1
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024; 42:946-967. [PMID: 38729160 PMCID: PMC11190820 DOI: 10.1016/j.ccell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhenyi Su
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Ludwig MP, Galbraith MD, Eduthan NP, Hill AA, Clay MR, Tellez CM, Wilky BA, Elias A, Espinosa JM, Sullivan KD. Proteasome Inhibition Sensitizes Liposarcoma to MDM2 Inhibition with Nutlin-3 by Activating the ATF4/CHOP Stress Response Pathway. Cancer Res 2023; 83:2543-2556. [PMID: 37205634 PMCID: PMC10391328 DOI: 10.1158/0008-5472.can-22-3173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Liposarcoma is the most commonly occurring soft-tissue sarcoma and is frequently characterized by amplification of chromosome region 12q13-15 harboring the oncogenes MDM2 and CDK4. This unique genetic profile makes liposarcoma an attractive candidate for targeted therapeutics. While CDK4/6 inhibitors are currently employed for treatment of several cancers, MDM2 inhibitors have yet to attain clinical approval. Here, we report the molecular characterization of the response of liposarcoma to the MDM2 inhibitor nutlin-3. Treatment with nutlin-3 led to upregulation of two nodes of the proteostasis network: the ribosome and the proteasome. CRISPR/Cas9 was used to perform a genome-wide loss of function screen that identified PSMD9, which encodes a proteasome subunit, as a regulator of response to nutlin-3. Accordingly, pharmacologic studies with a panel of proteasome inhibitors revealed strong combinatorial induction of apoptosis with nutlin-3. Mechanistic studies identified activation of the ATF4/CHOP stress response axis as a potential node of interaction between nutlin-3 and the proteasome inhibitor carfilzomib. CRISPR/Cas9 gene editing experiments confirmed that ATF4, CHOP, and the BH3-only protein, NOXA, are all required for nutlin-3 and carfilzomib-induced apoptosis. Furthermore, activation of the unfolded protein response using tunicamycin and thapsigargin was sufficient to activate the ATF4/CHOP stress response axis and sensitize to nutlin-3. Finally, cell line and patient-derived xenograft models demonstrated combinatorial effects of treatment with idasanutlin and carfilzomib on liposarcoma growth in vivo. Together, these data indicate that targeting of the proteasome could improve the efficacy of MDM2 inhibitors in liposarcoma. SIGNIFICANCE Targeting the proteasome in combination with MDM2 inhibition activates the ATF4/CHOP stress response axis to induce apoptosis in liposarcoma, providing a potential therapeutic approach for the most common soft-tissue sarcoma.
Collapse
Affiliation(s)
- Michael P. Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Amanda A. Hill
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cristiam Moreno Tellez
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Breelyn A. Wilky
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony Elias
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Wang Z, Mačáková M, Bugai A, Kuznetsov SG, Hassinen A, Lenasi T, Potdar S, Friedel CC, Barborič M. P-TEFb promotes cell survival upon p53 activation by suppressing intrinsic apoptosis pathway. Nucleic Acids Res 2023; 51:1687-1706. [PMID: 36727434 PMCID: PMC9976905 DOI: 10.1093/nar/gkad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Positive transcription elongation factor b (P-TEFb) is the crucial player in RNA polymerase II (Pol II) pause release that has emerged as a promising target in cancer. Because single-agent therapy may fail to deliver durable clinical response, targeting of P-TEFb shall benefit when deployed as a combination therapy. We screened a comprehensive oncology library and identified clinically relevant antimetabolites and Mouse double minute 2 homolog (MDM2) inhibitors as top compounds eliciting p53-dependent death of colorectal cancer cells in synergy with selective inhibitors of P-TEFb. While the targeting of P-TEFb augments apoptosis by anti-metabolite 5-fluorouracil, it switches the fate of cancer cells by the non-genotoxic MDM2 inhibitor Nutlin-3a from cell-cycle arrest to apoptosis. Mechanistically, the fate switching is enabled by the induction of p53-dependent pro-apoptotic genes and repression of P-TEFb-dependent pro-survival genes of the PI3K-AKT signaling cascade, which stimulates caspase 9 and intrinsic apoptosis pathway in BAX/BAK-dependent manner. Finally, combination treatments trigger apoptosis of cancer cell spheroids. Together, co-targeting of P-TEFb and suppressors of intrinsic apoptosis could become a viable strategy to eliminate cancer cells.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Monika Mačáková
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Andrii Bugai
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland.,Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Sergey G Kuznetsov
- High-Throughput Biomedicine Unit (HTB), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Antti Hassinen
- High Content Imaging and Analysis Unit (HCA), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Tina Lenasi
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Swapnil Potdar
- High-Throughput Biomedicine Unit (HTB), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Matjaž Barborič
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
5
|
Andrysik Z, Sullivan KD, Kieft JS, Espinosa JM. PPM1D suppresses p53-dependent transactivation and cell death by inhibiting the Integrated Stress Response. Nat Commun 2022; 13:7400. [PMID: 36456590 PMCID: PMC9715646 DOI: 10.1038/s41467-022-35089-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
The p53 transcription factor is a master regulator of cellular stress responses inhibited by repressors such as MDM2 and the phosphatase PPM1D. Activation of p53 with pharmacological inhibitors of its repressors is being tested in clinical trials for cancer therapy, but efficacy has been limited by poor induction of tumor cell death. We demonstrate that dual inhibition of MDM2 and PPM1D induces apoptosis in multiple cancer cell types via amplification of the p53 transcriptional program through the eIF2α-ATF4 pathway. PPM1D inhibition induces phosphorylation of eIF2α, ATF4 accumulation, and ATF4-dependent enhancement of p53-dependent transactivation upon MDM2 inhibition. Dual inhibition of p53 repressors depletes heme and induces HRI-dependent eIF2α phosphorylation. Pharmacological induction of eIF2α phosphorylation synergizes with MDM2 inhibition to induce cell death and halt tumor growth in mice. These results demonstrate that PPM1D inhibits both the p53 network and the integrated stress response controlled by eIF2α-ATF4, with clear therapeutic implications.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics and RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett 2021; 26:53. [PMID: 34911439 PMCID: PMC8903693 DOI: 10.1186/s11658-021-00293-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first MDM2 inhibitors, we have gained deeper insights into the cellular roles of MDM2 and p53. In this review, we focus on MDM2 inhibitors that bind to the p53-binding domain of MDM2 and aim to disrupt the binding of MDM2 to p53. We describe the basic mechanism of action of these MDM2 inhibitors, such as nutlin-3a, summarise the determinants of sensitivity to MDM2 inhibition from p53-dependent and p53-independent points of view and discuss the problems with innate and acquired resistance to MDM2 inhibition. Despite progress in MDM2 inhibitor design and ongoing clinical trials, their broad use in cancer treatment is not fulfilling expectations in heterogenous human cancers. We assess the MDM2 inhibitor types in clinical trials and provide an overview of possible sources of resistance to MDM2 inhibition, underlining the need for patient stratification based on these aspects to gain better clinical responses, including the use of combination therapies for personalised medicine.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ondrej Bonczek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
| | - Pavlina Zatloukalova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Kokas-Zavadil
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Robin Fahraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010, Paris, France
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
7
|
Yang Z, Wu XS, Wei Y, Polyanskaya SA, Iyer SV, Jung M, Lach FP, Adelman ER, Klingbeil O, Milazzo JP, Kramer M, Demerdash OE, Chang K, Goodwin S, Hodges E, McCombie WR, Figueroa ME, Smogorzewska A, Vakoc CR. Transcriptional Silencing of ALDH2 Confers a Dependency on Fanconi Anemia Proteins in Acute Myeloid Leukemia. Cancer Discov 2021; 11:2300-2315. [PMID: 33893150 DOI: 10.1158/2159-8290.cd-20-1542] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Hundreds of genes become aberrantly silenced in acute myeloid leukemia (AML), with most of these epigenetic changes being of unknown functional consequence. Here, we demonstrate how gene silencing can lead to an acquired dependency on the DNA repair machinery in AML. We make this observation by profiling the essentiality of the ubiquitination machinery in cancer cell lines using domain-focused CRISPR screening, which revealed Fanconi anemia (FA) proteins UBE2T and FANCL as unique dependencies in AML. We demonstrate that these dependencies are due to a synthetic lethal interaction between FA proteins and aldehyde dehydrogenase 2 (ALDH2), which function in parallel pathways to counteract the genotoxicity of endogenous aldehydes. We show DNA hypermethylation and silencing of ALDH2 occur in a recurrent manner in human AML, which is sufficient to confer FA pathway dependency. Our study suggests that targeting of the ubiquitination reaction catalyzed by FA proteins can eliminate ALDH2-deficient AML. SIGNIFICANCE: Aberrant gene silencing is an epigenetic hallmark of human cancer, but the functional consequences of this process are largely unknown. In this study, we show how an epigenetic alteration leads to an actionable dependency on a DNA repair pathway through the disabling of genetic redundancy.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Zhaolin Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Genetics Program, Stony Brook University, Stony Brook, New York
| | - Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Shruti V Iyer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Genetics Program, Stony Brook University, Stony Brook, New York
| | - Moonjung Jung
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Emmalee R Adelman
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Emily Hodges
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | | |
Collapse
|
8
|
Hýžďalová M, Procházková J, Strapáčová S, Svržková L, Vacek O, Fedr R, Andrysík Z, Hrubá E, Líbalová H, Kléma J, Topinka J, Mašek J, Souček K, Vondráček J, Machala M. A prolonged exposure of human lung carcinoma epithelial cells to benzo[a]pyrene induces p21-dependent epithelial-to-mesenchymal transition (EMT)-like phenotype. CHEMOSPHERE 2021; 263:128126. [PMID: 33297115 DOI: 10.1016/j.chemosphere.2020.128126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
Deciphering the role of the aryl hydrocarbon receptor (AhR) in lung cancer cells may help us to better understand the role of toxic AhR ligands in lung carcinogenesis, including cancer progression. We employed human lung carcinoma A549 cells to investigate their fate after continuous two-week exposure to model AhR agonists, genotoxic benzo[a]pyrene (BaP; 1 μM) and non-genotoxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 nM). While TCDD increased proliferative rate of A549 cells, exposure to BaP decreased cell proliferation and induced epithelial-to-mesenchymal transition (EMT)-like phenotype, which was associated with enhanced cell migration, invasion, and altered cell morphology. Although TCDD also suppressed expression of E-cadherin and activated some genes linked to EMT, it did not induce the EMT-like phenotype. The results of transcriptomic analysis, and the opposite effects of BaP and TCDD on cell proliferation, indicated that a delay in cell cycle progression, together with a slight increase of senescence (when coupled with AhR activation), favors the induction of EMT-like phenotype. The shift towards EMT-like phenotype observed after simultaneous treatment with TCDD and mitomycin C (an inhibitor of cell proliferation) confirmed the hypothesis. Since BaP decreased cell proliferative rate via induction of p21 expression, we generated the A549 cell model with reduced p21 expression and exposed it to BaP for two weeks. The p21 knockdown suppressed the BaP-mediated EMT-like phenotype in A549 cells, thus confirming that a delayed cell cycle progression, together with p21-dependent induction of senescence-related chemokine CCL2, may contribute to induction of EMT-like cell phenotype in lung cells exposed to genotoxic AhR ligands.
