1
|
Davis CC, Kehoe J, Knaap AC, Atkins CDM. Science × art: spotlighting unconventional collaborations. Trends Ecol Evol 2025; 40:104-108. [PMID: 39757071 DOI: 10.1016/j.tree.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Science × art collaborations can effectively convey scientific insights to a wide audience. Throughout history, art has interpreted the natural world, offering vast, underexplored sources of biodiversity data. These artistic efforts also hold potential as valuable tools for understanding biodiversity.
Collapse
Affiliation(s)
- Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA.
| | - Jackson Kehoe
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Anna C Knaap
- Art of Europe, Museum of Fine Arts, Boston, 465 Huntington Avenue, Boston, MA 02115, USA
| | - Christopher D M Atkins
- Center for Netherlandish Art, Museum of Fine Arts, Boston, 465 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
2
|
Nagel AA, Flouri T, Yang Z, Rannala B. Bayesian Inference Under the Multispecies Coalescent with Ancient DNA Sequences. Syst Biol 2024; 73:964-978. [PMID: 39078610 PMCID: PMC11637557 DOI: 10.1093/sysbio/syae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
Ancient DNA (aDNA) is increasingly being used to investigate questions such as the phylogenetic relationships and divergence times of extant and extinct species. If aDNA samples are sufficiently old, expected branch lengths (in units of nucleotide substitutions) are reduced relative to contemporary samples. This can be accounted for by incorporating sample ages into phylogenetic analyses. Existing methods that use tip (sample) dates infer gene trees rather than species trees, which can lead to incorrect or biased inferences of the species tree. Methods using a multispecies coalescent (MSC) model overcome these issues. We developed an MSC model with tip dates and implemented it in the program BPP. The method performed well for a range of biologically realistic scenarios, estimating calibrated divergence times and mutation rates precisely. Simulations suggest that estimation precision can be best improved by prioritizing sampling of many loci and more ancient samples. Incorrectly treating ancient samples as contemporary in analyzing simulated data, mimicking a common practice of empirical analyses, led to large systematic biases in model parameters, including divergence times. Two genomic datasets of mammoths and elephants were analyzed, demonstrating the method's empirical utility.
Collapse
Affiliation(s)
- Anna A Nagel
- Department of Evolution and Ecology, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Tomáš Flouri
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
3
|
Bortoluzzi C, Mapel XM, Neuenschwander S, Janett F, Pausch H, Leonard AS. Genome assembly of wisent (Bison bonasus) uncovers a deletion that likely inactivates the THRSP gene. Commun Biol 2024; 7:1580. [PMID: 39604663 PMCID: PMC11603333 DOI: 10.1038/s42003-024-07295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
The wisent (Bison bonasus) is Europe's largest land mammal. We produced a HiFi read-based wisent assembly with a contig N50 value of 91 Mb containing 99.7% of the highly conserved single copy mammalian genes which improves contiguity a thousand-fold over an existing assembly. Extended runs of homozygosity in the wisent genome compromised the separation of the HiFi reads into parental-specific read sets, which resulted in inferior haplotype assemblies. A bovine super-pangenome built with assemblies from wisent, bison, gaur, yak, taurine and indicine cattle identified a 1580 bp deletion removing the protein-coding sequence of THRSP encoding thyroid hormone-responsive protein from the wisent and bison genomes. Analysis of 725 sequenced samples across the Bovinae subfamily showed that the deletion is fixed in both Bison species but absent in Bos and Bubalus. The THRSP transcript is abundant in adipose, fat, liver, muscle, and mammary gland tissue of Bos and Bubalus, but absent in bison. This indicates that the deletion likely inactivates THRSP in bison. We show that super-pangenomes can reveal potentially trait-associated variation across phylogenies, but also demonstrate that haplotype assemblies from species that went through population bottlenecks warrant scrutiny, as they may have accumulated long runs of homozygosity that complicate phasing.
Collapse
Affiliation(s)
| | | | | | - Fredi Janett
- Clinic of Reproductive Medicine, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
4
|
Zampirolo G, Holman LE, Sawafuji R, Ptáková M, Kovačiková L, Šída P, Pokorný P, Pedersen MW, Walls M. Tracing early pastoralism in Central Europe using sedimentary ancient DNA. Curr Biol 2024; 34:4650-4661.e4. [PMID: 39305897 DOI: 10.1016/j.cub.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024]
Abstract
Central European forests have been shaped by complex human interactions throughout the Holocene, with significant changes following the introduction of domesticated animals in the Neolithic (∼7.5-6.0 ka before present [BP]). However, understanding early pastoral practices and their impact on forests is limited by methods for detecting animal movement across past landscapes. Here, we examine ancient sedimentary DNA (sedaDNA) preserved at the Velký Mamuťák rock shelter in northern Bohemia (Czech Republic), which has been a forested enclave since the early Holocene. We find that domesticated animals, their associated microbiomes, and plants potentially gathered for fodder have clear representation by the Late Neolithic, around 6.0 ka BP, and persist throughout the Bronze Age into recent times. We identify a change in dominant grazing species from sheep to pigs in the Bronze Age (∼4.1-3.0 ka BP) and interpret the impact this had in the mid-Holocene retrogressions that still define the structure of Central European forests today. This study highlights the ability of ancient metagenomics to bridge archaeological and paleoecological methods and provide an enhanced perspective on the roots of the "Anthropocene."
