1
|
Shin B, Kim M, Lee Y, Rhee K. M phase-specific generation of supernumerary centrioles in cancer cells. Mol Biol Cell 2025; 36:ar65. [PMID: 40266756 DOI: 10.1091/mbc.e24-08-0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Many cancer cells maintain supernumerary centrioles, despite the potential risks associated with catastrophic outcomes during mitosis. In this study, we searched for cancer cell lines in which supernumerary centrioles are generated during the M phase and identified a few cell lines among the dozen examined. PLK4 activity is also required for M phase-specific generation of supernumerary centrioles. We observed that mitotic centrioles prematurely separate in many cancer cells when levels of pericentriolar material (PCM) proteins, such as PCNT and CEP215, are low. Furthermore, the presence of supernumerary centrioles was correlated with reduced mitotic PCM levels. Notably, overexpression of PCNT led to a reduction in supernumerary centrioles in MDA-MB-157 cells. These findings suggest that diminution of mitotic PCM may be a cause of M phase-specific generation of supernumerary centrioles in selected cancer cells.
Collapse
Affiliation(s)
- Byungho Shin
- Department of Biological Sciences, Seoul National University, Seoul, South Korea 08826
| | - Myungse Kim
- Department of Biological Sciences, Seoul National University, Seoul, South Korea 08826
| | - Yejoo Lee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea 08826
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea 08826
| |
Collapse
|
2
|
Omer S, Persaud E, Mohammad S, Ayo-Farinloye B, Heineman RE, Wellwood E, Mott GA, Harrison RE. Ninein isoform contributions to intracellular processes and macrophage immune function. J Biol Chem 2025; 301:108419. [PMID: 40113042 DOI: 10.1016/j.jbc.2025.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Ninein is a multifunctional protein involved in microtubule (MT) organization and dynein/dynactin complex recruitment and activation. Several isoforms of ninein have been identified in various tissues, however, their relative contribution(s) are not clear. Here, we identify two ninein isoforms in mouse macrophages with distinct C-termini and disproportionate expression levels; a canonical ninein (nineinCAN) isoform and ninein isoform 2 (nineinISO2). Analysis of ninein pre-mRNA exon-intron boundaries revealed that nineinISO2 transcript is likely generated by two alternative splicing site selection events predicted to result in a distinct 3D structure compared to nineinCAN. We used selective and total protein knockdown experiments to assess the intracellular and functional roles of ninein in macrophages. Live cell imaging analyses of macrophages implicated both isoforms in regulating cell proliferation. MT regrowth following nocodazole depolymerization showed that both isoforms contributed to MT nucleation and structural integrity of the centrosome, as cells lacking nineinCAN or nineinISO2 contained multiple ectopic γ-tubulin foci. However, nineinCAN, but not nineinISO2, was important for the separation of duplicated centrosomes during cell division. Despite a requirement of both ninein isoforms to recruit dynein/dynactin to the centrosome, only nineinCAN was required for Golgi positioning and morphology, dynein-dependent events. We additionally found that nineinISO2 was the primary isoform required for F-actin recruitment during the internalization of IgG-opsonized particles. Our study indicates that alternative splicing promotes both redundant and differential activities for ninein in MT organization, organelle positioning, and macrophage function.
Collapse
Affiliation(s)
- Safia Omer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, USA
| | - Elizabeth Persaud
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, USA
| | - Safia Mohammad
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, USA
| | - Bolu Ayo-Farinloye
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, USA
| | - Rebecca E Heineman
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, USA
| | - Emily Wellwood
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, USA
| | - G Adam Mott
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, USA
| | - Rene E Harrison
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, USA.
| |
Collapse
|
3
|
Ito KK, Takumi K, Matsuhashi K, Sakamoto H, Nagai K, Fukuyama M, Yamamoto S, Chinen T, Hata S, Kitagawa D. Multimodal mechanisms of human centriole engagement and disengagement. EMBO J 2025; 44:1294-1321. [PMID: 39905228 PMCID: PMC11876316 DOI: 10.1038/s44318-024-00350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025] Open
Abstract
Centrioles are unique cellular structures that replicate to produce identical copies, ensuring accurate chromosome segregation during mitosis. A new centriole, the "daughter", is assembled adjacent to an existing "mother" centriole. Only after the daughter centriole is fully developed as a complete replica, does it disengage and become the core of a new functional centrosome. The mechanisms preventing precocious disengagement of the immature daughter centriole have remained unclear. Here, we identify three key mechanisms maintaining mother-daughter centriole engagement: the cartwheel, the torus, and the pericentriolar material (PCM). Among these, the torus critically establishes the characteristic orthogonal engagement. We also demonstrate that engagement mediated by the cartwheel and torus is progressively released during centriole maturation. This release involves structural changes in the daughter, known as centriole blooming and distancing, respectively. Disrupting these structural transitions blocks subsequent steps, preventing centriole disengagement and centrosome conversion in the G1 phase. This study provides a comprehensive understanding of how the maturing daughter centriole progressively disengages from its mother through multiple steps, ensuring its complete structure and conversion into an independent centrosome.
Collapse
Grants
- 18K06246,19H05651,20K15987,20K22701,21H02623,21J22462,22H02629,22K20624,22KJ0633,22KJ0687,23K14176,23KJ0800,23H02627,24K02174 MEXT | Japan Society for the Promotion of Science (JSPS)
- 24H02284 MEXT | Japan Society for the Promotion of Science (JSPS)
- JPMJPR21EC MEXT | JST | Precursory Research for Embryonic Science and Technology (PRESTO)
- JPMJCR22E1 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- Naito Foundation (内藤記念科学振興財団)
- Tokyo Foundation for Pharmaceutical Sciences
- Astellas Foundation for Research on Metabolic Disorders
- Takeda Science Foundation (TSF)
- Uehara Memorial Foundation (UMF)
- The Research Foundation for Pharmaceutical Sciences
- Koyanagi Zaidan
- Kanae Foundation for the Promotion of Medical Science (Kanae Foundation)
- Kato Memorial Bioscience Foundation
- Heiwa Nakajima Foundation (HNF)
- Sumitomo Foundation (SF)
- Inamori Foundation
Collapse
Affiliation(s)
- Kei K Ito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kyohei Matsuhashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Honcho Kawaguchi, 102-8666, Saitama, Japan
| | - Kaho Nagai
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Masamitsu Fukuyama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shohei Yamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shoji Hata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Honcho Kawaguchi, 102-8666, Saitama, Japan.
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
von Glasenapp V, C Almeida A, Chang D, Gasic I, Winssinger N, Gotta M. Spatio-temporal control of mitosis using light via a Plk1 inhibitor caged for activity and cellular permeability. Nat Commun 2025; 16:1599. [PMID: 39971898 PMCID: PMC11840123 DOI: 10.1038/s41467-025-56746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
The ability to control the activity of kinases spatially and temporally is essential to elucidate the role of signalling pathways in development and physiology. Progress in this direction has been hampered by the lack of tools to manipulate kinase activity in a highly controlled manner in vivo. Here we report a strategy to modify BI2536, the well characterized inhibitor of the conserved and essential mitotic kinase Polo-like kinase 1 (Plk1). We introduce the same coumarin photolabile protecting group (PPG) at two positions of the inhibitor. At one position, the coumarin prevents the interaction with Plk1, at the second it masks an added carboxylic acid, important for cellular retention. Exposure to light results in removal of both PPGs, leading to the activation of the inhibitor and its trapping inside cells. We demonstrate the efficacy of the caged inhibitor in three-dimensional spheroid cultures: by uncaging it with a single light pulse, we can inhibit Plk1 and arrest cell division, a highly dynamic process, with spatio-temporal control. Our design can be applied to other small molecules, providing a solution to control their activity in living cells with unprecedented precision.
Collapse
Affiliation(s)
- Victoria von Glasenapp
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Ana C Almeida
- Department of Molecular and Cellular Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Dalu Chang
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Ivana Gasic
- Department of Molecular and Cellular Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nicolas Winssinger
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland.