Collapse
Affiliation(s)
- Martina Hýžďalová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Simona Strapáčová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Lucie Svržková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Zdeněk Andrysík
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Eva Hrubá
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Helena Líbalová
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University in Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
9
|
Kern JA, Kim J, Foster DG, Mishra R, Gardner EE, Poirier JT, Rivard C, Yu H, Finigan JH, Dowlati A, Rudin CM, Tan AC. Role of mTOR As an Essential Kinase in SCLC. J Thorac Oncol 2020; 15:1522-1534. [PMID: 32599072 DOI: 10.1016/j.jtho.2020.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES SCLC represents 15% of all lung cancer diagnoses in the United States and has a particularly poor prognosis. We hypothesized that kinases regulating SCLC survival pathways represent therapeutically targetable vulnerabilities whose inhibition may improve SCLC outcome. METHODS A short-hairpin RNA (shRNA) library targeting all human kinases was introduced in seven chemonaive patient-derived xenografts (PDX) and the cells were cultured in vitro and in vivo. On harvest, lost or depleted shRNAs were considered as regulating-cell survival pathways and deemed essential kinases. RESULTS Unsupervised hierarchical cluster analysis of recovered shRNAs separated the PDXs into two clusters, suggesting kinase-based heterogeneity among the SCLC PDXs. A total of 23 kinases were identified as essential in two or more PDXs, with mechanistic Target of Rapamycin (mTOR) a candidate essential kinase in four. mTOR phosphorylation status correlated with PDX sensitivity to mTOR kinase inhibition, and mTOR inhibition sensitized the PDX to cisplatin and etoposide. In the PDX in which mTOR was defined as essential, mTOR inhibition caused a 43% decrease in tumor volume at 21 days (p < 0.01). Combining mTOR inhibition with cisplatin and etoposide decreased PDX tumor volume 96% compared with cisplatin and etoposide alone at 70 days (p < 0.002). Chemoresistance did not develop with the combination of mTOR inhibition and cisplatin and etoposide in mTOR-essential PDX over 105 days. The prevalence of phospho-mTOR-Ser-2448 in a tissue microarray of chemonaive SCLC was 27%, thus, identifying an important SCLC subtype that might benefit from the addition of mTOR inhibition to standard chemotherapy. CONCLUSIONS These studies reveal that kinases can define SCLC subgroups, can identify therapeutic vulnerabilities, and can potentially be used to optimize therapeutic approaches. Significance We used functional genomics to identify kinases regulating SCLC survival. mTOR was identified as essential in a subset of PDXs. mTOR inhibition decreased PDX growth, sensitized PDX to cisplatin and etoposide, and prevented chemoresistance.
Collapse
Affiliation(s)
- Jeffrey A Kern
- Department of Medicine, Oncology Division, National Jewish Health, Denver, Colorado.
| | - Jihye Kim
- Department of Medicine, University of Colorado, Denver, Colorado
| | - Daniel G Foster
- Department of Medicine, Oncology Division, National Jewish Health, Denver, Colorado
| | - Rangnath Mishra
- Department of Medicine, Oncology Division, National Jewish Health, Denver, Colorado
| | - Eric E Gardner
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | | | - Hui Yu
- Department of Medicine, University of Colorado, Denver, Colorado
| | - James H Finigan
- Department of Medicine, Oncology Division, National Jewish Health, Denver, Colorado
| | - Afshin Dowlati
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | | | - Aik-Choon Tan
- Department of Medicine, University of Colorado, Denver, Colorado; Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
10
|
Hafner A, Kublo L, Tsabar M, Lahav G, Stewart-Ornstein J. Identification of universal and cell-type specific p53 DNA binding. BMC Mol Cell Biol 2020; 21:5. [PMID: 32070277 PMCID: PMC7027055 DOI: 10.1186/s12860-020-00251-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/11/2020] [Indexed: 01/09/2023] Open
Abstract
Background The tumor suppressor p53 is a major regulator of the DNA damage response and has been suggested to selectively bind and activate cell-type specific gene expression programs. However recent studies and meta-analyses of genomic data propose largely uniform, and condition independent p53 binding and thus question the selective and cell-type dependent function of p53. Results To systematically assess the cell-type specificity of p53, we measured its association with DNA in 12 p53 wild-type cancer cell lines, from a range of epithelial linages, in response to ionizing radiation. We found that the majority of bound sites were occupied across all cell lines, however we also identified a subset of binding sites that were specific to one or a few cell lines. Unlike the shared p53-bound genome, which was not dependent on chromatin accessibility, the association of p53 with these atypical binding sites was well explained by chromatin accessibility and could be modulated by forcing cell state changes such as the epithelial-to-mesenchymal transition. Conclusions Our study reconciles previous conflicting views in the p53 field, by demonstrating that although the majority of p53 DNA binding is conserved across cell types, there is a small set of cell line specific binding sites that depend on cell state.
Collapse
Affiliation(s)
- Antonina Hafner
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Lyubov Kublo
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Michael Tsabar
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jacob Stewart-Ornstein
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh Medical School, Pittsburgh, PA, 15260, USA
| |
Collapse
|
11
|
Jariyal H, Weinberg F, Achreja A, Nagarath D, Srivastava A. Synthetic lethality: a step forward for personalized medicine in cancer. Drug Discov Today 2020; 25:305-320. [DOI: 10.1016/j.drudis.2019.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/06/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
|
12
|
Sanz G, Singh M, Peuget S, Selivanova G. Inhibition of p53 inhibitors: progress, challenges and perspectives. J Mol Cell Biol 2019; 11:586-599. [PMID: 31310659 PMCID: PMC6735775 DOI: 10.1093/jmcb/mjz075] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
p53 is the major tumor suppressor and the most frequently inactivated gene in cancer. p53 could be disabled either by mutations or by upstream negative regulators, including, but not limited to MDM2 and MDMX. p53 activity is required for the prevention as well as for the eradication of cancers. Restoration of p53 activity in mouse models leads to the suppression of established tumors of different origin. These findings provide a strong support to the anti-cancer strategy aimed for p53 reactivation. In this review, we summarize recent progress in the development of small molecules, which restore the tumor suppressor function of wild-type p53 and discuss their clinical advance. We discuss different aspects of p53-mediated response, which contribute to suppression of tumors, including non-canonical p53 activities, such as regulation of immune response. While targeting p53 inhibitors is a very promising approach, there are certain limitations and concerns that the intensive research and clinical evaluation of compounds will hopefully help to overcome.
Collapse
Affiliation(s)
- Gema Sanz
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| | - Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| | - Sylvain Peuget
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Biomedicum 8C, Karolinska Institute, Sweden
| |
Collapse
|
13
|
Tu MM, Lee FYF, Jones RT, Kimball AK, Saravia E, Graziano RF, Coleman B, Menard K, Yan J, Michaud E, Chang H, Abdel-Hafiz HA, Rozhok AI, Duex JE, Agarwal N, Chauca-Diaz A, Johnson LK, Ng TL, Cambier JC, Clambey ET, Costello JC, Korman AJ, Theodorescu D. Targeting DDR2 enhances tumor response to anti-PD-1 immunotherapy. SCIENCE ADVANCES 2019; 5:eaav2437. [PMID: 30801016 PMCID: PMC6382401 DOI: 10.1126/sciadv.aav2437] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/10/2019] [Indexed: 05/10/2023]
Abstract
While a fraction of cancer patients treated with anti-PD-1 show durable therapeutic responses, most remain unresponsive, highlighting the need to better understand and improve these therapies. Using an in vivo screening approach with a customized shRNA pooled library, we identified DDR2 as a leading target for the enhancement of response to anti-PD-1 immunotherapy. Using isogenic in vivo murine models across five different tumor histologies-bladder, breast, colon, sarcoma, and melanoma-we show that DDR2 depletion increases sensitivity to anti-PD-1 treatment compared to monotherapy. Combination treatment of tumor-bearing mice with anti-PD-1 and dasatinib, a tyrosine kinase inhibitor of DDR2, led to tumor load reduction. RNA-seq and CyTOF analysis revealed higher CD8+ T cell populations in tumors with DDR2 depletion and those treated with dasatinib when either was combined with anti-PD-1 treatment. Our work provides strong scientific rationale for targeting DDR2 in combination with PD-1 inhibitors.
