiliation(s)
- Mohammad Shahidullah
- Department of Physiology, University of Arizona, Tucson, Arizona, United States.,Department of Ophthalmology & Vision Science, University of Arizona, Tucson, Arizona, United States
| | - Amritlal Mandal
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | - Nicholas A Delamere
- Department of Physiology, University of Arizona, Tucson, Arizona, United States.,Department of Ophthalmology & Vision Science, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
43
|
Tengholm A, Gylfe E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes Metab 2017; 19 Suppl 1:42-53. [PMID: 28466587 DOI: 10.1111/dom.12993] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023]
Abstract
The "second messenger" archetype cAMP is one of the most important cellular signalling molecules with central functions including the regulation of insulin and glucagon secretion from the pancreatic β- and α-cells, respectively. cAMP is generally considered as an amplifier of insulin secretion triggered by Ca2+ elevation in the β-cells. Both messengers are also positive modulators of glucagon release from α-cells, but in this case cAMP may be the important regulator and Ca2+ have a more permissive role. The actions of cAMP are mediated by protein kinase A (PKA) and the guanine nucleotide exchange factor Epac. The present review focuses on how cAMP is regulated by nutrients, hormones and neural factors in β- and α-cells via adenylyl cyclase-catalysed generation and phosphodiesterase-mediated degradation. We will also discuss how PKA and Epac affect ion fluxes and the secretory machinery to transduce the stimulatory effects on insulin and glucagon secretion. Finally, we will briefly describe disturbances of the cAMP system associated with diabetes and how cAMP signalling can be targeted to normalize hypo- and hypersecretion of insulin and glucagon, respectively, in diabetic patients.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Erik Gylfe
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Yildirim V, Vadrevu S, Thompson B, Satin LS, Bertram R. Upregulation of an inward rectifying K+ channel can rescue slow Ca2+ oscillations in K(ATP) channel deficient pancreatic islets. PLoS Comput Biol 2017; 13:e1005686. [PMID: 28749940 PMCID: PMC5549769 DOI: 10.1371/journal.pcbi.1005686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/08/2017] [Accepted: 07/16/2017] [Indexed: 12/02/2022] Open
Abstract
Plasma insulin oscillations are known to have physiological importance in the regulation of blood glucose. In insulin-secreting β-cells of pancreatic islets, K(ATP) channels play a key role in regulating glucose-dependent insulin secretion. In addition, they convey oscillations in cellular metabolism to the membrane by sensing adenine nucleotides, and are thus instrumental in mediating pulsatile insulin secretion. Blocking K(ATP) channels pharmacologically depolarizes the β-cell plasma membrane and terminates islet oscillations. Surprisingly, when K(ATP) channels are genetically knocked out, oscillations in islet activity persist, and relatively normal blood glucose levels are maintained. Compensation must therefore occur to overcome the loss of K(ATP) channels in K(ATP) knockout mice. In a companion study, we demonstrated a substantial increase in Kir2.1 protein occurs in β-cells lacking K(ATP) because of SUR1 deletion. In this report, we demonstrate that β-cells of SUR1 null islets have an upregulated inward rectifying K+ current that helps to compensate for the loss of K(ATP) channels. This current is likely due to the increased expression of Kir2.1 channels. We used mathematical modeling to determine whether an ionic current having the biophysical characteristics of Kir2.1 is capable of rescuing oscillations that are similar in period to those of wild-type islets. By experimentally testing a key model prediction we suggest that Kir2.1 current upregulation is a likely mechanism for rescuing the oscillations seen in islets from mice deficient in K(ATP) channels. Pulsatile insulin secretion is important for the proper regulation of blood glucose, and disruption of this pulsatility is a hallmark of type II diabetes. An ion channel was discovered more than three decades ago that conveys the metabolic state of insulin-secreting β-cells to the plasma membrane because it is blocked by ATP and opened by ADP, and thereby controls the activity of these electrically-excitable cells on a rapid time scale according to the prevailing blood glucose level. In addition to setting the appropriate level of insulin secretion, K(ATP) channels play a key role in generating the oscillations in cellular activity that underlie insulin pulsatility. It is therefore surprising that oscillations in activity persist in islets in which the K(ATP) channels are genetically knocked out. In this combined modeling and experimental study, we demonstrate that the role played by K(ATP) current in wild-type β-cells can be taken over by an inward-rectifying K+ current which, we show here, is upregulated in β-cells from SUR1 knockout mice. This result helps to resolve a mystery in the field that has remained elusive for more than a decade, since the first studies showing oscillations in SUR1-/- islets.
Collapse
Affiliation(s)
- Vehpi Yildirim
- Department of Mathematics, Florida State University, Tallahassee, FL, United States of America
| | - Suryakiran Vadrevu
- Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Benjamin Thompson
- Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Leslie S. Satin
- Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Richard Bertram
- Department of Mathematics and Programs in Molecular Biophysics and Neuroscience, Florida State University, Tallahassee, FL, United States of America
- * E-mail:
| |
Collapse
|
45
|
Gilad AA, Shapiro MG. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging. Mol Imaging Biol 2017; 19:373-378. [PMID: 28213833 PMCID: PMC6058969 DOI: 10.1007/s11307-017-1062-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.
