1
|
Cheng S, Cacciotti C, Yan CLS, Lafay-Cousin L. What Have We Learnt from the Recent Multimodal Managements of Young Patients with ATRT? Cancers (Basel) 2025; 17:1116. [PMID: 40227618 PMCID: PMC11987908 DOI: 10.3390/cancers17071116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Atypical teratoid rhabdoid tumors are rare embryonal tumors of the nervous system mainly seen in very young children with aggressive behavior and dismal prognosis when treated with conventional chemotherapy only. More recent multimodal strategies combining, variably, high dose chemotherapy, radiotherapy and or intrathecal chemotherapy have led to some stride in survival. We present the results of the most recent clinical trials and registry data for patients treated with these multimodal approaches with survival ranging from 37.1% to 88.9%. We review the current consensus of the molecular characterization of these tumors into 3 subgroups (ATRT-TYR, ATRT-SHH and ATRT-MYC) and discuss the potential clinical impact of molecular subgrouping on survival. We explore other therapeutic tools including intrathecal chemotherapy and maintenance and possible new targeted agents for patients failing multimodal strategies.
Collapse
Affiliation(s)
- Sylvia Cheng
- British Columbia Women and Children’s Hospital, Vancouver, BC V6H 3N1, Canada
| | | | - Carol L. S. Yan
- British Columbia Women and Children’s Hospital, Vancouver, BC V6H 3N1, Canada
| | | |
Collapse
|
2
|
Cyrta J, Masliah‐Planchon J, Hoare O, Brillet R, Andrianteranagna M, Sohier P, Cardoen L, Bouchoucha Y, Filser M, Goncalves A, Caly M, Fréneaux P, Stefanaki K, Pefkianaki M, Moschovi M, Matet A, Cassoux N, Lumbroso‐Le Rouic L, Gauthier‐Villars M, Stern M, Vincent‐Salomon A, Rodrigues M, Bourdeaut F. SMARCB1-deficient malignant melanocytic uveal tumours: a new neural crest-derived tumour entity with SMARCB1-related germline predisposition. J Pathol 2025; 265:357-371. [PMID: 39853675 PMCID: PMC11794973 DOI: 10.1002/path.6390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 01/26/2025]
Abstract
Rhabdoid tumours (RT) are an aggressive malignancy affecting <2-year-old infants, characterised by biallelic loss-of-function alterations in SWI/SNF-related BAF chromatin remodelling complex subunit B1 (SMARCB1) in nearly all cases. Germline SMARCB1 alterations are found in ~30% of patients and define the RT Predisposition Syndrome type 1 (RTPS1). Uveal melanoma (UVM), the most common primary intraocular cancer in adults, does not harbour SMARCB1 alterations. We report two cases of a previously undescribed intraocular malignancy that shared some features with UVM and RT, but was also distinct from these entities. Both female patients, aged 23 and 14 years, underwent enucleation, and the tumours were subjected to comprehensive genomic, DNA methylation, and transcriptomic profiling. Pathological examination showed large, amelanotic intraocular tumours with epithelioid features, expressing melanocytic markers [S100P, SOX10, Melan-A, PMEL (HMB45), TYR] as seen using immunohistochemistry (IHC), but with little or no melanin production. Both tumours harboured biallelic loss-of-function SMARCB1 alterations, associated with loss of SMARCB1 (BAF47/INI1) expression on IHC. Their genomic profiles were atypical both for UVM and for RT, and no pathogenic variants were found in other genes tested, including those recurrently altered in UVM. In both patients, a germline SMARCB1 variant was found. However, there was no relevant family history of cancer. Transcriptome and methylome profiling suggested that these tumours were distinct from RT, UVM, and skin melanomas. RNAseq confirmed expression of early and late genes related to melanocytic differentiation. The first patient died of metastatic disease 16 months after diagnosis, the second was disease-free 10 months after completion of treatment. In summary, we report two cases of a previously undescribed, aggressive SMARCB1-deficient intraocular malignancy with melanocytic differentiation, which occurs in young patients, is distinct from UVM and RT, and expands the RTPS1 spectrum. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | | | - Owen Hoare
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| | - Riwan Brillet
- Department of Genetics, Institut CuriePSL Research UniversityParisFrance
| | - Mamy Andrianteranagna
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| | - Pierre Sohier
- Department of Pathology, Hôpital Cochin, AP‐HPUniversité Paris CitéParisFrance
| | | | - Yassine Bouchoucha
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| | - Mathilde Filser
- Department of Genetics, Institut CuriePSL Research UniversityParisFrance
| | - Andreia Goncalves
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | - Martial Caly
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | - Paul Fréneaux
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | | | | | - Maria Moschovi
- Pediatric Hematology/Oncology Unit, First Department of PediatricsNational and Kapodistrian University of Athens, Agia Sofia Children's HospitalAthensGreece
| | - Alexandre Matet
- Department of Ocular Oncology, Institut CurieUniversité Paris CitéParisFrance
| | - Nathalie Cassoux
- Department of Ocular Oncology, Institut CurieUniversité Paris CitéParisFrance
| | | | | | - Marc‐Henri Stern
- Department of Genetics, Institut CuriePSL Research UniversityParisFrance
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut CuriePSL Research UniversityParisFrance
| | | | - Manuel Rodrigues
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut CuriePSL Research UniversityParisFrance
- Department of Medical OncologyInstitut CurieParisFrance
| | - Franck Bourdeaut
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| |
Collapse
|
3
|
Zhou M, Huang Y, Xu P, Li S, Duan C, Lin X, Bao S, Zou W, Pan J, Liu C, Jin Y. PRMT1 Promotes the Self-renewal of Leukemia Stem Cells by Regulating Protein Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2308586. [PMID: 39668478 PMCID: PMC11791931 DOI: 10.1002/advs.202308586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/14/2024] [Indexed: 12/14/2024]
Abstract
The application of tyrosine kinase inhibitors (TKIs) has revolutionized the management of chronic myeloid leukemia (CML). However, disease relapse and progression particularly due to persistent leukemia stem cells (LSCs) remain a big challenge in the clinic. Therefore, validation of the therapeutic vulnerability in LSCs is urgently needed. This study verifies the critical role of protein arginine methyltransferase 1 (PRMT1) in the maintenance of CML LSCs. It is found that PRMT1 promotes the survival and serially plating abilities of human primary CML LSCs. Genetic deletion of Prmt1 significantly delays the leukemogenesis and impairs the self-renewal of LSCs in BCR-ABL-driven CML mice. PRMT1 regulates LSCs and leukemia development depending on its methyltransferase activity. Pharmacological inhibition of PRMT1 activity by MS023 remarkably eliminates LSCs and prolongs the survival of CML mice. Mechanistical studies reveal that PRMT1 promotes transcriptional activation of ribosomal protein L29 (RPL29) via catalyzing asymmetric dimethylation of histone H4R3 (H4R3me2a) at its gene promoter region. PRMT1 augments the global protein synthesis via RPL29 in CML LSCs. Taken together, the findings provide new evidence that histone arginine methylation modification regulates protein synthesis in LSCs and highlight PRMT1 as a valuable druggable target for patients with CML.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Yi Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Ping Xu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Shuyi Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Chen Duan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Xiaoying Lin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- School of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Waiyi Zou
- Department of HematologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jingxuan Pan
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Chang Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Yanli Jin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| |
Collapse
|
4
|
Xi S, Jiang S, Li H, Huang Q, Lu J, Zhang X, Li Z, Zeng J. Adult epithelioid glioblastoma exhibits an extremely poor prognosis and high frequency of SWI/SNF complex mutation: Insights from a retrospective study. Int J Cancer 2024; 155:172-183. [PMID: 38411299 DOI: 10.1002/ijc.34854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
Epithelioid glioblastoma (eGBM) is a rare subtype of GBM. Given the update of the definition of GBM, the understanding of the molecular characteristics and prognosis of "true" adult eGBM remains limited. Herein, we retrospectively analyzed the clinicopathological data of 39 adult eGBM cases. Adult eGBM primarily affected females, with a male-to-female ratio of 1:2.3. The average age of diagnosis was 53 years, and the tumor affected the temporal lobe in 41% of cases (16/39, 41%). Microscopically, the tumors consisted mainly or entirely of epithelioid cells. Perivascular infiltration (10/39, 25.6%) and leptomeningeal dissemination (7/39, 17.9%) were not uncommon. BRAF V600E mutation was detected in 40.9% of cases (n = 9/22). Next-generation sequencing revealed that CDKN2A/B homogeneous deletion was the most frequently mutated gene (8/10, 80%), followed by TERT promoter mutation (7/10, 70%), Cyclin-dependent kinases 4 or 6 (CDK4/6) amplification (5/10, 50%) and BRAF V600E mutation (50%, 5/10). Notably, the incidence of ARID1B mutation in eGBM was 50% (5/10), representing the first report of such a mutation in this subtype of GBM. ARID1B was known to be a subunit of the SWI/SNF chromatin remodeler. Chromosome analysis showed a 7+/10- signature in 90% (9/10) cases. Adult eGBM carried a dismal prognosis compared to GBM with IDH and H3 wild-type (typical GBM) (OS: 13.89 vs 24.30 months; P = .003) and even typical GBM without MGMT promoter methylation (OS: 13.89 vs 22.08 months; P = .036). Based on these findings, it can be concluded that adult eGBM harbors a high frequency of the 7+/10- signature and alterations in the MAPK pathway, SWI/SNF complex and cyclin-related genes and portends an extremely poor prognosis.
Collapse
Affiliation(s)
- Shaoyan Xi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shimeng Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hainan Li
- Department of Pathology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Qitao Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiabin Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Zhang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Ltd, Nanjing, China
| | - Zhi Li
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
5
|
Pekkarinen M, Nordfors K, Uusi-Mäkelä J, Kytölä V, Hartewig A, Huhtala L, Rauhala M, Urhonen H, Häyrynen S, Afyounian E, Yli-Harja O, Zhang W, Helen P, Lohi O, Haapasalo H, Haapasalo J, Nykter M, Kesseli J, Rautajoki KJ. Aberrant DNA methylation distorts developmental trajectories in atypical teratoid/rhabdoid tumors. Life Sci Alliance 2024; 7:e202302088. [PMID: 38499326 PMCID: PMC10948937 DOI: 10.26508/lsa.202302088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are pediatric brain tumors known for their aggressiveness and aberrant but still unresolved epigenetic regulation. To better understand their malignancy, we investigated how AT/RT-specific DNA hypermethylation was associated with gene expression and altered transcription factor binding and how it is linked to upstream regulation. Medulloblastomas, choroid plexus tumors, pluripotent stem cells, and fetal brain were used as references. A part of the genomic regions, which were hypermethylated in AT/RTs similarly as in pluripotent stem cells and demethylated in the fetal brain, were targeted by neural transcriptional regulators. AT/RT-unique DNA hypermethylation was associated with polycomb repressive complex 2 and linked to suppressed genes with a role in neural development and tumorigenesis. Activity of the several NEUROG/NEUROD pioneer factors, which are unable to bind to methylated DNA, was compromised via the suppressed expression or DNA hypermethylation of their target sites, which was also experimentally validated for NEUROD1 in medulloblastomas and AT/RT samples. These results highlight and characterize the role of DNA hypermethylation in AT/RT malignancy and halted neural cell differentiation.