Collapse
Affiliation(s)
- Giulia Zampirolo
- Section for Molecular Ecology and Evolution, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Luke E Holman
- Section for Molecular Ecology and Evolution, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark; School of Ocean and Earth Science, National Oceanography Centre, Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Rikai Sawafuji
- Centre for Ancient Environmental Genomics, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama 240-0193, Kanagawa, Japan
| | - Michaela Ptáková
- Laboratory of Archaeobotany and Palaeoecology, Faculty of Science, University of South Bohemia, Na Zlaté stoce 3, 370 05 České Budějovice, Czech Republic
| | - Lenka Kovačiková
- Laboratory of Archaeobotany and Palaeoecology, Faculty of Science, University of South Bohemia, Na Zlaté stoce 3, 370 05 České Budějovice, Czech Republic
| | - Petr Šída
- Philosophical faculty, University of Hradec Králové, nám. Svobody 331/2, 500 02 Hradec Králové, Czech Republic
| | - Petr Pokorný
- Center for Theoretical Study, Charles University and Czech Academy of Sciences, Ovocný trh 5, 116 36 Prague, Czech Republic
| | - Mikkel Winther Pedersen
- Centre for Ancient Environmental Genomics, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
| | - Matthew Walls
- Center for Theoretical Study, Charles University and Czech Academy of Sciences, Ovocný trh 5, 116 36 Prague, Czech Republic; Department of Anthropology and Archaeology, Faculty of Arts, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 4V8, Canada.
| |
Collapse
|
5
|
Hofman-Kamińska E, Merceron G, Bocherens H, Boeskorov GG, Krotova OO, Protopopov AV, Shpansky AV, Kowalczyk R. Was the steppe bison a grazing beast in Pleistocene landscapes? ROYAL SOCIETY OPEN SCIENCE 2024; 11:240317. [PMID: 39144492 PMCID: PMC11321853 DOI: 10.1098/rsos.240317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
The history and palaeoecology of the steppe bison (Bison priscus) remain incompletely understood despite its widespread distribution. Using dental microwear textural analysis (DMTA) and vegetation modelling, we reconstructed the diet and assessed the habitat of steppe bison inhabiting Eurasia and Alaska since the Middle Pleistocene. During the Late Pleistocene, steppe bison occupied a variety of biome types: from the mosaic of temperate summergreen forest and steppe/temperate grassland (Serbia) to the tundra biomes (Siberia and Alaska). Despite the differences in the identified biome types, the diet of steppe bison did not differ significantly among populations in Eurasia. DMTA classified it as a mixed forager in all populations studied. The DMTA of Bb1 bison-a recently identified genetically extinct sister-clade of Bison bonasus-was typical of a highly grazing bovid species and differed from all B. priscus populations. The results of the study temper the common perception that steppe bison were grazers in steppe habitats. The dietary plasticity of the steppe bison was lower when compared with modern European bison and may have played an important role in its extinction, even in the stable tundra biome of eastern Siberia, where it has survived the longest in all of Eurasia.
Collapse
Affiliation(s)
- Emilia Hofman-Kamińska
- Mammal Research Institute, Polish Academy of Sciences, ul. Stoczek 1, 17-230 Białowieża, Poland
| | - Gildas Merceron
- PALEVOPRIM lab, UMR 7262 CNRS & University of Poitiers, Bat. B35—TSA-51106, 86073 Poitiers Cedex 9, France
| | - Hervé Bocherens
- Fachbereich Geowissenschaften, Forschungsbereich Paläobiologie, Universität Tübingen, Hölderlinstr. 12, Germany
- Senckenberg Centre for Human Evolution and Palaeoecology (HEP), Universität Tübingen, Hölderlinstr. 12, Germany
| | - Gennady G. Boeskorov
- The Geological Museum of the Diamond and Precious Metals Geology Institute, Siberian Branch, Russian Academy of Sciences, Lenina 39, Yakutsk677007, Russia
- Mammoth Fauna Research Department, Academy of Sciences of the Republic of Sakha (Yakutia), Lenina Prospekt 33, Yakutsk, Republic of Sakha (Yakutia)677007, Russia
| | - Oleksandra O. Krotova
- Stone Age Archaeology Department, Institute of Archaeology of the National Academy of Sciences of Ukraine, 12 Volodymyr Ivasyuk avenue, Kyiv04210, Ukraine
| | - Albert V. Protopopov
- Mammoth Fauna Research Department, Academy of Sciences of the Republic of Sakha (Yakutia), Lenina Prospekt 33, Yakutsk, Republic of Sakha (Yakutia)677007, Russia
| | - Andrei V. Shpansky
- Department of Paleontology and Historical Geology, Tomsk State University, Lenina prospekt 36, Tomsk634050, Russia
| | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, ul. Stoczek 1, 17-230 Białowieża, Poland
| |
Collapse
|
6
|