Collapse
Affiliation(s)
- Assaf A Gilad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Heritage Medical Research Institute, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
46
|
Torres-Quesada O, Mayrhofer JE, Stefan E. The many faces of compartmentalized PKA signalosomes. Cell Signal 2017; 37:1-11. [PMID: 28528970 DOI: 10.1016/j.cellsig.2017.05.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023]
Abstract
Cellular signal transmission requires the dynamic formation of spatiotemporally controlled molecular interactions. At the cell surface information is received by receptor complexes and relayed through intracellular signaling platforms which organize the actions of functionally interacting signaling enzymes and substrates. The list of hormone or neurotransmitter pathways that utilize the ubiquitous cAMP-sensing protein kinase A (PKA) system is expansive. This requires that the specificity, duration, and intensity of PKA responses are spatially and temporally restricted. Hereby, scaffolding proteins take the center stage for ensuring proper signal transmission. They unite second messenger sensors, activators, effectors, and kinase substrates within cellular micro-domains to precisely control and route signal propagation. A-kinase anchoring proteins (AKAPs) organize such subcellular signalosomes by tethering the PKA holoenzyme to distinct cell compartments. AKAPs differ in their modular organization showing pathway specific arrangements of interaction motifs or domains. This enables the cell- and compartment- guided assembly of signalosomes with unique enzyme composition and function. The AKAP-mediated clustering of cAMP and other second messenger sensing and interacting signaling components along with functional successive enzymes facilitates the rapid and precise dissemination of incoming signals. This review article delineates examples for different means of PKA regulation and for snapshots of compartmentalized PKA signalosomes.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johanna E Mayrhofer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
47
|
Tillo SE, Xiong WH, Takahashi M, Miao S, Andrade AL, Fortin DA, Yang G, Qin M, Smoody BF, Stork PJS, Zhong H. Liberated PKA Catalytic Subunits Associate with the Membrane via Myristoylation to Preferentially Phosphorylate Membrane Substrates. Cell Rep 2017; 19:617-629. [PMID: 28423323 DOI: 10.1016/j.celrep.2017.03.070] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 12/20/2016] [Accepted: 03/23/2017] [Indexed: 10/19/2022] Open
Abstract
Protein kinase A (PKA) has diverse functions in neurons. At rest, the subcellular localization of PKA is controlled by A-kinase anchoring proteins (AKAPs). However, the dynamics of PKA upon activation remain poorly understood. Here, we report that elevation of cyclic AMP (cAMP) in neuronal dendrites causes a significant percentage of the PKA catalytic subunit (PKA-C) molecules to be released from the regulatory subunit (PKA-R). Liberated PKA-C becomes associated with the membrane via N-terminal myristoylation. This membrane association does not require the interaction between PKA-R and AKAPs. It slows the mobility of PKA-C and enriches kinase activity on the membrane. Membrane-residing PKA substrates are preferentially phosphorylated compared to cytosolic substrates. Finally, the myristoylation of PKA-C is critical for normal synaptic function and plasticity. We propose that activation-dependent association of PKA-C renders the membrane a unique PKA-signaling compartment. Constrained mobility of PKA-C may synergize with AKAP anchoring to determine specific PKA function in neurons.
Collapse
Affiliation(s)
- Shane E Tillo
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Wei-Hong Xiong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Maho Takahashi
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sheng Miao
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Adriana L Andrade
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Dale A Fortin
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Guang Yang
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Barbara F Smoody
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Philip J S Stork
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
48
|
Newman RH, Zhang J. Integrated Strategies to Gain a Systems-Level View of Dynamic Signaling Networks. Methods Enzymol 2017; 589:133-170. [PMID: 28336062 DOI: 10.1016/bs.mie.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to survive and function properly in the face of an ever changing environment, cells must be able to sense changes in their surroundings and respond accordingly. Cells process information about their environment through complex signaling networks composed of many discrete signaling molecules. Individual pathways within these networks are often tightly integrated and highly dynamic, allowing cells to respond to a given stimulus (or, as is typically the case under physiological conditions, a combination of stimuli) in a specific and appropriate manner. However, due to the size and complexity of many cellular signaling networks, it is often difficult to predict how cellular signaling networks will respond under a particular set of conditions. Indeed, crosstalk between individual signaling pathways may lead to responses that are nonintuitive (or even counterintuitive) based on examination of the individual pathways in isolation. Therefore, to gain a more comprehensive view of cell signaling processes, it is important to understand how signaling networks behave at the systems level. This requires integrated strategies that combine quantitative experimental data with computational models. In this chapter, we first examine some of the progress that has recently been made toward understanding the systems-level regulation of cellular signaling networks, with a particular emphasis on phosphorylation-dependent signaling networks. We then discuss how genetically targetable fluorescent biosensors are being used together with computational models to gain unique insights into the spatiotemporal regulation of signaling networks within single, living cells.