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva, Switzerland.
| | - Monica Gotta
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Dwivedi D, Meraldi P. Balancing Plk1 activity levels: The secret of synchrony between the cell and the centrosome cycle. Bioessays 2024; 46:e2400048. [PMID: 39128131 DOI: 10.1002/bies.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The accuracy of cell division requires precise regulation of the cellular machinery governing DNA/genome duplication, ensuring its equal distribution among the daughter cells. The control of the centrosome cycle is crucial for the formation of a bipolar spindle, ensuring error-free segregation of the genome. The cell and centrosome cycles operate in close synchrony along similar principles. Both require a single duplication round in every cell cycle, and both are controlled by the activity of key protein kinases. Nevertheless, our comprehension of the precise cellular mechanisms and critical regulators synchronizing these two cycles remains poorly defined. Here, we present our hypothesis that the spatiotemporal regulation of a dynamic equilibrium of mitotic kinases activities forms a molecular clock that governs the synchronous progression of both the cell and the centrosome cycles.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Narula JG, Wignall SM. Polo-like kinase 1 prevents excess microtubule polymerization in C. elegans oocytes to ensure faithful meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606476. [PMID: 39131294 PMCID: PMC11312516 DOI: 10.1101/2024.08.03.606476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Sexual reproduction relies on meiosis, a specialized cell division program that produces haploid gametes. Oocytes of most organisms lack centrosomes, and therefore chromosome segregation is mediated by acentrosomal spindles. Here, we explore the role of Polo-like kinase 1 (PLK-1) in C. elegans oocytes, revealing mechanisms that ensure the fidelity of this unique form of cell division. Previously, PLK-1 was shown to be required for nuclear envelope breakdown and chromosome segregation in oocytes. We now find that PLK-1 is also required for establishing and maintaining acentrosomal spindle organization and for preventing excess microtubule polymerization in these cells. Additionally, our studies revealed an unexpected new role for this essential kinase. While PLK-1 is known to be required for centrosome maturation during mitosis, we found that removal of this kinase from oocytes caused premature recruitment of pericentriolar material to the sperm-provided centrioles following fertilization. Thus, PLK-1 suppresses centrosome maturation during oocyte meiosis, which is opposite to its role in mitosis. Taken together, our work reveals multiple new roles for PLK-1 in oocytes, identifying PLK-1 as a key player that promotes faithful acentrosomal meiosis.
Collapse
Affiliation(s)
- Juhi G Narula
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
7
|
Baldrighi M, Doreth C, Li Y, Zhao X, Warner E, Chenoweth H, Kishore K, Umrania Y, Minde DP, Thome S, Yu X, Lu Y, Knapton A, Harrison J, Clarke M, Latz E, de Cárcer G, Malumbres M, Ryffel B, Bryant C, Liu J, Lilley KS, Mallat Z, Li X. PLK1 inhibition dampens NLRP3 inflammasome-elicited response in inflammatory disease models. J Clin Invest 2023; 133:e162129. [PMID: 37698938 PMCID: PMC10617773 DOI: 10.1172/jci162129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1β production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Marta Baldrighi
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christian Doreth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Zhao
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Emily Warner
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Chenoweth
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Yagnesh Umrania
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - David-Paul Minde
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Thome
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Xian Yu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yuning Lu
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alice Knapton
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James Harrison
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Murray Clarke
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Cell Cycle and Cancer Biomarkers Group, “Alberto Sols” Biomedical Research Institute (IIBM-CSIC), Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bernhard Ryffel
- UMR7355 INEM, Experimental and Molecular Immunology and Neurogenetics CNRS and Université d’Orleans, Orleans, France
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kathryn S. Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Ziad Mallat
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Université Paris Cité, PARCC, INSERM, Paris, France
| | - Xuan Li
- The Victor Phillip Dahdaleh Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Dwivedi D, Harry D, Meraldi P. Mild replication stress causes premature centriole disengagement via a sub-critical Plk1 activity under the control of ATR-Chk1. Nat Commun 2023; 14:6088. [PMID: 37773176 PMCID: PMC10541884 DOI: 10.1038/s41467-023-41753-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
A tight synchrony between the DNA and centrosome cycle is essential for genomic integrity. Centriole disengagement, which licenses centrosomes for duplication, occurs normally during mitotic exit. We recently demonstrated that mild DNA replication stress typically seen in cancer cells causes premature centriole disengagement in untransformed mitotic human cells, leading to transient multipolar spindles that favour chromosome missegregation. How mild replication stress accelerates the centrosome cycle at the molecular level remained, however, unclear. Using ultrastructure expansion microscopy, we show that mild replication stress induces premature centriole disengagement already in G2 via the ATR-Chk1 axis of the DNA damage repair pathway. This results in a sub-critical Plk1 kinase activity that primes the pericentriolar matrix for Separase-dependent disassembly but is insufficient for rapid mitotic entry, causing premature centriole disengagement in G2. We postulate that the differential requirement of Plk1 activity for the DNA and centrosome cycles explains how mild replication stress disrupts the synchrony between both processes and contributes to genomic instability.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
| |
Collapse
|
9
|
Fang Z, Li X, Yoshino Y, Suzuki M, Qi H, Murooka H, Katakai R, Shirota M, Mai Pham TA, Matsuzawa A, Otsuka K, Ishioka C, Mori T, Chiba N. Aurora A polyubiquitinates the BRCA1-interacting protein OLA1 to promote centrosome maturation. Cell Rep 2023; 42:112850. [PMID: 37481721 DOI: 10.1016/j.celrep.2023.112850] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/03/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
The BRCA1-interacting protein Obg-like ATPase 1 (OLA1) functions in centriole duplication. In this study, we show the role of the mitotic kinase Aurora A in the reduction of centrosomal OLA1. Aurora A binds to and polyubiquitinates OLA1, targeting it for proteasomal degradation. NIMA-related kinase 2 (NEK2) phosphorylates the T124 residue of OLA1, increases binding of OLA1 to Aurora A and OLA1 polyubiquitination by Aurora A, and reduces centrosomal OLA1 in G2 phase. The kinase activity of Aurora A suppresses OLA1 polyubiquitination. The decrease in centrosomal OLA1 caused by Aurora A-mediated polyubiquitination promotes the recruitment of pericentriolar material proteins in G2 phase. The E3 ligase activity of Aurora A is critical for centrosome amplification induced by its overexpression. The results suggest a dual function of Aurora A as an E3 ubiquitin ligase and a kinase in the regulation of centrosomal OLA1, which is essential for proper centrosome maturation in G2 phase.
Collapse
Affiliation(s)
- Zhenzhou Fang
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Xingming Li
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Moe Suzuki
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Huicheng Qi
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Hinari Murooka
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Riko Katakai
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Thi Anh Mai Pham
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Ayako Matsuzawa
- Department of Molecular Immunology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Kei Otsuka
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takahiro Mori
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Departemt of Medical Oncology and Hematology, Okinawa Chubu Hospital, 281 Miyazato, Uruma, Okinawa 904-2293, Japan; Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
10
|
Galletta BJ, Varadarajan R, Fagerstrom CJ, Yang B, Haase KP, McJunkin K, Rusan NM. The E3 ligase Poe promotes Pericentrin degradation. Mol Biol Cell 2023; 34:br15. [PMID: 37342879 PMCID: PMC10398894 DOI: 10.1091/mbc.e22-11-0534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Centrosomes are essential parts of diverse cellular processes, and precise regulation of the levels of their constituent proteins is critical for their function. One such protein is Pericentrin (PCNT) in humans and Pericentrin-like protein (PLP) in Drosophila. Increased PCNT expression and its protein accumulation are linked to clinical conditions including cancer, mental disorders, and ciliopathies. However, the mechanisms by which PCNT levels are regulated remain underexplored. Our previous study demonstrated that PLP levels are sharply down-regulated during early spermatogenesis and this regulation is essential to spatially position PLP on the proximal end of centrioles. We hypothesized that the sharp drop in PLP protein was a result of rapid protein degradation during the male germ line premeiotic G2 phase. Here, we show that PLP is subject to ubiquitin-mediated degradation and identify multiple proteins that promote the reduction of PLP levels in spermatocytes, including the UBR box containing E3 ligase Poe (UBR4), which we show binds to PLP. Although protein sequences governing posttranslational regulation of PLP are not restricted to a single region of the protein, we identify a region that is required for Poe-mediated degradation. Experimentally stabilizing PLP, via internal PLP deletions or loss of Poe, leads to PLP accumulation in spermatocytes, its mispositioning along centrioles, and defects in centriole docking in spermatids.
Collapse
Affiliation(s)
- Brian J. Galletta
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Ramya Varadarajan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Carey J. Fagerstrom
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Karen Plevock Haase
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| |
Collapse
|
11
|
Zheng H, Wen W. Protein phase separation: new insights into cell division. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1042-1051. [PMID: 37249333 PMCID: PMC10415187 DOI: 10.3724/abbs.2023093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/15/2023] [Indexed: 05/31/2023] Open
Abstract
As the foundation for the development of multicellular organisms and the self-renewal of single cells, cell division is a highly organized event which segregates cellular components into two daughter cells equally or unequally, thus producing daughters with identical or distinct fates. Liquid-liquid phase separation (LLPS), an emerging biophysical concept, provides a new perspective for us to understand the mechanisms of a wide range of cellular events, including the organization of membrane-less organelles. Recent studies have shown that several key organelles in the cell division process are assembled into membrane-free structures via LLPS of specific proteins. Here, we summarize the regulatory functions of protein phase separation in centrosome maturation, spindle assembly and polarity establishment during cell division.