Collapse
Affiliation(s)
- Megan M. Tu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Robert T. Jones
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Abigail K. Kimball
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Brianne Coleman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Jun Yan
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | - Han Chang
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | - Hany A. Abdel-Hafiz
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrii I. Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jason E. Duex
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neeraj Agarwal
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ana Chauca-Diaz
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Linda K. Johnson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Terry L. Ng
- Division of Medical Oncology, The Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | - John C. Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Corresponding author.
| |
Collapse
|
14
|
Kalan S, Amat R, Schachter MM, Kwiatkowski N, Abraham BJ, Liang Y, Zhang T, Olson CM, Larochelle S, Young RA, Gray NS, Fisher RP. Activation of the p53 Transcriptional Program Sensitizes Cancer Cells to Cdk7 Inhibitors. Cell Rep 2018; 21:467-481. [PMID: 29020632 DOI: 10.1016/j.celrep.2017.09.056] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/21/2017] [Accepted: 09/17/2017] [Indexed: 12/23/2022] Open
Abstract
Cdk7, the CDK-activating kinase and transcription factor IIH component, is a target of inhibitors that kill cancer cells by exploiting tumor-specific transcriptional dependencies. However, whereas selective inhibition of analog-sensitive (AS) Cdk7 in colon cancer-derived cells arrests division and disrupts transcription, it does not by itself trigger apoptosis efficiently. Here, we show that p53 activation by 5-fluorouracil or nutlin-3 synergizes with a reversible Cdk7as inhibitor to induce cell death. Synthetic lethality was recapitulated with covalent inhibitors of wild-type Cdk7, THZ1, or the more selective YKL-1-116. The effects were allele specific; a CDK7as mutation conferred both sensitivity to bulky adenine analogs and resistance to covalent inhibitors. Non-transformed colon epithelial cells were resistant to these combinations, as were cancer-derived cells with p53-inactivating mutations. Apoptosis was dependent on death receptor DR5, a p53 transcriptional target whose expression was refractory to Cdk7 inhibition. Therefore, p53 activation induces transcriptional dependency to sensitize cancer cells to Cdk7 inhibition.
Collapse
Affiliation(s)
- Sampada Kalan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ramon Amat
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Merzel Schachter
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yanke Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Calla M Olson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stéphane Larochelle
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, MA 02142, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
15
|
Andrysik Z, Galbraith MD, Guarnieri AL, Zaccara S, Sullivan KD, Pandey A, MacBeth M, Inga A, Espinosa JM. Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity. Genome Res 2017; 27:1645-1657. [PMID: 28904012 PMCID: PMC5630028 DOI: 10.1101/gr.220533.117] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022]
Abstract
The tumor suppressor TP53 is the most frequently mutated gene product in human cancer. Close to half of all solid tumors carry inactivating mutations in the TP53 gene, while in the remaining cases, TP53 activity is abrogated by other oncogenic events, such as hyperactivation of its endogenous repressors MDM2 or MDM4. Despite identification of hundreds of genes regulated by this transcription factor, it remains unclear which direct target genes and downstream pathways are essential for the tumor suppressive function of TP53. We set out to address this problem by generating multiple genomic data sets for three different cancer cell lines, allowing the identification of distinct sets of TP53-regulated genes, from early transcriptional targets through to late targets controlled at the translational level. We found that although TP53 elicits vastly divergent signaling cascades across cell lines, it directly activates a core transcriptional program of ∼100 genes with diverse biological functions, regardless of cell type or cellular response to TP53 activation. This core program is associated with high-occupancy TP53 enhancers, high levels of paused RNA polymerases, and accessible chromatin. Interestingly, two different shRNA screens failed to identify a single TP53 target gene required for the anti-proliferative effects of TP53 during pharmacological activation in vitro. Furthermore, bioinformatics analysis of thousands of cancer genomes revealed that none of these core target genes are frequently inactivated in tumors expressing wild-type TP53. These results support the hypothesis that TP53 activates a genetically robust transcriptional program with highly distributed tumor suppressive functions acting in diverse cellular contexts.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado 80203, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado 80203, USA
| | - Anna L Guarnieri
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado 80203, USA
| | - Sara Zaccara
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado 80203, USA
| | - Ahwan Pandey
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado 80203, USA
| | - Morgan MacBeth
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado 80203, USA
| | - Alberto Inga
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, TN, Italy
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado 80203, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA
| |
Collapse
|
16
|
Zipin-Roitman A, Aqaqe N, Yassin M, Biechonski S, Amar M, van Delft MF, Gan OI, McDermott SP, Buzina A, Ketela T, Shlush L, Xie S, Voisin V, Moffat J, Minden MD, Dick JE, Milyavsky M. SMYD2 lysine methyltransferase regulates leukemia cell growth and regeneration after genotoxic stress. Oncotarget 2017; 8:16712-16727. [PMID: 28187429 PMCID: PMC5369996 DOI: 10.18632/oncotarget.15147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
The molecular determinants governing escape of Acute Myeloid Leukemia (AML) cells from DNA damaging therapy remain poorly defined and account for therapy failures. To isolate genes responsible for leukemia cells regeneration following multiple challenges with irradiation we performed a genome-wide shRNA screen. Some of the isolated hits are known players in the DNA damage response (e.g. p53, CHK2), whereas other, e.g. SMYD2 lysine methyltransferase (KMT), remains uncharacterized in the AML context. Here we report that SMYD2 knockdown confers relative resistance to human AML cells against multiple classes of DNA damaging agents. Induction of the transient quiescence state upon SMYD2 downregulation correlated with the resistance. We revealed that diminished SMYD2 expression resulted in the upregulation of the related methyltransferase SET7/9, suggesting compensatory relationships. Indeed, pharmacological targeting of SET7/9 with (R)-PFI2 inhibitor preferentially inhibited the growth of cells expressing low levels of SMYD2. Finally, decreased expression of SMYD2 in AML patients correlated with the reduced sensitivity to therapy and lower probability to achieve complete remission. We propose that the interplay between SMYD2 and SET7/9 levels shifts leukemia cells from growth to quiescence state that is associated with the higher resistance to DNA damaging agents and rationalize SET7/9 pharmacological targeting in AML.
Collapse
Affiliation(s)
- Adi Zipin-Roitman
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mariam Amar
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mark F van Delft
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sean P McDermott
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Leidos Biomedical Research, Washington D.C., USA
| | - Alla Buzina
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Troy Ketela
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Liran Shlush
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stephanie Xie
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Veronique Voisin
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
A Kinase-Independent Role for Cyclin-Dependent Kinase 19 in p53 Response. Mol Cell Biol 2017; 37:MCB.00626-16. [PMID: 28416637 PMCID: PMC5472832 DOI: 10.1128/mcb.00626-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
The human Mediator complex regulates RNA polymerase II transcription genome-wide. A general factor that regulates Mediator function is the four-subunit kinase module, which contains either cyclin-dependent kinase 8 (CDK8) or CDK19. Whereas CDK8 is linked to specific signaling cascades and oncogenesis, the cellular roles of its paralog, CDK19, are poorly studied. We discovered that osteosarcoma cells (SJSA) are naturally depleted of CDK8 protein. Whereas stable CDK19 knockdown was tolerated in SJSA cells, proliferation was reduced. Notably, proliferation defects were rescued upon the reexpression of wild-type or kinase-dead CDK19. Comparative RNA sequencing analyses showed reduced expression of mitotic genes and activation of genes associated with cholesterol metabolism and the p53 pathway in CDK19 knockdown cells. SJSA cells treated with 5-fluorouracil, which induces metabolic and genotoxic stress and activates p53, further implicated CDK19 in p53 target gene expression. To better probe the p53 response, SJSA cells (shCDK19 versus shCTRL) were treated with the p53 activator nutlin-3. Remarkably, CDK19 was required for SJSA cells to return to a proliferative state after nutlin-3 treatment, and this effect was kinase independent. These results implicate CDK19 as a regulator of p53 stress responses and suggest a role for CDK19 in cellular resistance to nutlin-3.
Collapse
|
18
|
Tan WL, Jain A, Takano A, Newell EW, Iyer NG, Lim WT, Tan EH, Zhai W, Hillmer AM, Tam WL, Tan DSW. Novel therapeutic targets on the horizon for lung cancer. Lancet Oncol 2017; 17:e347-e362. [PMID: 27511159 DOI: 10.1016/s1470-2045(16)30123-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 02/08/2023]
Abstract
Lung cancer is a leading cause of cancer-related mortality worldwide, and is classically divided into two major histological subtypes: non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). Although NSCLC and SCLC are considered distinct entities with different genomic landscapes, emerging evidence highlights a convergence in therapeutically relevant targets for both histologies. In adenocarcinomas with defined alterations such as EGFR mutations and ALK translocations, targeted therapies are now first-line standard of care. By contrast, many experimental and targeted agents remain largely unsuccessful for SCLC. Intense preclinical research and clinical trials are underway to exploit unique traits of lung cancer, such as oncogene dependency, DNA damage response, angiogenesis, and cellular plasticity arising from presence of cancer stem cell lineages. In addition, the promising clinical activity observed in NSCLC in response to immune checkpoint blockade has spurred great interest in the field of immunooncology, with the scope to develop a diverse repertoire of synergistic and personalised immunotherapeutics. In this Review, we discuss novel therapeutic agents for lung cancer that are in early-stage development, and how prospective clinical trials and drug development may be shaped by a deeper understanding of this heterogeneous disease.