Collapse
Affiliation(s)
- Meeri Pekkarinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kristiina Nordfors
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Unit of Pediatric Hematology and Oncology, Tampere University Hospital, Tampere, Finland
| | - Joonas Uusi-Mäkelä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ville Kytölä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anja Hartewig
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Minna Rauhala
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Henna Urhonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Sergei Häyrynen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ebrahim Afyounian
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Olli Yli-Harja
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Institute for Systems Biology, Seattle, WA, USA
| | - Wei Zhang
- Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Pauli Helen
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Hannu Haapasalo
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Joonas Haapasalo
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Juha Kesseli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| |
Collapse
|
6
|
Stoltze UK, Foss-Skiftesvik J, Hansen TVO, Rasmussen S, Karczewski KJ, Wadt KAW, Schmiegelow K. The evolutionary impact of childhood cancer on the human gene pool. Nat Commun 2024; 15:1881. [PMID: 38424437 PMCID: PMC10904397 DOI: 10.1038/s41467-024-45975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Germline pathogenic variants associated with increased childhood mortality must be subject to natural selection. Here, we analyze publicly available germline genetic metadata from 4,574 children with cancer [11 studies; 1,083 whole exome sequences (WES), 1,950 whole genome sequences (WGS), and 1,541 gene panel] and 141,456 adults [125,748 WES and 15,708 WGS]. We find that pediatric cancer predisposition syndrome (pCPS) genes [n = 85] are highly constrained, harboring only a quarter of the loss-of-function variants that would be expected. This strong indication of selective pressure on pCPS genes is found across multiple lines of germline genomics data from both pediatric and adult cohorts. For six genes [ELP1, GPR161, VHL and SDHA/B/C], a clear lack of mutational constraint calls the pediatric penetrance and/or severity of associated cancers into question. Conversely, out of 23 known pCPS genes associated with biallelic risk, two [9%, DIS3L2 and MSH2] show significant constraint, indicating that they may monoallelically increase childhood cancer risk. In summary, we show that population genetic data provide empirical evidence that heritable childhood cancer leads to natural selection powerful enough to have significantly impacted the present-day gene pool.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA.
| | - Jon Foss-Skiftesvik
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Neurosurgery, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Karin A W Wadt
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, Copenhagen, The Capital Region, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark.
| |
Collapse
|
7
|
Huhtala L, Karabiyik G, Rautajoki KJ. Development and epigenetic regulation of Atypical teratoid/rhabdoid tumors in the context of cell-of-origin and halted cell differentiation. Neurooncol Adv 2024; 6:vdae162. [PMID: 39465218 PMCID: PMC11502914 DOI: 10.1093/noajnl/vdae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are aggressive brain tumors primarily observed in infants. The only characteristic, recurrent genetic aberration of AT/RTs is biallelic inactivation of SMARCB1 (or SMARCA4). These genes are members of the mSWI/SNF chromatin-remodeling complex, which regulates various developmental processes, including neural differentiation. This review explores AT/RT subgroups regarding their distinct SMARCB1 loss-of-function mechanisms, molecular features, and patient characteristics. Additionally, it addresses the ongoing debate about the oncogenic relevance of cell-of-origin, examining the influence of developmental stage and lineage commitment of the seeding cell on tumor malignancy and other characteristics. Epigenetic dysregulation, particularly through the regulation of histone modifications and DNA hypermethylation, has been shown to play an integral role in AT/RTs' malignancy and differentiation blockage, maintaining cells in a poorly differentiated state via the insufficient activation of differentiation-related genes. Here, the differentiation blockage and its contribution to malignancy are also explored in a cellular context. Understanding these mechanisms and AT/RT heterogeneity is crucial for therapeutic improvements against AT/RTs.
Collapse
Affiliation(s)
- Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Goktug Karabiyik
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
8
|
Clairmont CD, Gell JJ, Lau CC. Pediatric Tumors as Disorders of Development: The Case for In Vitro Modeling Based on Human Stem Cells. Cancer Control 2024; 31:10732748241270564. [PMID: 39118322 PMCID: PMC11311176 DOI: 10.1177/10732748241270564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Despite improvements in patient outcomes, pediatric cancer remains a leading cause of non-accidental death in children. Recent genetic analysis of patients with pediatric cancers indicates an important role for both germline genetic predisposition and cancer-specific somatic driver mutations. Increasingly, evidence demonstrates that the developmental timepoint at which the cancer cell-of-origin transforms is critical to tumor identity and therapeutic response. Therefore, future therapeutic development would be bolstered by the use of disease models that faithfully recapitulate the genetic context, cell-of-origin, and developmental window of vulnerability in pediatric cancers. Human stem cells have the potential to incorporate all of these characteristics into a pediatric cancer model, while serving as a platform for rapid genetic and pharmacological testing. In this review, we describe how human stem cells have been used to model pediatric cancers and how these models compare to other pediatric cancer model modalities.
Collapse
Affiliation(s)
- Cullen D. Clairmont
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joanna J. Gell
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| | - Ching C. Lau
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| |
Collapse
|
9
|
Gastberger K, Fincke VE, Mucha M, Siebert R, Hasselblatt M, Frühwald MC. Current Molecular and Clinical Landscape of ATRT - The Link to Future Therapies. Cancer Manag Res 2023; 15:1369-1393. [PMID: 38089834 PMCID: PMC10712249 DOI: 10.2147/cmar.s379451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
ATRT is a highly aggressive and rare pediatric CNS tumor of very young children. Its genetic hallmark is bi-allelic inactivation of SMARCB1 encoding INI1. Rarely SMARCA4 encoding BRG1 is affected. Up to 30% are associated with constitutional heterozygous pathogenic variants in one of the two genes, giving rise to the Rhabdoid-Tumor-Predisposition-Syndromes (RTPS) 1 and 2. Characteristic DNA methylation profiles distinguish ATRT from other SMARCB1-deficient entities. Three distinct subtypes ATRT-MYC, -TYR, and -SHH are on record. ATRT-SHH may be further divided into the subgroups ATRT-SHH1A, -SHH1B, and -SHH2. The cure of ATRT remains challenging, notwithstanding an increasing understanding of molecular pathomechanisms and genetic background. The implementation of multimodal institutional treatment protocols has improved prognosis. Regardless of treatment approaches, clinical risk factors such as age, metastases, and DNA methylation subtype affect survival probability. We provide a critical appraisal of current conventional multimodal regimens and emerging targeted treatment approaches investigated in clinical trials and entity-specific registries. Intense treatment approaches featuring radiotherapy (RT) and high-dose chemotherapy (HDCT) face the difficulty of balancing tumor control and treatment-related toxicity. Current approaches focus on minimizing radiation fields by proton beam therapy or to withhold RT in HDCT-only approaches. Still, a 40-75% relapse rate upon first-line treatment reveals the need for novel treatment strategies in primary and even more in recurrent/refractory (r/r) disease. Among targeted treatments, immune checkpoint inhibitors and epigenetically active agents appear most promising. Success remains limited in single agent approaches. We hypothesize that mechanism-informed combination therapy will enhance response, as the low mutational burden of ATRT may contribute to acquiring resistance to single targeted agents. As DNA methylation group-specific gene expression profiles appear to influence response to distinct agents, the future treatment of ATRT should respect clinical and biological heterogeneity in risk group adjusted treatment protocols.
Collapse
Affiliation(s)
- Katharina Gastberger
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Victoria E Fincke
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Marlena Mucha
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Michael C Frühwald
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| |
Collapse
|
10
|
du Chatinier A, Velilla IQ, Meel MH, Hoving EW, Hulleman E, Metselaar DS. Microglia in pediatric brain tumors: The missing link to successful immunotherapy. Cell Rep Med 2023; 4:101246. [PMID: 37924816 PMCID: PMC10694606 DOI: 10.1016/j.xcrm.2023.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 09/26/2023] [Indexed: 11/06/2023]
Abstract
Brain tumors are the leading cause of cancer-related mortality in children. Despite the development of immunotherapeutic strategies for adult brain tumors, progress in pediatric neuro-oncology has been hindered by the complex and poorly understood nature of the brain's immune system during early development, a phase that is critical for the onset of many pediatric brain tumors. A defining characteristic of these tumors is the abundance of microglia, the resident immune cells of the central nervous system. In this review, we explore the concept of microglial diversity across brain regions and throughout development and discuss how their maturation stage may contribute to tumor growth in children. We also summarize the current knowledge on the roles of microglia in common pediatric brain tumor entities and provide examples of myeloid-based immunotherapeutic strategies. Our review underscores the importance of microglial plasticity in pediatric brain tumors and its significance for developing effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Aimée du Chatinier
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Irene Querol Velilla
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Michaël Hananja Meel
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Eelco Wieger Hoving
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Esther Hulleman
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Dennis Serge Metselaar
- Department of Neuro-oncology, Princess Máxima Center for Paediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, the Netherlands.
| |
Collapse
|
11
|
Rosen EY, Shukla NN, Glade Bender JL. EZH2 inhibition: it's all about the context. J Natl Cancer Inst 2023; 115:1246-1248. [PMID: 37682251 PMCID: PMC10637027 DOI: 10.1093/jnci/djad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023] Open
Affiliation(s)
- Ezra Y Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia L Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Syed H, Teferi N, Hanson A, Challa M, Eschbacher K, Hitchon P. Clinical diagnostic and radiographic features of primary spinal atypical teratoid rhabdoid tumors tumor in a pediatric patient: A case report and review of the literature. J Cent Nerv Syst Dis 2023; 15:11795735231209199. [PMID: 37876767 PMCID: PMC10591496 DOI: 10.1177/11795735231209199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRTs) are rare embryonal tumors comprising 1-2% of all pediatric CNS neoplasms. Spinal ATRTs are even more uncommon, accounting for 2% of all reported ATRT cases. Despite their rarity, ATRTs affect young children disproportionately and are characterized by a high malignant potential due to a heterogeneous cellular composition and inactivating mutations in the SMARCB1 (90%) and SMARCA4 (10%) genes. A 15-month-old female presented with a 2-week history of decreased lower extremity movement and new-onset need for assistance with ambulation. MRI lumbar spine revealed a contrast-enhancing intradural mass at the L3-L4 level with iso-intensity on T1 and T2 sequences. The patient subsequently underwent subtotal tumor resection (∼80%) given concerns for maintaining neurological function. Final pathology was consistent with spinal ATRT, and she later underwent adjuvant chemoradiation therapy per ACNS0333 protocol. She has since remained in remission with age-appropriate developmental milestones over the past 2 years. ATRTs should be considered in the differential diagnosis of intradural spinal lesions, especially in the pediatric patient population. Clinical course, presentation, and diagnosis is often delayed due to the rarity of these tumors, but contrasted craniospinal MRI is key for diagnosis and histopathology with IHC staining showing loss of INI is confirmatory. While gross total resection is the goal, maximal safe tumor resection should be prioritized in order to preserve neurological function. Adjuvant chemoradiation following gross total/subtotal resection has been shown to significantly improve overall survival.
