1
|
Lin Y, He C, Li Z, Sun Y, Tong L, Chen X, Zeng R, Su Z, Song Y. sly-miR408b Targets a Plastocyanin-Like Protein to Regulate Mycorrhizal Symbiosis in Tomato. PLANT, CELL & ENVIRONMENT 2025; 48:3590-3602. [PMID: 39789691 DOI: 10.1111/pce.15363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation. Overexpression of sly-miR408b compromised mycorrhizal colonisation by Rhizophagus irregularis in tomato (Solanum lycopersicum) roots. A basic blue protein gene (SlBBP) was then identified as the new target gene of miR408b in tomato. The expression of membrane-located SlBBP was induced in a copper-dependent manner. Importantly, the loss function of SlBBP decreased the root mycorrhizal colonisation. Overexpression of SlBBP decreased SOD activity, which may interfere with the process of scavenging excessive reactive oxygen species (ROS). Mutation of RBOH1, which encodes ROS-producing enzymes NADPH oxidases, obviously reduced the arbuscule abundance in the mutant roots. Overall, our results provide evidence that sly-miR408b and its target gene SlBBP regulate mycorrhizal symbiosis in tomato through mediating ROS production.
Collapse
Affiliation(s)
- Yibin Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenling He
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenfang Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Yingying Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Tong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenxia Su
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Zaccaron AZ, Stergiopoulos I. The dynamics of fungal genome organization and its impact on host adaptation and antifungal resistance. J Genet Genomics 2025; 52:628-640. [PMID: 39522682 DOI: 10.1016/j.jgg.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Fungi are a diverse kingdom characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions. In this review, we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance. We examine key features and the heterogeneity of genomes across different fungal species, including but not limited to their chromosome content, DNA composition, distribution and arrangement of their content across chromosomes, and other major traits. We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions. Fungal genomes exhibit large variations in size, gene content, and structural features, such as the abundance of transposable elements (TEs), compartmentalization into gene-rich and TE-rich regions, and the presence or absence of dispensable chromosomes. Genomic structural variations are equally diverse in fungi, ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds, to targeted deletion of effector encoding genes that may promote virulence. Finally, the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicides. Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA; Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA.
| |
Collapse
|
3
|
Zrig A, Alsherif EA, Aloufi AS, Korany SM, Selim S, Almuhayawi MS, Tarabulsi MK, Nhs M, Albasri HM, Bouqellah NA. The biomass and health-enhancing qualities of lettuce are amplified through the inoculation of arbuscular mycorrhizal fungi. BMC PLANT BIOLOGY 2025; 25:521. [PMID: 40275120 PMCID: PMC12020208 DOI: 10.1186/s12870-025-06317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/28/2025] [Indexed: 04/26/2025]
Abstract
With lettuce being one of the most important green crops in the world, it is important to improve its growth and nutritive value. To this end, arbuscular mycorrhizal fungus (AMF) application to improve nutrient-dense foods and the production of bioactive compounds in plants is a promising approach. AMF is applied to increase plant growth, primary metabolism, mineral profile and accumulation of secondary (phenols, flavonoids) metabolites. AMF treated plants showed increased biomass accumulation by 38.8%. This increase was in line with increased levels of photosynthesis rate and the total chlorophyll content by approximately 28.8%, respectively. In nutritive value, AMF increased mineral profile, vitamin contents and carbohydrate as indicated by D-mannose, L-galactose, and vitamin E (p < 0.05) by approximately 32.7%, 25%, and 46.6%, respectively. The AMF-treated lettuce's proximate composition revealed considerably greater levels of total protein (7.8%), as well as crude fiber, ash, and carbohydrates (about 7%) compared to control samples (p < 0.05). Furthermore, AMF inoculation increased levels of antioxidants, essential amino acids, and unsaturated fatty acids. It increased the levels of antioxidants such as alpha and beta carotene, polyphenols, which was correlated with increased phenylalanine ammonia-lyase (PAL) enzyme activity. Treatment with AMF resulted in an increase of more than 76% of the detected amino acids, with the highest increment observed for isoleucine, methionine and biosynthetic enzyme (cystathionine γ-synthase (CGS)), and which were 200%, 270.2%, and 153.5%, respectively. Increased bioactive accumulation also resulted in improved antioxidant and antidiabetic and antibacterial activities against a variety of pathogenic microorganisms. The findings indicate that the AMF treatment is a feasible method for enhancing lettuce's biological characteristics and health-promoting attributes.
Collapse
Affiliation(s)
- Ahlem Zrig
- Chemical Engineering Department, Laboratory of Engineering Processes and Industrial Systems, National School of Engineers of Gabes, University of Gabes, Gabes, 6029, Tunisia.
- Faculty of Sciences of Gabes, University of Gabes, Cité Erriadh, Gabès, 6072, Tunisia.
| | - Emad A Alsherif
- Botany and Microbiology Department, Faculty of Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Muyassar K Tarabulsi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mousa Nhs
- Botany & Microbiology Department, Faculty of science, Assiut University, Assiut, 7151, Egypt
| | - Hibah M Albasri
- Department of Biology, College of Science, Taibah University, Madinah, 42352, Saudi Arabia
| | - Nahla Alsayd Bouqellah
- Department of Biology, College of Science, Taibah University, Madinah, 42352, Saudi Arabia
| |
Collapse
|
4
|
Ogwu MC, Patterson ME, Senchak PA. Phosphorus mining and bioavailability for plant acquisition: environmental sustainability perspectives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:572. [PMID: 40259044 PMCID: PMC12011931 DOI: 10.1007/s10661-025-14012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 04/10/2025] [Indexed: 04/23/2025]
Abstract
This review aims to examine microbial mechanisms for phosphorus (P) solubilization, assess the impacts of P mining and scarcity, and advocate for sustainable recycling strategies to enhance agricultural and environmental resilience. Phosphorus is an indispensable macronutrient for plant growth and agricultural productivity, yet its bioavailability in cultivation systems is often constrained. This scarcity has led to a heavy reliance on fertilizers derived from mined phosphate rock (PR), which is a finite resource usually contaminated with hazardous elements such as uranium, radium, and thorium. Plants absorb only about 10-20% of P from applied fertilizers, leading to significant inefficiencies and negative environmental consequences. Additionally, the uneven geographic distribution of PR reserves exacerbates global socioeconomic and geopolitical vulnerabilities. Healthy soils enriched with diverse microbial communities provide a sustainable avenue to address these growing challenges. Rhizospheric organisms, including phosphorus-solubilizing and phosphorus-mineralizing bacteria and arbuscular mycorrhizal fungi, are capable and pivotal in the sustainable conversion of inorganic and organic P into bioavailable forms, reducing reliance on synthetic fertilizers. The mechanisms used by these microbes often include releasing organic acids to lower soil pH and solubilize insoluble inorganic phosphorus compounds and the production of enzymes, such as phosphatases and phytases, to break down organic phosphorus compounds, including phytates, into bioavailable inorganic phosphate. Some microbes secrete chelating agents, such as siderophores, to bind metal ions and free phosphorus from insoluble complexes and use biofilms for P exchange. This review also advocates for the recycling second-generation P from organic waste as a sustainable and socially equitable alternative to conventional phosphate mining.
Collapse
Affiliation(s)
- Matthew Chidozie Ogwu
- Goodnight Family Department of Sustainable Development, Living Learning Center, Appalachian State University, 212, 305 Bodenheimer Drive, Boone, NC, 28608, USA.
| | - Micaela Elizabeth Patterson
- Department of Geological and Environmental Sciences, Appalachian State University, Rankin Science West, Boone, NC, 28608 - 2067, USA
| | - Pia Angelina Senchak
- Department of Geological and Environmental Sciences, Appalachian State University, Rankin Science West, Boone, NC, 28608 - 2067, USA
| |
Collapse
|
5
|
Khoza T, Masenya A, Khanyile N, Thosago S. Alleviating Plant Density and Salinity Stress in Moringa oleifera Using Arbuscular Mycorrhizal Fungi: A Review. J Fungi (Basel) 2025; 11:328. [PMID: 40278148 PMCID: PMC12028634 DOI: 10.3390/jof11040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Moringa oleifera (LAM) is a multipurpose tree species with extensive pharmacological and ethnomedicinal properties. Production of important medicinal plants is facing decline under changing climatic conditions, which brings along exacerbated abiotic stresses like salinity and intraspecific competition, particularly high planting densities. Increasing plant density is seen as a strategy to increase production; however, the intraspecific competition and a lack of arable land limit productivity. Salinity has been estimated to harm approximately six percent of the Earth's landmass. This leads to a loss of over 20% of agricultural output annually. These stressors can significantly curtail moringa's growth and yield potential. Literature designates that Arbuscular Mycorrhizal Fungi (AMF), ubiquitous soil microorganisms forming symbiotic associations with plant roots, offer a promising avenue for mitigating these stresses. This narrative review aims to investigate the utilization of AMF to alleviate the detrimental effects of salinity and high planting density on Moringa oleifera. The different adaptive strategies M. oleifera undergoes to mitigate both stressors are explored. The review found that AMF inoculation enhances plant tolerance to these stressors by improving nutrient acquisition, water relations, and activating stress response mechanisms. By facilitating improved nutrient and water absorption, AMF enhance root architecture, modulate ROS scavenging mechanisms, and promote optimal biomass allocation, ensuring better survival in high-density plantings. Furthermore, AMF-mediated stress alleviation is linked to enhanced physiological efficiency, including increased chlorophyll content, root-shoot biomass balance, and ion homeostasis. This review is important because it could provide insights into a sustainable, natural solution for improving the resilience of Moringa oleifera under adverse environmental conditions, with potential applications in global agriculture and food security. Future research should prioritize identifying and characterizing moringa-specific AMF species and evaluate the long-term efficacy, feasibility, and economic viability of AMF application in real-world moringa cultivation systems to fully harness the potential of AMF in moringa cultivation.
Collapse
Affiliation(s)
- Tshepiso Khoza
- School of Agriculture, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa; (T.K.)
| | - Absalom Masenya
- School of Agriculture, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa; (T.K.)
| | - Nokuthula Khanyile
- School of Chemical and Physical Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa;
| | - Standford Thosago
- School of Agriculture, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa; (T.K.)
| |
Collapse
|
6
|
Todeschini V, Anastasia F, Nalin EC, Cesaro P, Massa N, Bona E, Sampò S, Berta G, Barbato R, Lingua G. Effects of P nutrition on growth and photosynthetic activity of tomato plants inoculated or not with AM fungi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109923. [PMID: 40258316 DOI: 10.1016/j.plaphy.2025.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Arbuscular mycorrhizal (AM) fungi colonize plant roots, improving mineral nutrition and promoting photosynthesis. Phosphorus (P) has a key role in plant physiology, affecting the photosynthetic process and being involved in sugar/carbon metabolism. The aim of this work was to investigate the effects of the arbuscular mycorrhizal symbiosis and P nutrition on the growth parameters and photosynthetic activity of tomato plants grown in controlled conditions. Plants were maintained in a growth chamber for 50 days and watered three times a week with a Long Ashton nutrient solution at three different P levels (32, 96 and 288 μM, respectively). At harvest, mycorrhizal colonization, biomass production, P and photosynthetic pigment concentrations were measured. Moreover, the photosynthetic efficiency relating to the activity of the two photosystems and the biochemical analysis of proteins extracted from thylakoid membranes were also performed. Results showed that inoculation did not affect growth parameters. AM symbiosis was strongly inhibited at the highest P level. Plant biomass production was positively correlated with increasing level of P. The analysis of chlorophyll fluorescence in inoculated plants highlighted that Y(I), Y(II), ETR(I), ETR(II) varied proportionally to the AM colonization and inversely proportionally to the P supply, whether this effect on NPQ and ETR occurs by a modulation of the xanthophyll cycle, remains to be established.