Collapse
Affiliation(s)
- Hongdan Zheng
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Wenyu Wen
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
12
|
Yu J, Morgan DO, Boland A. The molecular mechanisms of human separase regulation. Biochem Soc Trans 2023:233012. [PMID: 37140261 DOI: 10.1042/bst20221400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Sister chromatid segregation is the final irreversible step of mitosis. It is initiated by a complex regulatory system that ultimately triggers the timely activation of a conserved cysteine protease named separase. Separase cleaves the cohesin protein ring that links the sister chromatids and thus facilitates their separation and segregation to the opposite poles of the dividing cell. Due to the irreversible nature of this process, separase activity is tightly controlled in all eukaryotic cells. In this mini-review, we summarize the latest structural and functional findings on the regulation of separase, with an emphasis on the regulation of the human enzyme by two inhibitors, the universal inhibitor securin and the vertebrate-specific inhibitor CDK1-cyclin B. We discuss the two fundamentally different inhibitory mechanisms by which these inhibitors block separase activity by occluding substrate binding. We also describe conserved mechanisms that facilitate substrate recognition and point out open research questions that will guide studies of this fascinating enzyme for years to come.
Collapse
Affiliation(s)
- Jun Yu
- Department of Molecular and Cellular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - David O Morgan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, U.S.A
| | - Andreas Boland
- Department of Molecular and Cellular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
13
|
Huang F, Xu X, Xin G, Zhang B, Jiang Q, Zhang C. Cartwheel disassembly regulated by CDK1-cyclin B kinase allows human centriole disengagement and licensing. J Biol Chem 2022; 298:102658. [PMID: 36356903 PMCID: PMC9763691 DOI: 10.1016/j.jbc.2022.102658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Cartwheel assembly is considered the first step in the initiation of procentriole biogenesis; however, the reason for persistence of the assembled human cartwheel structure from S phase to late mitosis remains unclear. Here, we demonstrate mainly using cell synchronization, RNA interference, immunofluorescence and time-lapse-microscopy, biochemical analysis, and methods that the cartwheel persistently assembles and maintains centriole engagement and centrosome integrity during S phase to late G2 phase. Blockade of the continuous accumulation of centriolar Sas-6, a major cartwheel protein, after procentriole formation induces premature centriole disengagement and disrupts pericentriolar matrix integrity. Additionally, we determined that during mitosis, CDK1-cyclin B phosphorylates Sas-6 at T495 and S510, disrupting its binding to cartwheel component STIL and pericentriolar component Nedd1 and promoting cartwheel disassembly and centriole disengagement. Perturbation of this phosphorylation maintains the accumulation of centriolar Sas-6 and retains centriole engagement during mitotic exit, which results in the inhibition of centriole reduplication. Collectively, these data demonstrate that persistent cartwheel assembly after procentriole formation maintains centriole engagement and that this configuration is relieved through phosphorylation of Sas-6 by CDK1-cyclin B during mitosis in human cells.
Collapse
Affiliation(s)
- Fan Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiaowei Xu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Guangwei Xin
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Boyan Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Qing Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Chuanmao Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
14
|
Abstract
The centrosome, consisting of centrioles and the associated pericentriolar material, is the main microtubule-organizing centre (MTOC) in animal cells. During most of interphase, the two centrosomes of a cell are joined together by centrosome cohesion into one MTOC. The most dominant element of centrosome cohesion is the centrosome linker, an interdigitating, fibrous network formed by the protein C-Nap1 anchoring a number of coiled-coil proteins including rootletin to the proximal end of centrioles. Alternatively, centrosomes can be kept together by the action of the minus end directed kinesin motor protein KIFC3 that works on interdigitating microtubules organized by both centrosomes and probably by the actin network. Although cells connect the two interphase centrosomes by several mechanisms into one MTOC, the general importance of centrosome cohesion, particularly for an organism, is still largely unclear. In this article, we review the functions of the centrosome linker and discuss how centrosome cohesion defects can lead to diseases.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and
| |
Collapse
|
15
|
Fang J, Lerit DA. Orb-dependent polyadenylation contributes to PLP expression and centrosome scaffold assembly. Development 2022; 149:dev200426. [PMID: 35661190 PMCID: PMC9340551 DOI: 10.1242/dev.200426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/25/2022] [Indexed: 12/17/2024]
Abstract
As the microtubule-organizing centers of most cells, centrosomes engineer the bipolar mitotic spindle required for error-free mitosis. Drosophila Pericentrin-like protein (PLP) directs formation of a pericentriolar material (PCM) scaffold required for PCM organization and microtubule-organizing center function. Here, we investigate the post-transcriptional regulation of Plp mRNA. We identify conserved binding sites for cytoplasmic polyadenylation element binding (CPEB) proteins within the Plp 3'-untranslated region and examine the role of the CPEB ortholog Oo18 RNA-binding protein (Orb) in Plp mRNA regulation. Our data show that Orb interacts biochemically with Plp mRNA to promote polyadenylation and PLP protein expression. Loss of orb, but not orb2, diminishes PLP levels in embryonic extracts. Consequently, PLP localization to centrosomes and its function in PCM scaffolding are compromised in orb mutant embryos, resulting in genomic instability and embryonic lethality. Moreover, we find that PLP overexpression restores centrosome scaffolding and rescues the cell division defects caused by orb depletion. Our data suggest that Orb modulates PLP expression at the level of Plp mRNA polyadenylation and demonstrates that the post-transcriptional regulation of core, conserved centrosomal mRNAs is crucial for centrosome function.
Collapse
Affiliation(s)
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Lee M, Nagashima K, Yoon J, Sun J, Wang Z, Carpenter C, Lee HK, Hwang YS, Westlake CJ, Daar IO. CEP97 phosphorylation by Dyrk1a is critical for centriole separation during multiciliogenesis. J Cell Biol 2022; 221:e202102110. [PMID: 34787650 PMCID: PMC8719716 DOI: 10.1083/jcb.202102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022] Open
Abstract
Proper cilia formation in multiciliated cells (MCCs) is necessary for appropriate embryonic development and homeostasis. Multicilia share many structural characteristics with monocilia and primary cilia, but there are still significant gaps in our understanding of the regulation of multiciliogenesis. Using the Xenopus embryo, we show that CEP97, which is known as a negative regulator of primary cilia formation, interacts with dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) to modulate multiciliogenesis. We show that Dyrk1a phosphorylates CEP97, which in turn promotes the recruitment of Polo-like kinase 1 (Plk1), which is a critical regulator of MCC maturation that functions to enhance centriole disengagement in cooperation with the enzyme Separase. Knockdown of either CEP97 or Dyrk1a disrupts cilia formation and centriole disengagement in MCCs, but this defect is rescued by overexpression of Separase. Thus, our study reveals that Dyrk1a and CEP97 coordinate with Plk1 to promote Separase function to properly form multicilia in vertebrate MCCs.
Collapse
Affiliation(s)
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jaeho Yoon
- National Cancer Institute, Frederick, MD
| | - Jian Sun
- National Cancer Institute, Frederick, MD
| | - Ziqiu Wang
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Christina Carpenter
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Christopher J. Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | | |
Collapse
|
17
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
18
|
Shin B, Kim MS, Lee Y, Jung GI, Rhee K. Generation and Fates of Supernumerary Centrioles in Dividing Cells. Mol Cells 2021; 44:699-705. [PMID: 34711687 PMCID: PMC8560585 DOI: 10.14348/molcells.2021.0220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
The centrosome is a subcellular organelle from which a cilium assembles. Since centrosomes function as spindle poles during mitosis, they have to be present as a pair in a cell. How the correct number of centrosomes is maintained in a cell has been a major issue in the fields of cell cycle and cancer biology. Centrioles, the core of centrosomes, assemble and segregate in close connection to the cell cycle. Abnormalities in centriole numbers are attributed to decoupling from cell cycle regulation. Interestingly, supernumerary centrioles are commonly observed in cancer cells. In this review, we discuss how supernumerary centrioles are generated in diverse cellular conditions. We also discuss how the cells cope with supernumerary centrioles during the cell cycle.