Tejero JM, Cheronet O, Gelabert P, Zagorc B, Álvarez-Fernández E, Arias P, Averbouh A, Bar-Oz G, Barzilai O, Belfer-Cohen A, Bosch MD, Brück F, Cueto M, Dockner M, Fullola JM, Gárate D, Giannakoulis M, González C, Jakeli N, Mangado X, Meshveliani T, Neruda P, Nigst P, Ontañón R, Shemer M, Šimková PG, Tapia J, Sánchez de la Torre M, Schwab C, Weber G, Pinhasi R. Cervidae antlers exploited to manufacture prehistoric tools and hunting implements as a reliable source of ancient DNA. Heliyon 2024; 10:e31858. [PMID: 38845985 PMCID: PMC11154607 DOI: 10.1016/j.heliyon.2024.e31858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Antler is one of the primary animal raw materials exploited for technical purposes by the hunter-gatherer groups of the Eurasian Upper Palaeolithic (UP) all over the ecological range of deers, and beyond. It was exhaustively employed to produce one of the most critical tools for the survival of the UP societies: hunting weapons. However, antler implements can be made from diverse deer taxa, with different ecological requirements and ethological behaviours. Identifying the antler's origin at a taxonomic level is thus essential in improving our knowledge of humans' functional, practical and symbolic choices, as well as the human-animal interface during Prehistoric times. Nevertheless, palaeogenetics analyses have focused mainly on bone and teeth, with genetic studies of antler generally focused on modern deer conservation. Here we present the results of the first whole mitochondrial genome ancient DNA (aDNA) analysis by means of in-solution hybridisation capture of antlers from pre-Holocene archaeological contexts. We analysed a set of 50 Palaeolithic and Neolithic (c. 34-8ka) antler and osseous objects from South-Western Europe, Central Europe, South-Western Asia and the Caucasus. We successfully obtained aDNA, allowing us to identify the exploited taxa and demonstrate the archaeological relevance of those finds. Moreover, as most of the antlers were sampled using a minimally-invasive method, further analyses (morphometric, technical, genetic, radiometric and more) remain possible on these objects.
Collapse
Affiliation(s)
- José-Miguel Tejero
- Seminari D'Estudis I Recerques Prehistòriques (SERP), Dep. Història i Arqueologia, University of Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Austria
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Austria
- Departament de Biologia Animal, de Biologia Vegetal I D'Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Austria
| | | | - Pablo Arias
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria (IIIPC), (Universidad de Cantabria-Gobierno de Cantabria-Santander Universidades), Santander, Spain
| | - Aline Averbouh
- CNRS-MNHN UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnement. Muséum National D’Histoire Naturelle, Département « Homme et Environnement » & Institut INEE CNRS « Environnement et écologie », Paris, France
| | - Guy Bar-Oz
- Laboratory of Archaeozoology, School of Archaeology and Maritime Cultures, University of Haifa, Israel
| | - Omry Barzilai
- The Leon Recanati Institute for Maritime Studies, School of Archaeology and Maritime Cultures, University of Haifa, Mount Carmel, 3498838 Haifa, Israel
| | - Anna Belfer-Cohen
- Institute of Archaeology, The Hebrew University of Jerusalem, Israel
| | - Marjolein D. Bosch
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Austria
- Austrian Archaeological Institute – Prehistory Austrian Academy of Sciences, Vienna, Austria
| | - Florian Brück
- Department of Evolutionary Anthropology, University of Vienna, Austria
| | - Marián Cueto
- Departament de Prehistòria, Universitat Autònoma de Barcelona, Spain
| | - Martin Dockner
- Department of Evolutionary Anthropology, University of Vienna, Austria
| | - Josep Maria Fullola
- Seminari D'Estudis I Recerques Prehistòriques (SERP), Dep. Història i Arqueologia, University of Barcelona, Spain
- Institut D'Arqueologia de La Universitat de Barcelona (IAUB), Spain
| | - Diego Gárate
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria (IIIPC), (Universidad de Cantabria-Gobierno de Cantabria-Santander Universidades), Santander, Spain
| | | | - Cynthia González
- Seminari D'Estudis I Recerques Prehistòriques (SERP), Dep. Història i Arqueologia, University of Barcelona, Spain
- Institut D'Arqueologia de La Universitat de Barcelona (IAUB), Spain
| | | | - Xavier Mangado
- Seminari D'Estudis I Recerques Prehistòriques (SERP), Dep. Història i Arqueologia, University of Barcelona, Spain
- Institut D'Arqueologia de La Universitat de Barcelona (IAUB), Spain
| | | | - Petr Neruda
- Moravské Zemské Museum, Historické Muzeum, Ústav Anthropos, Brno, Czech Republic
| | - Philip Nigst
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Austria
- Department of Prehistoric and Historical Archaeology, University of Vienna, Austria
| | - Roberto Ontañón
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria (IIIPC), (Universidad de Cantabria-Gobierno de Cantabria-Santander Universidades), Santander, Spain
- Museo de Prehistoria y Arqueología de Cantabria (MUPAC), Santander, Spain
| | - Maayan Shemer
- The Leon Recanati Institute for Maritime Studies, School of Archaeology and Maritime Cultures, University of Haifa, Mount Carmel, 3498838 Haifa, Israel
- Department of Bible, Archaeology and the Ancient Near East, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel
| | - Petra G. Šimková
- Department of Evolutionary Anthropology, University of Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Austria
| | - Jesús Tapia
- Sociedad de Ciencias Aranzadi, Donostia, Spain
| | - Marta Sánchez de la Torre
- Seminari D'Estudis I Recerques Prehistòriques (SERP), Dep. Història i Arqueologia, University of Barcelona, Spain