Collapse
Affiliation(s)
- Wan-Ling Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Amit Jain
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Angela Takano
- Department of Pathology, Singapore General Hospital, Singapore
| | | | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore; Duke-National University of Singapore Medical School, Singapore
| | - Eng-Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore, A*STAR, Singapore
| | | | - Wai-Leong Tam
- Genome Institute of Singapore, A*STAR, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore; Genome Institute of Singapore, A*STAR, Singapore.
| |
Collapse
|
19
|
Dimberg LY, Towers CG, Behbakht K, Hotz TJ, Kim J, Fosmire S, Porter CC, Tan AC, Thorburn A, Ford HL. A Genome-Wide Loss-of-Function Screen Identifies SLC26A2 as a Novel Mediator of TRAIL Resistance. Mol Cancer Res 2017; 15:382-394. [PMID: 28108622 DOI: 10.1158/1541-7786.mcr-16-0234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022]
Abstract
TRAIL is a potent death-inducing ligand that mediates apoptosis through the extrinsic pathway and serves as an important endogenous tumor suppressor mechanism. Because tumor cells are often killed by TRAIL and normal cells are not, drugs that activate the TRAIL pathway have been thought to have potential clinical value. However, to date, most TRAIL-related clinical trials have largely failed due to the tumor cells having intrinsic or acquired resistance to TRAIL-induced apoptosis. Previous studies to identify resistance mechanisms have focused on targeted analysis of the canonical apoptosis pathway and other known regulators of TRAIL receptor signaling. To identify novel mechanisms of TRAIL resistance in an unbiased way, we performed a genome-wide shRNA screen for genes that regulate TRAIL sensitivity in sublines that had been selected for acquired TRAIL resistance. This screen identified previously unknown mediators of TRAIL resistance including angiotensin II receptor 2, Crk-like protein, T-Box Transcription Factor 2, and solute carrier family 26 member 2 (SLC26A2). SLC26A2 downregulates the TRAIL receptors, DR4 and DR5, and this downregulation is associated with resistance to TRAIL. Its expression is high in numerous tumor types compared with normal cells, and in breast cancer, SLC26A2 is associated with a significant decrease in relapse-free survival.Implication: Our results shed light on novel resistance mechanisms that could affect the efficacy of TRAIL agonist therapies and highlight the possibility of using these proteins as biomarkers to identify TRAIL-resistant tumors, or as potential therapeutic targets in combination with TRAIL. Mol Cancer Res; 15(4); 382-94. ©2017 AACR.
Collapse
Affiliation(s)
- Lina Y Dimberg
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christina G Towers
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kian Behbakht
- Department of Obstetrics and Gynecology, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Taylor J Hotz
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jihye Kim
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Susan Fosmire
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christopher C Porter
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aik-Choon Tan
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Obstetrics and Gynecology, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
20
|
Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, Boeckx B, Wijnhoven PWG, Radaelli E, Vermi W, Leucci E, Lapouge G, Beck B, van den Oord J, Nakagawa S, Hirose T, Sablina AA, Lambrechts D, Aerts S, Blanpain C, Marine JC. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med 2016; 22:861-8. [PMID: 27376578 DOI: 10.1038/nm.4135] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022]
Abstract
In a search for mediators of the p53 tumor suppressor pathway, which induces pleiotropic and often antagonistic cellular responses, we identified the long noncoding RNA (lncRNA) NEAT1. NEAT1 is an essential architectural component of paraspeckle nuclear bodies, whose pathophysiological relevance remains unclear. Activation of p53, pharmacologically or by oncogene-induced replication stress, stimulated the formation of paraspeckles in mouse and human cells. Silencing Neat1 expression in mice, which prevents paraspeckle formation, sensitized preneoplastic cells to DNA-damage-induced cell death and impaired skin tumorigenesis. We provide mechanistic evidence that NEAT1 promotes ATR signaling in response to replication stress and is thereby engaged in a negative feedback loop that attenuates oncogene-dependent activation of p53. NEAT1 targeting in established human cancer cell lines induced synthetic lethality with genotoxic chemotherapeutics, including PARP inhibitors, and nongenotoxic activation of p53. This study establishes a key genetic link between NEAT1 paraspeckles, p53 biology and tumorigenesis and identifies NEAT1 as a promising target to enhance sensitivity of cancer cells to both chemotherapy and p53 reactivation therapy.
Collapse
Affiliation(s)
- Carmen Adriaens
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Laura Standaert
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Jasmine Barra
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Mathilde Latil
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Bruxelles, Belgium
| | - Annelien Verfaillie
- Laboratory of Computational Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Kalev
- Laboratory for Mechanisms of Cell Transformation, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Mechanisms of Cell Transformation, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Vesalius Research Center, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Paul W G Wijnhoven
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Enrico Radaelli
- Mouse Histopathology Core Facility, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eleonora Leucci
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Gaëlle Lapouge
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Bruxelles, Belgium
| | - Benjamin Beck
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Bruxelles, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN, Wako, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Anna A Sablina
- Laboratory for Mechanisms of Cell Transformation, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Mechanisms of Cell Transformation, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Vesalius Research Center, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Cédric Blanpain
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Bruxelles, Belgium
- WELBIO, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Sullivan KD, Lewis HC, Hill AA, Pandey A, Jackson LP, Cabral JM, Smith KP, Liggett LA, Gomez EB, Galbraith MD, DeGregori J, Espinosa JM. Trisomy 21 consistently activates the interferon response. eLife 2016; 5:e16220. [PMID: 27472900 PMCID: PMC5012864 DOI: 10.7554/elife.16220] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Although it is clear that trisomy 21 causes Down syndrome, the molecular events acting downstream of the trisomy remain ill defined. Using complementary genomics analyses, we identified the interferon pathway as the major signaling cascade consistently activated by trisomy 21 in human cells. Transcriptome analysis revealed that trisomy 21 activates the interferon transcriptional response in fibroblast and lymphoblastoid cell lines, as well as circulating monocytes and T cells. Trisomy 21 cells show increased induction of interferon-stimulated genes and decreased expression of ribosomal proteins and translation factors. An shRNA screen determined that the interferon-activated kinases JAK1 and TYK2 suppress proliferation of trisomy 21 fibroblasts, and this defect is rescued by pharmacological JAK inhibition. Therefore, we propose that interferon activation, likely via increased gene dosage of the four interferon receptors encoded on chromosome 21, contributes to many of the clinical impacts of trisomy 21, and that interferon antagonists could have therapeutic benefits.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Hannah C Lewis
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
| | - Amanda A Hill
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
| | - Ahwan Pandey
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Leisa P Jackson
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Joseph M Cabral
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
| | - L Alexander Liggett
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
| | - Eliana B Gomez
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - James DeGregori
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, United States
- Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, United States
- Section of Hematology, University of Colorado School of Medicine, Aurora, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, United States
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
22
|
Guernet A, Mungamuri SK, Cartier D, Sachidanandam R, Jayaprakash A, Adriouch S, Vezain M, Charbonnier F, Rohkin G, Coutant S, Yao S, Ainani H, Alexandre D, Tournier I, Boyer O, Aaronson SA, Anouar Y, Grumolato L. CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations. Mol Cell 2016; 63:526-38. [PMID: 27453044 DOI: 10.1016/j.molcel.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/10/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
Abstract
Intratumor genetic heterogeneity underlies the ability of tumors to evolve and adapt to different environmental conditions. Using CRISPR/Cas9 technology and specific DNA barcodes, we devised a strategy to recapitulate and trace the emergence of subpopulations of cancer cells containing a mutation of interest. We used this approach to model different mechanisms of lung cancer cell resistance to EGFR inhibitors and to assess effects of combined drug therapies. By overcoming intrinsic limitations of current approaches, CRISPR-barcoding also enables investigation of most types of genetic modifications, including repair of oncogenic driver mutations. Finally, we used highly complex barcodes inserted at a specific genome location as a means of simultaneously tracing the fates of many thousands of genetically labeled cancer cells. CRISPR-barcoding is a straightforward and highly flexible method that should greatly facilitate the functional investigation of specific mutations, in a context that closely mimics the complexity of cancer.
Collapse
Affiliation(s)
- Alexis Guernet
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000 Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Sathish Kumar Mungamuri
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dorthe Cartier
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000 Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anitha Jayaprakash
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sahil Adriouch
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; IRIB Flow Cytometry and Cell Sorting Facility, 76000 Rouen, France
| | - Myriam Vezain
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; IRIB Genomics Facility,76000 Rouen, France
| | - Françoise Charbonnier
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; IRIB Genomics Facility,76000 Rouen, France
| | - Guy Rohkin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sophie Coutant
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; IRIB Genomics Facility,76000 Rouen, France
| | - Shen Yao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hassan Ainani
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000 Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - David Alexandre
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000 Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Isabelle Tournier
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; IRIB Genomics Facility,76000 Rouen, France
| | - Olivier Boyer
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; IRIB Flow Cytometry and Cell Sorting Facility, 76000 Rouen, France; Department of Immunology, CHU Rouen, 76000 Rouen, France
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000 Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Luca Grumolato
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000 Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France.
| |
Collapse
|
23
|
Sullivan KD, Nakagawa A, Xue D, Espinosa JM. Human ACAP2 is a homolog of C. elegans CNT-1 that promotes apoptosis in cancer cells. Cell Cycle 2016; 14:1771-8. [PMID: 25853217 DOI: 10.1080/15384101.2015.1026518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activation of caspases is an integral part of the apoptotic cell death program. Collectively, these proteases target hundreds of substrates, leading to the hypothesis that apoptosis is "death by a thousand cuts". Recent work, however, has demonstrated that caspase cleavage of only a subset of these substrates directs apoptosis in the cell. One such example is C. elegans CNT-1, which is cleaved by CED-3 to generate a truncated form, tCNT-1, that acquires a potent phosphoinositide-binding activity and translocates to the plasma membrane where it inactivates AKT survival signaling. We report here that ACAP2, a homolog of C. elegans CNT-1, has a pro-apoptotic function and an identical phosphoinositide-binding pattern to that of tCNT-1, despite not being an apparent target of caspase cleavage. We show that knockdown of ACAP2 blocks apoptosis in cancer cells in response to the chemotherapeutic antimetabolite 5-fluorouracil and that ACAP2 expression is down-regulated in some esophageal cancers, leukemias and lymphomas. These results suggest that ACAP2 is a functional homolog of C. elegans CNT-1 and its inactivation or downregulation in human cells may contribute to cancer development.