Collapse
Affiliation(s)
- Hashim Syed
- Department of Neurosurgery, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Nahom Teferi
- Department of Neurosurgery, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Alec Hanson
- University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Meron Challa
- University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Kathryn Eschbacher
- Department of Pathology, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Patrick Hitchon
- Department of Neurosurgery, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| |
Collapse
|
13
|
Lobón-Iglesias MJ, Andrianteranagna M, Han ZY, Chauvin C, Masliah-Planchon J, Manriquez V, Tauziede-Espariat A, Turczynski S, Bouarich-Bourimi R, Frah M, Dufour C, Blauwblomme T, Cardoen L, Pierron G, Maillot L, Guillemot D, Reynaud S, Bourneix C, Pouponnot C, Surdez D, Bohec M, Baulande S, Delattre O, Piaggio E, Ayrault O, Waterfall JJ, Servant N, Beccaria K, Dangouloff-Ros V, Bourdeaut F. Imaging and multi-omics datasets converge to define different neural progenitor origins for ATRT-SHH subgroups. Nat Commun 2023; 14:6669. [PMID: 37863903 PMCID: PMC10589300 DOI: 10.1038/s41467-023-42371-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRT) are divided into MYC, TYR and SHH subgroups, suggesting diverse lineages of origin. Here, we investigate the imaging of human ATRT at diagnosis and the precise anatomic origin of brain tumors in the Rosa26-CreERT2::Smarcb1flox/flox model. This cross-species analysis points to an extra-cerebral origin for MYC tumors. Additionally, we clearly distinguish SHH ATRT emerging from the cerebellar anterior lobe (CAL) from those emerging from the basal ganglia (BG) and intra-ventricular (IV) regions. Molecular characteristics point to the midbrain-hindbrain boundary as the origin of CAL SHH ATRT, and to the ganglionic eminence as the origin of BG/IV SHH ATRT. Single-cell RNA sequencing on SHH ATRT supports these hypotheses. Trajectory analyses suggest that SMARCB1 loss induces a de-differentiation process mediated by repressors of the neuronal program such as REST, ID and the NOTCH pathway.
Collapse
Affiliation(s)
- María-Jesús Lobón-Iglesias
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Mamy Andrianteranagna
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
- INSERM U900, Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, Mines Paris Tech, PSL Research University, Institut Curie Research Center, Paris, France
| | - Zhi-Yan Han
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Céline Chauvin
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Julien Masliah-Planchon
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Valeria Manriquez
- INSERM U932, Immunity and Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | - Arnault Tauziede-Espariat
- Department of Neuropathology, GHU Paris-Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Paris Psychiatry and Neurosciences Institute (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France
| | - Sandrina Turczynski
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Rachida Bouarich-Bourimi
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Magali Frah
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Christelle Dufour
- Department of Children and Adolescents Oncology, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery-AP-HP, Necker Sick Kids Hospital, Université de Paris, Paris, France
| | | | - Gaelle Pierron
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Laetitia Maillot
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Delphine Guillemot
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Stéphanie Reynaud
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Christine Bourneix
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Célio Pouponnot
- CNRS UMR 3347, INSERM U1021, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Didier Surdez
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Mylene Bohec
- Institut Curie, PSL University, Single Cell Initiative, ICGex Next-Generation Sequencing Platform, PSL University, 75005, Paris, France
| | - Sylvain Baulande
- Institut Curie, PSL University, Single Cell Initiative, ICGex Next-Generation Sequencing Platform, PSL University, 75005, Paris, France
| | - Olivier Delattre
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Eliane Piaggio
- INSERM U932, Immunity and Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | - Olivier Ayrault
- CNRS UMR 3347, INSERM U1021, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Joshua J Waterfall
- INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Nicolas Servant
- INSERM U900, Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, Mines Paris Tech, PSL Research University, Institut Curie Research Center, Paris, France
| | - Kevin Beccaria
- Department of Pediatric Neurosurgery-AP-HP, Necker Sick Kids Hospital, Université de Paris, Paris, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Necker Sick Kids Hospital and Paris Cite Universiy INSERM 1299 and UMR 1163, Institut Imagine, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France.
- Department of Pediatric Oncology, SIREDO Oncology Center, Institut Curie Hospital, Paris, and Université de Paris, Paris, France.
| |
Collapse
|
14
|
Zamudio-Coronado KW, Zohdy YM, Maldonado J, Pradilla G, Garzon-Muvdi T. Sellar atypical teratoid/rhabdoid tumor in adults: survival analysis of treatment strategies. Illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 6:CASE23287. [PMID: 37728248 PMCID: PMC10555614 DOI: 10.3171/case23287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/20/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Atypical teratoid/rhabdoid tumor (ATRT) is a rare, highly aggressive central nervous system tumor predominantly found in children. Limited information exists on ATRT in adults, posing challenges in diagnosis and treatment. This study presents the case of an adult patient with ATRT in the sellar region and explores the impact of different treatment regimens on patient survival. OBSERVATIONS A 60-year-old female with an ATRT underwent resection of the tumor, followed by adjuvant chemoradiotherapy. Molecular genetic analysis revealed compound heterozygous SMARCB1 point mutations. Survival analysis was performed on previously published adult ATRT cases, comparing treatment approaches. The cohort's overall median survival was 6 months, with patients receiving combined chemoradiotherapy showing the longest median survival of 23.5 months. Statistical analysis demonstrated a significant difference in survival between patients treated with surgery alone and those receiving surgery followed by chemoradiotherapy (p < 0.001). However, no significant difference was observed between patients treated with surgery alone and those with postoperative radiotherapy (p = 0.105). LESSONS Early initiation of adjuvant chemoradiotherapy following surgery improves survival outcomes in adult patients with ATRT. Because of limited data on standardized treatment protocols for adults with ATRT, further research and larger-scale studies are needed to establish effective treatment guidelines for this population.
Collapse
|
15
|
Tanaka M, Nakamura T. Targeting epigenetic aberrations of sarcoma in CRISPR era. Genes Chromosomes Cancer 2023; 62:510-525. [PMID: 36967299 DOI: 10.1002/gcc.23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sarcomas are rare malignancies that exhibit diverse biological, genetic, morphological, and clinical characteristics. Genetic alterations, such as gene fusions, mutations in transcriptional machinery components, histones, and DNA methylation regulatory molecules, play an essential role in sarcomagenesis. These mutations induce and/or cooperate with specific epigenetic aberrations required for the growth and maintenance of sarcomas. Appropriate mouse models have been developed to clarify the significance of genetic and epigenetic interactions in sarcomas. Studies using the mouse models for human sarcomas have demonstrated major advances in our understanding the developmental processes as well as tumor microenvironment of sarcomas. Recent technological progresses in epigenome editing will not only improve the studies using animal models but also provide a direct clue for epigenetic therapies. In this manuscript, we review important epigenetic aberrations in sarcomas and their representative mouse models, current methods of epigenetic editing using CRISPR/dCas9 systems, and potential applications in sarcoma studies and therapeutics.
Collapse
Affiliation(s)
- Miwa Tanaka
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
16
|
Lanzi C, Arrighetti N, Pasquali S, Cassinelli G. Targeting EZH2 in SMARCB1-deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 2023; 215:115727. [PMID: 37541451 DOI: 10.1016/j.bcp.2023.115727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Soft tissue sarcomas (STSs) are rare mesechymal malignancies characterized by distintive molecular, histological and clinical features. Many STSs are considered as predominatly epigenetic diseases due to underlying chromatin deregulation. Discovery of deregulated functional antagonism between the chromatin remodeling BRG1/BRM-associated (BAFs) and the histone modifying Polycomb repressor complexes (PRCs) has provided novel actionable targets. In epithelioid sarcoma (ES), extracranial, extrarenal malignant rhabdoid tumors (eMRTs) and synovial sarcoma (SS), the total or partial loss of the BAF core subunit SMARCB1, driven by different alterations, is associated with PRC2 deregulation and dependency on its enzymatic subunit, EZH2. In these SMARCB1-deficient STSs, aberrant EZH2 expression and/or activity emerged as a druggable vulnerability. Although preclinical investigation supported EZH2 targeting as a promising therapeutic option, clinical studies demonstrated a variable response to EZH2 inhibitors. Actually, whereas the clinical benefit recorded in ES patients prompted the FDA approval of the EZH2 inhibitor tazemetostat, the modest and sporadic responses observed in eMRT and SS patients highlighted the need to deepen mechanistic as well as pharmacological investigations to improve drug effectiveness. We summarize the current knowledge of different mechanisms driving SMARCB1 deficiency and EZH2 deregulation in ES, eMRT and SS along with preclinical and clinical studies of EZH2-targeting agents. Possible implication of the PRC2- and enzymatic-independent functions of EZH2 and of its homolog, EZH1, in the response to anti-EZH2 agents will be discussed together with combinatorial strategies under investigation to improve the efficacy of EZH2 targeting in these tumors.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
17
|
Fountain DM, Sauka-Spengler T. The SWI/SNF Complex in Neural Crest Cell Development and Disease. Annu Rev Genomics Hum Genet 2023; 24:203-223. [PMID: 37624665 DOI: 10.1146/annurev-genom-011723-082913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
While the neural crest cell population gives rise to an extraordinary array of derivatives, including elements of the craniofacial skeleton, skin pigmentation, and peripheral nervous system, it is today increasingly recognized that Schwann cell precursors are also multipotent. Two mammalian paralogs of the SWI/SNF (switch/sucrose nonfermentable) chromatin-remodeling complexes, BAF (Brg1-associated factors) and PBAF (polybromo-associated BAF), are critical for neural crest specification during normal mammalian development. There is increasing evidence that pathogenic variants in components of the BAF and PBAF complexes play central roles in the pathogenesis of neural crest-derived tumors. Transgenic mouse models demonstrate a temporal window early in development where pathogenic variants in Smarcb1 result in the formation of aggressive, poorly differentiated tumors, such as rhabdoid tumors. By contrast, later in development, homozygous inactivation of Smarcb1 requires additional pathogenic variants in tumor suppressor genes to drive the development of differentiated adult neoplasms derived from the neural crest, which have a comparatively good prognosis in humans.