- Institut D'Arqueologia de La Universitat de Barcelona (IAUB), Spain
| | - Catherine Schwab
- Musée D’Archéologie Nationale et Domaine National de Saint-Germain-en-Laye, France
| | - Gerhard Weber
- Department of Evolutionary Anthropology, University of Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Austria
| |
Collapse
|
7
|
Pilowsky JA, Brown SC, Llamas B, van Loenen AL, Kowalczyk R, Hofman-Kamińska E, Manaseryan NH, Rusu V, Križnar M, Rahbek C, Fordham DA. Millennial processes of population decline, range contraction and near extinction of the European bison. Proc Biol Sci 2023; 290:20231095. [PMID: 38087919 PMCID: PMC10716654 DOI: 10.1098/rspb.2023.1095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
European bison (Bison bonasus) were widespread throughout Europe during the late Pleistocene. However, the contributions of environmental change and humans to their near extinction have never been resolved. Using process-explicit models, fossils and ancient DNA, we disentangle the combinations of threatening processes that drove population declines and regional extinctions of European bison through space and across time. We show that the population size of European bison declined abruptly at the termination of the Pleistocene in response to rapid environmental change, hunting by humans and their interaction. Human activities prevented populations of European bison from rebounding in the Holocene, despite improved environmental conditions. Hunting caused range loss in the north and east of its distribution, while land use change was responsible for losses in the west and south. Advances in hunting technologies from 1500 CE were needed to simulate low abundances observed in 1870 CE. While our findings show that humans were an important driver of the extinction of the European bison in the wild, vast areas of its range vanished during the Pleistocene-Holocene transition because of post-glacial environmental change. These areas of its former range have been climatically unsuitable for millennia and should not be considered in reintroduction efforts.
Collapse
Affiliation(s)
- July A. Pilowsky
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
| | - Stuart C. Brown
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Section for Evolutionary Genomics, Globe Institute, University of Copenhagen, Copenhagen K 1350, Denmark
| | - Bastien Llamas
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, South Australia 5005, Australia
- Indigenous Genomics Research Group, Telethon Kids Institute, Adelaide, South Australia 5001, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ayla L. van Loenen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland
| | | | - Ninna H. Manaseryan
- The Scientific Centre of Zoology and Hydroecology of National Academy of Sciences of Armenia, Institute of Zoology, 0014 Yerevan, Republic of Armenia
| | - Viorelia Rusu
- Institute of Zoology, Academy of Sciences of Moldova, Chisinau MD-2028, Republic of Moldova
| | - Matija Križnar
- Slovenian Museum of Natural History, Department of Geology, SI-1001 Ljubljana, Slovenia
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
- Center for Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense M 5230, Denmark
- Institute of Ecology, Peking University, Beijing, People's Republic of China
| | - Damien A. Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
- Center for Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
| |
Collapse
|
8
|
Utzeri VJ, Cilli E, Fontani F, Zoboli D, Orsini M, Ribani A, Latorre A, Lissovsky AA, Pillola GL, Bovo S, Gruppioni G, Luiselli D, Fontanesi L. Ancient DNA re-opens the question of the phylogenetic position of the Sardinian pika Prolagus sardus (Wagner, 1829), an extinct lagomorph. Sci Rep 2023; 13:13635. [PMID: 37604894 PMCID: PMC10442435 DOI: 10.1038/s41598-023-40746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Palaeogenomics is contributing to refine our understanding of many major evolutionary events at an unprecedented resolution, with relevant impacts in several fields, including phylogenetics of extinct species. Few extant and extinct animal species from Mediterranean regions have been characterised at the DNA level thus far. The Sardinian pika, Prolagus sardus (Wagner, 1829), was an iconic lagomorph species that populated Sardinia and Corsica and became extinct during the Holocene. There is a certain scientific debate on the phylogenetic assignment of the extinct genus Prolagus to the family Ochotonidae (one of the only two extant families of the order Lagomorpha) or to a separated family Prolagidae, or to the subfamily Prolaginae within the family Ochotonidae. In this study, we successfully reconstructed a portion of the mitogenome of a Sardinian pika dated to the Neolithic period and recovered from the Cabaddaris cave, an archaeological site in Sardinia. Our calibrated phylogeny may support the hypothesis that the genus Prolagus is an independent sister group to the family Ochotonidae that diverged from the Ochotona genus lineage about 30 million years ago. These results may contribute to refine the phylogenetic interpretation of the morphological peculiarities of the Prolagus genus already described by palaeontological studies.