Collapse
Affiliation(s)
- Valeria Todeschini
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy.
| | - Flavio Anastasia
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Elena Chiara Nalin
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Patrizia Cesaro
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Nadia Massa
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Elisa Bona
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, P.za San Eusebio 5, 13100, Vercelli, Italy
| | - Simonetta Sampò
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, P.za San Eusebio 5, 13100, Vercelli, Italy
| | - Graziella Berta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Roberto Barbato
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, P.za San Eusebio 5, 13100, Vercelli, Italy
| | - Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
7
|
Wang Y, Wei X, Zhan J, Yuan J, Zheng G, Zhou W, He X, Yu F. Both a Growth-Defence Trade-Off and a Leaf N: P Stoichiometric Imbalance Can Account For Ectomycorrhizal Hyphae Inhibited Non-Host Plant Growth. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40235080 DOI: 10.1111/pce.15564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Previous studies indicated that ectomycorrhizal (EM) hyphae can access non-host plant roots and inhibit their growth, with the underlying mechanisms remaining largely unexplored. This study established a tripartite co-culture system consisting of EM fungi supported Quercus Mongolica and non-host plants Arabidopsis thaliana or Setaria italica. Plant growth, nutrient concentrations, transcriptome, microbial communities and fatty acids were determined to comprehensively understand the effects of EM on non-host plants. The results showed that roots of non-host plants were colonised by EM hyphae of Scleroderma, which significantly inhibited non-host growth and decreased their leaf [N], but increased leaf [P] and leaf free fatty acid concentrations. A small amount of 15N was transferred from non-host to Q. mongolica leaves. Foliar N application alleviated EM hyphae inhibited non-host plant growth. Genes associated with plant-pathogen interaction and defence hormone responses were activated, but those involved in photosynthesis and growth hormone responses were suppressed in A. thaliana leaves. Our findings suggest that a growth-defence trade-off, in conjunction with a leaf N: P stoichiometric imbalance, may explain the observed inhibition of non-host plant growth by EM hyphae. This study provides insights into ectomycorrhiza mediated host and non-host plants interaction, which is important for plant community establishment.
Collapse
Affiliation(s)
- Yanliang Wang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xin Wei
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Huairou, China
| | - Jian Zhan
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jing Yuan
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Guixian Zheng
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Wen Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xinhua He
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
Courty PE, Fromentin J, Martine L, Durney C, Martin Desbouis C, Wipf D, Acar N, Gerbeau-Pissot P. The C24-methyl/ethyl sterol ratio is increased by Rhizophagus irregularis colonization. MYCORRHIZA 2025; 35:20. [PMID: 40072696 DOI: 10.1007/s00572-025-01193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Plant-microorganism interactions underlie many ecosystem roles, in particular the enhancement of plant nutrition through mutualistic relationships, such as the arbuscular mycorrhizal symbiosis that affects a large proportion of land plants. The establishment of this interaction induces a wide range of signaling pathways in which lipids, and particularly sterols, may play a central role. However, their supported functions are poorly known. We performed a study on eleven model plants (banana, barrelclover, flax, grapevine, maize, pea, poplar, potato, rice, sorghum and tomato) to measure the sterol content and characterize the sterol composition of roots that were either non-colonized or colonized by the arbuscular mycorrhizal fungal model Rhizophagus irregularis DAOM197198. Our results reveal a systematic increase in the content of C24-methyl sterols in crude extracts of colonized roots as compared to non-colonized roots. In addition, the transcripts of SMT1 and SMT2 (which encode enzymes that produce C24-methyl and C24-ethyl sterols, respectively) were differentially accumulated in colonized plant roots. No common regulation pattern was observed among plants. The phylogenetic relationship of members of the SMT1 and SMT2 families in more than 100 fully sequenced genomes of plants, ferns, mosses, algae and fungi has allowed the identification of unambiguous clades. Our results therefore highlight a conserved arbuscular mycorrhizal symbiosis-dependent regulation of the root sterol composition in angiosperms, with some plant specificities.
Collapse
Affiliation(s)
| | - Jérôme Fromentin
- INRAE, Institut Agro Dijon, Université de Bourgogne, Agroécologie, Dijon, France
| | - Lucy Martine
- Eye & Nutrition Research Group, Centre Des Sciences du Goût Et de L'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université de Bourgogne Europe, 21000, Dijon, France
| | - Célien Durney
- INRAE, Institut Agro Dijon, Université de Bourgogne, Agroécologie, Dijon, France
| | | | - Daniel Wipf
- INRAE, Institut Agro Dijon, Université de Bourgogne, Agroécologie, Dijon, France
| | - Niyazi Acar
- Eye & Nutrition Research Group, Centre Des Sciences du Goût Et de L'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université de Bourgogne Europe, 21000, Dijon, France
| | | |
Collapse
|
9
|
Antunes PM, Stürmer SL, Bever JD, Chagnon PL, Chaudhary VB, Deveautour C, Fahey C, Kokkoris V, Lekberg Y, Powell JR, Aguilar-Trigueros CA, Zhang H. Enhancing consistency in arbuscular mycorrhizal trait-based research to improve predictions of function. MYCORRHIZA 2025; 35:14. [PMID: 40009242 DOI: 10.1007/s00572-025-01187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Arbuscular mycorrhizal (AM) fungi (phylum Glomeromycota) are obligate symbionts with plants influencing plant health, soil a(biotic) processes, and ecosystem functioning. Despite advancements in molecular techniques, understanding the role of AM fungal communities on a(biotic) processes based on AM fungal taxonomy remains challenging. This review advocates for a standardized trait-based framework to elucidate the life-history traits of AM fungi, focusing on their roles in three dimensions: host plants, soil, and AM fungal ecology. We define morphological, physiological, and genetic key traits, explore their functional roles and propose methodologies for their consistent measurement, enabling cross-study comparisons towards improved predictability of ecological function. We aim for this review to lay the groundwork for establishing a baseline of AM fungal trait responses under varying environmental conditions. Furthermore, we emphasize the need to include underrepresented taxa in research and utilize advances in machine learning and microphotography for data standardization.
Collapse
Affiliation(s)
- Pedro M Antunes
- Biology Department, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada.
| | - Sidney L Stürmer
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, SC, 89030-903, Brazil
| | - James D Bever
- Kansas Biological Survey and Center for Ecological Research and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Pierre-Luc Chagnon
- Institut de Recherche en Biologie Vegetale, Universite de Montreal, 4101 Sherbrooke Est, Montreal, QC, H1X2B2, Canada
| | - V Bala Chaudhary
- Department of Environmental Studies, Dartmouth College, Hanover, NH, USA
| | - Coline Deveautour
- Institut Polytechnique UniLaSalle, Unité AGHYLE, Campus Rouen, 76130, Mont-Saint-Aignan, Normandie, France
| | - Catherine Fahey
- Biology Department, Algoma University, Sault Ste. Marie, ON, P6A 2G4, Canada
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Vasilis Kokkoris
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Section Systems Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Ylva Lekberg
- MPG Ranch & Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Haiyang Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| |
Collapse
|
10
|
Mamaeva A, Makeeva A, Ganaeva D. The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:378. [PMID: 39942939 PMCID: PMC11820598 DOI: 10.3390/plants14030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Plant growth and development are inextricably connected with rhizosphere organisms. Plants have to balance between strong defenses against pathogens while modulating their immune responses to recruit beneficial organisms such as bacteria and fungi. In recent years, there has been increasing evidence that regulatory peptides are essential in establishing these symbiotic relationships, orchestrating processes that include nutrient acquisition, root architecture modification, and immune modulation. In this review, we provide a comprehensive summary of the peptide families that facilitate beneficial relationships between plants and rhizosphere organisms.
Collapse
Affiliation(s)
- Anna Mamaeva
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.M.)
| | | | | |
Collapse
|
11
|
Vasistha P, Singh PP, Srivastava D, Johny L, Shukla S. Effector proteins of Funneliformis mosseae BR221: unravelling plant-fungal interactions through reference-based transcriptome analysis, in vitro validation, and protein‒protein docking studies. BMC Genomics 2025; 26:42. [PMID: 39819563 PMCID: PMC11736945 DOI: 10.1186/s12864-024-10918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/17/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi form a highly adaptable and versatile group of fungi found in natural and man-managed ecosystems. Effector secreted by AM fungi influence symbiotic relationship by modifying host cells, suppressing host defense and promoting infection to derive nutrients from the host. Here, we conducted a reference-based transcriptome sequencing of Funneliformis mosseae BR221 to enhance understanding on the molecular machinery involved in the establishment of interaction between host and AM fungi. RESULTS A total of 163 effector proteins were identified in F. mosseae isolate BR221, of these, 79.14% are extracellular effectors and 5.5% are predicted cytoplasmic effectors. In silico prediction using a pathogen-host interaction database suggested four of the 163 effectors could be crucial in establishing AM fungi-host interactions. Protein-protein docking analysis revealed interactions between these potential effectors and plant proteins known to be differentially expressed during mycorrhizal association, such as defensins, aquaporins, and PTO proteins. These interactions are multifaceted in modulating host physiological and defense mechanisms, including immune suppression, hydration, nutrient uptake, and oxidative stress modulation. CONCLUSIONS These findings of the current study provide a foundational understanding of fungal-host molecular interactions and open avenues for exploring pathways influenced by these effectors. By deepening our knowledge of these mechanisms, the use of AM fungi in biofertilizer formulations can be refined by selecting strains with specific effectors that enhance nutrient uptake, improve drought and disease resistance, and tailor the fungi's symbiotic efficiency to different crops or environmental conditions, thus contributing to more targeted and sustainable agricultural practices.
Collapse
Affiliation(s)
- Pratima Vasistha
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Pushplata Prasad Singh
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India.
| | - Divya Srivastava
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Leena Johny
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Sadhana Shukla
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| |
Collapse
|
12
|
Wen Z, Manninen MJ, Asiegbu FO. Beneficial mutualistic fungus Suillus luteus provided excellent buffering insurance in Scots pine defense responses under pathogen challenge at transcriptome level. BMC PLANT BIOLOGY 2025; 25:12. [PMID: 39754034 PMCID: PMC11697944 DOI: 10.1186/s12870-024-06026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Mutualistic mycorrhiza fungi that live in symbiosis with plants facilitates nutrient and water acquisition, improving tree growth and performance. In this study, we evaluated the potential of mutualistic fungal inoculation to improve the growth and disease resistance of Scots pine (Pinus sylvestris L.) against the forest pathogen Heterobasidion annosum. RESULTS In co-inoculation experiment, Scots pine seedlings were pre-inoculated with mutualistic beneficial fungus (Suillus luteus) prior to H. annosum infection. The result revealed that inoculation with beneficial fungus promoted plant root growth. Transcriptome analyses revealed that co-inoculated plants and plants inoculated with beneficial fungus shared some similarities in defense gene responses. However, pathogen infection alone had unique sets of genes encoding pathogenesis-related (PR) proteins, phenylpropanoid pathway/lignin biosynthesis, flavonoid biosynthesis, chalcone/stilbene biosynthesis, ethylene signaling pathway, JA signaling pathway, cell remodeling and growth, transporters, and fungal recognition. On the other hand, beneficial fungus inoculation repressed the expression of PR proteins, and other defense-related genes such as laccases, chalcone/stilbene synthases, terpene synthases, cytochrome P450s. The co-inoculated plants did not equally enhance the induction of PR genes, chalcone/stilbene biosynthesis, however genes related to cell wall growth, water and nutrient transporters, phenylpropanoid/lignin biosynthesis/flavonoid biosynthesis, and hormone signaling were induced. CONCLUSION S. luteus promoted mutualistic interaction by suppressing plant defense responses. Pre-inoculation of Scots pine seedlings with beneficial fungus S. luteus prior to pathogen challenge promoted primary root growth, as well as had a balancing buffering role in plant defense responses and cell growth at transcriptome level.