Collapse
Affiliation(s)
- Daniel M Fountain
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
18
|
Wang X, Sun Y, Zhang DY, Ming GL, Song H. Glioblastoma modeling with 3D organoids: progress and challenges. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad008. [PMID: 38596241 PMCID: PMC10913843 DOI: 10.1093/oons/kvad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Glioblastoma (GBM) is the most aggressive adult primary brain tumor with nearly universal treatment resistance and recurrence. The mainstay of therapy remains maximal safe surgical resection followed by concurrent radiation therapy and temozolomide chemotherapy. Despite intensive investigation, alternative treatment options, such as immunotherapy or targeted molecular therapy, have yielded limited success to achieve long-term remission. This difficulty is partly due to the lack of pre-clinical models that fully recapitulate the intratumoral and intertumoral heterogeneity of GBM and the complex tumor microenvironment. Recently, GBM 3D organoids originating from resected patient tumors, genetic manipulation of induced pluripotent stem cell (iPSC)-derived brain organoids and bio-printing or fusion with non-malignant tissues have emerged as novel culture systems to portray the biology of GBM. Here, we highlight several methodologies for generating GBM organoids and discuss insights gained using such organoid models compared to classic modeling approaches using cell lines and xenografts. We also outline limitations of current GBM 3D organoids, most notably the difficulty retaining the tumor microenvironment, and discuss current efforts for improvements. Finally, we propose potential applications of organoid models for a deeper mechanistic understanding of GBM and therapeutic development.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yusha Sun
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Y Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Paun L, Lavé A, Jannelli G, Egervari K, Janssen I, Schaller K, von Bueren AO, Bartoli A. Pediatric Posterior Fossa ATRT: A Case Report, New Treatment Strategies and Perspectives. Brain Sci 2023; 13:brainsci13050712. [PMID: 37239184 DOI: 10.3390/brainsci13050712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Posterior fossa atypical teratoid rhabdoid tumor (ATRT) is a rare childhood tumor usually associated with a dismal prognosis. Although upfront surgical gross total resection (GTR) has classically been the first line of treatment, new multimodal treatments, including two-stage surgery, are showing promising results in terms of overall survival (OS) and complication rate. We present a case of a 9-month-old child treated with two-staged surgery and chemotherapy. When deemed risky, multimodal treatments, including staged surgeries, can be a safe alternative to reduce surgical mortality and morbidity. At 23 months old, the patient had normal global development and no major impact on quality of life. We, therefore, discuss the most recent advancements from a treatment perspective, including molecular targeting.
Collapse
Affiliation(s)
- Luca Paun
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva Faculty of Medicine, 1205 Geneva, Switzerland
- Department of Neurosurgery, Site Sainte-Anne, Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Université Paris Cité, 75014 Paris, France
| | - Alexandre Lavé
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva Faculty of Medicine, 1205 Geneva, Switzerland
- Department of Neurosurgery, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Gianpaolo Jannelli
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva Faculty of Medicine, 1205 Geneva, Switzerland
- Department of Spine and Spinal Cord Surgery, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, 69002 Lyon, France
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Insa Janssen
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva Faculty of Medicine, 1205 Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva Faculty of Medicine, 1205 Geneva, Switzerland
| | - André O von Bueren
- Department of Pediatrics, Obstetrics and Gynecology, Division of Pediatric Hematology and Oncology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Andrea Bartoli
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
20
|
Wang L, Tang J. SWI/SNF complexes and cancers. Gene 2023; 870:147420. [PMID: 37031881 DOI: 10.1016/j.gene.2023.147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Epigenetics refers to the study of genetic changes that can affect gene expression without altering the underlying DNA sequence, including DNA methylation, histone modification, chromatin remodelling, X chromosome inactivation and non-coding RNA regulation. Of these, DNA methylation, histone modification and chromatin remodelling constitute the three classical modes of epigenetic regulation. These three mechanisms alter gene transcription by adjusting chromatin accessibility, thereby affecting cell and tissue phenotypes in the absence of DNA sequence changes. In the presence of ATP hydrolases, chromatin remodelling alters the structure of chromatin and thus changes the transcription level of DNA-guided RNA. To date, four types of ATP-dependent chromatin remodelling complexes have been identified in humans, namely SWI/SNF, ISWI, INO80 and NURD/MI2/CHD. SWI/SNF mutations are prevalent in a wide variety of cancerous tissues and cancer-derived cell lines as discovered by next-generation sequencing technologies.. SWI/SNF can bind to nucleosomes and use the energy of ATP to disrupt DNA and histone interactions, sliding or ejecting histones, altering nucleosome structure, and changing transcriptional and regulatory mechanisms. Furthermore, mutations in the SWI/SNF complex have been observed in approximately 20% of all cancers. Together, these findings suggest that mutations targeting the SWI/SNF complex may have a positive impact on tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Liyuan Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Oncology and Hematology, Jinan 250000, Shandong Province, China
| | - Jinglong Tang
- Adicon Medical Laboratory Center, Molecular Genetic Diagnosis Center, Pathological Diagnosis Center, Jinan 250014, Shandong Province, China.
| |
Collapse
|
21
|
Duan J, Wang Y. Modeling nervous system tumors with human stem cells and organoids. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:4. [PMID: 36854987 PMCID: PMC9975125 DOI: 10.1186/s13619-022-00150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/05/2022] [Indexed: 03/02/2023]
Abstract
Nervous system cancers are the 10th leading cause of death worldwide, many of which are difficult to diagnose and exhibit varying degrees of treatment resistance. The limitations of existing cancer models, such as patient-derived xenograft (PDX) models and genetically engineered mouse (GEM) models, call for the development of novel preclinical cancer models to more faithfully mimic the patient's cancer and offer additional insights. Recent advances in human stem cell biology, organoid, and genome-editing techniques allow us to model nervous system tumors in three types of next-generation tumor models: cell-of-origin models, tumor organoids, and 3D multicellular coculture models. In this review, we introduced and compared different human stem cell/organoid-derived models, and comprehensively summarized and discussed the recently developed models for various primary tumors in the central and peripheral nervous systems, including glioblastoma (GBM), H3K27M-mutant Diffuse Midline Glioma (DMG) and H3G34R-mutant High-grade Glioma (HGG), Low-grade Glioma (LGG), Neurofibromatosis Type 1 (NF1), Neurofibromatosis Type 2 (NF2), Medulloblastoma (MB), Atypical Teratoid/rhabdoid Tumor (AT/RT), and meningioma. We further compared these models with PDX and GEM models, and discussed the opportunities and challenges of precision nervous cancer modeling with human stem cells and organoids.
Collapse
Affiliation(s)
- Jie Duan
- grid.412901.f0000 0004 1770 1022Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041 China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
22
|
SMARCA4: Current status and future perspectives in non-small-cell lung cancer. Cancer Lett 2023; 554:216022. [PMID: 36450331 DOI: 10.1016/j.canlet.2022.216022] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
SMARCA4, also known as transcription activator, is an ATP-dependent catalytic subunit of SWI/SNF (SWItch/Sucrose NonFermentable) chromatin-remodeling complexes that participates in the regulation of chromatin structure and gene expression by supplying energy. As a tumor suppressor that has aberrant expression in ∼10% of non-small-cell lung cancers (NSCLCs), SMARCA4 possesses many biological functions, including regulating gene expression, differentiation and transcription. Furthermore, NSCLC patients with SMARCA4 alterations have a weak response to conventional chemotherapy and poor prognosis. Therefore, the mechanisms of SMARCA4 in NSCLC development urgently need to be explored to identify novel biomarkers and precise therapeutic strategies for this subtype. This review systematically describes the biological functions of SMARCA4 and its role in NSCLC development, metastasis, functional epigenetics and potential therapeutic approaches for NSCLCs with SMARCA4 alterations. Additionally, this paper explores the relationship and regulatory mechanisms shared by SMARCA4 and its mutually exclusive catalytic subunit SMARCA2. We aim to provide innovative treatment strategies and improve clinical outcomes for NSCLC patients with SMARCA4 alterations.
Collapse
|
23
|
Laurenge A, Huillard E, Bielle F, Idbaih A. Cell of Origin of Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:85-101. [PMID: 36587383 DOI: 10.1007/978-3-031-14732-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A better understanding of cellular and molecular biology of primary central nervous system (CNS) tumors is a critical step toward the design of innovative treatments. In addition to improving knowledge, identification of the cell of origin in tumors allows for sharp and efficient targeting of specific tumor cells promoting and driving oncogenic processes. The World Health Organization identifies approximately 150 primary brain tumor subtypes with various ontogeny and clinical outcomes. Identification of the cell of origin of each tumor type with its lineage and differentiation level is challenging. In the current chapter, we report the suspected cell of origin of various CNS primary tumors including gliomas, glioneuronal tumors, medulloblastoma, meningioma, atypical teratoid rhabdoid tumor, germinomas, and lymphoma. Most of them have been pinpointed through transgenic mouse models and analysis of molecular signatures of tumors. Identification of the cell or cells of origin in primary brain tumors will undoubtedly open new therapeutic avenues, including the reactivation of differentiation programs for therapeutic perspectives.
Collapse
Affiliation(s)
- Alice Laurenge
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, ICM, Service de Neurologie 2-Mazarin, 75013, Paris, France
| | - Emmanuelle Huillard
- INSERM, CNRS, APHP, Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Paris, France
| | - Franck Bielle
- AP-HP, SIRIC CURAMUS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de La Moelle Épinière, ICM, Service de Neuropathologie Escourolle, 75013, Paris, France
| | - Ahmed Idbaih
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau-Paris Brain Institute, ICM, Service de Neurologie 2-Mazarin, 75013, Paris, France.
| |
Collapse
|
24
|
Riedel NC, de Faria FW, Alfert A, Bruder JM, Kerl K. Three-Dimensional Cell Culture Systems in Pediatric and Adult Brain Tumor Precision Medicine. Cancers (Basel) 2022; 14:cancers14235972. [PMID: 36497454 PMCID: PMC9738956 DOI: 10.3390/cancers14235972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Primary brain tumors often possess a high intra- and intertumoral heterogeneity, which fosters insufficient treatment response for high-grade neoplasms, leading to a dismal prognosis. Recent years have seen the emergence of patient-specific three-dimensional in vitro models, including organoids. They can mimic primary parenteral tumors more closely in their histological, transcriptional, and mutational characteristics, thus approximating their intratumoral heterogeneity better. These models have been established for entities including glioblastoma and medulloblastoma. They have proven themselves to be reliable platforms for studying tumor generation, tumor-TME interactions, and prediction of patient-specific responses to establish treatment regimens and new personalized therapeutics. In this review, we outline current 3D cell culture models for adult and pediatric brain tumors, explore their current limitations, and summarize their applications in precision oncology.
Collapse
Affiliation(s)
- Nicole C. Riedel
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Flavia W. de Faria
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Amelie Alfert
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
| | - Jan M. Bruder
- Department for Cell and Developmental Biology, Max Planck Institute for molecular Biomedicine, 48148 Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-83-47742; Fax: +49-251-83-47828
| |
Collapse
|
25
|
Becklin KL, Draper GM, Madden RA, Kluesner MG, Koga T, Huang M, Weiss WA, Spector LG, Largaespada DA, Moriarity BS, Webber BR. Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR J 2022; 5:517-535. [PMID: 35972367 PMCID: PMC9529369 DOI: 10.1089/crispr.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation. This approach circumvents the need to reprogram cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression, and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respective engineering approaches and outline experimental considerations for establishing future models.