Collapse
Affiliation(s)
- Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy.
| | - Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Daniel Zoboli
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042, Monserrato, Italy
| | - Massimiliano Orsini
- Laboratory of Microbial Ecology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'università 10, 35120, Legnaro, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Adriana Latorre
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Andrey A Lissovsky
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Gian Luigi Pillola
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042, Monserrato, Italy
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Giorgio Gruppioni
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121, Ravenna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
9
|
Baca M, Popović D, Agadzhanyan AK, Baca K, Conard NJ, Fewlass H, Filek T, Golubiński M, Horáček I, Knul MV, Krajcarz M, Krokhaleva M, Lebreton L, Lemanik A, Maul LC, Nagel D, Noiret P, Primault J, Rekovets L, Rhodes SE, Royer A, Serdyuk NV, Soressi M, Stewart JR, Strukova T, Talamo S, Wilczyński J, Nadachowski A. Ancient DNA of narrow-headed vole reveal common features of the Late Pleistocene population dynamics in cold-adapted small mammals. Proc Biol Sci 2023; 290:20222238. [PMID: 36787794 PMCID: PMC9928523 DOI: 10.1098/rspb.2022.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The narrow-headed vole, collared lemming and common vole were the most abundant small mammal species across the Eurasian Late Pleistocene steppe-tundra environment. Previous ancient DNA studies of the collared lemming and common vole have revealed dynamic population histories shaped by climatic fluctuations. To investigate the extent to which species with similar adaptations share common evolutionary histories, we generated a dataset comprised the mitochondrial genomes of 139 ancient and 6 modern narrow-headed voles from several sites across Europe and northwestern Asia covering approximately the last 100 thousand years (kyr). We inferred Bayesian time-aware phylogenies using 11 radiocarbon-dated samples to calibrate the molecular clock. Divergence of the main mtDNA lineages across the three species occurred during marine isotope stages (MIS) 7 and MIS 5, suggesting a common response of species adapted to open habitat during interglacials. We identified several time-structured mtDNA lineages in European narrow-headed vole, suggesting lineage turnover. The timing of some of these turnovers was synchronous across the three species, allowing us to identify the main drivers of the Late Pleistocene dynamics of steppe- and cold-adapted species.
Collapse
Affiliation(s)
- Mateusz Baca
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Danijela Popović
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | - Katarzyna Baca
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Nicholas J Conard
- Department of Early Prehistory and Quaternary Ecology and.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Thomas Filek
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | | | - Ivan Horáček
- Department of Zoology, Charles University, Prague, Czechia
| | - Monika V Knul
- Department of Archaeology, Anthropology and Geography, University of Winchester, Winchester, UK
| | - Magdalena Krajcarz
- Institute of Archaeology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Maria Krokhaleva
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Loïc Lebreton
- Department of Human and Environment, (HNHP) UMR 7194MNHN-CNRS-UPVD, National Museum of Natural History, Paris, France.,Catalan Institute of Human Paleoecology and Social Evolution (IPHES-CERCA), Tarragona, Spain.,Department of History and Art History, Rovira i Virgili University, Tarragona, Spain
| | - Anna Lemanik
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Cracow, Poland
| | - Lutz C Maul
- Senckenberg Research Station of Quaternary Palaeontology, Weimar, Germany
| | - Doris Nagel
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Pierre Noiret
- Research Group Prehistory, University of Liège, Liège, Belgium
| | - Jérome Primault
- DRAC/SRA Poitou-Charentes, Ministry of Culture and Communications, Poitiers, France
| | - Leonid Rekovets
- Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Sara E Rhodes
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior, University of Algavre, Faro, Portugal
| | - Aurélien Royer
- Biogéosciences, UMR 6282 CNRS, University of Burgundy, Dijon, France
| | - Natalia V Serdyuk
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia
| | - Marie Soressi
- Faculty of Archaeology, Leiden University, Leiden, The Netherlands
| | - John R Stewart
- Faculty of Science and Technology, Bournemouth University, Poole, UK
| | - Tatiana Strukova
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Jarosław Wilczyński
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Cracow, Poland
| | - Adam Nadachowski
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Cracow, Poland
| |
Collapse
|
10
|
Heckeberg NS, Zachos FE, Kierdorf U. Antler tine homologies and cervid systematics: A review of past and present controversies with special emphasis on Elaphurus davidianus. Anat Rec (Hoboken) 2023; 306:5-28. [PMID: 35578743 DOI: 10.1002/ar.24956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/29/2023]
Abstract
Antlers are the most conspicuous trait of cervids and have been used in the past to establish a classification of their fossil and living representatives. Since the availability of molecular data, morphological characters have generally become less important for phylogenetic reconstructions. In recent years, however, the appreciation of morphological characters has increased, and they are now more frequently used in addition to molecular data to reconstruct the evolutionary history of cervids. A persistent challenge when using antler traits in deer systematics is finding a consensus on the homology of structures. Here, we review early and recent attempts to homologize antler structures and objections to this approach, compare and evaluate recent advances on antler homologies, and critically discuss these different views in order to offer a basis for further scientific exchange on the topic. We further present some developmental aspects of antler branching patterns and discuss their potential for reconstructing cervid systematics. The use of heterogeneous data for reconstructing phylogenies has resulted in partly conflicting hypotheses on the systematic position of certain cervid species, on which we also elaborate here. We address current discussions on the use of different molecular markers in cervid systematics and the question whether antler morphology and molecular data can provide a consistent picture on the evolutionary history of cervids. In this context, special attention is given to the antler morphology and the systematic position of the enigmatic Pere David's deer (Elaphurus davidianus).