Collapse
Affiliation(s)
- Zilan Wen
- Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Minna J Manninen
- Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Fred O Asiegbu
- Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland.
| |
Collapse
|
13
|
Wang Z, Zhang S, Liang J, Chen H, Jiang Z, Hu W, Tang M. Rhizophagus irregularis regulates RiCPSI and RiCARI expression to influence plant drought tolerance. PLANT PHYSIOLOGY 2024; 197:kiae645. [PMID: 39657034 DOI: 10.1093/plphys/kiae645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 12/17/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) can transfer inorganic nitrogen (N) from the soil to host plants to cope with drought stress, with arginine synthesis and NH4+ transport being pivotal processes. However, the regulatory mechanism underlying these processes remains unclear. Here, we found that drought stress upregulated expression of genes involved in the N transfer pathway and putrescine and glutathione synthesis in the mycorrhizal structures of Rhizophagus irregularis within alfalfa (Medicago sativa) roots, i.e. carbamoyl phosphate synthase (RiCPSI), arginase (RiCARI), urease (RiURE), ornithine decarboxylase (RiODC), and glutamate-cysteine ligase (RiGCL). Furthermore, we confirmed that RiCPSI is a carbamoyl phosphate synthase. Silencing RiCARI via host-induced gene silencing inhibited arbuscule formation, suppressed putrescine and glutathione synthesis, and altered arginine metabolism within R. irregularis-plant symbiosis, leading to a substantial reduction in the drought tolerance of M. sativa. Conversely, silencing RiCPSI decreased arginine, putrescine, and glutathione synthesis in R. irregularis but did not adversely affect NH4+ transfer from fungi to the host plant and drought tolerance of M. sativa. Interestingly, overexpressing RiCPSI via our host-induced gene overexpressing system enhanced arginine, putrescine, and glutathione synthesis in R. irregularis, reduced arbuscule abundance, and improved drought tolerance of M. sativa. Our findings demonstrate that under drought stress, the nitrogen transfer from AMF to the host plant was improved. This is accompanied by increased arginine, putrescine, and glutathione synthesis within R. irregularis, driven by the upregulation of RiCPSI and RiCARI expression in mycorrhizal structures within the roots. These molecular adjustments collectively contribute to enhanced drought tolerance in R. irregularis-plant symbiosis.
Collapse
Affiliation(s)
- Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Shiqi Zhang
- Department of Biological Sciences, East Stroudsburg University of Pennsylvania, East Stroudsburg, PA 18301, USA
| | - Jingwei Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Yamaguchi T, Kataoka R. Novel endophytic fungus Leptosphaeria sp. strain T-2 improves plant growth and environmental stress tolerance. STRESS BIOLOGY 2024; 4:52. [PMID: 39648188 PMCID: PMC11625703 DOI: 10.1007/s44154-024-00186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/30/2024] [Indexed: 12/10/2024]
Abstract
Drought and salinity stress pose threats to agricultural production in drylands. Although breeding and genetic modification techniques have been employed to develop drought- and salt-tolerant crops, these methods are costly and risky. Hence, the potential application of endophytic fungi in dryland agriculture is being explored as a novel approach in improving plant tolerance to environmental stress. In this study, endophytic fungi with growth-promoting effects were isolated, characterized, and evaluated in terms of their ability to confer drought and stress tolerance to their host plants. Seventy-seven growth-promoting endophytic fungi belonging to 20 genera were isolated from barley roots; of these, strain T-2 elicited remarkable effects on plant growth parameters. Phylogenetic analysis revealed that strain T-2 belongs to genus Leptosphaeria, whose members are generally known as plant pathogens. Thus, Leptosphaeria sp. strain T-2 is a novel endophytic fungus that promotes plant growth. Moreover, it alleviated growth inhibition caused drought and salinity stress, as evidenced by the survival and maintained health of lettuce plants inoculated with strain T-2. The results of this study suggest that strain T-2 can be applied as a biofertilizer to improve agricultural production in drylands.
Collapse
Affiliation(s)
- Taku Yamaguchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, 400-0085, Japan
| | - Ryota Kataoka
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, 400-0085, Japan.
| |
Collapse
|
15
|
Kabir AH, Thapa A, Hasan MR, Parvej MR. Local signal from Trichoderma afroharzianum T22 induces host transcriptome and endophytic microbiome leading to growth promotion in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7107-7126. [PMID: 39110656 DOI: 10.1093/jxb/erae340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/05/2024] [Indexed: 12/11/2024]
Abstract
Trichoderma, a highly abundant soil fungus, may benefit plants, yet it remains understudied in sorghum (Sorghum bicolor). In this study, sorghum plants were grown for 5 weeks in pots of soil with or without inoculation of T. afroharzianum T22. Inoculation with T. afroharzianum T22 significantly increased growth parameters and nutrient levels, demonstrating its beneficial role in sorghum. A split-root assay demonstrated that T. afroharzianum T22 is essential in both compartments of the pot for promoting plant growth, suggesting that local signals from this fungus drive symbiotic benefits in sorghum. RNA-seq analysis revealed that inoculation with T. afroharzianum T22 induced genes responsible for mineral transport (such as nitrate and aquaporin transporters), auxin response, sugar assimilation (hexokinase), and disease resistance (thaumatin) in sorghum roots. Microbial community analysis further unveiled the positive role of T. afroharzianum T22 in enriching Penicillium and Streptomyces while reducing disease-causing Fusarium in the roots. The microbial consortium, consisting of enriched microbiomes from bacterial and fungal communities, showed disrupted morphological features in plants inoculated with T. afroharzianum T22 in the absence of Streptomyces griseus. However, this disruption was not observed in the absence of Penicillium chrysogenum. These results indicate that S. griseus acts as a helper microbe in close association with T. afroharzianum T22 in the sorghum endosphere. This study provides the first comprehensive explanation of how T. afroharzianum T22 modulates host molecular determinants and endophytic helper microbes, thereby collectively promoting sorghum growth. These findings may facilitate the formulation of synthetic microbial inoculants dominated by T. afroharzianum T22 to enhance growth and stress resilience in sorghum and similar crops.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Asha Thapa
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Md Rokibul Hasan
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Md Rasel Parvej
- Scott Research, Extension, and Education Center, School of Plant, Environmental, and Soil Sciences, Louisiana State University, Winnsboro, LA 71295, USA
| |
Collapse
|
16
|
Nie W, He Q, Guo H, Zhang W, Ma L, Li J, Wen D. Arbuscular Mycorrhizal Fungi: Boosting Crop Resilience to Environmental Stresses. Microorganisms 2024; 12:2448. [PMID: 39770651 PMCID: PMC11677594 DOI: 10.3390/microorganisms12122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Amid escalating challenges from global climate change and increasing environmental degradation, agricultural systems worldwide face a multitude of abiotic stresses, including drought, salinity, elevated temperatures, heavy metal pollution, and flooding. These factors critically impair crop productivity and yield. Simultaneously, biotic pressures such as pathogen invasions intensify the vulnerability of agricultural outputs. At the heart of mitigating these challenges, Arbuscular Mycorrhizal Fungi (AM fungi) form a crucial symbiotic relationship with most terrestrial plants, significantly enhancing their stress resilience. AM fungi improve nutrient uptake, particularly that of nitrogen and phosphorus, through their extensive mycelial networks. Additionally, they enhance soil structure, increase water use efficiency, and strengthen antioxidant defense mechanisms, particularly in environments stressed by drought, salinity, extreme temperatures, heavy metal contamination, and flooding. Beyond mitigating abiotic stress, AM fungi bolster plant defenses against pathogens and pests by competing for colonization sites and enhancing plant immune responses. They also facilitate plant adaptation to extreme environmental conditions by altering root morphology, modulating gene expression, and promoting the accumulation of osmotic adjustment compounds. This review discusses the role of AM fungi in enhancing plant growth and performance under environmental stress.
Collapse
Affiliation(s)
- Wenjing Nie
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Qinghai He
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Hongen Guo
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Wenjun Zhang
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lan Ma
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Junlin Li
- Yantai Key Laboratory of Evaluation and Utilization of Silkworm Functional Substances, Yantai Engineering Research Center of Plant Stem Cell Targeted Breeding, Shandong Engineering Research Center of Functional Crop Germplasm Innovation and Cultivation Utilization, Shandong Institute of Sericulture, Yantai 264001, China
| | - Dan Wen
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Fruit Research Institute, Tai’an 271000, China
| |
Collapse
|
17
|
Mishra S, Srivastava A, Singh A, Pandey GC, Srivastava G. An overview of symbiotic and pathogenic interactions at the fungi-plant interface under environmental constraints. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1363460. [PMID: 39524061 PMCID: PMC11544544 DOI: 10.3389/ffunb.2024.1363460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
The complex and dynamic interactions between fungi and plants constitute a critical arena in ecological science. In this comprehensive review paper, we explore the multifaceted relationships at the fungi-plant interface, encompassing both mutualistic and antagonistic interactions, and the environmental factors influencing these associations. Mutualistic associations, notably mycorrhizal relationships, play a pivotal role in enhancing plant health and ecological balance. On the contrary, fungal diseases pose a significant threat to plant health, agriculture, and natural ecosystems, such as rusts, smuts, powdery mildews, downy mildews, and wilts, which can cause extensive damage and lead to substantial economic losses. Environmental constraints encompassing abiotic and biotic factors are elucidated to understand their role in shaping the fungi-plant interface. Temperature, moisture, and soil conditions, along with the presence of other microbes, herbivores, and competing plants, significantly influence the outcome of these interactions. The interplay between mutualism and antagonism is emphasised as a key determinant of ecosystem health and stability. The implications of these interactions extend to overall ecosystem productivity, agriculture, and conservation efforts. The potential applications of this knowledge in bioremediation, biotechnology, and biocontrol strategies emphasise the importance of adapting to climate change. However, challenges and future directions in this field include the impacts of climate change, emerging fungal pathogens, genomic insights, and the role of the fungi-plant interface in restoration ecology. Hence, this review paper provides a comprehensive overview of fungi-plant interactions, their environmental influences, and their applications in agriculture, conservation, and ecological restoration.
Collapse
Affiliation(s)
- Sunishtha Mishra
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Anukriti Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Ajeet Singh
- Department of Botany, Government Adarsh Girls College Sheopur, Madhya Pradesh, India
| | | | - Garima Srivastava
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
18
|
De Rose S, Sillo F, Ghirardo A, Perotto S, Schnitzler JP, Balestrini R. Integration of fungal transcriptomics and metabolomics provides insights into the early interaction between the ORM fungus Tulasnella sp. and the orchid Serapias vomeracea seeds. IMA Fungus 2024; 15:31. [PMID: 39456087 PMCID: PMC11503967 DOI: 10.1186/s43008-024-00165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In nature, germination of orchid seeds and early plant development rely on a symbiotic association with orchid mycorrhizal (ORM) fungi. These fungi provide the host with the necessary nutrients and facilitate the transition from embryos to protocorms. Despite recent advances in omics technologies, our understanding of this symbiosis remains limited, particularly during the initial stages of the interaction. To address this gap, we employed transcriptomics and metabolomics to investigate the early responses occurring in the mycorrhizal fungus Tulasnella sp. isolate SV6 when co-cultivated with orchid seeds of Serapias vomeracea. The integration of data from gene expression and metabolite profiling revealed the activation of some fungal signalling pathways before the establishment of the symbiosis. Prior to seed contact, an indole-related metabolite was produced by the fungus, and significant changes in the fungal lipid profile occurred throughout the symbiotic process. Additionally, the expression of plant cell wall-degrading enzymes (PCWDEs) was observed during the pre-symbiotic stage, as the fungus approached the seeds, along with changes in amino acid metabolism. Thus, the dual-omics approach employed in this study yielded novel insights into the symbiotic relationship between orchids and ORM fungi and suggest that the ORM fungus responds to the presence of the orchid seeds prior to contact.