Collapse
Affiliation(s)
- Kelsie L. Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Garrett M. Draper
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Rebecca A. Madden
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchell G. Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tomoyuki Koga
- Ludwig Cancer Research San Diego Branch, La Jolla, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Miller Huang
- Department of Pediatrics, University of Southern California, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - William A. Weiss
- Departments of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; and Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Departments of Pediatrics, Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Logan G. Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Cooper GW, Hong AL. SMARCB1-Deficient Cancers: Novel Molecular Insights and Therapeutic Vulnerabilities. Cancers (Basel) 2022; 14:3645. [PMID: 35892904 PMCID: PMC9332782 DOI: 10.3390/cancers14153645] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/27/2022] Open
Abstract
SMARCB1 is a critical component of the BAF complex that is responsible for global chromatin remodeling. Loss of SMARCB1 has been implicated in the initiation of cancers such as malignant rhabdoid tumor (MRT), atypical teratoid rhabdoid tumor (ATRT), and, more recently, renal medullary carcinoma (RMC). These SMARCB1-deficient tumors have remarkably stable genomes, offering unique insights into the epigenetic mechanisms in cancer biology. Given the lack of druggable targets and the high mortality associated with SMARCB1-deficient tumors, a significant research effort has been directed toward understanding the mechanisms of tumor transformation and proliferation. Accumulating evidence suggests that tumorigenicity arises from aberrant enhancer and promoter regulation followed by dysfunctional transcriptional control. In this review, we outline key mechanisms by which loss of SMARCB1 may lead to tumor formation and cover how these mechanisms have been used for the design of targeted therapy.
Collapse
Affiliation(s)
- Garrett W. Cooper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Andrew L. Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Graf M, Interlandi M, Moreno N, Holdhof D, Göbel C, Melcher V, Mertins J, Albert TK, Kastrati D, Alfert A, Holsten T, de Faria F, Meisterernst M, Rossig C, Warmuth-Metz M, Nowak J, Meyer Zu Hörste G, Mayère C, Nef S, Johann P, Frühwald MC, Dugas M, Schüller U, Kerl K. Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors. Nat Commun 2022; 13:1544. [PMID: 35318328 PMCID: PMC8941154 DOI: 10.1038/s41467-022-29152-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/26/2022] [Indexed: 11/30/2022] Open
Abstract
Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease. Rhabdoid tumors (RT) are aggressive paediatric cancers with yet unknown cells of origin. Here, the authors establish genetically engineered mouse models of RT and, using single-cell RNA-seq and epigenomics, identify potential cells of origin for the SHH and MYC subtypes.
Collapse
Affiliation(s)
- Monika Graf
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Marta Interlandi
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.,Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Julius Mertins
- Department of Neurology, Schlosspark-Klinik, 14059, Berlin, Germany.,Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Dennis Kastrati
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Amelie Alfert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Flavia de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.,Department of Pediatric Hematology and Oncology, Children's Hospital of Brasìlia, 70684-831, Brasìlia, Brazil
| | - Michael Meisterernst
- Institute of Molecular Tumor Biology, University of Münster, 48149, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Monika Warmuth-Metz
- Neuroradiological Reference Center, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Nowak
- Neuroradiological Reference Center, University Hospital Würzburg, Würzburg, Germany.,SRH Poliklinik Gera GmbH, Radiological Practice Gotha, Gotha, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Chloe Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211, Geneva, Switzerland
| | - Pascal Johann
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, 86156, Augsburg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, 86156, Augsburg, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany.,Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.,Research Institute Children's Cancer Center, 20251, Hamburg, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
28
|
Guo T, Wei R, Dean D, Hornicek F, Duan Z. SMARCB1 expression is a novel diagnostic and prognostic biomarker for osteosarcoma. Biosci Rep 2022; 42:BSR20212446. [PMID: 34984436 PMCID: PMC8753343 DOI: 10.1042/bsr20212446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Although weak SWI/SNF related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1) expression is a known diagnostic and prognostic biomarker in several malignancies, its expression and clinical significance in osteosarcoma remain unknown. The aim of the present study was to investigate SMARCB1 expression in osteosarcoma and its clinical significance with respect to chemosensitivity and prognosis. METHODS We obtained 114 specimens from 70 osteosarcoma patients to construct a tissue microarray (TMA) and assess SMARCB1 protein expression via immunohistochemistry (IHC). The mRNA expression of SMARCB1 was in-silico analyzed using open-access RNA sequencing (RNA-Seq) and clinicopathological data provided by the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) project. The correlations between SMARCB1 expression and clinical features were statistically analyzed. RESULTS Weak SMARCB1 expression occurred in 70% of the osteosarcoma patient specimens in the TMA, and significantly correlated with poor neoadjuvant response as well as shorter overall and progression-free survival (PFS). In addition, mRNA in-silico analysis confirmed that SMARCB1 expression correlates with chemotherapeutic response and prognosis in osteosarcoma patients. CONCLUSION To our knowledge, the present study is the first to analyze SMARCB1 expression in osteosarcoma. SMARCB1 may serve as a novel diagnostic and prognostic biomarker in osteosarcoma.
Collapse
Affiliation(s)
- Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and The University of Miami Miller School of Medicine. Address: Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, FL 33136, U.S.A
| | - Ran Wei
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and The University of Miami Miller School of Medicine. Address: Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, FL 33136, U.S.A
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Dylan C. Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and The University of Miami Miller School of Medicine. Address: Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, FL 33136, U.S.A
- Department of Orthopaedic Surgery, Keck School of Medicine at University of Southern California (USC), USC Norris Comprehensive Cancer Center, 1441 Eastlake Ave, NTT 3449, Los Angeles, CA 90033, U.S.A
| | - Francis J. Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and The University of Miami Miller School of Medicine. Address: Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, FL 33136, U.S.A
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and The University of Miami Miller School of Medicine. Address: Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, FL 33136, U.S.A
| |
Collapse
|
29
|
Hwang EI, Sayour EJ, Flores CT, Grant G, Wechsler-Reya R, Hoang-Minh LB, Kieran MW, Salcido J, Prins RM, Figg JW, Platten M, Candelario KM, Hale PG, Blatt JE, Governale LS, Okada H, Mitchell DA, Pollack IF. The current landscape of immunotherapy for pediatric brain tumors. NATURE CANCER 2022; 3:11-24. [PMID: 35121998 DOI: 10.1038/s43018-021-00319-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Pediatric central nervous system tumors are the most common solid malignancies in childhood, and aggressive therapy often leads to long-term sequelae in survivors, making these tumors challenging to treat. Immunotherapy has revolutionized prospects for many cancer types in adults, but the intrinsic complexity of treating pediatric patients and the scarcity of clinical studies of children to inform effective approaches have hampered the development of effective immunotherapies in pediatric settings. Here, we review recent advances and ongoing challenges in pediatric brain cancer immunotherapy, as well as considerations for efficient clinical translation of efficacious immunotherapies into pediatric settings.
Collapse
Affiliation(s)
- Eugene I Hwang
- Division of Oncology, Brain Tumor Institute, Children's National Hospital, Washington, DC, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Catherine T Flores
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Gerald Grant
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Robert Wechsler-Reya
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lan B Hoang-Minh
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | | | | | - Robert M Prins
- Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John W Figg
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University and CCU Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Kate M Candelario
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Paul G Hale
- Children's Brain Trust, Coral Springs, FL, USA
| | - Jason E Blatt
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Lance S Governale
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Duane A Mitchell
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Leruste A, Beccaria K, Doz F. CAR-T cells for pediatric brain tumors: Present and future. Bull Cancer 2021; 108:S109-S116. [PMID: 34920793 DOI: 10.1016/j.bulcan.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 10/19/2022]
Abstract
Chimeric Antigen Receptor T (CAR-T) cells are currently approved for B cell malignancies only, in children and adults. Despite a lack of robust evidence to approve such cellular immunotherapy for pediatric solid tumors, there is a growing interest for this approach in the treatment of pediatric brain tumors. Following the identification of tumor antigens as targets, the first clinical trials demonstrated some degree of clinical and biological responses to CAR-T cells for such tumor types. Additionaly, several preclinical studies have recently identified new attractive targets and antigen combination strategies, along with a superior tumor trafficking following locoregional administration. We review here the preclinical and clinical knowledge at the basis of the current clinical development of CAR-T cells for pediatric brain tumors.
Collapse
Affiliation(s)
- Amaury Leruste
- PSL Research University, SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris, France.
| | - Kevin Beccaria
- Université de Paris, AP-HP, Necker Hospital, Department of Pediatric Neurosurgery, 149, rue de Sèvres, 75015 Paris, France
| | - François Doz
- PSL Research University, SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris, France
| |
Collapse
|
31
|
Ding H, Huang Y, Shi J, Wang L, Liu S, Zhao B, Liu Y, Yang J, Chen Z. Attenuated expression of SNF5 facilitates progression of bladder cancer via STAT3 activation. Cancer Cell Int 2021; 21:655. [PMID: 34876150 PMCID: PMC8650342 DOI: 10.1186/s12935-021-02363-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SWI/SNF, a well-known ATP-dependent chromatin-remodeling complex, plays an essential role in several biological processes. SNF5, the core subunit of the SWI/SNF remodeling complex, inactivated in 95% of malignant rhabdoid tumors (MRT), highlighting its significance in tumorigenesis. However, the role of SNF5 in bladder cancer (BC) remains unknown. In this study, we aimed to investigate the function and potential clinical applicability of SNF5 in BC. METHODS Data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Cancer Cell Line Encyclopedia (CCLE) databases were used to evaluate the clinical significance of SNF5 in BC. We performed Gene Set Enrichment Analysis (GSEA) and functional assays to investigate the role of SNF5 in BC. Genomics of Drug Sensitivity in Cancer (GDSC) and drug-susceptibility tests were performed to identify the potential value of SNF5 in the treatment of BC. RESULTS Low SNF5 expression conferred a poor prognosis and was significantly associated with the N-stage in BC. ROC curves indicated that SNF5 could distinguish BC from the normal tissues. In vitro and in vivo functional assays demonstrated that attenuated SNF5 expression could promote cell proliferation and enhance migration by STAT3 activation. We imputed that low SNF5 expression could confer greater resistance against conventional first-line drugs, including cisplatin and gemcitabine in BC. GDSC and drug-resistance assays suggested that low SNF5 expression renders T24 and 5637 cells high sensitivity to EGFR inhibitor gefitinib, and combination of EZH2 inhibitor GSK126 and cisplatin. CONCLUSIONS To the best of our knowledge, the present study, for the first time, showed that low SNF5 expression could promote cell proliferation and migration by activating STAT3 and confer poor prognosis in BC. Importantly, SNF5 expression may be a promising candidate for identifying BC patients who could benefit from EGFR-targeted chemotherapy or cisplatin in combination with EZH2 inhibitor treatment regimens.