Collapse
Affiliation(s)
- Nicola S Heckeberg
- Staatliches Museum für Naturkunde Karlsruhe, Karlsruhe, Germany.,Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Frank E Zachos
- Natural History Museum Vienna, Vienna, Austria.,Department of Genetics, University of the Free State, Bloemfontein, South Africa.,Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Uwe Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
11
|
Berlioz E, Capdepon E, Discamps E. A long-term perspective on Neanderthal environment and subsistence: Insights from the dental microwear texture analysis of hunted ungulates at Combe-Grenal (Dordogne, France). PLoS One 2023; 18:e0278395. [PMID: 36652426 PMCID: PMC9847971 DOI: 10.1371/journal.pone.0278395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/15/2022] [Indexed: 01/19/2023] Open
Abstract
Large bovids and cervids constituted major components of the European Middle Palaeolithic faunas and hence a key resource for Neanderthal populations. In paleoenvironmental reconstructions, red deer (Cervus elaphus) occurrence is classically considered as a tree-cover indicator while Bovinae (Bison priscus and Bos primigenius) and reindeer (Rangifer tarandus) occurrences are typically associated with open landscapes. However, insights into the ecology of extant ungulate populations show a more complex reality. Exploring the diet of past ungulates allows to better comprehend the hunting strategies of Palaeolithic populations and to reconstruct the modifications through time of past landscapes. By reflecting what animals have eaten during the last days or weeks of their life, dental microwear textures of herbivores link a population and its environment. Here we analyzed, via Dental Microwear Texture Analysis (DMTA), the diet of 50 Bos/Bison, 202 R. tarandus and 116 C. elaphus preyed upon by the Neanderthals that occupied Combe-Grenal rock-shelter, one of the most important Mousterian archaeo-sequences in southwestern France considering its long stratigraphy, abundance of faunal remains and the variations perceptible in Palaeolithic material culture. Grazers and mixed-feeders are the most represented dietary categories among Combe-Grenal's guild of herbivores, highlighting the availability, along the sequence, of open landscapes. The absence of clear changes in the use of plant resources by hunted ungulates through time, even though palaeoenvironmental changes were well-documented by previous studies along the sequence, is interpreted as resulting from the hunting of non-randomly selected prey by Neanderthals, preferentially in open environments. Thus, these results provide further insight into the hunting strategies of Neanderthals and modify our perception of potential links between subsistence and material culture. Combe-Grenal hunters "stayed in the open" through millennia, and were not forced to switch to hunting tactics and material technology adapted to close encounters in forested environments.
Collapse
Affiliation(s)
- Emilie Berlioz
- UMR5608 TRACES, Team SMP3C, Toulouse, France
- Grupo I+D+i EVOADAPTA, Universidad de Cantabria, Santander, Spain
- * E-mail:
| | | | | |
Collapse
|
12
|
Gaertner K, Michell C, Tapanainen R, Goffart S, Saari S, Soininmäki M, Dufour E, Pohjoismäki JLO. Molecular phenotyping uncovers differences in basic housekeeping functions among closely related species of hares (
Lepus
spp., Lagomorpha: Leporidae). Mol Ecol 2022. [PMID: 36320183 DOI: 10.1111/mec.16755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Speciation is a fundamental evolutionary process, which results in genetic differentiation of populations and manifests as discrete morphological, physiological and behavioural differences. Each species has travelled its own evolutionary trajectory, influenced by random drift and driven by various types of natural selection, making the association of genetic differences between the species with the phenotypic differences extremely complex to dissect. In the present study, we have used an in vitro model to analyse in depth the genetic and gene regulation differences between fibroblasts of two closely related mammals, the arctic/subarctic mountain hare (Lepus timidus Linnaeus) and the temperate steppe-climate adapted brown hare (Lepus europaeus Pallas). We discovered the existence of a species-specific expression pattern of 1623 genes, manifesting in differences in cell growth, cell cycle control, respiration, and metabolism. Interspecific differences in the housekeeping functions of fibroblast cells suggest that speciation acts on fundamental cellular processes, even in these two interfertile species. Our results help to understand the molecular constituents of a species difference on a cellular level, which could contribute to the maintenance of the species boundary.