Collapse
Affiliation(s)
- Byungho Shin
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Myung Se Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yejoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
19
|
Guo X, Wang C, Tian W, Dai X, Ni J, Wu X, Wang X. Extract of bulbus of Fritillaria cirrhosa induces spindle multipolarity in human-derived colonic epithelial NCM460 cells through promoting centrosome fragmentation. Mutagenesis 2021; 36:95-107. [PMID: 33450026 DOI: 10.1093/mutage/geab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/13/2021] [Indexed: 11/14/2022] Open
Abstract
Bulbus of Fritillaria cirrhosa D. Don (BFC), an outstanding antitussive and expectorant herbal drug used in China and many other countries, has potential but less understood genotoxicity. Previously, we have reported that aqueous extract of BFC compromised the spindle assembly checkpoint and cytokinesis in NCM460 cells. Here, we found that one remarkable observation in BFC-treated NCM460 cells was multipolar mitosis, a trait classically compromises the fidelity of chromosome segregation. More detailed investigation revealed that BFC-induced spindle multipolarity in metaphases and ana-telophases in a dose- and time-dependent manner, suggesting BFC-induced multipolar spindle conformation was not transient. The frequency of multipolar metaphase correlated well to that of multipolar ana-telophases, indicating that BFC-induced multipolar metaphases often persisted through anaphase. Unexpectedly, BFC blocked the proliferation of binucleated cells, suggesting spindle multipolarity was not downstream of BFC-induced cytokinesis failure. Exposure of BFC to early mitotic cells, rather than S/G2 cells, contributed greatly to spindle multipolarity, indicating BFC might disrupt centrosome integrity rather than induce centrosome overduplication. The immunofluorescence results showed that the centrosomes were severely fragmented by a short-term treatment of BFC and the extent of centrosome fragmentation in early mitotic cells was larger than this in S/G2 cells. Consistently, several genes (e.g. p53, Rb centrin-2, Plk-4, Plk-1 and Aurora-A) involved in regulating centrosome integrity were significantly deregulated by BFC. Together, our results suggest that BFC causes multipolar spindles primarily by inducing centrosome fragmentation. Coupling these results to our previous observations, we recommend the risk/benefit ratio should be considered in the practical use of BFC.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China.,Yunnan Environmental Mutagen Society, Kunming, Yunnan, China
| | - Chunlei Wang
- Kunming 24th Middle School, Kunming, Yunnan, China
| | - Weimeng Tian
- Department of Geriatric, The Second People's Hospital of Kunming, Kunming, Yunnan, China
| | - Xueqin Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.,School of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China.,Yunnan Environmental Mutagen Society, Kunming, Yunnan, China
| | - Xiayu Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan, China.,Yunnan Environmental Mutagen Society, Kunming, Yunnan, China
| |
Collapse
|
20
|
Coding variants in the PCNT and CEP295 genes contribute to breast cancer risk in Chinese women. Pathol Res Pract 2021; 225:153581. [PMID: 34418690 DOI: 10.1016/j.prp.2021.153581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Centrioles play pivotal roles in the assembly of centrosomes, their dysfunction is associated with multiple inherited diseases or cancers. To date, few studies have focused on the associations between coding single nucleotide polymorphisms (SNPs) in the centriole duplication cycle genes and the risk of breast cancer in Chinese women. METHODS Twenty-one SNPs were selected from the coding regions of 10 critical centriole genes. The associations between the selected SNPs and breast cancer susceptibility were assessed in a case-control study of Chinese women, which included 1032 cases and 1063 controls. Potential biological functions in the influence of protein stability and the profile of expression quantitative trait loci (eQTL) of the identified SNPs were further evaluated using in silico databases. RESULTS Multivariate logistic regression analyses revealed that a missense SNP rs7279204 in PCNT was significantly associated with an increased risk of breast cancer (additive model: adjusted OR=1.19, 95% CI: 1.02-1.38), while a missense SNP rs77922978 in CEP295 was significantly associated with a decreased risk of breast cancer (additive model: adjusted OR=0.74, 95% CI: 0.56-0.97). Stratification analyses suggested that rs7279204 and rs77922978 exhibited different effects among later first live birth, ER-negative and PR-negative women (P<0.05). Moreover, rs77922978 showed significant differences for ER and PR status strata (heterogeneity test P=0.028, P=0.046). In addition, bioinformatic analyses indicated that the two variants may possess potential functions of reducing the protein stability of their host genes. Further eQTL analysis showed that the rs7279204 was not only correlated with the expression of its host gene PCNT, but also correlated with the expression of its nearby genes, implying its potential roles in regulation of some cancer susceptibility genes. CONCLUSIONS The SNPs rs7279204 and rs77922978 within the coding region of the PCNT and CEP295 genes may contribute to the susceptibility of breast cancer in Han Chinese population.
Collapse
|
21
|
Maier NK, Ma J, Lampson MA, Cheeseman IM. Separase cleaves the kinetochore protein Meikin at the meiosis I/II transition. Dev Cell 2021; 56:2192-2206.e8. [PMID: 34331869 PMCID: PMC8355204 DOI: 10.1016/j.devcel.2021.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
To generate haploid gametes, germ cells undergo two consecutive meiotic divisions requiring key changes to the cell division machinery. Here, we demonstrate that the protease separase rewires key cell division processes at the meiosis I/II transition by cleaving the meiosis-specific protein Meikin. Separase proteolysis does not inactivate Meikin but instead alters its function to create a distinct activity state. Full-length Meikin and the C-terminal Meikin separase cleavage product both localize to kinetochores, bind to Plk1 kinase, and promote Rec8 cleavage, but our results reveal distinct roles for these proteins in controlling meiosis. Mutations that prevent Meikin cleavage or that conditionally inactivate Meikin at anaphase I result in defective meiosis II chromosome alignment in mouse oocytes. Finally, as oocytes exit meiosis, C-Meikin is eliminated by APC/C-mediated degradation prior to the first mitotic division. Thus, multiple regulatory events irreversibly modulate Meikin activity during successive meiotic divisions to rewire the cell division machinery at two distinct transitions.
Collapse
Affiliation(s)
- Nolan K Maier
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jun Ma
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
22
|
Alvarez-Rodrigo I, Wainman A, Saurya S, Raff JW. Ana1 helps recruit Polo to centrioles to promote mitotic PCM assembly and centriole elongation. J Cell Sci 2021; 134:jcs258987. [PMID: 34156068 PMCID: PMC8325959 DOI: 10.1242/jcs.258987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
Polo kinase (PLK1 in mammals) is a master cell cycle regulator that is recruited to various subcellular structures, often by its polo-box domain (PBD), which binds to phosphorylated S-pS/pT motifs. Polo/PLK1 kinases have multiple functions at centrioles and centrosomes, and we have previously shown that in Drosophila phosphorylated Sas-4 initiates Polo recruitment to newly formed centrioles, while phosphorylated Spd-2 recruits Polo to the pericentriolar material (PCM) that assembles around mother centrioles in mitosis. Here, we show that Ana1 (Cep295 in humans) also helps to recruit Polo to mother centrioles in Drosophila. If Ana1-dependent Polo recruitment is impaired, mother centrioles can still duplicate, disengage from their daughters and form functional cilia, but they can no longer efficiently assemble mitotic PCM or elongate during G2. We conclude that Ana1 helps recruit Polo to mother centrioles to specifically promote mitotic centrosome assembly and centriole elongation in G2, but not centriole duplication, centriole disengagement or cilia assembly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
23
|
Jung GI, Rhee K. Triple deletion of TP53, PCNT, and CEP215 promotes centriole amplification in the M phase. Cell Cycle 2021; 20:1500-1517. [PMID: 34233584 DOI: 10.1080/15384101.2021.1950386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Supernumerary centrioles are frequently observed in diverse types of cancer cells. In this study, we investigated the mechanism underlying the generation of supernumerary centrioles during the M phase. We generated the TP53;PCNT;CEP215 triple knockout (KO) cells and determined the configurations of the centriole during the cell cycle. The triple KO cells exhibited a precocious separation of centrioles and unscheduled centriole assembly in the M phase. Supernumerary centrioles in the triple KO cells were present throughout the cell cycle; however, among all the centrioles, only two maintained an intact composition, including CEP135, CEP192, CEP295 and CEP152. Intact centrioles were formed during the S phase and the rest of the centrioles may be generated during the M phase. M-phase-assembled centrioles lacked the ability to organize microtubules in the interphase; however, a fraction of them may acquire pericentriolar material to organize microtubules during the M phase. Taken together, our work reveals the heterogeneity of the supernumerary centrioles in the triple KO cells. .