Collapse
Affiliation(s)
- Silvia De Rose
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135, Turin, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135, Turin, Italy
| | - Andrea Ghirardo
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
19
|
Yan B, Deng T, Shi L. Towards Sustainable Productivity of Greenhouse Vegetable Soils: Limiting Factors and Mitigation Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:2885. [PMID: 39458833 PMCID: PMC11511448 DOI: 10.3390/plants13202885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Greenhouse vegetable production has become increasingly important in meeting the increasing global food demand. Yet, it faces severe challenges in terms of how to maintain soil productivity from a long-term perspective. This review discusses the main soil productivity limiting factors for vegetables grown in greenhouses and identifies strategies that attempt to overcome these limitations. The main processes leading to soil degradation include physical (e.g., compaction), chemical (e.g., salinization, acidification, and nutrient imbalances), and biological factors (e.g., biodiversity reduction and pathogen buildup). These processes are often favored by intensive greenhouse cultivation. Mitigation strategies involve managing soil organic matter and mineral nutrients and adopting crop rotation. Future research should focus on precisely balancing soil nutrient supply with vegetable crop demands throughout their life cycle and using targeted organic amendments to manage specific soil properties. To ensure the successful adoption of recommended strategies, socioeconomic considerations are also necessary. Future empirical research is required to adapt socioeconomic frameworks, such as Science and Technology Backyard 2.0, from cereal production systems to greenhouse vegetable production systems. Addressing these issues will enable the productivity of greenhouse vegetable soils that meet growing vegetable demand to be sustained using limited soil resources.
Collapse
Affiliation(s)
- Bofang Yan
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Liangliang Shi
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| |
Collapse
|
20
|
Najar B, Zrig A, Alsherif EA, Selim S, Aloufi AS, Korany SM, Nhs M, Aldilam M, Bouqellah NA. Synergistic Effect of Arbuscular Mycorrhizal Fungi and Germanium on the Growth, Nutritional Quality, and Health-Promoting Activities of Spinacia oleracea L. PLANTS (BASEL, SWITZERLAND) 2024; 13:2869. [PMID: 39458816 PMCID: PMC11511447 DOI: 10.3390/plants13202869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and the antioxidant germanium (Ge) are promising tools for boosting bioactive compound synthesis and producing healthier foods. However, their combined effect remains unexplored. This study demonstrates the synergistic impact of AMF and Ge on the growth, metabolite accumulation, biological activities, and nutritional qualities of Spinacia oleracea L. (spinach), a globally significant leafy vegetable. Individually, Ge and AMF increased biomass by 68.1% and 22.7%, respectively, while their combined effect led to an 86.3% increase. AMF and Ge also improved proximate composition, with AMF-Ge interaction enhancing crude fiber and mineral content (p < 0.05). Interestingly, AMF enhanced photosynthesis-related parameters (e.g., total chlorophyll) in Ge treated plants, which in turn increased carbohydrate accumulation. This accumulation could provide a route for the biosynthesis of amino acids, organic acids, and fatty acids, as evidenced by increased essential amino acid and organic acid levels. Consistently, the activity of key enzymes involved in amino acids biosynthesis (e.g., glutamine synthase (GS), methionine biosynthase (MS), lysine biosynthase (LS)) showed significant increments. Furthermore, AMF improved fatty acid levels, particularly unsaturated fatty acids in Ge-treated plants compared to the control. In addition, increased phenylalanine provided a precursor for the production of antioxidants (e.g., phenols and flavonoids), through the action of the enzyme phenylalanine ammonia-lyase (PAL), resulting in improved antioxidant activity gains as indicated by FRAP, ABTS, and DPPH assays. This study is the first to show that Ge enhances the beneficial effect of AMF on spinach, improving growth and nutritional quality, with promising implications for agricultural practices.
Collapse
Affiliation(s)
- Basma Najar
- ULB—Faculty of PHARMACY, RD3—Pharmacognosy, Bioanalysis & Drug Discovery Unit & Analytical Platform of the Faculty of Pharmacy Bld Triomphe, Campus Plaine, CP 205/5, B-1050 Brussels, Belgium
- Dipartimento di Farmacia, Università di Pisa, 56126 Pisa, Italy
| | - Ahlem Zrig
- Laboratory of Engineering Processes and Industrial Systems, Chemical Engineering Department, National School of Engineers of Gabes, University of Gabes, Gabes 6029, Tunisia;
- Faculty of Sciences of Gabes, University of Gabes, Omar Ibn Khattab Street, Gabes 6029, Tunisia
| | - Emad A. Alsherif
- Botany and Microbiology Department, Faculty of Sciences, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Shereen Magdy Korany
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; (S.M.K.); (M.N.)
| | - Mousa Nhs
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; (S.M.K.); (M.N.)
| | - Mohammad Aldilam
- Biology Department, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | | |
Collapse
|
21
|
Quintans ILADCR, Vukicevich E, Kokkoris V, Packard E, Adhikary D, Hart MM, Deyholos MK. Gene expression signatures of mutualism and pathogenesis in flax roots. FRONTIERS IN PLANT SCIENCE 2024; 15:1415082. [PMID: 39450082 PMCID: PMC11499196 DOI: 10.3389/fpls.2024.1415082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
Introduction Fusarium wilt, a devastating soil-borne fungal disease in flax (Linum usitatissimum), is caused by Fusarium oxysporum f. sp. lini, a hemibiotrophic plant pathogen that penetrates plant roots. There are several reports of the molecular response of L. usitatissimum to F. oxysporum f. sp. lini; however, comparisons of the effects of mutualistic and pathogenic fungi on plants are more limited. Methods In this study, we have integrated phenotyping and RNA-Seq approaches to examine the response of flax to F. oxysporum f.sp. lini and to a mutualistic arbuscular mycorrhizal fungus (AMF) Rhizoglomus irregulare. R. irregulare is a common soil fungus and also widely used as a commercial inoculant to improve plant growth. We measured flax growth parameters after plant inoculation with each or both fungi, in comparison with non-inoculated control. We performed transcriptome analysis of root tissues collected at 9 and 14 days post-inoculation. Results We identified several differentially expressed genes (DEGs) in response to pathogenic and mutualistic fungi. These included genes related to ethylene and salicylic acid biosynthesis, carbohydrate binding, oxidoreductases, and sugar transmembrane transporters. Genes related to calcium signaling, nutrient transport, lipid metabolism, cell wall, and polysaccharide-modifying were up-regulated by R. irregulare; however, the same genes were down-regulated by F. oxysporum f. sp. lini when treated independently. In the combined treatment, genes related to cell wall modifications, hormone regulation and nutrient uptake were up-regulated. These results suggest that inoculation with R. irregulare reduced gene expression related to F. oxysporum f. sp. lini infection, leading to a reduced response to the pathogen. In response to AMF, flax prioritized mutualism-related gene expression over defense, reversing the growth inhibition caused by F. oxysporum f. sp.lini in the combined treatment. Discussion This research provides insights into the protective effects of AMF, revealing the pre-symbiotic gene expression profile of flax in response to mutualism in comparison with pathogenicity. Potential target genes for crop improvement were identified, especially defense related genes.
Collapse
Affiliation(s)
| | - Eric Vukicevich
- Botany Department, Connecticut College, New London, CT, United States
| | - Vasilis Kokkoris
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Section Systems Ecology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Erica Packard
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dinesh Adhikary
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Miranda M. Hart
- Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Michael K. Deyholos
- Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
22
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
23
|
Ren W, Zhang L, Tondre B, Wang X, Xu T. The rootstock genotype shapes the diversity of pecan ( Carya illinoinensis) rhizosphere microbial community. Front Microbiol 2024; 15:1461685. [PMID: 39421556 PMCID: PMC11484272 DOI: 10.3389/fmicb.2024.1461685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Pecans (Carya illinoinensis), one of the most valuable native North American nut crops, are commonly propagated through grafting to preserve the desired characteristics from parent trees. Since successful cultivation of pecan trees relies on the interplay among scion varieties, rootstocks, and soil conditions, this study investigated the microbial change to communities in the soils and roots of southern (87MX5-1.7) and northern (Peruque) rootstocks in a rootstock test orchard. Both grafted with the 'Pawnee' scion cultivar. Bacterial 16S ribosomal RNA and fungal ITS were amplified from both roots and rhizosphere soils of the two 10-year-grafted trees, then sequenced and annotated into trophic and nutrient-related groups to characterize the rhizosphere microbiota. The Peruque roots had a higher relative abundance of saprotroph fungi, while 87MX5-1.7 exhibited higher levels of symbiotroph fungi and nitrogen fixation-related bacteria. Among them, the presence of symbiotroph fungi, particularly ectomycorrhizal fungi, notably differed between these two rootstocks, with a significantly higher presence observed in the root of 87MX5-1.7 compared to Peruque. This variation likely leads to divergent pathways of nutrient translocation: Peruque was in favor of multiple fungi (Russula and Inocybe) to gain nutrition, while 87MX5-1.7 preferred a specific domain of fungi (Tuber) and nitrogen fixation-related bacteria (Bradyrhizobia) to form beneficial symbiosis. Moreover, the presence of pathogens suggested a potential risk of Fusarium patch and snow molds in 87MX5-1.7, while canker and black foot disease pose threats in Peruque. The findings of this study suggest that rootstocks from different origins shape rhizosphere microbes differently, potentially affecting nutrient uptake and nut yield. Exploring rootstock-microbe combinations could provide insights into optimizing scion growth and ultimately increasing nut yield. By understanding how different rootstock-microbe interactions influence pecan tree development, growers can strategically select combinations that promote beneficial symbiotic relationships, enhancing nutrient uptake, disease resistance, and overall tree vigor.
Collapse
Affiliation(s)
- Wei Ren
- Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, United States
| | - Lu Zhang
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK, United States
| | - Braden Tondre
- USDA-ARS, Southern Plains Agricultural Research Center, Pecan Breeding and Genetics, College Stations, TX, United States
| | - Xinwang Wang
- USDA-ARS, Southern Plains Agricultural Research Center, Pecan Breeding and Genetics, College Stations, TX, United States
| | - Tingying Xu
- Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
24
|
Luo X, Yan G, Wang Q, Xing Y. Community structure, diversity and function of endophytic and soil microorganisms in boreal forest. Front Microbiol 2024; 15:1410901. [PMID: 39417072 PMCID: PMC11480031 DOI: 10.3389/fmicb.2024.1410901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Despite extensive studies on soil microbial community structure and functions, the significance of plant-associated microorganisms, especially endophytes, has been overlooked. To comprehensively anticipate future changes in forest ecosystem function under future climate change scenarios, it is imperative to gain a thorough understanding of the community structure, diversity, and function of both plant-associated microorganisms and soil microorganisms. Methods In our study, we aimed to elucidate the structure, diversity, and function of leaf endophytes, root endophytes, rhizosphere, and soil microbial communities in boreal forest. The microbial structure and composition were determined by high-throughput sequencing. FAPROTAX and FUNGuild were used to analyze the microbial functional groups. Results Our findings revealed significant differences in the community structure and diversity of fungi and bacteria across leaves, roots, rhizosphere, and soil. Notably, we observed that the endophytic fungal or bacterial communities associated with plants comprised many species distinct from those found in the soil microbial communities, challenging the assumption that most of endophytic fungal or bacterial species in plants originate from the soil. Furthermore, our results indicated noteworthy differences in the composition functional groups of bacteria or fungi in leaf endophytes, root endophytes, rhizosphere, and soil, suggesting distinct roles played by microbial communities in plants and soil. Discussion These findings underscore the importance of recognizing the diverse functions performed by microbial communities in both plant and soil environments. In conclusion, our study emphasizes the necessity of a comprehensive understanding of the structure and function microbial communities in both plants and soil for assessing the functions of boreal forest ecosystems.