Collapse
Affiliation(s)
- Robert H Newman
- North Carolina Agricultural and Technical State University, Greensboro, NC, United States.
| | - Jin Zhang
- University of California, San Diego, San Diego, CA, United States.
| |
Collapse
|
49
|
Abstract
Animal cells use a conserved repertoire of intercellular signaling pathways to communicate with one another. These pathways are well-studied from a molecular point of view. However, we often lack an "operational" understanding that would allow us to use these pathways to rationally control cellular behaviors. This requires knowing what dynamic input features each pathway perceives and how it processes those inputs to control downstream processes. To address these questions, researchers have begun to reconstitute signaling pathways in living cells, analyzing their dynamic responses to stimuli, and developing new functional representations of their behavior. Here we review important insights obtained through these new approaches, and discuss challenges and opportunities in understanding signaling pathways from an operational point of view.
Collapse
Affiliation(s)
- Yaron E Antebi
- Division of Biology and Biological Engineering and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nagarajan Nandagopal
- Division of Biology and Biological Engineering and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering and Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.,Howard Hughes Medical Institute, USA
| |
Collapse
|
50
|
Notary AM, Westacott MJ, Hraha TH, Pozzoli M, Benninger RKP. Decreases in Gap Junction Coupling Recovers Ca2+ and Insulin Secretion in Neonatal Diabetes Mellitus, Dependent on Beta Cell Heterogeneity and Noise. PLoS Comput Biol 2016; 12:e1005116. [PMID: 27681078 PMCID: PMC5040430 DOI: 10.1371/journal.pcbi.1005116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/23/2016] [Indexed: 11/29/2022] Open
Abstract
Diabetes is caused by dysfunction to β-cells in the islets of Langerhans, disrupting insulin secretion and glucose homeostasis. Gap junction-mediated electrical coupling between β-cells in the islet plays a major role in coordinating a pulsatile secretory response at elevated glucose and suppressing insulin secretion at basal glucose. Previously, we demonstrated that a critical number of inexcitable cells can rapidly suppress the overall islet response, as a result of gap junction coupling. This was demonstrated in a murine model of Neonatal Diabetes Mellitus (NDM) involving expression of ATP-insensitive KATP channels, and by a multi-cellular computational model of islet electrical activity. Here we examined the mechanisms by which gap junction coupling contributes to islet dysfunction in NDM. We first verified the computational model against [Ca2+] and insulin secretion measurements in islets expressing ATP-insensitive KATP channels under different levels of gap junction coupling. We then applied this model to predict how different KATP channel mutations found in NDM suppress [Ca2+], and the role of gap junction coupling in this suppression. We further extended the model to account for stochastic noise and insulin secretion dynamics. We found experimentally and in the islet model that reductions in gap junction coupling allow progressively greater glucose-stimulated [Ca2+] and insulin secretion following expression of ATP-insensitive KATP channels. The model demonstrated good correspondence between suppression of [Ca2+] and clinical presentation of different NDM mutations. Significant recoveries in [Ca2+] and insulin secretion were predicted for many mutations upon reductions in gap junction coupling, where stochastic noise played a significant role in the recoveries. These findings provide new understanding how the islet functions as a multicellular system and for the role of gap junction channels in exacerbating the effects of decreased cellular excitability. They further suggest novel therapeutic options for NDM and other monogenic forms of diabetes. Diabetes is a disease reaching a global epidemic, which results from dysfunction to the islets of Langerhans in the pancreas and their ability to secrete the hormone insulin to regulate glucose homeostasis. Islets are multicellular structures that show extensive coupling between heterogeneous cellular units; and central to the causes of diabetes is a dysfunction to these cellular units and their interactions. Understanding the inter-relationship between structure and function is challenging in biological systems, but is crucial to the cause of disease and discovering therapeutic targets. With the goal of further characterizing the islet of Langerhans and its excitable behavior, we examined the role of important channels in the islet where dysfunction is linked to or causes diabetes. Advances in our ability to computationally model perturbations in physiological systems has allowed for the testing of hypothesis quickly, in systems that are not experimentally accessible. Using an experimentally validated model and modeling human mutations, we discover that monogenic forms of diabetes may be remedied by a reduction in electrical coupling between cells; either alone or in conjunction with pharmacological intervention. Knowledge of biological systems in general is also helped by these findings, in that small changes to cellular elements may lead to major disruptions in the overall system. This may then be overcome by allowing the system components to function independently in the presence of dysfunction to individual cells.
Collapse
Affiliation(s)
- Aleena M. Notary
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Matthew J. Westacott
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Thomas H. Hraha
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Marina Pozzoli
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
| | - Richard K. P. Benninger
- Department of Bioengineering, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
- Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|