Collapse
Affiliation(s)
- Kelly D Sullivan
- a Department of Molecular, Cellular, and Developmental Biology; University of Colorado ; Boulder , CO , USA
| | | | | | | |
Collapse
|
24
|
Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med 2016; 6:a026104. [PMID: 26931810 DOI: 10.1101/cshperspect.a026104] [Citation(s) in RCA: 773] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P53 is a transcription factor highly inducible by many stress signals such as DNA damage, oncogene activation, and nutrient deprivation. Cell-cycle arrest and apoptosis are the most prominent outcomes of p53 activation. Many studies showed that p53 cell-cycle and apoptosis functions are important for preventing tumor development. p53 also regulates many cellular processes including metabolism, antioxidant response, and DNA repair. Emerging evidence suggests that these noncanonical p53 activities may also have potent antitumor effects within certain context. This review focuses on the cell-cycle arrest and apoptosis functions of p53, their roles in tumor suppression, and the regulation of cell fate decision after p53 activation.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612
| |
Collapse
|
25
|
Samadder P, Aithal R, Belan O, Krejci L. Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol Ther 2016; 161:111-131. [PMID: 26899499 DOI: 10.1016/j.pharmthera.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy.
Collapse
Affiliation(s)
- Pounami Samadder
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic
| | - Rakesh Aithal
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Belan
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
26
|
Zhang J, Babic A. Regulation of the MET oncogene: molecular mechanisms. Carcinogenesis 2016; 37:345-55. [PMID: 26905592 DOI: 10.1093/carcin/bgw015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/29/2016] [Indexed: 12/26/2022] Open
Abstract
The MET oncogene is a predictive biomarker and an attractive therapeutic target for various cancers. Its expression is regulated at multiple layers via various mechanisms. It is subject to epigenetic modifications, i.e. DNA methylation and histone acetylation. Hypomethylation and acetylation of the MET gene have been associated with its high expression in some cancers. Multiple transcription factors including Sp1 and Ets-1 govern its transcription. After its transcription, METmRNA is spliced into multiple species in the nucleus before being transported to the cytoplasm where its translation is modulated by at least 30 microRNAs and translation initiation factors, e.g. eIF4E and eIF4B. METmRNA produces a single chain pro-Met protein of 170 kDa which is cleaved into α and β chains. These two chains are bound together through disulfide bonds to form a heterodimer which undergoes either N-linked or O-linked glycosylation in the Golgi apparatus before it is properly localized in the membrane. Upon interactions with its ligand, i.e. hepatocyte growth factor (HGF), the activity of Met kinase is boosted through various phosphorylation mechanisms and the Met signal is relayed to downstream pathways. The phosphorylated Met is then internalized for subsequent degradation or recycle via proteasome, lysosome or endosome pathways. Moreover, the Met expression is subject to autoregulation and activation by other EGFRs and G-protein coupled receptors. Since deregulation of the MET gene leads to cancer and other pathological conditions, a better understanding of the MET regulation is critical for Met-targeted therapeutics.
Collapse
Affiliation(s)
- Jack Zhang
- Research and Development, Ventana Medical Systems, Inc., a Member of the Roche Group, Oro Valley, AZ 85755, USA
| | - Andy Babic
- Research and Development, Ventana Medical Systems, Inc., a Member of the Roche Group, Oro Valley, AZ 85755, USA
| |
Collapse
|
27
|
Esfandiari A, Hawthorne TA, Nakjang S, Lunec J. Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by GSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner. Mol Cancer Ther 2016; 15:379-91. [PMID: 26832796 DOI: 10.1158/1535-7163.mct-15-0651] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/23/2015] [Indexed: 01/10/2023]
Abstract
Sensitivity to MDM2 inhibitors is widely different among responsive TP53 wild-type cell lines and tumors. Understanding the determinants of MDM2 inhibitor sensitivity is pertinent for their optimal clinical application. Wild-type p53-inducible phosphatase-1 (WIP1) encoded by PPM1D, is activated, gained/amplified in a range of TP53 wild-type malignancies, and is involved in p53 stress response homeostasis. We investigated cellular growth/proliferation of TP53 wild-type and matched mutant/null cell line pairs, differing in PPM1D genetic status, in response to Nutlin-3/RG7388 ± a highly selective WIP1 inhibitor, GSK2830371. We also assessed the effects of GSK2830371 on MDM2 inhibitor-induced p53(Ser15) phosphorylation, p53-mediated global transcriptional activity, and apoptosis. The investigated cell line pairs were relatively insensitive to single-agent GSK2830371. However, a non-growth-inhibitory dose of GSK2830371 markedly potentiated the response to MDM2 inhibitors in TP53 wild-type cell lines, most notably in those harboring PPM1D-activating mutations or copy number gain (up to 5.8-fold decrease in GI50). Potentiation also correlated with significant increase in MDM2 inhibitor-induced cell death endpoints that were preceded by a marked increase in a WIP1 negatively regulated substrate, phosphorylated p53(Ser15), known to increase p53 transcriptional activity. Microarray-based gene expression analysis showed that the combination treatment increases the subset of early RG7388-induced p53 transcriptional target genes. These findings demonstrate that potent and selective WIP1 inhibition potentiates the response to MDM2 inhibitors in TP53 wild-type cells, particularly those with PPM1D activation or gain, while highlighting the mechanistic importance of p53(Ser15) and its potential use as a biomarker for response to this combination regimen.
Collapse
Affiliation(s)
- Arman Esfandiari
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas A Hawthorne
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sirintra Nakjang
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom. Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John Lunec
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
28
|
Abstract
Over the past decade, rapid advances in genomics, proteomics and functional genomics technologies that enable in-depth interrogation of cancer genomes and proteomes and high-throughput analysis of gene function have enabled characterization of the kinome 'at large' in human cancers, providing crucial insights into how members of the protein kinase superfamily are dysregulated in malignancy, the context-dependent functional role of specific kinases in cancer and how kinome remodelling modulates sensitivity to anticancer drugs. The power of these complementary approaches, and the insights gained from them, form the basis of this Analysis article.
Collapse
Affiliation(s)
- Emmy D G Fleuren
- Department of Medical Oncology, Radboud University Medical Centre, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Luxi Zhang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jianmin Wu
- Cancer Division, Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
29
|
Borodkina AV, Shatrova AN, Deryabin PI, Grukova AA, Nikolsky NN, Burova EB. Tetraploidization or autophagy: The ultimate fate of senescent human endometrial stem cells under ATM or p53 inhibition. Cell Cycle 2016; 15:117-27. [PMID: 26636375 PMCID: PMC4825783 DOI: 10.1080/15384101.2015.1121326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/19/2015] [Accepted: 11/12/2015] [Indexed: 01/10/2023] Open
Abstract
Previously we demonstrated that endometrium-derived human mesenchymal stem cells (hMESCs) via activation of the ATM/p53/p21/Rb pathway enter the premature senescence in response to oxidative stress. Down regulation effects of the key components of this signaling pathway, particularly ATM and p53, on a fate of stressed hMESCs have not yet been investigated. In the present study by using the specific inhibitors Ku55933 and Pifithrin-α, we confirmed implication of both ATM and p53 in H(2)O(2)-induced senescence of hMESCs. ATM or p53 down regulation was shown to modulate differently the cellular fate of H(2)O(2)-treated hMESCs. ATM inhibition allowed H(2)O(2)-stimulated hMESCs to escape the permanent cell cycle arrest due to loss of the functional ATM/p53/p21/Rb pathway, and induced bypass of mitosis and re-entry into S phase, resulting in tetraploid cells. On the contrary, suppression of the p53 transcriptional activity caused a pronounced cell death of H(2)O(2)-treated hMESCs via autophagy induction. The obtained data clearly demonstrate that down regulation of ATM or p53 shifts senescence of human endometrial stem cells toward tetraploidization or autophagy.
Collapse
Affiliation(s)
- Aleksandra V. Borodkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alla N. Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Pavel I. Deryabin
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anastasiya A. Grukova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikolay N. Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Medical Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | - Elena B. Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
30
|
Goodspeed A, Heiser LM, Gray JW, Costello JC. Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics. Mol Cancer Res 2015; 14:3-13. [PMID: 26248648 DOI: 10.1158/1541-7786.mcr-15-0189] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023]
Abstract
Compared with normal cells, tumor cells have undergone an array of genetic and epigenetic alterations. Often, these changes underlie cancer development, progression, and drug resistance, so the utility of model systems rests on their ability to recapitulate the genomic aberrations observed in primary tumors. Tumor-derived cell lines have long been used to study the underlying biologic processes in cancer, as well as screening platforms for discovering and evaluating the efficacy of anticancer therapeutics. Multiple -omic measurements across more than a thousand cancer cell lines have been produced following advances in high-throughput technologies and multigroup collaborative projects. These data complement the large, international cancer genomic sequencing efforts to characterize patient tumors, such as The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). Given the scope and scale of data that have been generated, researchers are now in a position to evaluate the similarities and differences that exist in genomic features between cell lines and patient samples. As pharmacogenomics models, cell lines offer the advantages of being easily grown, relatively inexpensive, and amenable to high-throughput testing of therapeutic agents. Data generated from cell lines can then be used to link cellular drug response to genomic features, where the ultimate goal is to build predictive signatures of patient outcome. This review highlights the recent work that has compared -omic profiles of cell lines with primary tumors, and discusses the advantages and disadvantages of cancer cell lines as pharmacogenomic models of anticancer therapies.