Collapse
Affiliation(s)
- Xi Luo
- School of Life Sciences, Qufu Normal University, Qufu, China
- Library, Qufu Normal University, Qufu, China
| | - Guoyong Yan
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Qinggui Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Yajuan Xing
- School of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
25
|
Mergaert P, Giraud E. Pathogenic nematodes exploit Achilles' heel of plant symbioses. Trends Parasitol 2024; 40:873-875. [PMID: 39214775 DOI: 10.1016/j.pt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Cyst nematode parasites disrupt beneficial associations of crops with rhizobia and mycorrhiza. Chen et al. discovered the mechanism and demonstrated that the soybean cyst nematode Heterodera glycines secretes a chitinase that destroys key symbiotic signals from the microbial symbionts. The authors further developed a chitinase inhibitor that alleviates symbiosis inhibition.
Collapse
Affiliation(s)
- Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Eric Giraud
- PHIM Plant Health Institute of Montpellier, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
26
|
Oliveira MCO, Alves A, Fidalgo C, de Freitas JGR, Pinheiro de Carvalho MAA. Variations in the structure and function of the soil fungal communities in the traditional cropping systems from Madeira Island. Front Microbiol 2024; 15:1426957. [PMID: 39411432 PMCID: PMC11473422 DOI: 10.3389/fmicb.2024.1426957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Agricultural soils are responsible for ecological functions and services that include primary production of food, fiber and fuel, nutrient cycling, carbon cycling and storage, water infiltration and purification, among others. Fungi are important drivers of most of those ecosystem services. Given the importance of fungi in agricultural soils, in this study, we aimed to characterize and analyse the changes of the soil fungal communities of three cropping systems from Madeira Island, where family farming is predominant, and investigate the response of fungi and its functional groups to soil physicochemical properties. To achieve that, we sequenced amplicons targeting the internal transcribed spacer 1 (ITS1) of the rRNA region, to analyse soil samples from 18 agrosystems: 6 vineyards (V), 6 banana plantations (B) and 6 vegetable plantations (H). Our results showed that alpha diversity indices of fungal communities are similar in the three cropping systems, but fungal composition and functional aspects varied among them, with more pronounced differences in B. Ascomycota, Basidiomycota, and Mortierellomycota were the main phyla found in the three cropping systems. Agaricomycetes and Sordariomycetes are the predominant classes in B, representing 23.8 and 22.4%, respectively, while Sordariomycetes (27.9%) followed by Eurotiomycetes (12.3%) were the predominant classes in V and Sordariomycetes (39.2%) followed by Tremellomycetes (8.9%) in the H. Saprotrophs are the fungal group showing higher relative abundance in the three cropping systems, followed by plant pathogens. Regarding symbionts, endophytes were highly observed in B, while mycorrhizal fungi was predominant in V and H. The structure of fungal communities was mainly correlated with soil content of P, K, N, Fe, and Cu. In addition, we identified bioindicators for each cropping system, which means that cultivated crops are also drivers of functional groups and the composition of communities. Overall, the three cropping systems favored diversity and growth of taxa that play important roles in soil, which highlights the importance of conservative management practices to maintain a healthy and resilient agrosystem.
Collapse
Affiliation(s)
- Maria Cristina O. Oliveira
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
- ARDITI, Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação, Caminho da Penteada, Funchal, Portugal
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Artur Alves
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Cátia Fidalgo
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - José G. R. de Freitas
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
| | - Miguel A. A. Pinheiro de Carvalho
- ISOPlexis Centre of Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, Funchal, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
27
|
Prakash P, Jiang X, Richards L, Schofield Z, Schäfer P, Polin M, Soyer OS, Asally M. Emergence of synchronized growth oscillations in filamentous fungi. J R Soc Interface 2024; 21:20240574. [PMID: 39471871 PMCID: PMC11521610 DOI: 10.1098/rsif.2024.0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
Many species of soil fungi grow in the form of branched networks that enable long-range communication and mass flow of nutrient. These networks play important roles in the soil ecosystem as a major decomposer of organic materials. While there have been investigations on the branching of the fungal networks, their long-term growth dynamics in space and time is still not very well understood. In this study, we monitor the spatio-temporal growth dynamics of the plant-promoting filamentous fungus Serendipita indica for several days in a controlled environment within a microfluidic chamber. We find that S. indica cells display synchronized growth oscillations with the onset of sporulation and at a period of 3 h. Quantifying this experimental synchronization of oscillatory dynamics, we show that the synchronization can be recapitulated by the nearest neighbour Kuramoto model with a millimetre-scale cell-cell coupling. The microfluidic set-up presented in this work may aid the future characterization of the molecular mechanisms of the cell-cell communication, which could lead to biophysical approaches for controlling fungi growth and reproductive sporulation in soil and plant health management.
Collapse
Affiliation(s)
- Praneet Prakash
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Xue Jiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Luke Richards
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Zoe Schofield
- School of Life Sciences, University of Warwick, Coventry, UK
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Phytopathology, Justus Liebig University, Giessen, Germany
| | - Marco Polin
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA UIB-CSIC, Esporles, Spain
- Department of Physics, University of Warwick, Coventry, UK
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
28
|
Stange P, Kersting J, Sivaprakasam Padmanaban PB, Schnitzler JP, Rosenkranz M, Karl T, Benz JP. The decision for or against mycoparasitic attack by Trichoderma spp. is taken already at a distance in a prey-specific manner and benefits plant-beneficial interactions. Fungal Biol Biotechnol 2024; 11:14. [PMID: 39252125 PMCID: PMC11384713 DOI: 10.1186/s40694-024-00183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The application of plant-beneficial microorganisms as bio-fertilizer and biocontrol agents has gained traction in recent years, as both agriculture and forestry are facing the challenges of poor soils and climate change. Trichoderma spp. are gaining popularity in agriculture and forestry due to their multifaceted roles in promoting plant growth through e.g. nutrient translocation, hormone production, induction of plant systemic resistance, but also direct antagonism of other fungi. However, the mycotrophic nature of the genus bears the risk of possible interference with other native plant-beneficial fungi, such as ectomycorrhiza, in the rhizosphere. Such interference could yield unpredictable consequences for the host plants of these ecosystems. So far, it remains unclear, whether Trichoderma is able to differentiate between plant-beneficial and plant-pathogenic fungi during the process of plant colonization. RESULTS We investigated whether Trichoderma spp. can differentiate between beneficial ectomycorrhizal fungi (represented by Laccaria bicolor and Hebeloma cylindrosporum) and pathogenic fungi (represented by Fusarium graminearum and Alternaria alternata) in different confrontation scenarios, including a newly developed olfactometer "race tube"-like system. Using two independent species, T. harzianum and T. atrobrunneum, with plant-growth-promoting and immune-stimulating properties towards Populus x canescens, our study revealed robustly accelerated growth towards phytopathogens, while showing a contrary response to ectomycorrhizal fungi. Transcriptomic analyses identified distinct genetic programs during interaction corresponding to the lifestyles, emphasizing the expression of mycoparasitism-related genes only in the presence of phytopathogens. CONCLUSION The findings reveal a critical mode of fungal community interactions belowground and suggest that Trichoderma spp. can distinguish between fungal partners of different lifestyles already at a distance. This sheds light on the entangled interactions of fungi in the rhizosphere and emphasizes the potential benefits of using Trichoderma spp. as a biocontrol agent and bio-fertilizer in tree plantations.
Collapse
Affiliation(s)
- Pia Stange
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Kersting
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | | | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Helmholtz Munich, Neuherberg, Germany
- Institute of Plant Sciences, Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| | - Tanja Karl
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
29
|
Luo C, Bashir NH, Li Z, Liu C, Shi Y, Chu H. Plant microRNAs regulate the defense response against pathogens. Front Microbiol 2024; 15:1434798. [PMID: 39282567 PMCID: PMC11392801 DOI: 10.3389/fmicb.2024.1434798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, typically 20-25 nucleotides in length, that play a crucial role in regulating gene expression post-transcriptionally. They are involved in various biological processes such as plant growth, development, stress response, and hormone signaling pathways. Plants interact with microbes through multiple mechanisms, including mutually beneficial symbiotic relationships and complex defense strategies against pathogen invasions. These defense strategies encompass physical barriers, biochemical defenses, signal recognition and transduction, as well as systemic acquired resistance. MiRNAs play a central role in regulating the plant's innate immune response, activating or suppressing the transcription of specific genes that are directly involved in the plant's defense mechanisms against pathogens. Notably, miRNAs respond to pathogen attacks by modulating the balance of plant hormones such as salicylic acid, jasmonic acid, and ethylene, which are key in activating plant defense mechanisms. Moreover, miRNAs can cross boundaries into fungal and bacterial cells, performing cross-kingdom RNA silencing that enhances the plant's disease resistance. Despite the complex and diverse roles of miRNAs in plant defense, further research into their function in plant-pathogen interactions is essential. This review summarizes the critical role of miRNAs in plant defense against pathogens, which is crucial for elucidating how miRNAs control plant defense mechanisms.
Collapse
Affiliation(s)
- Changxin Luo
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Nawaz Haider Bashir
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Zhumei Li
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Chao Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Yumei Shi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Honglong Chu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| |
Collapse
|
30
|
González-Mancilla A, Almaraz-Suárez JJ, Ferrera-Cerrato R, Rodríguez-Guzmán MDP, Taboada-Gaytán OR. Photosynthetic activity and growth of poblano pepper biofertilized with plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100269. [PMID: 39545204 PMCID: PMC11562540 DOI: 10.1016/j.crmicr.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
The rhizosphere of plants are natural hosts for beneficial microorganisms such as plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). The objective of this work was to determine the effect of a consortium of AMF and three strains of PGPR on growth, gas exchange and phosphorus content in poblano pepper plants. An experiment was established in a completely randomized design with factorial arrangement, with two factors: AMF [Funneliformis geosporum and Claroideoglomus sp. (AM) and without AM (WM)] and PGPR [Rhizobium nepotum (B1), Serratia plymuthica (B2), Pseudomonas tolaasii (B3) and without PGPR (WB)]; generating eight treatments: T1) AM+B1, T2) AM+B2, T3) AM+B3, T4) AM+WB, T5) WM+B1, T6) WM+B2, T7) WM+B3 and T8) WM+WB. Plant height, number of leaves, leaf area, number of flowers, dry biomass, phosphorus content and AMF colonization were measured; internal CO2 concentration (Ci), transpiration rate (E), stomatal conductance (gS) and photosynthesis rate (Pn) were determined in leaves. Co-inoculation with AM+B3 promoted greater height (35%), number of leaves (66%), leaf area (62%), dry biomass (140%), phosphorus content (195%) and mycorrhizal colonization (26%); AM+B2 improved Ci (5%), E (8%), gS (5%) and Pn (9%) in poblano pepper leaves, compared to the control treatment (WM+WB). Biofertilization with AMF and PGPR improved gas exchange and growth of poblano pepper.