Collapse
Affiliation(s)
- Kateryna Gaertner
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Craig Michell
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Riikka Tapanainen
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Sina Saari
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Manu Soininmäki
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Eric Dufour
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Jaakko L. O. Pohjoismäki
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| |
Collapse
|
13
|
Wilson OE, Pashkevich MD, Rookmaaker K, Turner EC. Image‐based analyses from an online repository provide rich information on long‐term changes in morphology and human perceptions of rhinos. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Oscar E. Wilson
- Department of Geosciences and Geography University of Helsinki Helsinki Finland
| | | | | | | |
Collapse
|
14
|
Hou X, Zhao J, Zhang H, Preick M, Hu J, Xiao B, Wang L, Deng M, Liu S, Chang F, Sheng G, Lai X, Hofreiter M, Yuan J. Paleogenomes Reveal a Complex Evolutionary History of Late Pleistocene Bison in Northeastern China. Genes (Basel) 2022; 13:genes13101684. [PMID: 36292570 PMCID: PMC9602171 DOI: 10.3390/genes13101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Steppe bison are a typical representative of the Mid-Late Pleistocene steppes of the northern hemisphere. Despite the abundance of fossil remains, many questions related to their genetic diversity, population structure and dispersal route are still elusive. Here, we present both near-complete and partial mitochondrial genomes, as well as a partial nuclear genome from fossil bison samples excavated from Late Pleistocene strata in northeastern China. Maximum-likelihood and Bayesian trees both suggest the bison clade are divided into three maternal haplogroups (A, B and C), and Chinese individuals fall in two of them. Bayesian analysis shows that the split between haplogroup C and the ancestor of haplogroups A and B dates at 326 ky BP (95% HPD: 397-264 ky BP). In addition, our nuclear phylogenomic tree also supports a basal position for the individual carrying haplogroup C. Admixture analyses suggest that CADG467 (haplogroup C) has a similar genetic structure to steppe bison from Siberia (haplogroup B). Our new findings indicate that the genetic diversity of Pleistocene bison was probably even higher than previously thought and that northeastern Chinese populations of several mammalian species, including Pleistocene bison, were genetically distinct.
Collapse
Affiliation(s)
- Xindong Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jian Zhao
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Michaela Preick
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
| | - Jiaming Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Bo Xiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Linying Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Miaoxuan Deng
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Sizhao Liu
- Department of Scientific Research, Dalian Natural History Museum, Dalian 116023, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Guilian Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xulong Lai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
- Correspondence: (M.H.); (J.Y.); Tel.: +49-331-977-6321 (M.H.); +86-027-6788-3022 (J.Y.)
| | - Junxia Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
- Correspondence: (M.H.); (J.Y.); Tel.: +49-331-977-6321 (M.H.); +86-027-6788-3022 (J.Y.)
| |
Collapse
|
15
|
Rauf S, Austin JJ, Higgins D, Khan MR. Unveiling forensically relevant biogeographic, phenotype and Y-chromosome SNP variation in Pakistani ethnic groups using a customized hybridisation enrichment forensic intelligence panel. PLoS One 2022; 17:e0264125. [PMID: 35176104 PMCID: PMC8853543 DOI: 10.1371/journal.pone.0264125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/03/2022] [Indexed: 11/19/2022] Open
Abstract
Massively parallel sequencing following hybridisation enrichment provides new opportunities to obtain genetic data for various types of forensic testing and has proven successful on modern as well as degraded and ancient DNA. A customisable forensic intelligence panel that targeted 124 SNP markers (67 ancestry informative markers, 23 phenotype markers from the HIrisplex panel, and 35 Y-chromosome SNPs) was used to examine biogeographic ancestry, phenotype and sex and Y-lineage in samples from different ethnic populations of Pakistan including Pothwari, Gilgit, Baloach, Pathan, Kashmiri and Siraiki. Targeted sequencing and computational data analysis pipeline allowed filtering of variants across the targeted loci. Study samples showed an admixture between East Asian and European ancestry. Eye colour was predicted accurately based on the highest p-value giving overall prediction accuracy of 92.8%. Predictions were consistent with reported hair colour for all samples, using the combined highest p-value approach and step-wise model incorporating probability thresholds for light or dark shade. Y-SNPs were successfully recovered only from male samples which indicates the ability of this method to identify biological sex and allow inference of Y-haplogroup. Our results demonstrate practicality of using hybridisation enrichment and MPS to aid in human intelligence gathering and will open many insights into forensic research in South Asia.