Collapse
Affiliation(s)
- Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
24
|
Yoshino Y, Fang Z, Qi H, Kobayashi A, Chiba N. Dysregulation of the centrosome induced by BRCA1 deficiency contributes to tissue-specific carcinogenesis. Cancer Sci 2021; 112:1679-1687. [PMID: 33606355 PMCID: PMC8088922 DOI: 10.1111/cas.14859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alterations in breast cancer gene 1 (BRCA1), a tumor suppressor gene, increase the risk of breast and ovarian cancers. BRCA1 forms a heterodimer with BRCA1-associated RING domain protein 1 (BARD1) and functions in multiple cellular processes, including DNA repair and centrosome regulation. BRCA1 acts as a tumor suppressor by promoting homologous recombination (HR) repair, and alterations in BRCA1 cause HR deficiency, not only in breast and ovarian tissues but also in other tissues. The molecular mechanisms underlying BRCA1 alteration-induced carcinogenesis remain unclear. Centrosomes are the major microtubule-organizing centers and function in bipolar spindle formation. The regulation of centrosome number is critical for chromosome segregation in mitosis, which maintains genomic stability. BRCA1/BARD1 function in centrosome regulation together with Obg-like ATPase (OLA1) and receptor for activating protein C kinase 1 (RACK1). Cancer-derived variants of BRCA1, BARD1, OLA1, and RACK1 do not interact, and aberrant expression of these proteins results in abnormal centrosome duplication in mammary-derived cells, and rarely in other cell types. RACK1 is involved in centriole duplication in the S phase by promoting polo-like kinase 1 activation by Aurora A, which is critical for centrosome duplication. Centriole number is higher in cells derived from mammary tissues compared with in those derived from other tissues, suggesting that tissue-specific centrosome characterization may shed light on the tissue specificity of BRCA1-associated carcinogenesis. Here, we explored the role of the BRCA1-containing complex in centrosome regulation and the effect of its deficiency on tissue-specific carcinogenesis.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Zhenzhou Fang
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Huicheng Qi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Akihiro Kobayashi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Natsuko Chiba
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
25
|
Alfaro E, López‐Jiménez P, González‐Martínez J, Malumbres M, Suja JA, Gómez R. PLK1 regulates centrosome migration and spindle dynamics in male mouse meiosis. EMBO Rep 2021; 22:e51030. [PMID: 33615693 PMCID: PMC8025030 DOI: 10.15252/embr.202051030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Cell division requires the regulation of karyokinesis and cytokinesis, which includes an essential role of the achromatic spindle. Although the functions of centrosomes are well characterised in somatic cells, their role during vertebrate spermatogenesis remains elusive. We have studied the dynamics of the meiotic centrosomes in male mouse during both meiotic divisions. Results show that meiotic centrosomes duplicate twice: first duplication occurs in the leptotene/zygotene transition, while the second occurs in interkinesis. The maturation of duplicated centrosomes during the early stages of prophase I and II are followed by their separation and migration to opposite poles to form bipolar spindles I and II. The study of the genetic mouse model Plk1(Δ/Δ) indicates a central role of Polo-like kinase 1 in pericentriolar matrix assembly, in centrosome maturation and migration, and in the formation of the bipolar spindles during spermatogenesis. In addition, in vitro inhibition of Polo-like kinase 1 and Aurora A in organotypic cultures of seminiferous tubules points out to a prominent role of both kinases in the regulation of the formation of meiotic bipolar spindles.
Collapse
Affiliation(s)
- Enrique Alfaro
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | - Pablo López‐Jiménez
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | | | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - José A Suja
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | - Rocío Gómez
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| |
Collapse
|
26
|
Owa M, Dynlacht B. A non-canonical function for Centromere-associated protein-E controls centrosome integrity and orientation of cell division. Commun Biol 2021; 4:358. [PMID: 33742057 PMCID: PMC7979751 DOI: 10.1038/s42003-021-01861-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Centromere-associated protein-E (CENP-E) is a kinesin motor localizing at kinetochores. Although its mitotic functions have been well studied, it has been challenging to investigate direct consequences of CENP-E removal using conventional methods because CENP-E depletion resulted in mitotic arrest. In this study, we harnessed an auxin-inducible degron system to achieve acute degradation of CENP-E. We revealed a kinetochore-independent role for CENP-E that removes pericentriolar material 1 (PCM1) from centrosomes in late S/early G2 phase. After acute loss of CENP-E, centrosomal Polo-like kinase 1 (Plk1) localization is abrogated through accumulation of PCM1, resulting in aberrant phosphorylation and destabilization of centrosomes, which triggers shortened astral microtubules and oblique cell divisions. Furthermore, we also observed centrosome and cell division defects in cells from a microcephaly patient with mutations in CENPE. Orientation of cell division is deregulated in some microcephalic patients, and our unanticipated findings provide additional insights into how microcephaly can result from centrosomal defects.
Collapse
Affiliation(s)
- Mikito Owa
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| | - Brian Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Ito KK, Watanabe K, Ishida H, Matsuhashi K, Chinen T, Hata S, Kitagawa D. Cep57 and Cep57L1 maintain centriole engagement in interphase to ensure centriole duplication cycle. J Cell Biol 2021; 220:e202005153. [PMID: 33492359 PMCID: PMC7836272 DOI: 10.1083/jcb.202005153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 11/22/2022] Open
Abstract
Centrioles duplicate in interphase only once per cell cycle. Newly formed centrioles remain associated with their mother centrioles. The two centrioles disengage at the end of mitosis, which licenses centriole duplication in the next cell cycle. Therefore, timely centriole disengagement is critical for the proper centriole duplication cycle. However, the mechanisms underlying centriole engagement during interphase are poorly understood. Here, we show that Cep57 and Cep57L1 cooperatively maintain centriole engagement during interphase. Codepletion of Cep57 and Cep57L1 induces precocious centriole disengagement in interphase without compromising cell cycle progression. The disengaged daughter centrioles convert into centrosomes during interphase in a Plk1-dependent manner. Furthermore, the centrioles reduplicate and the centriole number increases, which results in chromosome segregation errors. Overall, these findings demonstrate that the maintenance of centriole engagement by Cep57 and Cep57L1 during interphase is crucial for the tight control of centriole copy number and thus for proper chromosome segregation.
Collapse
Affiliation(s)
- Kei K. Ito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Koki Watanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Haruki Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kyohei Matsuhashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shoji Hata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
28
|
Chinen T, Yamazaki K, Hashimoto K, Fujii K, Watanabe K, Takeda Y, Yamamoto S, Nozaki Y, Tsuchiya Y, Takao D, Kitagawa D. Centriole and PCM cooperatively recruit CEP192 to spindle poles to promote bipolar spindle assembly. J Cell Biol 2021; 220:e202006085. [PMID: 33443571 PMCID: PMC7812875 DOI: 10.1083/jcb.202006085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/12/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation.
Collapse
Affiliation(s)
- Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kaho Yamazaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kaho Hashimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Ken Fujii
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Koki Watanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yutaka Takeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shohei Yamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
- Graduate Program in Bioscience, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | - Yuka Nozaki
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yuki Tsuchiya
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Daisuke Takao
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| |
Collapse
|
29
|
Sullenberger C, Vasquez-Limeta A, Kong D, Loncarek J. With Age Comes Maturity: Biochemical and Structural Transformation of a Human Centriole in the Making. Cells 2020; 9:cells9061429. [PMID: 32526902 PMCID: PMC7349492 DOI: 10.3390/cells9061429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Centrioles are microtubule-based cellular structures present in most human cells that build centrosomes and cilia. Proliferating cells have only two centrosomes and this number is stringently maintained through the temporally and spatially controlled processes of centriole assembly and segregation. The assembly of new centrioles begins in early S phase and ends in the third G1 phase from their initiation. This lengthy process of centriole assembly from their initiation to their maturation is characterized by numerous structural and still poorly understood biochemical changes, which occur in synchrony with the progression of cells through three consecutive cell cycles. As a result, proliferating cells contain three structurally, biochemically, and functionally distinct types of centrioles: procentrioles, daughter centrioles, and mother centrioles. This age difference is critical for proper centrosome and cilia function. Here we discuss the centriole assembly process as it occurs in somatic cycling human cells with a focus on the structural, biochemical, and functional characteristics of centrioles of different ages.
Collapse
|
30
|
Marthiens V, Basto R. Centrosomes: The good and the bad for brain development. Biol Cell 2020; 112:153-172. [PMID: 32170757 DOI: 10.1111/boc.201900090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022]
Abstract
Centrosomes nucleate and organise the microtubule cytoskeleton in animal cells. These membraneless organelles are key structures for tissue organisation, polarity and growth. Centrosome dysfunction, defined as deviation in centrosome numbers and/or structural integrity, has major impact on brain size and functionality, as compared with other tissues of the organism. In this review, we discuss the contribution of centrosomes to brain growth during development. We discuss in particular the impact of centrosome dysfunction in Drosophila and mammalian neural stem cell division and fitness, which ultimately underlie brain growth defects.