Collapse
Affiliation(s)
- Apolinar González-Mancilla
- Colegio de Postgraduados-Campus Montecillo, Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, CP 56230, Mexico
- Facultad de Agricultura y Zootecnia, Universidad Juárez del Estado de Durango, Carretera Gómez Palacio-Tlahualilo km 28, Ejido Venecia, Gómez Palacio, Durango, Mexico, CP 35111
| | - Juan José Almaraz-Suárez
- Colegio de Postgraduados-Campus Montecillo, Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, CP 56230, Mexico
| | - Ronald Ferrera-Cerrato
- Colegio de Postgraduados-Campus Montecillo, Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, CP 56230, Mexico
| | - María del Pilar Rodríguez-Guzmán
- Colegio de Postgraduados-Campus Montecillo, Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, CP 56230, Mexico
| | - Oswaldo Rey Taboada-Gaytán
- Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla núm, 205. Santiago Momoxpan, San Pedro Cholula, Puebla, Mexico, CP 72760
| |
Collapse
|
31
|
Somoza SC, Bonfante P, Giovannetti M. Breaking barriers: improving time and space resolution of arbuscular mycorrhizal symbiosis with single-cell sequencing approaches. Biol Direct 2024; 19:67. [PMID: 39154166 PMCID: PMC11330620 DOI: 10.1186/s13062-024-00501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 08/19/2024] Open
Abstract
The cell and molecular bases of arbuscular mycorrhizal (AM) symbiosis, a crucial plant-fungal interaction for nutrient acquisition, have been extensively investigated by coupling traditional RNA sequencing techniques of roots sampled in bulk, with methods to capture subsets of cells such as laser microdissection. These approaches have revealed central regulators of this complex relationship, yet the requisite level of detail to effectively untangle the intricacies of temporal and spatial development remains elusive.The recent adoption of single-cell RNA sequencing (scRNA-seq) techniques in plant research is revolutionizing our ability to dissect the intricate transcriptional profiles of plant-microbe interactions, offering unparalleled insights into the diversity and dynamics of individual cells during symbiosis. The isolation of plant cells is particularly challenging due to the presence of cell walls, leading plant researchers to widely adopt nuclei isolation methods. Despite the increased resolution that single-cell analyses offer, it also comes at the cost of spatial perspective, hence, it is necessary the integration of these approaches with spatial transcriptomics to obtain a comprehensive overview.To date, few single-cell studies on plant-microbe interactions have been published, most of which provide high-resolution cell atlases that will become crucial for fully deciphering symbiotic interactions and addressing future questions. In AM symbiosis research, key processes such as the mutual recognition of partners during arbuscule development within cortical cells, or arbuscule senescence and degeneration, remain poorly understood, and these advancements are expected to shed light on these processes and contribute to a deeper understanding of this plant-fungal interaction.
Collapse
Affiliation(s)
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Marco Giovannetti
- Department of Biology, University of Padova, Padova, 35131, Italy.
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy.
| |
Collapse
|
32
|
Yadav R, Ramakrishna W. MicroRNAs Involved in Nutritional Regulation During Plant-Microbe Symbiotic and Pathogenic Interactions with Rice as a Model. Mol Biotechnol 2024; 66:1754-1771. [PMID: 37468736 DOI: 10.1007/s12033-023-00822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Plants are constantly challenged with numerous adverse environmental conditions, including biotic and abiotic stresses. Coordinated regulation of plant responses requires crosstalk between regulatory pathways initiated by different external cues. Stress induced by excessiveness or deficiency of nutrients has been shown to positively or negatively interact with pathogen-induced immune responses. Also, colonization by arbuscular mycorrhizal (AM) fungi can improve plant nutrition, mainly phosphorus and resistance to pathogen infection. The proposed review addresses these issues about a new question that integrates adaptation to nutrient stress and disease resistance. The main goal of the current review is to provide insights into the interconnected regulation between nutrient signaling and immune signaling pathways in rice, focusing on phosphate, potassium and iron signaling. The underpinnings of plant/pathogen/AM fungus interaction concerning rice/M. oryzae/R. irregularis is highlighted. The role of microRNAs (miRNAs) involved in Pi (miR399, miR827) and Fe (miR7695) homeostasis in pathogenic/symbiotic interactions in rice is discussed. The intracellular dynamics of membrane proteins that function in nutrient transport transgenic rice lines expressing fluorescent protein fusion genes are outlined. Integrating functional genomic, nutritional and metal content, molecular and cell biology approaches to understand how disease resistance is regulated by nutrient status leading to novel concepts in fundamental processes underlying plant disease resistance will help to devise novel strategies for crop protection with less input of pesticides and fertilizers.
Collapse
Affiliation(s)
- Radheshyam Yadav
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Bathinda, Punjab, India
| | - Wusirika Ramakrishna
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
33
|
Griffin C, Oz MT, Demirer GS. Engineering plant-microbe communication for plant nutrient use efficiency. Curr Opin Biotechnol 2024; 88:103150. [PMID: 38810302 DOI: 10.1016/j.copbio.2024.103150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Nutrient availability and efficient use are critical for crop productivity. Current agricultural practices rely on excessive chemical fertilizers, contributing to greenhouse gas emissions and environmental pollution. Rhizosphere microbes facilitate plant nutrient acquisition and contribute to nutrient use efficiency. Thus, engineering plant-microbe communication within the rhizosphere emerges as a promising and sustainable strategy to enhance agricultural productivity. Recent advances in plant engineering have enabled the development of plants capable of selectively enriching beneficial microbes through root exudates. At the same time, synthetic biology techniques have produced microbes capable of improving nutrient availability and uptake by plants. By engineering plant-microbe communication, researchers aim to harness beneficial soil microbes, thereby offering a targeted and efficient approach to optimizing plant nutrient use efficiency.
Collapse
Affiliation(s)
- Catherine Griffin
- Department of Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - M Tufan Oz
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
34
|
Ding Y, Wang T, Gasciolli V, Reyt G, Remblière C, Marcel F, François T, Bendahmane A, He G, Bono JJ, Lefebvre B. The LysM Receptor-Like Kinase SlLYK10 Controls Lipochitooligosaccharide Signaling in Inner Cell Layers of Tomato Roots. PLANT & CELL PHYSIOLOGY 2024; 65:1149-1159. [PMID: 38581668 DOI: 10.1093/pcp/pcae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Establishment of arbuscular mycorrhiza relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short-chain chitooligosaccharides and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF); however, its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization and carry mutations in LysM1 and 2, respectively, have similar LCO-binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter [genetically encoded Ca2+ indicators (GECO)], showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short-chain chitooligosaccharides also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+ spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.
Collapse
Affiliation(s)
- Yi Ding
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Tongming Wang
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Virginie Gasciolli
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Guilhem Reyt
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Céline Remblière
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Fabien Marcel
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Gif sur Yvette 91190, France
| | - Tracy François
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Gif sur Yvette 91190, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, Gif sur Yvette 91190, France
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jean Jacques Bono
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Benoit Lefebvre
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| |
Collapse
|
35
|
Owiny AA, Dusengemungu L. Mycorrhizae in mine wasteland reclamation. Heliyon 2024; 10:e33141. [PMID: 39035525 PMCID: PMC11259807 DOI: 10.1016/j.heliyon.2024.e33141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Mycorrhizae are found on about 70-80 % of the roots of all plant species; ectomycorrhizae (ECM) are mostly found on woody plants and gymnosperms, whereas arbuscular mycorrhizal fungi (AMF) are found on 80-90 % of all plant species. In abandoned mining sites, woody plants dominate, while non-woody species remain scarce. However, this pattern depends on the specific mine site and its ecological context. This review article explores the potential of using mycorrhizae-plant associations to enhance and facilitate the remediation of mine wastelands and metal-polluted sites. In this review, we employed reputable databases to collect articles and relevant information on mycorrhizae and their role in plant growth and soil fertility spanning from the 1990s up to 2024. Our review found that the abilities of plants selected for minewasteland reclamation can be harnessed effectively if their mycorrhizae utilization is known and considered. Our findings indicate that AMF facilitates plant cohabitation by influencing species richness, feedback effects, shared mycelial networks, and plant-AMF specificity. Several types of mycorrhizae have been isolated from mine wastelands, including Glomus mosseae, which reduces heavy metal accumulation in plants, and Rhizophagus irregularis, which enhances plant growth and survival in revegetated mine sites. Additionally, studies on ECM in surface mine spoil restoration stands highlight their role in enhancing fungal biodiversity and providing habitats for rare and specialized fungal species. Recent research shows that ECM and AMF fungi can interact synergistically to enhance plant growth, with ECM improving plant nitrogen absorption and AMF increasing nitrogen use efficiency. Our review also found that despite their critical role in improving plant growth and resilience, there remains limited knowledge about the specific mechanisms by which mycorrhizae communicate with each other and other microorganisms, such as bacteria, root-associated fungi, soil protozoa, actinomycetes, nematodes, and endophytes, within the soil matrix. This article highlights the connection between mycorrhizae and plants and other microorganisms in mine wastelands, their role in improving soil structure and nutrient cycling, and how mycorrhizae can help restore soil fertility and promote plant growth, thus improving the overall environmental quality of mine wasteland sites.
Collapse
Affiliation(s)
- Arthur A. Owiny
- Copperbelt University, School of Natural Resources, Department of Plant and Environmental Sciences, P.O Box 21692, Kitwe, Zambia
- Chair of Environment and Development, Oliver R. Tambo Africa Research Chair Initiative (ORTARChI), The Copperbelt University, P.O. Box 21692, Kitwe, Zambia
| | - Leonce Dusengemungu
- Copperbelt University, School of Mathematics and Natural Sciences, Department of Biological Sciences, P.O BOX 21692, Kitwe, Zambia
- Copperbelt University, Africa Centre of Excellence for Sustainable Mining, Kitwe, Zambia
| |
Collapse
|
36
|
Buivydaitė Ž, Winding A, Sapkota R. Transmission of mycoviruses: new possibilities. Front Microbiol 2024; 15:1432840. [PMID: 38993496 PMCID: PMC11236713 DOI: 10.3389/fmicb.2024.1432840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mycoviruses are viruses that infect fungi. In recent years, an increasing number of mycoviruses have been reported in a wide array of fungi. With the growing interest of scientists and society in reducing the use of agrochemicals, the debate about mycoviruses as an effective next-generation biocontrol has regained momentum. Mycoviruses can have profound effects on the host phenotype, although most viruses have neutral or no effect. We speculate that understanding multiple transmission modes of mycoviruses is central to unraveling the viral ecology and their function in regulating fungal populations. Unlike plant virus transmission via vegetative plant parts, seeds, pollen, or vectors, a widely held view is that mycoviruses are transmitted via vertical routes and only under special circumstances horizontally via hyphal contact depending on the vegetative compatibility groups (i.e., the ability of different fungal strains to undergo hyphal fusion). However, this view has been challenged over the past decades, as new possible transmission routes of mycoviruses are beginning to unravel. In this perspective, we discuss emerging studies with evidence suggesting that such novel routes of mycovirus transmission exist and are pertinent to understanding the full picture of mycovirus ecology and evolution.