Collapse
Affiliation(s)
- Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura M Heiser
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Joe W Gray
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado. University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
31
|
Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 2015; 16:393-405. [PMID: 26122615 DOI: 10.1038/nrm4007] [Citation(s) in RCA: 805] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The function of p53 as a tumour suppressor has been attributed to its ability to promote cell death or permanently inhibit cell proliferation. However, in recent years, it has become clear that p53 can also contribute to cell survival. p53 regulates various metabolic pathways, helping to balance glycolysis and oxidative phosphorylation, limiting the production of reactive oxygen species, and contributing to the ability of cells to adapt to and survive mild metabolic stresses. Although these activities may be integrated into the tumour suppressive functions of p53, deregulation of some elements of the p53-induced response might also provide tumours with a survival advantage.
Collapse
Affiliation(s)
- Flore Kruiswijk
- 1] Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK. [2]
| | | | - Karen H Vousden
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
32
|
Sullivan KD, Palaniappan VV, Espinosa JM. ATM regulates cell fate choice upon p53 activation by modulating mitochondrial turnover and ROS levels. Cell Cycle 2015; 14:56-63. [PMID: 25483068 PMCID: PMC4614823 DOI: 10.4161/15384101.2014.973330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/18/2014] [Accepted: 09/30/2014] [Indexed: 12/15/2022] Open
Abstract
Despite extensive study, the mechanisms of cell fate choice upon p53 activation remain poorly understood. Using genome-wide shRNA screening, we recently identified the ATM kinase as synthetic lethal with Nutlin-3, an MDM2 inhibitor that leads to non-genotoxic p53 activation. Here, we demonstrate that while this synthetic lethal interaction relies upon components of both the intrinsic and extrinsic apoptotic pathways (e.g., BAX and BID), it is not due to significant ATM effects on the expression of p53 target genes. Instead, loss of ATM activity results in increased mitochondria and reactive oxygen species that drive apoptosis. Finally, we provide evidence that pharmacologic inhibition of ATM blocks autophagy in direct opposition to p53, which activates this process, and that inhibition of autophagy is sufficient to elicit an apoptotic response when combined with Nutlin-3.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Howard Hughes Medical Institute and Department of Molecular; Cellular and Developmental Biology; University of Colorado; Boulder, CO USA
| | - Vignesh V Palaniappan
- Howard Hughes Medical Institute and Department of Molecular; Cellular and Developmental Biology; University of Colorado; Boulder, CO USA
| | - Joaquín M Espinosa
- Howard Hughes Medical Institute and Department of Molecular; Cellular and Developmental Biology; University of Colorado; Boulder, CO USA
| |
Collapse
|
33
|
Abstract
The great majority of targeted anticancer drugs inhibit mutated oncogenes that display increased activity. Yet many tumors do not contain such actionable aberrations, such as those harboring loss-of-function mutations. The notion of targeting synthetic lethal vulnerabilities in cancer cells has provided an alternative approach to exploiting more of the genetic and epigenetic changes acquired during tumorigenesis. Here, we review synthetic lethality as a therapeutic concept that exploits the inherent differences between normal cells and cancer cells. Furthermore, we provide an overview of the screening approaches that can be used to identify synthetic lethal interactions in human cells and present several recently identified interactions that may be pharmacologically exploited. Finally, we indicate some of the challenges of translating synthetic lethal interactions into the clinic and how these may be overcome.
Collapse
Affiliation(s)
- Ferran Fece de la Cruz
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, A1090 Vienna, Austria;
| | | | | |
Collapse
|
34
|
Boccaccio C, Comoglio PM. MET, a driver of invasive growth and cancer clonal evolution under therapeutic pressure. Curr Opin Cell Biol 2014; 31:98-105. [PMID: 25305631 DOI: 10.1016/j.ceb.2014.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/25/2023]
Abstract
The MET oncogene, encoding the hepatocyte growth factor receptor, drives invasive growth, a genetic program largely overlapping with epithelial-mesenchymal transition, and governing physiological and pathological processes such as tissue development and regeneration, as well as cancer dissemination. Recent studies show that MET enables cells to overcome damages inflicted by cancer anti-proliferative targeted therapies, radiotherapy or anti-angiogenic agents. After exposure to such therapies, clones of MET-amplified cancer cells arise within the context of genetically heterogeneous tumors and-exploiting an ample platform of signaling pathways-drive recurrence. In cancer stem cells, not only amplification, but also MET physiological expression, inherited from the cell of origin (a stem/progenitor), can contribute to tumorigenesis and therapeutic resistance, by sustaining the inherent self-renewing, self-preserving and invasive growth phenotype.
Collapse
Affiliation(s)
- Carla Boccaccio
- Candiolo Cancer Instiute-FPO (IRCCS), Center for Experimental Clinical Molecular Oncology, 10060 Candiolo, Torino, Italy; Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy.
| | - Paolo M Comoglio
- Candiolo Cancer Instiute-FPO (IRCCS), Center for Experimental Clinical Molecular Oncology, 10060 Candiolo, Torino, Italy; Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy.
| |
Collapse
|
35
|
Li H, Zhang Y, Ströse A, Tedesco D, Gurova K, Selivanova G. Integrated high-throughput analysis identifies Sp1 as a crucial determinant of p53-mediated apoptosis. Cell Death Differ 2014; 21:1493-502. [PMID: 24971482 PMCID: PMC4131181 DOI: 10.1038/cdd.2014.69] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/28/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022] Open
Abstract
The restoration of p53 tumor suppressor function is a promising therapeutic strategy to combat cancer. However, the biological outcomes of p53 activation, ranging from the promotion of growth arrest to the induction of cell death, are hard to predict, which limits the clinical application of p53-based therapies. In the present study, we performed an integrated analysis of genome-wide short hairpin RNA screen and gene expression data and uncovered a previously unrecognized role of Sp1 as a central modulator of the transcriptional response induced by p53 that leads to robust induction of apoptosis. Sp1 is indispensable for the pro-apoptotic transcriptional repression by p53, but not for the induction of pro-apoptotic genes. Furthermore, the p53-dependent pro-apoptotic transcriptional repression required the co-binding of Sp1 to p53 target genes. Our results also highlight that Sp1 shares with p53 a common regulator, MDM2, which targets Sp1 for proteasomal degradation. This uncovers a new mechanism of the tight control of apoptosis in cells. Our study advances the understanding of the molecular basis of p53-mediated apoptosis and implicates Sp1 as one of its key modulators. We found that small molecules reactivating p53 can differentially modulate Sp1, thus providing insights into how to manipulate p53 response in a controlled way.
Collapse
Affiliation(s)
- H Li
- Department of Microbiology, Tumor and Cell Biology Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Y Zhang
- College of Life Science, Northeast Agricultural University, Mucai Street 59, Harbin 150030, PR China
| | - A Ströse
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - D Tedesco
- Cellecta, Inc., 320 Logue Avenue, Mountain View, CA 94043, USA
| | - K Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - G Selivanova
- Department of Microbiology, Tumor and Cell Biology Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
36
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
37
|
Cremona CA, Behrens A. ATM signalling and cancer. Oncogene 2014; 33:3351-60. [PMID: 23851492 DOI: 10.1038/onc.2013.275] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/12/2022]
Abstract
ATM, the protein kinase mutated in the rare human disease ataxia telangiectasia (A-T), has been the focus of intense scrutiny over the past two decades. Initially this was because of the unusual radiosensitive phenotype of cells from A-T patients, and latterly because investigating ATM signalling has yielded valuable insights into the DNA damage response, redox signalling and cancer. With the recent explosion in genomic data, ATM alterations have been revealed both in the germline as a predisposing factor for cancer and as somatic changes in tumours themselves. Here we review these findings, as well as advances in the understanding of ATM signalling mechanisms in cancer and ATM inhibition as a strategy for cancer treatment.
Collapse
Affiliation(s)
- C A Cremona
- Mammalian Genetics Lab, Cancer Research UK London Research Institute, London, UK
| | - A Behrens
- Mammalian Genetics Lab, Cancer Research UK London Research Institute, London, UK
| |
Collapse
|
38
|
Abstract
![]()
The
concept of synthetic lethality (the creation of a lethal phenotype
from the combined effects of mutations in two or more genes) has recently
been exploited in various efforts to develop new genotype-selective
anticancer therapeutics. These efforts include screening for novel
anticancer agents, identifying novel therapeutic targets, characterizing
mechanisms of resistance to targeted therapy, and improving efficacies
through the rational design of combination therapy. This review discusses
recent developments in synthetic lethality anticancer therapeutics,
including poly ADP-ribose polymerase inhibitors for BRCA1- and BRCA2-mutant cancers, checkpoint inhibitors
for p53 mutant cancers, and small molecule agents targeting RAS gene mutant cancers. Because cancers are caused by mutations
in multiple genes and abnormalities in multiple signaling pathways,
synthetic lethality for a specific tumor suppressor gene or oncogene
is likely cell context-dependent. Delineation of the mechanisms underlying
synthetic lethality and identification of treatment response biomarkers
will be critical for the success of synthetic lethality anticancer
therapy.