Collapse
Affiliation(s)
- Véronique Marthiens
- Biology of Centrosomes and Genetic Instability Laboratory, Institut Curie, PSL Research University, CNRS, UMR144, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Laboratory, Institut Curie, PSL Research University, CNRS, UMR144, Paris, 75005, France
| |
Collapse
|
31
|
Park SA, Yoo H, Seol JH, Rhee K. HDAC3 and HDAC8 are required for cilia assembly and elongation. Biol Open 2019; 8:bio.043828. [PMID: 31362948 PMCID: PMC6737963 DOI: 10.1242/bio.043828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cilia are extended from mother centrioles in quiescent G0/G1 cells and retracted in dividing cells. Diverse post-translational modifications play roles in the assembly and disassembly of the cilium. Here, we examined class I histone deacetylases (HDACs) as positive regulators of cilia assembly in serum-deprived RPE1 and HK2 cells. We observed that the number of cells with cilia was significantly reduced in HDAC3- and HDAC8-depleted cells. The ciliary length also decreased in HDAC3- and HDAC8-depleted cells compared to that in control cells. A knockdown-rescue experiment showed that wild-type HDAC3 and HDAC8 rescued the cilia assembly and ciliary length in HDAC3- and HDAC8-depleted cells, respectively; however, deacetylase-dead HDAC3 and HDAC8 mutants did not. This suggests that deacetylase activity is critical for both HDAC3 and HDAC8 function in cilia assembly and ciliary length control. This is the first study to report that HDACs are required for the assembly and elongation of the primary cilia. Summary: We identified that HDAC3 and HDAC8 are required for the assembly and elongation of the primary cilia.
Collapse
Affiliation(s)
- Seon-Ah Park
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyunjeong Yoo
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Hong Seol
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
32
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
33
|
Busselez J, Chichón FJ, Rodríguez MJ, Alpízar A, Gharbi SI, Franch M, Melero R, Paradela A, Carrascosa JL, Carazo JM. Cryo-Electron Tomography and Proteomics studies of centrosomes from differentiated quiescent thymocytes. Sci Rep 2019; 9:7187. [PMID: 31076588 PMCID: PMC6510768 DOI: 10.1038/s41598-019-43338-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 02/02/2023] Open
Abstract
We have used cryo Electron Tomography, proteomics and immunolabeling to study centrosomes isolated from the young lamb thymus, an efficient source of quiescent differentiated cells. We compared the proteome of thymocyte centrosomes to data published for KE37 cells, focusing on proteins associated with centriole disengagement and centrosome separation. The data obtained enhances our understanding of the protein system joining the centrioles, a system comprised of a branched network of fibers linked to an apparently amorphous density that was partially characterized here. A number of proteins were localized to the amorphous density by immunolabeling (C-NAP1, cohesin SMC1, condensin SMC4 and NCAPD2), yet not DNA. In conjuction, these data not only extend our understanding of centrosomes but they will help refine the model that focus on the protein system associated with the centriolar junction.
Collapse
Affiliation(s)
- Johan Busselez
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain. .,Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400, Illkirch-Graffenstaden, France.
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Maria Josefa Rodríguez
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Adan Alpízar
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Séverine Isabelle Gharbi
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Mònica Franch
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Roberto Melero
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - José-Maria Carazo
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain.
| |
Collapse
|
34
|
Watanabe K, Takao D, Ito KK, Takahashi M, Kitagawa D. The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nat Commun 2019; 10:931. [PMID: 30804344 PMCID: PMC6389942 DOI: 10.1038/s41467-019-08862-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Centriole duplication occurs once per cell cycle to ensure robust formation of bipolar spindles and chromosome segregation. Each newly-formed daughter centriole remains connected to its mother centriole until late mitosis. The disengagement of the centriole pair is required for centriole duplication. However, the mechanisms underlying centriole engagement remain poorly understood. Here, we show that Cep57 is required for pericentriolar material (PCM) organization that regulates centriole engagement. Depletion of Cep57 causes PCM disorganization and precocious centriole disengagement during mitosis. The disengaged daughter centrioles acquire ectopic microtubule-organizing-center activity, which results in chromosome mis-segregation. Similar defects are observed in mosaic variegated aneuploidy syndrome patient cells with cep57 mutations. We also find that Cep57 binds to the well-conserved PACT domain of pericentrin. Microcephaly osteodysplastic primordial dwarfism disease pericentrin mutations impair the Cep57-pericentrin interaction and lead to PCM disorganization. Together, our work demonstrates that Cep57 provides a critical interface between the centriole core and PCM. Centriole disengagement occurs towards mitotic exit and involves cleavage of pericentrin, a component of the pericentriolar material. Here the authors show that depletion of the centrosomal protein Cep57 leads to precocious centriole disengagement, and that Cep57 binds pericentrin.
Collapse
Affiliation(s)
- Koki Watanabe
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan.,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Daisuke Takao
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kei K Ito
- Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Mikiko Takahashi
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, 164-8530, Japan
| | - Daiju Kitagawa
- Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan. .,Department of Physiological Chemistry, Graduate school of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
35
|
Abstract
The centriole is an ancient microtubule-based organelle with a conserved nine-fold symmetry. Centrioles form the core of centrosomes, which organize the interphase microtubule cytoskeleton of most animal cells and form the poles of the mitotic spindle. Centrioles can also be modified to form basal bodies, which template the formation of cilia and play central roles in cellular signaling, fluid movement, and locomotion. In this review, we discuss developments in our understanding of the biogenesis of centrioles and cilia and the regulatory controls that govern their structure and number. We also discuss how defects in these processes contribute to a spectrum of human diseases and how new technologies have expanded our understanding of centriole and cilium biology, revealing exciting avenues for future exploration.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA;
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
36
|
Full F, van Gent M, Sparrer KMJ, Chiang C, Zurenski MA, Scherer M, Brockmeyer NH, Heinzerling L, Stürzl M, Korn K, Stamminger T, Ensser A, Gack MU. Centrosomal protein TRIM43 restricts herpesvirus infection by regulating nuclear lamina integrity. Nat Microbiol 2019; 4:164-176. [PMID: 30420784 PMCID: PMC6294671 DOI: 10.1038/s41564-018-0285-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Tripartite motif (TRIM) proteins mediate antiviral host defences by either directly targeting viral components or modulating innate immune responses. Here we identify a mechanism of antiviral restriction in which a TRIM E3 ligase controls viral replication by regulating the structure of host cell centrosomes and thereby nuclear lamina integrity. Through RNAi screening we identified several TRIM proteins, including TRIM43, that control the reactivation of Kaposi's sarcoma-associated herpesvirus. TRIM43 was distinguished by its ability to restrict a broad range of herpesviruses and its profound upregulation during herpesvirus infection as part of a germline-specific transcriptional program mediated by the transcription factor DUX4. TRIM43 ubiquitinates the centrosomal protein pericentrin, thereby targeting it for proteasomal degradation, which subsequently leads to alterations of the nuclear lamina that repress active viral chromatin states. Our study identifies a role of the TRIM43-pericentrin-lamin axis in intrinsic immunity, which may be targeted for therapeutic intervention against herpesviral infections.
Collapse
Affiliation(s)
- Florian Full
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Konstantin M J Sparrer
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | | | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Norbert H Brockmeyer
- Department of Dermatology, Venerology, and Allergology, Center for Sexual Health and Medicine, Ruhr University Bochum, Bochum, Germany
| | - Lucie Heinzerling
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Klaus Korn
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Armin Ensser
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
37
|
Kim J, Kim J, Rhee K. PCNT is critical for the association and conversion of centrioles to centrosomes during mitosis. J Cell Sci 2019; 132:jcs.225789. [DOI: 10.1242/jcs.225789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/14/2019] [Indexed: 01/28/2023] Open
Abstract
A centrosome consists of a pair of centrioles and pericentriolar material (PCM). We manipulated expression of PCNT, a key PCM protein, and investigated roles of PCM in centriole behavior during mitosis. Deletion of PCNT had little effect on the interphase centrosomes. However, centrioles in PCNT-deleted mitotic cells prematurely separated and frequently amplified, revealing that centrioles are limited within the spindle poles by PCNT during mitosis. It is known that specific cleavage of PCNT is necessary for centriole separation during mitotic exit. Delayed centriole separation was observed in G0 phase when a noncleavable PCNT was removed or when PCNT was artificially cleaved by TEV protease. Furthermore, a daughter centriole converts to a mother centriole only after experiencing both mitotic exit and specific PCNT cleavage. Based on the results, we propose that a centriole pair disengages upon entering mitosis but remains associated with the surrounding PCM proteins throughout mitosis. During mitotic exit, specific cleavage of PCNT induces PCM disintegration. As a result, a daughter centriole separates from the mother centriole and converts to a young mother centriole.
Collapse
Affiliation(s)
- Jaeyoun Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeongjin Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
38
|
CDC20B is required for deuterosome-mediated centriole production in multiciliated cells. Nat Commun 2018; 9:4668. [PMID: 30405130 PMCID: PMC6220262 DOI: 10.1038/s41467-018-06768-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/06/2018] [Indexed: 02/08/2023] Open
Abstract
Multiciliated cells (MCCs) harbor dozens to hundreds of motile cilia, which generate hydrodynamic forces important in animal physiology. In vertebrates, MCC differentiation involves massive centriole production by poorly characterized structures called deuterosomes. Here, single-cell RNA sequencing reveals that human deuterosome stage MCCs are characterized by the expression of many cell cycle-related genes. We further investigated the uncharacterized vertebrate-specific cell division cycle 20B (CDC20B) gene, which hosts microRNA-449abc. We show that CDC20B protein associates to deuterosomes and is required for centriole release and subsequent cilia production in mouse and Xenopus MCCs. CDC20B interacts with PLK1, a kinase known to coordinate centriole disengagement with the protease Separase in mitotic cells. Strikingly, over-expression of Separase rescues centriole disengagement and cilia production in CDC20B-deficient MCCs. This work reveals the shaping of deuterosome-mediated centriole production in vertebrate MCCs, by adaptation of canonical and recently evolved cell cycle-related molecules.