Collapse
Affiliation(s)
- Hua Ding
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiazhong Shi
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Liwei Wang
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Unit 32357 of People's Liberation Army, Pujiang, 611630, China
| | - Sha Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Baixiong Zhao
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuting Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Zhiwen Chen
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
32
|
Tessier Cloutier B, Kleinman CL, Foulkes WD. SWI/SNF-deficient undifferentiated malignancies: where to draw the line †. J Pathol 2021; 256:139-142. [PMID: 34767264 DOI: 10.1002/path.5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022]
Abstract
Alterations in chromatin remodelling genes are increasingly recognised as drivers of undifferentiated malignancies. In atypical teratoid/rhabdoid tumours (ATRT) and extracranial rhabdoid tumours (ECRT), inactivation of SMARCB1 underlies >95% of cases. In the remainder, the culprit is another SWI-SNF family member, SMARCA4. By contrast, in small cell carcinoma of the ovary hypercalcemic type (SCCOHT), SMARCA4 deficiency is by far the most common driver mechanism, while SMARCB1 alterations are rarely seen. It is unclear why alterations are so heavily weighted towards one or another subunit based on site alone, but both have become essential markers for the diagnosis and management of these undifferentiated lesions. Core SMARCA4-deficient undifferentiated malignancies share an aggressive clinical course and show an overlapping morphologic phenotype. In their study, Andrianteranagna and colleagues used DNA methylation and gene expression profiling to compare two subsets of SMARCA4-deficient malignancies diagnosed as SCCOHT and ECRT. Their work gives further insight into the subtle molecular spectrum of SMARCA4-deficient tumours, and their distinction from ATRT and ECRT with SMARCB1 inactivation. The characterisation of these molecular features is likely to play an important role in the future as we try to establish a clinically meaningful framework for the diagnosis and management of these lesions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Arakaki AKS, Szulzewsky F, Gilbert MR, Gujral TS, Holland EC. Utilizing preclinical models to develop targeted therapies for rare central nervous system cancers. Neuro Oncol 2021; 23:S4-S15. [PMID: 34725698 PMCID: PMC8561121 DOI: 10.1093/neuonc/noab183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patients with rare central nervous system (CNS) tumors typically have a poor prognosis and limited therapeutic options. Historically, these cancers have been difficult to study due to small number of patients. Recent technological advances have identified molecular drivers of some of these rare cancers which we can now use to generate representative preclinical models of these diseases. In this review, we outline the advantages and disadvantages of different models, emphasizing the utility of various in vitro and ex vivo models for target discovery and mechanistic inquiry and multiple in vivo models for therapeutic validation. We also highlight recent literature on preclinical model generation and screening approaches for ependymomas, histone mutated high-grade gliomas, and atypical teratoid rhabdoid tumors, all of which are rare CNS cancers that have recently established genetic or epigenetic drivers. These preclinical models are critical to advancing targeted therapeutics for these rare CNS cancers that currently rely on conventional treatments.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
34
|
Pediatric brain tumors as a developmental disease. Curr Opin Oncol 2021; 33:608-614. [PMID: 34431811 DOI: 10.1097/cco.0000000000000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Brain tumors are the most frequent solid cancer in the pediatric population. Owing to the rarity of environmental clues about their origin, it is tempting to consider these neoplasms as developmental processes gone awry. Our review will explore the heuristic power of this hypothesis and the influence of these findings on the clinical management. RECENT FINDING A more accurate description of cancer predisposition syndrome has shown their frequent association with developmental abnormalities. Several genes involved in pediatric brain tumor oncogenesis are involved in developmental processes. Modeling of several pediatric brain tumor in cerebral organoids, mimicking embryonal stage of brain development, indicates that early events during brain development create the conditions necessary for their oncogenesis. SUMMARY The onset of multiple brain tumor types early in life suggests a functional relationship between brain development and oncogenesis. A growing body of evidence seems to support the hypothesis that some of the main developmental steps in the brain can be highjacked by the tumors during their initiation. Collaborations between neuroscientists and oncologists should provide room for improvement in the knowledge for these neoplasms.
Collapse
|
35
|
Barbet V, Broutier L. Future Match Making: When Pediatric Oncology Meets Organoid Technology. Front Cell Dev Biol 2021; 9:674219. [PMID: 34327198 PMCID: PMC8315550 DOI: 10.3389/fcell.2021.674219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Unlike adult cancers that frequently result from the accumulation in time of mutational “hits” often linked to lifestyle, childhood cancers are emerging as diseases of dysregulated development through massive epigenetic alterations. The ability to reconstruct these differences in cancer models is therefore crucial for better understanding the uniqueness of pediatric cancer biology. Cancer organoids (i.e., tumoroids) represent a promising approach for creating patient-derived in vitro cancer models that closely recapitulate the overall pathophysiological features of natural tumorigenesis, including intra-tumoral heterogeneity and plasticity. Though largely applied to adult cancers, this technology is scarcely used for childhood cancers, with a notable delay in technological transfer. However, tumoroids could provide an unprecedented tool to unravel the biology of pediatric cancers and improve their therapeutic management. We herein present the current state-of-the-art of a long awaited and much needed matchmaking.
Collapse
Affiliation(s)
- Virginie Barbet
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Laura Broutier
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| |
Collapse
|
36
|
Krug B, Harutyunyan AS, Deshmukh S, Jabado N. Polycomb repressive complex 2 in the driver's seat of childhood and young adult brain tumours. Trends Cell Biol 2021; 31:814-828. [PMID: 34092471 DOI: 10.1016/j.tcb.2021.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Deregulation of the epigenome underlies oncogenesis in numerous primary brain tumours in children and young adults. In this review, we describe how recurrent mutations in isocitrate dehydrogenases or histone 3 variants (oncohistones) in gliomas, expression of the oncohistone mimic enhancer of Zeste homologs inhibiting protein (EZHIP) in a subgroup of ependymoma, and epigenetic alterations in other embryonal tumours promote oncogenicity. We review the proposed mechanisms of cellular transformation, current tumorigenesis models and their link to development. We further stress the narrow developmental windows permissive to their oncogenic potential and how this may stem from converging effects deregulating polycomb repressive complex (PRC)2 function and targets. As altered chromatin states may be reversible, improved understanding of aberrant cancer epigenomes could orient the design of effective therapies.
Collapse
Affiliation(s)
- Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Pediatrics, McGill University, Montreal, QC, Canada; The Research Institute of the McGill University Health Center, Montreal, H4A 3J, Canada.
| |
Collapse
|
37
|
Ho B, Johann PD, Grabovska Y, De Dieu Andrianteranagna MJ, Yao F, Frühwald M, Hasselblatt M, Bourdeaut F, Williamson D, Huang A, Kool M. Molecular subgrouping of atypical teratoid/rhabdoid tumors-a reinvestigation and current consensus. Neuro Oncol 2021; 22:613-624. [PMID: 31889194 PMCID: PMC7229260 DOI: 10.1093/neuonc/noz235] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Atypical teratoid/rhabdoid tumors (ATRTs) are known to exhibit molecular and clinical heterogeneity even though SMARCB1 inactivation is the sole recurrent genetic event present in nearly all cases. Indeed, recent studies demonstrated 3 molecular subgroups of ATRTs that are genetically, epigenetically, and clinically distinct. As these studies included different numbers of tumors, various subgrouping techniques, and naming, an international working group sought to align previous findings and to reach a consensus on nomenclature and clinicopathological significance of ATRT subgroups. Methods We integrated various methods to perform a meta-analysis on published and unpublished DNA methylation and gene expression datasets of ATRTs and associated clinicopathological data. Results In concordance with previous studies, the analyses identified 3 main molecular subgroups of ATRTs, for which a consensus was reached to name them ATRT-TYR, ATRT-SHH, and ATRT-MYC. The ATRT-SHH subgroup exhibited further heterogeneity, segregating further into 2 subtypes associated with a predominant supratentorial (ATRT-SHH-1) or infratentorial (ATRT-SHH-2) location. For each ATRT subgroup we provide an overview of its main molecular and clinical characteristics, including SMARCB1 alterations and pathway activation. Conclusions The introduction of a common classification, characterization, and nomenclature of ATRT subgroups will facilitate future research and serve as a common ground for subgrouping patient samples and ATRT models, which will aid in refining subgroup-based therapies for ATRT patients.
Collapse
Affiliation(s)
- Ben Ho
- Division of Hematology and Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pascal D Johann
- Hopp Children's Cancer Center, Heidelberg, Germany.,Division of Pediatric Neuro-oncology, German Cancer Research Center and German Cancer Research Consortium, Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Yura Grabovska
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Mamy Jean De Dieu Andrianteranagna
- Departments of Genetics and of Oncopediatry and Young Adults, Curie Institute, Paris, France.,INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
| | - Fupan Yao
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael Frühwald
- University Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Franck Bourdeaut
- Departments of Genetics and of Oncopediatry and Young Adults, Curie Institute, Paris, France.,INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Annie Huang
- Division of Hematology and Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcel Kool
- Hopp Children's Cancer Center, Heidelberg, Germany.,Division of Pediatric Neuro-oncology, German Cancer Research Center and German Cancer Research Consortium, Heidelberg, Germany
| |
Collapse
|
38
|
Panwalkar P, Pratt D, Chung C, Dang D, Le P, Martinez D, Bayliss JM, Smith KS, Adam M, Potter S, Northcott PA, Mascarenhas L, Shows J, Pawel B, Margol A, Huang A, Judkins AR, Venneti S. SWI/SNF complex heterogeneity is related to polyphenotypic differentiation, prognosis, and immune response in rhabdoid tumors. Neuro Oncol 2021; 22:785-796. [PMID: 31912158 DOI: 10.1093/neuonc/noaa004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Rhabdoid tumors (RTs) arise within (atypical teratoid/rhabdoid tumor [AT/RT]) or outside the brain (extra [e]CNS-RT) and are driven mainly by inactivation of the SWItch/sucrose nonfermentable (SWI/SNF) complex subunit SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1). A pathognomonic hallmark of RTs is heterogeneous multilineage differentiation, including anomalous neuronal differentiation in some eCNS-RTs. Because remodeling of the SWI/SNF complex regulates differentiation, we hypothesized that SWI/SNF Brahma-associated factors (BAF) and polybromo-associated BAF (PBAF) complex heterogeneity are related to both multilineage differentiation and clinical outcome. METHODS We performed an integrated analysis of SWI/SNF complex alterations in the developing kidney and cerebellum (most common regions of RT origin) in comparison to eCNS-RT (n = 14) and AT/RT (n = 25) tumors. RT samples were interrogated using immunohistochemistry, DNA methylation, and gene expression analyses. RESULTS The SWI/SNF BAF paralogs actin-like protein (ACTL)6A and ACTL6B were expressed in a mutually exclusive manner in the developing cerebellum and kidney. In contrast, a subset of eCNS-RTs lost mutual exclusivity and coexpressed both subunits. These tumors showed aberrant DNA methylation of genes that regulate neuronal and renal development and demonstrated immunohistochemical evidence of neuronal differentiation. In addition, low expression of the PBAF subunit polybromo-1 (PBRM1) identified a group of AT/RTs in younger children with better overall prognosis. PBRM1-low AT/RT and eCNS-RTs showed altered DNA methylation and gene expression in immune-related genes. PBRM1 knockdown resulted in lowering immunosuppressive cytokines, and PBRM1 levels in tumor samples showed an inverse relationship with cluster of differentiation (CD)8 cytotoxic T-cell infiltration. CONCLUSIONS Heterogeneity in SWI/SNF BAF (ACTL6A/ACTL6B) and PBAF (PBRM1) subunits is related to histogenesis, contributes to the immune microenvironment and prognosis in RTs, and may inform opportunities to develop immunotherapies.