Collapse
Affiliation(s)
- Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, Unit 1489, The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| |
Collapse
|
39
|
Chen YA, Eschrich SA. Computational methods and opportunities for phosphorylation network medicine. Transl Cancer Res 2014; 3:266-278. [PMID: 25530950 PMCID: PMC4271781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein phosphorylation, one of the most ubiquitous post-translational modifications (PTM) of proteins, is known to play an essential role in cell signaling and regulation. With the increasing understanding of the complexity and redundancy of cell signaling, there is a growing recognition that targeting the entire network or system could be a necessary and advantageous strategy for treating cancer. Protein kinases, the proteins that add a phosphate group to the substrate proteins during phosphorylation events, have become one of the largest groups of 'druggable' targets in cancer therapeutics in recent years. Kinase inhibitors are being regularly used in clinics for cancer treatment. This therapeutic paradigm shift in cancer research is partly due to the generation and availability of high-dimensional proteomics data. Generation of this data, in turn, is enabled by increased use of mass-spectrometry (MS)-based or other high-throughput proteomics platforms as well as companion public databases and computational tools. This review briefly summarizes the current state and progress on phosphoproteomics identification, quantification, and platform related characteristics. We review existing database resources, computational tools, methods for phosphorylation network inference, and ultimately demonstrate the connection to therapeutics. Finally, many research opportunities exist for bioinformaticians or biostatisticians based on developments and limitations of the current and emerging technologies.
Collapse
Affiliation(s)
- Yian Ann Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive Tampa, FL 33612, USA
| | - Steven A Eschrich
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive Tampa, FL 33612, USA
| |
Collapse
|
40
|
Allen MA, Andrysik Z, Dengler VL, Mellert HS, Guarnieri A, Freeman JA, Sullivan KD, Galbraith MD, Luo X, Kraus WL, Dowell RD, Espinosa JM. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. eLife 2014; 3:e02200. [PMID: 24867637 PMCID: PMC4033189 DOI: 10.7554/elife.02200] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The p53 transcription factor is a potent suppressor of tumor growth. We report here an analysis of its direct transcriptional program using Global Run-On sequencing (GRO-seq). Shortly after MDM2 inhibition by Nutlin-3, low levels of p53 rapidly activate ∼200 genes, most of them not previously established as direct targets. This immediate response involves all canonical p53 effector pathways, including apoptosis. Comparative global analysis of RNA synthesis vs steady state levels revealed that microarray profiling fails to identify low abundance transcripts directly activated by p53. Interestingly, p53 represses a subset of its activation targets before MDM2 inhibition. GRO-seq uncovered a plethora of gene-specific regulatory features affecting key survival and apoptotic genes within the p53 network. p53 regulates hundreds of enhancer-derived RNAs. Strikingly, direct p53 targets harbor pre-activated enhancers highly transcribed in p53 null cells. Altogether, these results enable the study of many uncharacterized p53 target genes and unexpected regulatory mechanisms.DOI: http://dx.doi.org/10.7554/eLife.02200.001.
Collapse
Affiliation(s)
- Mary Ann Allen
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States BioFrontiers Institute, Boulder, United States Computational Biosciences Program, University of Colorado, Denver-Anschutz Medical Campus, Aurora, United States
| | - Zdenek Andrysik
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Veronica L Dengler
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Hestia S Mellert
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Anna Guarnieri
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Justin A Freeman
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Kelly D Sullivan
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Matthew D Galbraith
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Xin Luo
- Signalling and Gene Regulation Laboratory, Cecil H and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - W Lee Kraus
- Signalling and Gene Regulation Laboratory, Cecil H and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robin D Dowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States BioFrontiers Institute, Boulder, United States
| | - Joaquin M Espinosa
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| |
Collapse
|
41
|
Kim J, Vasu VT, Mishra R, Singleton KR, Yoo M, Leach SM, Farias-Hesson E, Mason RJ, Kang J, Ramamoorthy P, Kern JA, Heasley LE, Finigan JH, Tan AC. Bioinformatics-driven discovery of rational combination for overcoming EGFR-mutant lung cancer resistance to EGFR therapy. Bioinformatics 2014; 30:2393-8. [PMID: 24812339 DOI: 10.1093/bioinformatics/btu323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death in the United States. Targeted tyrosine kinase inhibitors (TKIs) directed against the epidermal growth factor receptor (EGFR) have been widely and successfully used in treating NSCLC patients with activating EGFR mutations. Unfortunately, the duration of response is short-lived, and all patients eventually relapse by acquiring resistance mechanisms. RESULT We performed an integrative systems biology approach to determine essential kinases that drive EGFR-TKI resistance in cancer cell lines. We used a series of bioinformatics methods to analyze and integrate the functional genetics screen and RNA-seq data to identify a set of kinases that are critical in survival and proliferation in these TKI-resistant lines. By connecting the essential kinases to compounds using a novel kinase connectivity map (K-Map), we identified and validated bosutinib as an effective compound that could inhibit proliferation and induce apoptosis in TKI-resistant lines. A rational combination of bosutinib and gefitinib showed additive and synergistic effects in cancer cell lines resistant to EGFR TKI alone. CONCLUSIONS We have demonstrated a bioinformatics-driven discovery roadmap for drug repurposing and development in overcoming resistance in EGFR-mutant NSCLC, which could be generalized to other cancer types in the era of personalized medicine. AVAILABILITY AND IMPLEMENTATION K-Map can be accessible at: http://tanlab.ucdenver.edu/kMap. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jihye Kim
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Vihas T Vasu
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Rangnath Mishra
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Katherine R Singleton
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Minjae Yoo
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Sonia M Leach
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Eveline Farias-Hesson
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Robert J Mason
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Jaewoo Kang
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Preveen Ramamoorthy
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Jeffrey A Kern
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Lynn E Heasley
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - James H Finigan
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| | - Aik Choon Tan
- Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, 80045 Aurora, CO, USA and Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
| |
Collapse
|
42
|
Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene? Tumour Biol 2014; 35:7369-82. [PMID: 24798974 DOI: 10.1007/s13277-014-2006-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/22/2014] [Indexed: 12/16/2022] Open
Abstract
The Tumor protein D52 (TPD52) gene was identified nearly 20 years ago through its overexpression in human cancer, and a substantial body of data now strongly supports TPD52 representing a gene amplification target at chromosome 8q21.13. This review updates progress toward understanding the significance of TPD52 overexpression and targeting, both in tumors known to be characterized by TPD52 overexpression/amplification, and those where TPD52 overexpression/amplification has been recently or variably reported. We highlight recent findings supporting microRNA regulation of TPD52 expression in experimental systems and describe progress toward deciphering TPD52's cellular functions, particularly in cancer cells. Finally, we provide an overview of TPD52's potential as a cancer biomarker and immunotherapeutic target. These combined studies highlight the potential value of genes such as TPD52, which are overexpressed in many cancer types, but have been relatively understudied.
Collapse
|
43
|
Dai Z, Sheridan JM, Gearing LJ, Moore DL, Su S, Wormald S, Wilcox S, O'Connor L, Dickins RA, Blewitt ME, Ritchie ME. edgeR: a versatile tool for the analysis of shRNA-seq and CRISPR-Cas9 genetic screens. F1000Res 2014; 3:95. [PMID: 24860646 PMCID: PMC4023662 DOI: 10.12688/f1000research.3928.2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 12/15/2022] Open
Abstract
Pooled library sequencing screens that perturb gene function in a high-throughput manner are becoming increasingly popular in functional genomics research. Irrespective of the mechanism by which loss of function is achieved, via either RNA interference using short hairpin RNAs (shRNAs) or genetic mutation using single guide RNAs (sgRNAs) with the CRISPR-Cas9 system, there is a need to establish optimal analysis tools to handle such data. Our open-source processing pipeline in edgeR provides a complete analysis solution for screen data, that begins with the raw sequence reads and ends with a ranked list of candidate genes for downstream biological validation. We first summarize the raw data contained in a fastq file into a matrix of counts (samples in the columns, genes in the rows) with options for allowing mismatches and small shifts in sequence position. Diagnostic plots, normalization and differential representation analysis can then be performed using established methods to prioritize results in a statistically rigorous way, with the choice of either the classic exact testing methodology or generalized linear modeling that can handle complex experimental designs. A detailed users’ guide that demonstrates how to analyze screen data in edgeR along with a point-and-click implementation of this workflow in Galaxy are also provided. The edgeR package is freely available from http://www.bioconductor.org.
Collapse
Affiliation(s)
- Zhiyin Dai
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Julie M Sheridan
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Linden J Gearing
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Darcy L Moore
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Shian Su
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Sam Wormald
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia ; Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Stephen Wilcox
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia ; Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Liam O'Connor
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia ; Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Ross A Dickins
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Marnie E Blewitt
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Matthew E Ritchie
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
44
|
Dai Z, Sheridan JM, Gearing LJ, Moore DL, Su S, Wormald S, Wilcox S, O'Connor L, Dickins RA, Blewitt ME, Ritchie ME. edgeR: a versatile tool for the analysis of shRNA-seq and CRISPR-Cas9 genetic screens. F1000Res 2014. [PMID: 24860646 DOI: 10.12688/f1000research.3928.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pooled library sequencing screens that perturb gene function in a high-throughput manner are becoming increasingly popular in functional genomics research. Irrespective of the mechanism by which loss of function is achieved, via either RNA interference using short hairpin RNAs (shRNAs) or genetic mutation using single guide RNAs (sgRNAs) with the CRISPR-Cas9 system, there is a need to establish optimal analysis tools to handle such data. Our open-source processing pipeline in edgeR provides a complete analysis solution for screen data, that begins with the raw sequence reads and ends with a ranked list of candidate genes for downstream biological validation. We first summarize the raw data contained in a fastq file into a matrix of counts (samples in the columns, genes in the rows) with options for allowing mismatches and small shifts in sequence position. Diagnostic plots, normalization and differential representation analysis can then be performed using established methods to prioritize results in a statistically rigorous way, with the choice of either the classic exact testing methodology or generalized linear modeling that can handle complex experimental designs. A detailed users' guide that demonstrates how to analyze screen data in edgeR along with a point-and-click implementation of this workflow in Galaxy are also provided. The edgeR package is freely available from http://www.bioconductor.org.