Collapse
Affiliation(s)
| | | | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
37
|
Monaco P, Baldoni A, Naclerio G, Scippa GS, Bucci A. Impact of Plant-Microbe Interactions with a Focus on Poorly Investigated Urban Ecosystems-A Review. Microorganisms 2024; 12:1276. [PMID: 39065045 PMCID: PMC11279295 DOI: 10.3390/microorganisms12071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The urbanization process, which began with the Industrial Revolution, has undergone a considerable increase over the past few decades. Urbanization strongly affects ecological processes, often deleteriously, because it is associated with a decrease in green spaces (areas of land covered by vegetation), loss of natural habitats, increased rates of species extinction, a greater prevalence of invasive and exotic species, and anthropogenic pollutant accumulation. In urban environments, green spaces play a key role by providing many ecological benefits and contributing to human psychophysical well-being. It is known that interactions between plants and microorganisms that occur in the rhizosphere are of paramount importance for plant health, soil fertility, and the correct functioning of plant ecosystems. The growing diffusion of DNA sequencing technologies and "omics" analyses has provided increasing information about the composition, structure, and function of the rhizomicrobiota. However, despite the considerable amount of data on rhizosphere communities and their interactions with plants in natural/rural contexts, current knowledge on microbial communities associated with plant roots in urban soils is still very scarce. The present review discusses both plant-microbe dynamics and factors that drive the composition of the rhizomicrobiota in poorly investigated urban settings and the potential use of beneficial microbes as an innovative biological tool to face the challenges that anthropized environments and climate change impose. Unravelling urban biodiversity will contribute to green space management, preservation, and development and, ultimately, to public health and safety.
Collapse
Affiliation(s)
- Pamela Monaco
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (A.B.); (G.N.); (G.S.S.)
| | | | | | | | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (A.B.); (G.N.); (G.S.S.)
| |
Collapse
|
38
|
Wang Y, Zhou Y, Tang F, Cao Q, Bai Y. Mixing of pine and arbuscular mycorrhizal tree species changed soil organic carbon storage by affecting soil microbial characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172630. [PMID: 38677428 DOI: 10.1016/j.scitotenv.2024.172630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Pure and mixed pine forests are found all over the world. The mycorrhizal type affects soil microbial activity and carbon sequestration capacity in pure forests. However, the effects of mycorrhizal type on microbial characteristics and carbon sequestration capacity in pine mixed forests remain untested. Further, making it difficult to predict carbon storage of the conversion from pure pine forests to mixed forests at larger scales. Herein, a meta-analysis showed that the contents of soil microbial biomass, mineral-associated organic carbon, and soil organic carbon in pine mixed forests with introduced arbuscular mycorrhizal tree species (PMAM) increased by 26.41 %, 58.55 %, and 27.41 %, respectively, compared to pure pine forests, whereas those of pine mixed forests without arbuscular mycorrhizal tree species (PMEcM) remained unchanged. Furthermore, the effect size of microbial biomass, mineral-associated organic carbon and organic carbon contents in subsoil of PMAM are 56.48 %, 78.49 % and 43.05 %, respectively, which are higher than those in topsoil. The improvement of carbon sinks throughout the PMAM soil profile is positively correlated with increases in microbial biomass and mineral-associated organic carbon in subsoil, according to regression analysis and structural equation modelling. In summary, these results highlight that the positive effects of introducing arbuscular mycorrhizal tree species rather than ectomycorrhizal tree species into pure pine forests on soil microbial biomass and carbon sequestration. The positive link between microbial biomass, mineral-associated organic carbon, and soil organic carbon suggests an underlying mechanism for how soil microorganisms store carbon in pine mixed forests. Nevertheless, our findings also imply that the soil carbon pool of PMAM may be vulnerable under climate change. Based on the above findings, we propose that incorporating mycorrhizal type of tree species and soil thickness into mixed forests management and biodiversity conservation.
Collapse
Affiliation(s)
- Yaoxiong Wang
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
| | - Yunchao Zhou
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China.
| | - Fenghua Tang
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
| | - Qianbin Cao
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
| | - Yunxing Bai
- Institute for Forest Resources & Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
| |
Collapse
|
39
|
Garai S, Raizada A, Kumar V, Sopory SK, Pareek A, Singla-Pareek SL, Kaur C. In silico analysis of fungal prion-like proteins for elucidating their role in plant-fungi interactions. Arch Microbiol 2024; 206:308. [PMID: 38896139 DOI: 10.1007/s00203-024-04040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.
Collapse
Affiliation(s)
- Sampurna Garai
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Avi Raizada
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Vijay Kumar
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|
40
|
Bhardwaj AK, Chandra KK, Kumar R. Inoculants of Arbuscular Mycorrhizal Fungi Influence Growth and Biomass of Terminalia arjuna under Amendment and Anamendment Entisol. MYCOBIOLOGY 2024; 52:183-190. [PMID: 38948452 PMCID: PMC11210415 DOI: 10.1080/12298093.2024.2360750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Entisol soil is hard and compact in nature, rendering it high in bulk density, which influences root penetration adversely and thereby poor plant growth. In this experiment, used seven treatments in different combination in normal soil, were used as growth media for the Terminalia arjuna seedling. T3 (60% entisol) found the best as it gave the highest biomass in the species regardless of arbuscular mycorrhizal fungi (AMF) treatment. AMF treatment enhanced the growth and biomass of plants significantly in all the given treatments. AMF colonization observed a maximum in tertiary roots. T1 (100% entisol soil) exhibited the highest degree of AMF colonization in tertiary roots, resulting in the highest mycorrhiza dependency of plants for this soil. The addition of normal soil to entisol soil was found to decrease the bulk density, resulting in increased root diameter, and T3 plants exhibited the highest biomass and AMF compatibility for T. arjuna species. The T. arjuna plant's growth and biomass responded positively to AMF in all types of treatments. The plant's growth and biomass were highest in the T3 treatment, which had a bulk density of 1.50 g/cm3. In this study, we combined the entisol with mycorrhizal inoculation of the nursery growing medium to promote plant growth and biomass, improve the plant's ability to hold water and absorb nutrients, and lower the entisol's bulk density. The T. arjuna (Roxb) plant responds very favorably to mycorrhiza inoculation in nursery conditions with the entisol growth medium.
Collapse
Affiliation(s)
- Atul Kumar Bhardwaj
- Department of Forestry, Wildlife & Environmental Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - K. K. Chandra
- Department of Forestry, Wildlife & Environmental Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Rajesh Kumar
- Department of Forestry, Wildlife & Environmental Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
41
|
Gamalero E, Glick BR. Use of plant growth-promoting bacteria to facilitate phytoremediation. AIMS Microbiol 2024; 10:415-448. [PMID: 38919713 PMCID: PMC11194615 DOI: 10.3934/microbiol.2024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Here, phytoremediation studies of toxic metal and organic compounds using plants augmented with plant growth-promoting bacteria, published in the past few years, were summarized and reviewed. These studies complemented and extended the many earlier studies in this area of research. The studies summarized here employed a wide range of non-agricultural plants including various grasses indigenous to regions of the world. The plant growth-promoting bacteria used a range of different known mechanisms to promote plant growth in the presence of metallic and/or organic toxicants and thereby improve the phytoremediation ability of most plants. Both rhizosphere and endophyte PGPB strains have been found to be effective within various phytoremediation schemes. Consortia consisting of several PGPB were often more effective than individual PGPB in assisting phytoremediation in the presence of metallic and/or organic environmental contaminants.
Collapse
Affiliation(s)
- Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
42
|
Manyara D, Sánchez-García M, Montoliu-Nerin M, Rosling A. Detection of rare variants among nuclei populating the arbuscular mycorrhizal fungal model species Rhizophagus irregularis DAOM197198. G3 (BETHESDA, MD.) 2024; 14:jkae074. [PMID: 38656424 DOI: 10.1093/g3journal/jkae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Identifying genuine polymorphic variants is a significant challenge in sequence data analysis, although detecting low-frequency variants in sequence data is essential for estimating demographic parameters and investigating genetic processes, such as selection, within populations. Arbuscular mycorrhizal (AM) fungi are multinucleate organisms, in which individual nuclei collectively operate as a population, and the extent of genetic variation across nuclei has long been an area of scientific interest. In this study, we investigated the patterns of polymorphism discovery and the alternate allele frequency distribution by comparing polymorphism discovery in 2 distinct genomic sequence datasets of the AM fungus model species, Rhizophagus irregularis strain DAOM197198. The 2 datasets used in this study are publicly available and were generated either from pooled spores and hyphae or amplified single nuclei from a single spore. We also estimated the intraorganismal variation within the DAOM197198 strain. Our results showed that the 2 datasets exhibited different frequency patterns for discovered variants. The whole-organism dataset showed a distribution spanning low-, intermediate-, and high-frequency variants, whereas the single-nucleus dataset predominantly featured low-frequency variants with smaller proportions in intermediate and high frequencies. Furthermore, single nucleotide polymorphism density estimates within both the whole organism and individual nuclei confirmed the low intraorganismal variation of the DAOM197198 strain and that most variants are rare. Our study highlights the methodological challenges associated with detecting low-frequency variants in AM fungal whole-genome sequence data and demonstrates that alternate alleles can be reliably identified in single nuclei of AM fungi.
Collapse
Affiliation(s)
- David Manyara
- Department of Ecology and Genetics, Uppsala University, Uppsala 752 36, Sweden
| | - Marisol Sánchez-García
- Department of Ecology and Genetics, Uppsala University, Uppsala 752 36, Sweden
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Merce Montoliu-Nerin
- Department of Ecology and Genetics, Uppsala University, Uppsala 752 36, Sweden
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Madrid 28223, Spain
| | - Anna Rosling
- Department of Ecology and Genetics, Uppsala University, Uppsala 752 36, Sweden
| |
Collapse
|
43
|
Bennett GM, Kwak Y, Maynard R. Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again. Genome Biol Evol 2024; 16:evae112. [PMID: 38813885 PMCID: PMC11154151 DOI: 10.1093/gbe/evae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.
Collapse
Affiliation(s)
- Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Reo Maynard
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
44
|
Wang S, Han L, Ren Y, Hu W, Xie X, Chen H, Tang M. The receptor kinase RiSho1 in Rhizophagus irregularis regulates arbuscule development and drought tolerance during arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2024; 242:2207-2222. [PMID: 38481316 DOI: 10.1111/nph.19677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/28/2024] [Indexed: 08/21/2024]
Abstract
In terrestrial ecosystems, most plant species can form beneficial associations with arbuscular mycorrhizal (AM) fungi. Arbuscular mycorrhizal fungi benefit plant nutrient acquisition and enhance plant tolerance to drought. The high osmolarity glycerol 1 mitogen-activated protein kinase (HOG1-MAPK) cascade genes have been characterized in Rhizophagus irregularis. However, the upstream receptor of the HOG1-MAPK cascade remains to be investigated. We identify the receptor kinase RiSho1 from R. irregularis, containing four transmembrane domains and one Src homology 3 (SH3) domain, corresponding to the homologue of Saccharomyces cerevisiae. Higher expression levels of RiSho1 were detected during the in planta phase in response to drought. RiSho1 protein was localized in the plasma membrane of yeast, and interacted with the HOG1-MAPK module RiPbs2 directly by protein-protein interaction. RiSho1 complemented the growth defect of the yeast mutant ∆sho1 under sorbitol conditions. Knock-down of RiSho1 led to the decreased expression of downstream HOG1-MAPK cascade (RiSte11, RiPbs2, RiHog1) and drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3), hampered arbuscule development and decreased plants antioxidation ability under drought stress. Our study reveals the role of RiSho1 in regulating arbuscule development and drought-resistant genes via the HOG1-MAPK cascade. These findings provide new perspectives on the mechanisms by which AM fungi respond to drought.