Collapse
|
39
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
40
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
41
|
Seo MY, Rhee K. Caspase-mediated cleavage of the centrosomal proteins during apoptosis. Cell Death Dis 2018; 9:571. [PMID: 29752437 PMCID: PMC5948218 DOI: 10.1038/s41419-018-0632-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/22/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
Abstract
The centrosome is the major microtubule-organizing center and plays important roles in intracellular transport, cellular morphology, and motility. In mitotic cells, centrosomes function as spindle poles to pull a set of chromosomes into daughter cells. In quiescent cells, primary cilia are originated from the centrosomes. Given its involvement in various cellular processes, it is little surprising that the organelle would also participate in apoptotic events. However, it remains elusive how the centrosome changes in structure and organization during apoptosis. Apoptosis, a programmed cell death, is required for homeostatic tissue maintenance, embryonic development, stress responses, etc. Activation of caspases generates a cascade of apoptotic pathways, explaining much of what happens during apoptosis. Here, we report the proteolytic cleavage of selected centrosomal proteins in apoptotic cells. SAS-6, a cartwheel component of centrioles, was specifically cleaved at the border of the coiled-coil domain and the disordered C-terminus. Pericentrin, a scaffold of pericentriolar material, was also cleaved during apoptosis. These cleavages were efficiently blocked by the caspase inhibitors. We propose that the caspase-dependent proteolysis of the centrosomal proteins may destabilize the configuration of a centrosome. Loss of centrosomes may be required for the formation of apoptotic microtubule networks, which are essential for apoptotic fragmentation. This work demonstrates the first centrosomal targets by caspases during apoptosis.
Collapse
Affiliation(s)
- Mi Young Seo
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
42
|
Nigg EA, Holland AJ. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat Rev Mol Cell Biol 2018; 19:297-312. [PMID: 29363672 PMCID: PMC5969912 DOI: 10.1038/nrm.2017.127] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Centrioles are conserved microtubule-based organelles that form the core of the centrosome and act as templates for the formation of cilia and flagella. Centrioles have important roles in most microtubule-related processes, including motility, cell division and cell signalling. To coordinate these diverse cellular processes, centriole number must be tightly controlled. In cycling cells, one new centriole is formed next to each pre-existing centriole in every cell cycle. Advances in imaging, proteomics, structural biology and genome editing have revealed new insights into centriole biogenesis, how centriole numbers are controlled and how alterations in these processes contribute to diseases such as cancer and neurodevelopmental disorders. Moreover, recent work has uncovered the existence of surveillance pathways that limit the proliferation of cells with numerical centriole aberrations. Owing to this progress, we now have a better understanding of the molecular mechanisms governing centriole biogenesis, opening up new possibilities for targeting these pathways in the context of human disease.
Collapse
Affiliation(s)
- Erich A. Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
43
|
Yaguchi K, Yamamoto T, Matsui R, Tsukada Y, Shibanuma A, Kamimura K, Koda T, Uehara R. Uncoordinated centrosome cycle underlies the instability of non-diploid somatic cells in mammals. J Cell Biol 2018; 217:2463-2483. [PMID: 29712735 PMCID: PMC6028549 DOI: 10.1083/jcb.201701151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 09/27/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian somatic cells are more stable as diploids, but the mechanisms underlying this stability are unclear. Yaguchi et al. show that changes in centriole licensing compromise the control of centrosome number in haploid or tetraploid human cells, suggesting that the ploidy-dependent control of the centrosome cycle explains the instability of non-diploid karyotypes. In animals, somatic cells are usually diploid and are unstable when haploid for unknown reasons. In this study, by comparing isogenic human cell lines with different ploidies, we found frequent centrosome loss specifically in the haploid state, which profoundly contributed to haploid instability through subsequent mitotic defects. We also found that the efficiency of centriole licensing and duplication changes proportionally to ploidy level, whereas that of DNA replication stays constant. This caused gradual loss or frequent overduplication of centrioles in haploid and tetraploid cells, respectively. Centriole licensing efficiency seemed to be modulated by astral microtubules, whose development scaled with ploidy level, and artificial enhancement of aster formation in haploid cells restored centriole licensing efficiency to diploid levels. The ploidy–centrosome link was observed in different mammalian cell types. We propose that incompatibility between the centrosome duplication and DNA replication cycles arising from different scaling properties of these bioprocesses upon ploidy changes underlies the instability of non-diploid somatic cells in mammals.
Collapse
Affiliation(s)
- Kan Yaguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takahiro Yamamoto
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Ryo Matsui
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuki Tsukada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Atsuko Shibanuma
- Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Keiko Kamimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Toshiaki Koda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan .,Creative Research Institution, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
44
|
Roque H, Saurya S, Pratt MB, Johnson E, Raff JW. Drosophila PLP assembles pericentriolar clouds that promote centriole stability, cohesion and MT nucleation. PLoS Genet 2018; 14:e1007198. [PMID: 29425198 PMCID: PMC5823460 DOI: 10.1371/journal.pgen.1007198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 02/22/2018] [Accepted: 01/12/2018] [Indexed: 12/31/2022] Open
Abstract
Pericentrin is a conserved centrosomal protein whose dysfunction has been linked to several human diseases. It has been implicated in many aspects of centrosome and cilia function, but its precise role is unclear. Here, we examine Drosophila Pericentrin-like-protein (PLP) function in vivo in tissues that form both centrosomes and cilia. Plp mutant centrioles exhibit four major defects: (1) They are short and have subtle structural abnormalities; (2) They disengage prematurely, and so overduplicate; (3) They organise fewer cytoplasmic MTs during interphase; (4) When forming cilia, they fail to establish and/or maintain a proper connection to the plasma membrane—although, surprisingly, they can still form an axoneme-like structure that can recruit transition zone (TZ) proteins. We show that PLP helps assemble “pericentriolar clouds” of electron-dense material that emanate from the central cartwheel spokes and spread outward to surround the mother centriole. We propose that the partial loss of these structures may largely explain the complex centriole, centrosome and cilium defects we observe in Plp mutant cells. Centrioles are complex, microtubule (MT) based structures that organise two important cell organelles, the centrosome and the cilium. The centrosome is a major MT organising centre in many cell types, while the cilium functions as a cellular “antenna” responsible for regulating several cellular signalling pathways. Pericentrin is conserved centriole-binding protein that plays an important part in centrosome and cilium function, and mutations in the Pericentrin gene are linked to several human diseases. Here we use the fruit-fly Drosophila melanogaster to investigate how Pericentrin-Like-Protein (the fly homolog of Pericentrin) contributes to centriole, centrosome and cilium function. We find that Plp mutant fly centrioles have subtle structural defects, organize less microtubules, and do not properly migrate to the cell membrane to form cilia. We also observe that PLP helps assemble “pericentriolar clouds”—dense structures that emanate from the centriole, and appear to interact with microtubules, as well as connect existing centrioles to newly formed ones. In mutant flies these structures are significantly reduced in size. We propose that the defects in these PLP structures can explain most, if not all, the complex defects observed in Plp mutants.
Collapse
Affiliation(s)
- Helio Roque
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Saroj Saurya
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Metta B. Pratt
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Errin Johnson
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Loncarek J, Bettencourt-Dias M. Building the right centriole for each cell type. J Cell Biol 2017; 217:823-835. [PMID: 29284667 PMCID: PMC5839779 DOI: 10.1083/jcb.201704093] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/14/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022] Open
Abstract
Loncarek and Bettencourt-Dias review molecular mechanisms of centriole biogenesis amongst different organisms and cell types. The centriole is a multifunctional structure that organizes centrosomes and cilia and is important for cell signaling, cell cycle progression, polarity, and motility. Defects in centriole number and structure are associated with human diseases including cancer and ciliopathies. Discovery of the centriole dates back to the 19th century. However, recent advances in genetic and biochemical tools, development of high-resolution microscopy, and identification of centriole components have accelerated our understanding of its assembly, function, evolution, and its role in human disease. The centriole is an evolutionarily conserved structure built from highly conserved proteins and is present in all branches of the eukaryotic tree of life. However, centriole number, size, and organization varies among different organisms and even cell types within a single organism, reflecting its cell type–specialized functions. In this review, we provide an overview of our current understanding of centriole biogenesis and how variations around the same theme generate alternatives for centriole formation and function.