Collapse
Affiliation(s)
- Zhiyin Dai
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Julie M Sheridan
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Linden J Gearing
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Darcy L Moore
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Shian Su
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Sam Wormald
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia ; Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Stephen Wilcox
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia ; Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Liam O'Connor
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia ; Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Ross A Dickins
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Marnie E Blewitt
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Matthew E Ritchie
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia ; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
45
|
Khoo KH, Hoe KK, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 2014; 13:217-36. [PMID: 24577402 DOI: 10.1038/nrd4236] [Citation(s) in RCA: 568] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumour suppressor p53 is the most frequently mutated gene in human cancer, with more than half of all human tumours carrying mutations in this particular gene. Intense efforts to develop drugs that could activate or restore the p53 pathway have now reached clinical trials. The first clinical results with inhibitors of MDM2, a negative regulator of p53, have shown efficacy but hint at on-target toxicities. Here, we describe the current state of the development of p53 pathway modulators and new pathway targets that have emerged. The challenge of targeting protein-protein interactions and a fragile mutant transcription factor has stimulated many exciting new approaches to drug discovery.
Collapse
Affiliation(s)
| | - Khoo Kian Hoe
- p53 Laboratory (p53Lab), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06, Immunos, 138648 Singapore
| | - Chandra S Verma
- 1] Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, 138671 Singapore. [2] School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore. [3] Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06, Immunos, 138648 Singapore
| |
Collapse
|
46
|
Selivanova G. Wild type p53 reactivation: from lab bench to clinic. FEBS Lett 2014; 588:2628-38. [PMID: 24726725 DOI: 10.1016/j.febslet.2014.03.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 12/17/2022]
Abstract
The p53 tumor suppressor is the most frequently inactivated gene in cancer. Several mouse models have demonstrated that the reconstitution of the p53 function suppresses the growth of established tumors. These facts, taken together, promote the idea of p53 reactivation as a strategy to combat cancer. This review will focus on recent advances in the development of small molecules which restore the function of wild type p53 by blocking its inhibitors Mdm2 and MdmX or their upstream regulators and discuss the impact of different p53 functions for tumor prevention and tumor eradication. Finally, the recent progress in p53 research will be analyzed concerning the role of p53 cofactors and cellular environment in the biological response upon p53 reactivation and how this can be applied in clinic.
Collapse
Affiliation(s)
- Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobelsvag 16, SE-17177 Stockholm, Sweden.
| |
Collapse
|
47
|
Kim J, Yoo M, Kang J, Tan AC. K-Map: connecting kinases with therapeutics for drug repurposing and development. Hum Genomics 2013; 7:20. [PMID: 24060470 PMCID: PMC3868238 DOI: 10.1186/1479-7364-7-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/15/2013] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Protein kinases play important roles in regulating signal transduction in eukaryotic cells. Due to evolutionary conserved binding sites in the catalytic domain of the kinases, most inhibitors that target these sites promiscuously inhibit multiple kinases. Quantitative analysis can reveal complex and unexpected interactions between protein kinases and kinase inhibitors, providing opportunities for identifying multi-targeted inhibitors of specific diverse kinases for drug repurposing and development. We have developed K-Map-a novel and user-friendly web-based program that systematically connects a set of query kinases to kinase inhibitors based on quantitative profiles of the kinase inhibitor activities. Users can use K-Map to find kinase inhibitors for a set of query kinases (obtained from high-throughput 'omics' experiments) or to reveal new interactions between kinases and kinase inhibitors for rational drug combination studies. AVAILABILITY AND IMPLEMENTATION K-Map has been implemented in python scripting language and the website is freely available at: http://tanlab.ucdenver.edu/kMap.
Collapse
Affiliation(s)
- Jihye Kim
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
48
|
Li K, Zhu ZC, Liu YJ, Liu JW, Wang HT, Xiong ZQ, Shen X, Hu ZL, Zheng J. ZFX knockdown inhibits growth and migration of non-small cell lung carcinoma cell line H1299. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:2460-2467. [PMID: 24228108 PMCID: PMC3816815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/07/2013] [Indexed: 06/02/2023]
Abstract
ZFX (zinc finger transcription factor, X chromosome-linked) contributes to the maintenance of different types of stem cells and the progression of various cancers. We have previously reported that ZFX knockdown inhibits proliferation of glioma in vitro and in vivo. Since overexpression of ZFX in lung cancer tissue correlates with lymph node metastasis, we hypothesized that ZFX may play a role in lung cancer. In this study, we identified ZFX as a promoter of lung cancer growth and migration in a NSCLC (non-small cell lung carcinoma) cell line H1299. ZFX knockdown caused proliferation inhibition determined by MTT assay and colony formation assay, G0/G1 arrest of cell cycle and slightly increased proportion of apoptotic cells assessed by flow cytometry assay, decreased population of migrating cells showed by wound-healing assay, increased cell senescence evidenced by senescence-associated β-galactosidase staining. ZFX knockdown also led to decreased proportion of tumor bearing mice and reduced mean tumor volume in a subcutaneous tumor model. In addition, western blot showed that ZFX knockdown down regulated a set of proteins involved in proliferation, survival and motility. Altogether, these results suggest that ZFX may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Kui Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology130 Meilong Road, Shanghai, China
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China
| | - Zhi-Chuan Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology130 Meilong Road, Shanghai, China
| | - Yong-Jie Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology130 Meilong Road, Shanghai, China
| | - Ji-Wei Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology130 Meilong Road, Shanghai, China
| | - Hong-Tao Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology130 Meilong Road, Shanghai, China
| | - Zhi-Qi Xiong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology130 Meilong Road, Shanghai, China
| | - Xu Shen
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai, China
| | - Ze-Lan Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology130 Meilong Road, Shanghai, China
| | - Jing Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology130 Meilong Road, Shanghai, China
| |
Collapse
|
49
|
Wang X, Simon R. Identification of potential synthetic lethal genes to p53 using a computational biology approach. BMC Med Genomics 2013; 6:30. [PMID: 24025726 PMCID: PMC3847148 DOI: 10.1186/1755-8794-6-30] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Identification of genes that are synthetic lethal to p53 is an important strategy for anticancer therapy as p53 mutations have been reported to occur in more than half of all human cancer cases. Although genome-wide RNAi screening is an effective approach to finding synthetic lethal genes, it is costly and labor-intensive. METHODS To illustrate this approach, we identified potentially druggable genes synthetically lethal for p53 using three microarray datasets for gene expression profiles of the NCI-60 cancer cell lines, one next-generation sequencing (RNA-Seq) dataset from the Cancer Genome Atlas (TCGA) project, and one gene expression data from the Cancer Cell Line Encyclopedia (CCLE) project. We selected the genes which encoded kinases and had significantly higher expression in the tumors with functional p53 mutations (somatic mutations) than in the tumors without functional p53 mutations as the candidates of druggable synthetic lethal genes for p53. We identified important regulatory networks and functional categories pertinent to these genes, and performed an extensive survey of literature to find experimental evidence that support the synthetic lethality relationships between the genes identified and p53. We also examined the drug sensitivity difference between NCI-60 cell lines with functional p53 mutations and NCI-60 cell lines without functional p53 mutations for the compounds that target the kinases encoded by the genes identified. RESULTS Our results indicated that some of the candidate genes we identified had been experimentally verified to be synthetic lethal for p53 and promising targets for anticancer therapy while some other genes were putative targets for development of cancer therapeutic agents. CONCLUSIONS Our study indicated that pre-screening of potential synthetic lethal genes using gene expression profiles is a promising approach for improving the efficiency of synthetic lethal RNAi screening.
Collapse
Affiliation(s)
- Xiaosheng Wang
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| | | |
Collapse
|
50
|
Spreafico A, Tentler JJ, Pitts TM, Tan AC, Gregory MA, Arcaroli JJ, Klauck PJ, McManus MC, Hansen RJ, Kim J, Micel LN, Selby HM, Newton TP, McPhillips KL, Gustafson DL, Degregori JV, Messersmith WA, Winn RA, Eckhardt SG. Rational combination of a MEK inhibitor, selumetinib, and the Wnt/calcium pathway modulator, cyclosporin A, in preclinical models of colorectal cancer. Clin Cancer Res 2013; 19:4149-62. [PMID: 23757356 DOI: 10.1158/1078-0432.ccr-12-3140] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE The mitogen-activated protein kinase (MAPK) pathway is a crucial regulator of cell proliferation, survival, and resistance to apoptosis. MEK inhibitors are being explored as a treatment option for patients with KRAS-mutant colorectal cancer who are not candidates for EGFR-directed therapies. Initial clinical results of MEK inhibitors have yielded limited single-agent activity in colorectal cancer, indicating that rational combination strategies are needed. EXPERIMENTAL DESIGN In this study, we conducted unbiased gene set enrichment analysis and synthetic lethality screens with selumetinib, which identified the noncanonical Wnt/Ca++ signaling pathway as a potential mediator of resistance to the MEK1/2 inhibitor selumetinib. To test this, we used shRNA constructs against relevant WNT receptors and ligands resulting in increased responsiveness to selumetinib in colorectal cancer cell lines. Further, we evaluated the rational combination of selumetinib and WNT pathway modulators and showed synergistic antiproliferative effects in in vitro and in vivo models of colorectal cancer. RESULTS Importantly, this combination not only showed tumor growth inhibition but also tumor regression in the more clinically relevant patient-derived tumor explant (PDTX) models of colorectal cancer. In mechanistic studies, we observed a trend toward increased markers of apoptosis in response to the combination of MEK and WntCa(++) inhibitors, which may explain the observed synergistic antitumor effects. CONCLUSIONS These results strengthen the hypothesis that targeting both the MEK and Wnt pathways may be a clinically effective rational combination strategy for patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Anna Spreafico
- Division of Medical Oncology, University of Colorado, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|