Collapse
Affiliation(s)
- Pooja Panwalkar
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Drew Pratt
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chan Chung
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Derek Dang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Le
- Department of Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Martinez
- Department of Pathology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jill M Bayliss
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mike Adam
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Steven Potter
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Leo Mascarenhas
- Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jared Shows
- Department of Pathology, Long Beach Memorial Medical Center/Miller Children's Hospital, Long Beach, California, USA
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Ashley Margol
- Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Annie Huang
- Division of Hematology/Oncology, Department of Pediatrics, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Sriram Venneti
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
Custers L, Khabirova E, Coorens THH, Oliver TRW, Calandrini C, Young MD, Vieira Braga FA, Ellis P, Mamanova L, Segers H, Maat A, Kool M, Hoving EW, van den Heuvel-Eibrink MM, Nicholson J, Straathof K, Hook L, de Krijger RR, Trayers C, Allinson K, Behjati S, Drost J. Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours. Nat Commun 2021; 12:1407. [PMID: 33658498 PMCID: PMC7930245 DOI: 10.1038/s41467-021-21675-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
Malignant rhabdoid tumour (MRT) is an often lethal childhood cancer that, like many paediatric tumours, is thought to arise from aberrant fetal development. The embryonic root and differentiation pathways underpinning MRT are not firmly established. Here, we study the origin of MRT by combining phylogenetic analyses and single-cell mRNA studies in patient-derived organoids. Comparison of somatic mutations shared between cancer and surrounding normal tissues places MRT in a lineage with neural crest-derived Schwann cells. Single-cell mRNA readouts of MRT differentiation, which we examine by reverting the genetic driver mutation underpinning MRT, SMARCB1 loss, suggest that cells are blocked en route to differentiating into mesenchyme. Quantitative transcriptional predictions indicate that combined HDAC and mTOR inhibition mimic MRT differentiation, which we confirm experimentally. Our study defines the developmental block of MRT and reveals potential differentiation therapies.
Collapse
Affiliation(s)
- Lars Custers
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Oncode Institute, 3584CS, Utrecht, the Netherlands
| | | | - Tim H H Coorens
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Thomas R W Oliver
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Camilla Calandrini
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Oncode Institute, 3584CS, Utrecht, the Netherlands
| | - Matthew D Young
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | | | - Peter Ellis
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Heidi Segers
- Department of Pediatric Hemato-Oncology, University Hospital Leuven, Leuven, Belgium
| | - Arie Maat
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
| | | | - James Nicholson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Karin Straathof
- UCL Great Ormond Street Hospital Institute of Child Health Biomedical Research Centre, London, WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Liz Hook
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Department of Pathology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Claire Trayers
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Kieren Allinson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands.
- Oncode Institute, 3584CS, Utrecht, the Netherlands.
| |
Collapse
|
40
|
Custers L, Paassen I, Drost J. In vitro Modeling of Embryonal Tumors. Front Cell Dev Biol 2021; 9:640633. [PMID: 33718380 PMCID: PMC7952537 DOI: 10.3389/fcell.2021.640633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/25/2021] [Indexed: 01/06/2023] Open
Abstract
A subset of pediatric tumors affects very young children and are thought to arise during fetal life. A common theme is that these embryonal tumors hijack developmental programs, causing a block in differentiation and, as a consequence, unrestricted proliferation. Embryonal tumors, therefore typically maintain an embryonic gene signature not found in their differentiated progeny. Still, the processes underpinning malignant transformation remain largely unknown, which is hampering therapeutic innovation. To gain more insight into these processes, in vitro and in vivo research models are indispensable. However, embryonic development is an extremely dynamic process with continuously changing cellular identities, making it challenging to define cells-of-origin. This is crucial for the development of representative models, as targeting the wrong cell or targeting a cell within an incorrect developmental time window can result in completely different phenotypes. Recent innovations in in vitro cell models may provide more versatile platforms to study embryonal tumors in a scalable manner. In this review, we outline different in vitro models that can be explored to study embryonal tumorigenesis and for therapy development.
Collapse
Affiliation(s)
- Lars Custers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Irene Paassen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
41
|
Holdhof D, Johann PD, Spohn M, Bockmayr M, Safaei S, Joshi P, Masliah-Planchon J, Ho B, Andrianteranagna M, Bourdeaut F, Huang A, Kool M, Upadhyaya SA, Bendel AE, Indenbirken D, Foulkes WD, Bush JW, Creytens D, Kordes U, Frühwald MC, Hasselblatt M, Schüller U. Atypical teratoid/rhabdoid tumors (ATRTs) with SMARCA4 mutation are molecularly distinct from SMARCB1-deficient cases. Acta Neuropathol 2021; 141:291-301. [PMID: 33331994 PMCID: PMC7847432 DOI: 10.1007/s00401-020-02250-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Atypical teratoid/rhabdoid tumors (ATRTs) are very aggressive childhood malignancies of the central nervous system. The underlying genetic cause are inactivating bi-allelic mutations in SMARCB1 or (rarely) in SMARCA4. ATRT-SMARCA4 have been associated with a higher frequency of germline mutations, younger age, and an inferior prognosis in comparison to SMARCB1 mutated cases. Based on their DNA methylation profiles and transcriptomics, SMARCB1 mutated ATRTs have been divided into three distinct molecular subgroups: ATRT-TYR, ATRT-SHH, and ATRT-MYC. These subgroups differ in terms of age at diagnosis, tumor location, type of SMARCB1 alterations, and overall survival. ATRT-SMARCA4 are, however, less well understood, and it remains unknown, whether they belong to one of the described ATRT subgroups. Here, we examined 14 ATRT-SMARCA4 by global DNA methylation analyses. We show that they form a separate group segregating from SMARCB1 mutated ATRTs and from other SMARCA4-deficient tumors like small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) or SMARCA4 mutated extra-cranial malignant rhabdoid tumors. In contrast, medulloblastoma (MB) samples with heterozygous SMARCA4 mutations do not group separately, but with established MB subgroups. RNA sequencing of ATRT-SMARCA4 confirmed the clustering results based on DNA methylation profiling and displayed an absence of typical signature genes upregulated in SMARCB1 deleted ATRT. In summary, our results suggest that, in line with previous clinical observations, ATRT-SMARCA4 should be regarded as a distinct molecular subgroup.
Collapse
Affiliation(s)
- Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Pascal D Johann
- Paediatric and Adolescent Medicine, Swabian Childrens' Cancer Center Augsburg, Augsburg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Institute of Pathology, Corporate Member of Freie Universität Berlin, Charité, Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sepehr Safaei
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Piyush Joshi
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Julien Masliah-Planchon
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
| | - Ben Ho
- Division of Hematology and Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Mamy Andrianteranagna
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
- INSERM U900, CBIO-Centre for Computational Biology, MINES ParisTech, PSL Research University, Curie Institute, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
- Departments of Genetics and of Oncopediatry and Young Adults, Curie Institute, Paris, France
| | - Annie Huang
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Santhosh A Upadhyaya
- Department of Oncology, St Jude Children's Research Hospital, Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Anne E Bendel
- Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Daniela Indenbirken
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jonathan W Bush
- Division of Anatomical Pathology, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, BC, Canada
- University of British Columbia, Vancouver, BC, Canada
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael C Frühwald
- Paediatric and Adolescent Medicine, Swabian Childrens' Cancer Center Augsburg, Augsburg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
42
|
Kratz CP, Jongmans MC, Cavé H, Wimmer K, Behjati S, Guerrini-Rousseau L, Milde T, Pajtler KW, Golmard L, Gauthier-Villars M, Jewell R, Duncan C, Maher ER, Brugieres L, Pritchard-Jones K, Bourdeaut F. Predisposition to cancer in children and adolescents. THE LANCET. CHILD & ADOLESCENT HEALTH 2021; 5:142-154. [PMID: 33484663 DOI: 10.1016/s2352-4642(20)30275-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
Childhood malignancies are rarely related to known environmental exposures, and it has become increasingly evident that inherited genetic factors play a substantial causal role. Large-scale sequencing studies have shown that approximately 10% of children with cancer have an underlying cancer predisposition syndrome. The number of recognised cancer predisposition syndromes and cancer predisposition genes are constantly growing. Imaging and laboratory technologies are improving, and knowledge of the range of tumours and risk of malignancy associated with cancer predisposition syndromes is increasing over time. Consequently, surveillance measures need to be constantly adjusted to address these new findings. Management recommendations for individuals with pathogenic germline variants in cancer predisposition genes need to be established through international collaborative studies, addressing issues such as genetic counselling, cancer prevention, cancer surveillance, cancer therapy, psychological support, and social-ethical issues. This Review represents the work by a group of experts from the European Society for Paediatric Oncology (SIOPE) and aims to summarise the current knowledge and define future research needs in this evolving field.
Collapse
Affiliation(s)
- Christian P Kratz
- Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Marjolijn C Jongmans
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Hélène Cavé
- Department of Genetics, Assistance Publique Hôpitaux de Paris-Robert Debre University Hospital, Paris, France; Denis Diderot School of Medicine, University of Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1131, Institut de Recherche Saint Louis, Paris, France
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sam Behjati
- Wellcome Sanger Institute, Cambridge, UK; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Lea Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, Paris, France
| | - Till Milde
- Clinical Cooperation Unit Paediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; KiTZ Clinical Trial Unit, Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Kristian W Pajtler
- Clinical Cooperation Unit Paediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; KiTZ Clinical Trial Unit, Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France
| | - Marion Gauthier-Villars
- Department of Genetics, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK; NIHR Cambridge Biomedical Research Centre and Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, Paris, France
| | - Kathy Pritchard-Jones
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Franck Bourdeaut
- SIREDO Paediatric Cancer Center, Institut Curie, Paris, France; INSERM U830, Laboratory of Translational Research in Paediatric Oncology, Institut Curie, Paris, France; Paris Sciences Lettres Research University, Paris, France.
| |
Collapse
|
43
|
Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Res 2020; 49:102063. [PMID: 33137568 PMCID: PMC7849931 DOI: 10.1016/j.scr.2020.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Conventional cancer cell lines and animal models have been mainstays of cancer research. More recently, human pluripotent stem cells (hPSCs) and hPSC-derived organoid technologies, together with genome engineering approaches, have provided a complementary platform to model cancer progression. Here, we review the application of these technologies in cancer modeling with respect to the cell-of-origin, cancer propagation, and metastasis. We further discuss the benefits and challenges accompanying the use of hPSC models for cancer research and discuss their broad applicability in drug discovery, biomarker identification, decoding molecular mechanisms, and the deconstruction of clonal and intra-tumoral heterogeneity. In summary, hPSC-derived organoids provide powerful models to recapitulate the pathogenic states in cancer and to perform drug discovery.