Collapse
Affiliation(s)
- Jadranka Loncarek
- Cell Cycle Regulation Lab, Gulbenkian Institute of Science, Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health/Center for Cancer Research/National Cancer Institute-Frederick, Frederick, MD
| |
Collapse
|
46
|
Arbi M, Pefani DE, Taraviras S, Lygerou Z. Controlling centriole numbers: Geminin family members as master regulators of centriole amplification and multiciliogenesis. Chromosoma 2017; 127:151-174. [PMID: 29243212 DOI: 10.1007/s00412-017-0652-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/18/2023]
Abstract
To ensure that the genetic material is accurately passed down to daughter cells during mitosis, dividing cells must duplicate their chromosomes and centrosomes once and only once per cell cycle. The same key steps-licensing, duplication, and segregation-control both the chromosome and the centrosome cycle, which must occur in concert to safeguard genome integrity. Aberrations in genome content or centrosome numbers lead to genomic instability and are linked to tumorigenesis. Such aberrations, however, can also be part of the normal life cycle of specific cell types. Multiciliated cells best exemplify the deviation from a normal centrosome cycle. They are post-mitotic cells which massively amplify their centrioles, bypassing the rule for once-per-cell-cycle centriole duplication. Hundreds of centrioles dock to the apical cell surface and generate motile cilia, whose concerted movement ensures fluid flow across epithelia. The early steps that control the generation of multiciliated cells have lately started to be elucidated. Geminin and the vertebrate-specific GemC1 and McIdas are distantly related coiled-coil proteins, initially identified as cell cycle regulators associated with the chromosome cycle. Geminin is required to ensure once-per-cell-cycle genome replication, while McIdas and GemC1 bind to Geminin and are implicated in DNA replication control. Recent findings highlight Geminin family members as early regulators of multiciliogenesis. GemC1 and McIdas specify the multiciliate cell fate by forming complexes with the E2F4/5 transcription factors to switch on a gene expression program leading to centriole amplification and cilia formation. Positive and negative interactions among Geminin family members may link cell cycle control to centriole amplification and multiciliogenesis, acting close to the point of transition from proliferation to differentiation. We review key steps of centrosome duplication and amplification, present the role of Geminin family members in the centrosome and chromosome cycle, and discuss links with disease.
Collapse
Affiliation(s)
- Marina Arbi
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Dafni-Eleftheria Pefani
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.,CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26504 Rio, Patras, Greece.
| |
Collapse
|
47
|
Karki M, Keyhaninejad N, Shuster CB. Precocious centriole disengagement and centrosome fragmentation induced by mitotic delay. Nat Commun 2017; 8:15803. [PMID: 28607478 PMCID: PMC5474744 DOI: 10.1038/ncomms15803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/05/2017] [Indexed: 12/26/2022] Open
Abstract
The spindle assembly checkpoint (SAC) delays mitotic progression until all sister chromatid pairs achieve bi-orientation, and while the SAC can maintain mitotic arrest for extended periods, moderate delays in mitotic progression have significant effects on the resulting daughter cells. Here we show that when retinal-pigmented epithelial (RPE1) cells experience mitotic delay, there is a time-dependent increase in centrosome fragmentation and centriole disengagement. While most cells with disengaged centrioles maintain spindle bipolarity, clustering of disengaged centrioles requires the kinesin-14, HSET. Centrosome fragmentation and precocious centriole disengagement depend on separase and anaphase-promoting complex/cyclosome (APC/C) activity, which also triggers the acquisition of distal appendage markers on daughter centrioles and the loss of procentriolar markers. Together, these results suggest that moderate delays in mitotic progression trigger the initiation of centriole licensing through centriole disengagement, at which point the ability to maintain spindle bipolarity becomes a function of HSET-mediated spindle pole clustering. The spindle assembly checkpoint delays mitotic progression until sister chromatids are bi-oriented. Here the authors show that moderate delays in mitotic progression induce centrosome fragmentation and centriole disengagement and that spindle bipolarity is ensured by HSET-mediated spindle pole clustering.
Collapse
Affiliation(s)
- Menuka Karki
- Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | - Neda Keyhaninejad
- Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003, USA.,Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602, USA
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003, USA
| |
Collapse
|
48
|
Lee M, Seo MY, Chang J, Hwang DS, Rhee K. PLK4 phosphorylation of CP110 is required for efficient centriole assembly. Cell Cycle 2017; 16:1225-1234. [PMID: 28562169 DOI: 10.1080/15384101.2017.1325555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Centrioles are assembled during S phase and segregated into 2 daughter cells at the end of mitosis. The initiation of centriole assembly is regulated by polo-like kinase 4 (PLK4), the major serine/threonine kinase in centrioles. Despite its importance in centriole duplication, only a few substrates have been identified, and the detailed mechanism of PLK4 has not been fully elucidated. CP110 is a coiled-coil protein that plays roles in centriolar length control and ciliogenesis in mammals. Here, we revealed that PLK4 specifically phosphorylates CP110 at the S98 position. The phospho-resistant CP110 mutant inhibited centriole assembly, whereas the phospho-mimetic CP110 mutant induced centriole assembly, even in PLK4-limited conditions. This finding implies that PLK4 phosphorylation of CP110 is an essential step for centriole assembly. The phospho-mimetic form of CP110 augmented the centrosomal SAS6 level. Based on these results, we propose that the phosphorylated CP110 may be involved in the stabilization of cartwheel SAS6 during centriole assembly.
Collapse
Affiliation(s)
- Miseon Lee
- a Department of Biological Sciences , Seoul National University , Seoul , Korea
| | - Mi Young Seo
- a Department of Biological Sciences , Seoul National University , Seoul , Korea
| | - Jaerak Chang
- b Department of Brain Science , Ajou University School of Medicine , Suwon , Korea
| | - Deog Su Hwang
- a Department of Biological Sciences , Seoul National University , Seoul , Korea
| | - Kunsoo Rhee
- a Department of Biological Sciences , Seoul National University , Seoul , Korea
| |
Collapse
|
49
|
Zhang N, Pati D. Biology and insights into the role of cohesin protease separase in human malignancies. Biol Rev Camb Philos Soc 2017; 92:2070-2083. [PMID: 28177203 DOI: 10.1111/brv.12321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 12/11/2022]
Abstract
Separase, an enzyme that resolves sister chromatid cohesion during the metaphase-to-anaphase transition, plays a pivotal role in chromosomal segregation and cell division. Separase protein, encoded by the extra spindle pole bodies like 1 (ESPL1) gene, is overexpressed in numerous human cancers including breast, bone, brain, and prostate. Separase is oncogenic, and its overexpression is sufficient to induce mammary tumours in mice. Either acute or chronic overexpression of separase in mouse mammary glands leads to aneuploidy and tumorigenesis, and inhibition of separase enzymatic activity decreases the growth of human breast tumour xenografts in mice. This review focuses on the biology of and insights into the molecular mechanisms of separase as an oncogene, and its significance and implications for human cancers.
Collapse
Affiliation(s)
- Nenggang Zhang
- Departments of Pediatrics and Molecular and Cellular Biology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates St., FC1220, Houston, TX 77030, U.S.A
| | - Debananda Pati
- Departments of Pediatrics and Molecular and Cellular Biology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates St., FC1220, Houston, TX 77030, U.S.A
| |
Collapse
|
50
|
Kumar R. Separase: Function Beyond Cohesion Cleavage and an Emerging Oncogene. J Cell Biochem 2017; 118:1283-1299. [PMID: 27966791 DOI: 10.1002/jcb.25835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Proper and timely segregation of genetic endowment is necessary for survival and perpetuation of every species. Mis-segregation of chromosomes and resulting aneuploidy leads to genetic instability, which can jeopardize the survival of an individual or population as a whole. Abnormality with segregation of genetic contents has been associated with several medical consequences including cancer, sterility, mental retardation, spontaneous abortion, miscarriages, and other birth related defects. Separase, by irreversible cleavage of cohesin complex subunit, paves the way for metaphase/anaphase transition during the cell cycle. Both over or reduced expression and altered level of separase have been associated with several medical consequences including cancer, as a result separase now emerges as an important oncogene and potential molecular target for medical intervenes. Recently, separase is also found to be essential in separation and duplication of centrioles. Here, I review the role of separase in mitosis, meiosis, non-canonical roles of separase, separase regulation, as a regulator of centriole disengagement, nonproteolytic roles, diverse substrates, structural insights, and association of separase with cancer. At the ends, I proposed a model which showed that separase is active throughout the cell cycle and there is a mere increase in separase activity during metaphase contrary to the common believes that separase is inactive throughout cell cycle except for metaphase. J. Cell. Biochem. 118: 1283-1299, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, Maharashtra, India
| |
Collapse
|