Collapse
Affiliation(s)
- Sijia Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Lina Han
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Ren
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
45
|
Rosling A, Eshghi Sahraei S, Kalsoom Khan F, Desirò A, Bryson AE, Mondo SJ, Grigoriev IV, Bonito G, Sánchez-García M. Evolutionary history of arbuscular mycorrhizal fungi and genomic signatures of obligate symbiosis. BMC Genomics 2024; 25:529. [PMID: 38811885 PMCID: PMC11134847 DOI: 10.1186/s12864-024-10391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The colonization of land and the diversification of terrestrial plants is intimately linked to the evolutionary history of their symbiotic fungal partners. Extant representatives of these fungal lineages include mutualistic plant symbionts, the arbuscular mycorrhizal (AM) fungi in Glomeromycota and fine root endophytes in Endogonales (Mucoromycota), as well as fungi with saprotrophic, pathogenic and endophytic lifestyles. These fungal groups separate into three monophyletic lineages but their evolutionary relationships remain enigmatic confounding ancestral reconstructions. Their taxonomic ranks are currently fluid. RESULTS In this study, we recognize these three monophyletic linages as phyla, and use a balanced taxon sampling and broad taxonomic representation for phylogenomic analysis that rejects a hard polytomy and resolves Glomeromycota as sister to a clade composed of Mucoromycota and Mortierellomycota. Low copy numbers of genes associated with plant cell wall degradation could not be assigned to the transition to a plant symbiotic lifestyle but appears to be an ancestral phylogenetic signal. Both plant symbiotic lineages, Glomeromycota and Endogonales, lack numerous thiamine metabolism genes but the lack of fatty acid synthesis genes is specific to AM fungi. Many genes previously thought to be missing specifically in Glomeromycota are either missing in all analyzed phyla, or in some cases, are actually present in some of the analyzed AM fungal lineages, e.g. the high affinity phosphorus transporter Pho89. CONCLUSION Based on a broad taxon sampling of fungal genomes we present a well-supported phylogeny for AM fungi and their sister lineages. We show that among these lineages, two independent evolutionary transitions to mutualistic plant symbiosis happened in a genomic background profoundly different from that known from the emergence of ectomycorrhizal fungi in Dikarya. These results call for further reevaluation of genomic signatures associated with plant symbiosis.
Collapse
Affiliation(s)
- Anna Rosling
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | | | | | - Alessandro Desirò
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Abigail E Bryson
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Stephen J Mondo
- Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Marisol Sánchez-García
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
- Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
46
|
Zhang S, Wu Y, Skaro M, Cheong JH, Bouffier-Landrum A, Torrres I, Guo Y, Stupp L, Lincoln B, Prestel A, Felt C, Spann S, Mandal A, Johnson N, Arnold J. Computer vision models enable mixed linear modeling to predict arbuscular mycorrhizal fungal colonization using fungal morphology. Sci Rep 2024; 14:10866. [PMID: 38740920 DOI: 10.1038/s41598-024-61181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of a worldwide crop from a Recombinant Inbred Line (RIL) population derived from Sorghum bicolor and S. propinquum. The high-throughput phenotyping methods of fungal structures here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer vision for pixel-wise fungal structure segmentations and mixed linear models to explore the relations of AMF colonization, root niche, and fungal structure allocation. Models proposed capture over 95% of the variation in AMF colonization as a function of root niche and relative abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient exchange predict highest AMF colonization in the top root section. Our work demonstrates that deep learning can be used by the community for the high-throughput phenotyping of AMF in plant roots. Mixed linear modeling provides a framework for testing hypotheses about AMF colonization phenotypes as a function of root niche and fungal structure allocations.
Collapse
Affiliation(s)
- Shufan Zhang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yue Wu
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Michael Skaro
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | | | - Isaac Torrres
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yinping Guo
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Lauren Stupp
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Brooke Lincoln
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Anna Prestel
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Camryn Felt
- Genetics Department, University of Georgia, Athens, GA, USA
| | - Sedona Spann
- School of Earth and Sustainability and Department of Biological Sciences, North Arizona University, Flagstaff, AZ, USA
| | - Abhyuday Mandal
- Statistics Department, University of Georgia, Athens, GA, USA
| | - Nancy Johnson
- School of Earth and Sustainability and Department of Biological Sciences, North Arizona University, Flagstaff, AZ, USA
| | - Jonathan Arnold
- Genetics Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
47
|
Bönisch E, Blagodatskaya E, Dirzo R, Ferlian O, Fichtner A, Huang Y, Leonard SJ, Maestre FT, von Oheimb G, Ray T, Eisenhauer N. Mycorrhizal type and tree diversity affect foliar elemental pools and stoichiometry. THE NEW PHYTOLOGIST 2024; 242:1614-1629. [PMID: 38594212 DOI: 10.1111/nph.19732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Species-specific differences in nutrient acquisition strategies allow for complementary use of resources among plants in mixtures, which may be further shaped by mycorrhizal associations. However, empirical evidence of this potential role of mycorrhizae is scarce, particularly for tree communities. We investigated the impact of tree species richness and mycorrhizal types, arbuscular mycorrhizal fungi (AM) and ectomycorrhizal fungi (EM), on above- and belowground carbon (C), nitrogen (N), and phosphorus (P) dynamics. Soil and soil microbial biomass elemental dynamics showed weak responses to tree species richness and none to mycorrhizal type. However, foliar elemental concentrations, stoichiometry, and pools were significantly affected by both treatments. Tree species richness increased foliar C and P pools but not N pools. Additive partitioning analyses showed that net biodiversity effects of foliar C, N, P pools in EM tree communities were driven by selection effects, but in mixtures of both mycorrhizal types by complementarity effects. Furthermore, increased tree species richness reduced soil nitrate availability, over 2 yr. Our results indicate that positive effects of tree diversity on aboveground nutrient storage are mediated by complementary mycorrhizal strategies and highlight the importance of using mixtures composed of tree species with different types of mycorrhizae to achieve more multifunctional afforestation.
Collapse
Affiliation(s)
- Elisabeth Bönisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Evgenia Blagodatskaya
- Soil Ecology Department, Helmholtz-Centre for Environmental Research (UFZ), Theodor-Lieser-Str. 11, 06120, Halle, Germany
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Earth Systems Science, Stanford University, Stanford, CA, 94305, USA
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Yuanyuan Huang
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Samuel J Leonard
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Earth Systems Science, Stanford University, Stanford, CA, 94305, USA
| | - Fernando T Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, TU Dresden University of Technology, Pienner Straße 7, 01737, Tharandt, Germany
| | - Tama Ray
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of General Ecology and Environmental Protection, TU Dresden University of Technology, Pienner Straße 7, 01737, Tharandt, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| |
Collapse
|
48
|
Tagele SB, Gachomo EW. Evaluating the effects of mefenoxam on taxonomic and functional dynamics of nontarget fungal communities during carrot cultivation. Sci Rep 2024; 14:9867. [PMID: 38684826 PMCID: PMC11058253 DOI: 10.1038/s41598-024-59587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Ridomil Gold SL (45.3% a.i. mefenoxam) is a widely used chemical fungicide for the control of oomycetes. However, its impact on fungal communities remains unexplored. Therefore, the goal of this study was to examine the effects of mefenoxam on the temporal dynamics of fungal taxonomic and functional diversities during carrot cultivation under four treatment groups: mefenoxam application with and without Pythium inoculation, and untreated control groups with and without Pythium inoculation. Our in vitro sensitivity assay showed that the maximum recommended concentration of mefenoxam, 0.24 ppm, did not suppress the mycelial growth of P. irregulare. At 100 ppm, mycelial growth was only reduced by 11.4%, indicating that the isolate was resistant to mefenoxam. MiSeq sequencing data revealed transient taxonomic variations among treatments 2 weeks post-treatment. Mortierella dominated the fungal community in the mefenoxam-Pythium combination treatment, as confirmed through PCR using our newly designed Mortierella-specific primers. Conversely, mefenoxam-Pythium combination had adverse effects on Penicillium, Trichoderma, and Fusarium, and decrease the overall alpha diversity. However, these compositional changes gradually reverted to those observed in the control by the 12th week. The predicted ecological functions of fungal communities in all Pythium and mefenoxam treatments shifted, leading to a decrease in symbiotrophs and plant pathogen functional groups. Moreover, the community-level physiological profiling approach, utilizing 96-well Biolog FF microplates, showed discernible variations in the utilization of 95 diverse carbon sources among the treatments. Notably, arbutin, L-arabinose, Tween 80, and succinamic acid demonstrated a strong positive association with Mortierella. Our findings demonstrate that a single application of mefenoxam at its recommended rate triggers substantial taxonomic and functional shifts in the soil fungal community. Considering this impact, the conventional agricultural practice of repeated mefenoxam application is likely to exert considerable shifts on the soil ecosystem that may affect agricultural sustainability.
Collapse
Affiliation(s)
- Setu Bazie Tagele
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
49
|
Zhao C, Onyino J, Gao X. Current Advances in the Functional Diversity and Mechanisms Underlying Endophyte-Plant Interactions. Microorganisms 2024; 12:779. [PMID: 38674723 PMCID: PMC11052469 DOI: 10.3390/microorganisms12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Plant phenotype is a complex entity largely controlled by the genotype and various environmental factors. Importantly, co-evolution has allowed plants to coexist with the biotic factors in their surroundings. Recently, plant endophytes as an external plant phenotype, forming part of the complex plethora of the plant microbial assemblage, have gained immense attention from plant scientists. Functionally, endophytes impact the plant in many ways, including increasing nutrient availability, enhancing the ability of plants to cope with both abiotic and biotic stress, and enhancing the accumulation of important plant secondary metabolites. The current state of research has been devoted to evaluating the phenotypic impacts of endophytes on host plants, including their direct influence on plant metabolite accumulation and stress response. However, there is a knowledge gap in how genetic factors influence the interaction of endophytes with host plants, pathogens, and other plant microbial communities, eventually controlling the extended microbial plant phenotype. This review will summarize how host genetic factors can impact the abundance and functional diversity of the endophytic microbial community, how endophytes influence host gene expression, and the host-endophyte-pathogen disease triangle. This information will provide novel insights into how breeders could specifically target the plant-endophyte extended phenotype for crop improvement.
Collapse
Affiliation(s)
- Caihong Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Johnmark Onyino
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiquan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
50
|
Li HH, Chen XW, Zhai FH, Li YT, Zhao HM, Mo CH, Luo Y, Xing B, Li H. Arbuscular Mycorrhizal Fungus Alleviates Charged Nanoplastic Stress in Host Plants via Enhanced Defense-Related Gene Expressions and Hyphal Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6258-6273. [PMID: 38450439 DOI: 10.1021/acs.est.3c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Contamination of small-sized plastics is recognized as a factor of global change. Nanoplastics (NPs) can readily enter organisms and pose significant ecological risks. Arbuscular mycorrhizal (AM) fungi are the most ubiquitous and impactful plant symbiotic fungi, regulating essential ecological functions. Here, we first found that an AM fungus, Rhizophagus irregularis, increased lettuce shoot biomass by 25-100% when exposed to positively and negatively charged NPs vs control, although it did not increase that grown without NPs. The stress alleviation was attributed to the upregulation of gene expressions involving phytohormone signaling, cell wall metabolism, and oxidant scavenging. Using a root organ-fungus axenic growth system treated with fluorescence-labeled NPs, we subsequently revealed that the hyphae captured NPs and further delivered them to roots. NPs were observed at the hyphal cell walls, membranes, and spore walls. NPs mediated by the hyphae were localized at the root epidermis, cortex, and stele. Hyphal exudates aggregated positively charged NPs, thereby reducing their uptake due to NP aggregate formation (up to 5000 nm). This work demonstrates the critical roles of AM fungus in regulating NP behaviors and provides a potential strategy for NP risk mitigation in terrestrial ecosystems. Consequent NP-induced ecological impacts due to the affected AM fungi require further attention.
Collapse
Affiliation(s)
- Han Hao Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xun Wen Chen
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Feng Hua Zhai
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yong Tao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai Ming Zhao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce Hui Mo
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yongming Luo
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hui Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|