Collapse
|
44
|
Pasqualini C, Kozaki T, Bruschi M, Nguyen THH, Minard-Colin V, Castel D, Grill J, Ginhoux F. Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron 2020; 108:1025-1044. [PMID: 33065047 DOI: 10.1016/j.neuron.2020.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Despite considerable recent advances in understanding and treating many other cancers, malignant brain tumors remain associated with low survival or severe long-term sequelae. Limited progress, including development of immunotherapies, relates in part to difficulties in accurately reproducing brain microenvironment with current preclinical models. The cellular interactions among resident microglia, recruited tumor-associated macrophages, stromal cells, glial cells, neurons, and cancer cells and how they affect tumor growth or behavior are emerging, yet many questions remain. The role of the blood-brain barrier, extracellular matrix components, and heterogeneity among tumor types and within different regions of a single tumor further complicate the matter. Here, we focus on brain microenvironment features impacted by tumor biology. We also discuss limits of current preclinical models and how complementary models, such as humanized animals and organoids, will allow deeper mechanistic insights on cancer biology, allowing for more efficient testing of therapeutic strategies, including immunotherapy, for brain cancers.
Collapse
Affiliation(s)
- Claudia Pasqualini
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Marco Bruschi
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Thi Hai Hoa Nguyen
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Véronique Minard-Colin
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; INSERM U1015, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - David Castel
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Jacques Grill
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore; Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
45
|
Atypical teratoid rhabdoid tumor: molecular insights and translation to novel therapeutics. J Neurooncol 2020; 150:47-56. [PMID: 33021733 DOI: 10.1007/s11060-020-03639-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Atypical teratoid rhabdoid tumor (ATRT) is a rare, often lethal brain tumor of childhood characterized by a complex epigenetic landscape amongst a simple genetic background. Recent molecular studies have defined key biologic events that contribute to tumorigenesis and molecular subtypes of ATRT. METHODS Seminal studies on ATRT are reviewed with an emphasis on molecular pathogenesis and its relevance to novel therapeutics. RESULTS In this review, we summarize the key clinicopathologic and molecular features of ATRT, completed and ongoing clinical trials and outline the translational potential of novel insights into the molecular pathogenesis of this tumor. CONCLUSIONS SMARCB1 loss is the key genetic event in ATRT pathogenesis that leads to widespread epigenetic dysregulation and loss of lineage-specific enhancers. Current work is defining subtype-specific treatments that target underlying molecular derangements that drive tumorigenesis.
Collapse
|
46
|
Parisian AD, Koga T, Miki S, Johann PD, Kool M, Crawford JR, Furnari FB. SMARCB1 loss interacts with neuronal differentiation state to block maturation and impact cell stability. Genes Dev 2020; 34:1316-1329. [PMID: 32912900 PMCID: PMC7528703 DOI: 10.1101/gad.339978.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/14/2020] [Indexed: 01/23/2023]
Abstract
Atypical teratoid rhabdoid tumors (ATRTs) are challenging pediatric brain cancers that are predominantly associated with inactivation of the gene SMARCB1, a conserved subunit of the chromatin remodeling BAF complex, which has known contributions to developmental processes. To identify potential interactions between SMARCB1 loss and the process of neural development, we introduced an inducible SMARCB1 loss-of-function system into human induced pluripotent stem cells (iPSCs) that were subjected to either directed neuronal differentiation or differentiation into cerebral organoids. Using this system, we identified substantial differences in the downstream effects of SMARCB1 loss depending on differentiation state and identified an interaction between SMARCB1 loss and neural differentiation pressure that causes a resistance to terminal differentiation and a defect in maintenance of a normal cell state. Our results provide insight into how SMARCB1 loss might interact with neural development in the process of ATRT tumorigenesis.
Collapse
Affiliation(s)
- Alison D Parisian
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California 92093, USA
| | - Tomoyuki Koga
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shunichiro Miki
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | - Pascal D Johann
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - John R Crawford
- Department of Neurosciences and Pediatrics, University of California at San Diego, San Diego, California 92093, USA; Rady Children's Hospital at San Diego, San Diego, California 92123, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
- Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
47
|
Oberlick EM, Rees MG, Seashore-Ludlow B, Vazquez F, Nelson GM, Dharia NV, Weir BA, Tsherniak A, Ghandi M, Krill-Burger JM, Meyers RM, Wang X, Montgomery P, Root DE, Bieber JM, Radko S, Cheah JH, Hon CSY, Shamji AF, Clemons PA, Park PJ, Dyer MA, Golub TR, Stegmaier K, Hahn WC, Stewart EA, Schreiber SL, Roberts CWM. Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. Cell Rep 2020; 28:2331-2344.e8. [PMID: 31461650 DOI: 10.1016/j.celrep.2019.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/19/2019] [Accepted: 07/08/2019] [Indexed: 02/09/2023] Open
Abstract
Cancer is often seen as a disease of mutations and chromosomal abnormalities. However, some cancers, including pediatric rhabdoid tumors (RTs), lack recurrent alterations targetable by current drugs and need alternative, informed therapeutic options. To nominate potential targets, we performed a high-throughput small-molecule screen complemented by a genome-scale CRISPR-Cas9 gene-knockout screen in a large number of RT and control cell lines. These approaches converged to reveal several receptor tyrosine kinases (RTKs) as therapeutic targets, with RTK inhibition effective in suppressing RT cell growth in vitro and against a xenograft model in vivo. RT cell lines highly express and activate (phosphorylate) different RTKs, creating dependency without mutation or amplification. Downstream of RTK signaling, we identified PTPN11, encoding the pro-growth signaling protein SHP2, as a shared dependency across all RT cell lines. This study demonstrates that large-scale perturbational screening can uncover vulnerabilities in cancers with "quiet" genomes.
Collapse
Affiliation(s)
- Elaine M Oberlick
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | | | - Brinton Seashore-Ludlow
- Broad Institute, Cambridge, MA 02142, USA; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | - Geoffrey M Nelson
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA; Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | - Xiaofeng Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | - Sandi Radko
- Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Harvard Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Todd R Golub
- Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Boston Children's Hospital, Boston, MA 02115, USA
| | - William C Hahn
- Broad Institute, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stuart L Schreiber
- Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
48
|
Maurange C. Temporal patterning in neural progenitors: from Drosophila development to childhood cancers. Dis Model Mech 2020; 13:dmm044883. [PMID: 32816915 PMCID: PMC7390627 DOI: 10.1242/dmm.044883] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The developing central nervous system (CNS) is particularly prone to malignant transformation, but the underlying mechanisms remain unresolved. However, periods of tumor susceptibility appear to correlate with windows of increased proliferation, which are often observed during embryonic and fetal stages and reflect stereotypical changes in the proliferative properties of neural progenitors. The temporal mechanisms underlying these proliferation patterns are still unclear in mammals. In Drosophila, two decades of work have revealed a network of sequentially expressed transcription factors and RNA-binding proteins that compose a neural progenitor-intrinsic temporal patterning system. Temporal patterning controls both the identity of the post-mitotic progeny of neural progenitors, according to the order in which they arose, and the proliferative properties of neural progenitors along development. In addition, in Drosophila, temporal patterning delineates early windows of cancer susceptibility and is aberrantly regulated in developmental tumors to govern cellular hierarchy as well as the metabolic and proliferative heterogeneity of tumor cells. Whereas recent studies have shown that similar genetic programs unfold during both fetal development and pediatric brain tumors, I discuss, in this Review, how the concept of temporal patterning that was pioneered in Drosophila could help to understand the mechanisms of initiation and progression of CNS tumors in children.
Collapse
Affiliation(s)
- Cédric Maurange
- Aix Marseille University, CNRS, IBDM, Equipe Labellisée LIGUE Contre le Cancer, Marseille 13009, France
| |
Collapse
|
49
|
Human Pluripotent Stem Cell-Derived Tumor Model Uncovers the Embryonic Stem Cell Signature as a Key Driver in Atypical Teratoid/Rhabdoid Tumor. Cell Rep 2020; 26:2608-2621.e6. [PMID: 30840885 DOI: 10.1016/j.celrep.2019.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/25/2018] [Accepted: 02/02/2019] [Indexed: 02/05/2023] Open
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT), which harbors SMARCB1 mutation and exhibits a characteristic histology of rhabdoid cells, has a poor prognosis because of the lack of effective treatments. Here, we establish human SMARCB1-deficient pluripotent stem cells (hPSCs). SMARCB1-deficient hPSC-derived neural progenitor-like cells (NPLCs) efficiently give rise to brain tumors when transplanted into the mouse brain. Notably, activation of an embryonic stem cell (ESC)-like signature confers a rhabdoid histology in SMARCB1-deficient NPLC-derived tumors and causes a poor prognosis. Consistently, we find the activation of the ESC-like gene expression signature and an ESC-like DNA methylation landscape in clinical specimens of AT/RT. Finally, we identify candidate genes that maintain the activation of the ESC-like signature and the growth of AT/RT cells. Collectively, SMARCB1-deficient hPSCs offer the human models for AT/RT, which uncover the role of the activated ESC-like signature in the poor prognosis and unique histology of AT/RT.
Collapse
|
50
|
Wang Y, Hoang L, Ji JX, Huntsman DG. SWI/SNF Complex Mutations in Gynecologic Cancers: Molecular Mechanisms and Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:467-492. [PMID: 31977292 DOI: 10.1146/annurev-pathmechdis-012418-012917] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SWI/SNF (mating type SWItch/Sucrose NonFermentable) chromatin remodeling complexes interact with histones and transcription factors to modulate chromatin structure and control gene expression. These evolutionarily conserved multisubunit protein complexes are involved in regulating many biological functions, such as differentiation and cell proliferation. Genomic studies have revealed frequent mutations of genes encoding multiple subunits of the SWI/SNF complexes in a wide spectrum of cancer types, including gynecologic cancers. These SWI/SNF mutations occur at different stages of tumor development and are restricted to unique histologic types of gynecologic cancers. Thus, SWI/SNF mutations have to function in the appropriate tissue and cell context to promote gynecologic cancer initiation and progression. In this review, we summarize the current knowledge of SWI/SNF mutations in the development of gynecologic cancers to provide insights into both molecular pathogenesis and possible treatment implications for these diseases.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - Jennifer X Ji
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - David G Huntsman
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| |
Collapse
|