Collapse
Affiliation(s)
- Sobiah Rauf
- Genome Editing & Sequencing Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jeremy J. Austin
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Denice Higgins
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Dentistry, Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Muhammad Ramzan Khan
- Genome Editing & Sequencing Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
16
|
Sinding MHS, Ciucani MM, Ramos-Madrigal J, Carmagnini A, Rasmussen JA, Feng S, Chen G, Vieira FG, Mattiangeli V, Ganjoo RK, Larson G, Sicheritz-Pontén T, Petersen B, Frantz L, Gilbert MTP, Bradley DG. Kouprey ( Bos sauveli) genomes unveil polytomic origin of wild Asian Bos. iScience 2021; 24:103226. [PMID: 34712923 PMCID: PMC8531564 DOI: 10.1016/j.isci.2021.103226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/11/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
The evolution of the genera Bos and Bison, and the nature of gene flow between wild and domestic species, is poorly understood, with genomic data of wild species being limited. We generated two genomes from the likely extinct kouprey (Bos sauveli) and analyzed them alongside other Bos and Bison genomes. We found that B. sauveli possessed genomic signatures characteristic of an independent species closely related to Bos javanicus and Bos gaurus. We found evidence for extensive incomplete lineage sorting across the three species, consistent with a polytomic diversification of the major ancestry in the group, potentially followed by secondary gene flow. Finally, we detected significant gene flow from an unsampled Asian Bos-like source into East Asian zebu cattle, demonstrating both that the full genomic diversity and evolutionary history of the Bos complex has yet to be elucidated and that museum specimens and ancient DNA are valuable resources to do so. We generated two genomes from the likely extinct kouprey (Bos sauveli) Extensive mt and nuclear-genome-wide incomplete lineage sorting across wild Asian Bos Initial polytomic diversification of the wild Asian Bos—kouprey, banteng, and gaur
Collapse
Affiliation(s)
| | | | | | - Alberto Carmagnini
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Jacob Agerbo Rasmussen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Guangji Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Thomas Sicheritz-Pontén
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Bent Petersen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - M. Thomas P. Gilbert
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Ancient Faunal History Revealed by Interdisciplinary Biomolecular Approaches. DIVERSITY 2021. [DOI: 10.3390/d13080370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Starting four decades ago, studies have examined the ecology and evolutionary dynamics of populations and species using short mitochondrial DNA fragments and stable isotopes. Through technological and analytical advances, the methods and biomolecules at our disposal have increased significantly to now include lipids, whole genomes, proteomes, and even epigenomes. At an unprecedented resolution, the study of ancient biomolecules has made it possible for us to disentangle the complex processes that shaped the ancient faunal diversity across millennia, with the potential to aid in implicating probable causes of species extinction and how humans impacted the genetics and ecology of wild and domestic species. However, even now, few studies explore interdisciplinary biomolecular approaches to reveal ancient faunal diversity dynamics in relation to environmental and anthropogenic impact. This review will approach how biomolecules have been implemented in a broad variety of topics and species, from the extinct Pleistocene megafauna to ancient wild and domestic stocks, as well as how their future use has the potential to offer an enhanced understanding of drivers of past faunal diversity on Earth.
Collapse
|
18
|
Edwards SV, Robin V, Ferrand N, Moritz C. The evolution of comparative phylogeography: putting the geography (and more) into comparative population genomics. Genome Biol Evol 2021; 14:6339579. [PMID: 34347070 PMCID: PMC8743039 DOI: 10.1093/gbe/evab176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Comparative population genomics is an ascendant field using genomic comparisons between species to draw inferences about forces regulating genetic variation. Comparative phylogeography, by contrast, focuses on the shared lineage histories of species codistributed geographically and is decidedly organismal in perspective. Comparative phylogeography is approximately 35 years old, and, by some metrics, is showing signs of reduced growth. Here, we contrast the goals and methods of comparative population genomics and comparative phylogeography and argue that comparative phylogeography offers an important perspective on evolutionary history that succeeds in integrating genomics with landscape evolution in ways that complement the suprageographic perspective of comparative population genomics. Focusing primarily on terrestrial vertebrates, we review the history of comparative phylogeography, its milestones and ongoing conceptual innovations, its increasingly global focus, and its status as a bridge between landscape genomics and the process of speciation. We also argue that, as a science with a strong “sense of place,” comparative phylogeography offers abundant “place-based” educational opportunities with its focus on geography and natural history, as well as opportunities for collaboration with local communities and indigenous peoples. Although comparative phylogeography does not yet require whole-genome sequencing for many of its goals, we conclude that it nonetheless plays an important role in grounding our interpretation of genetic variation in the fundamentals of geography and Earth history.
Collapse
Affiliation(s)
- Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Vv Robin
- Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Tirupati, Andhra Pradesh, 517507, India
| | - Nuno Ferrand
- CIBIO/InBIO, Laboratório Associado, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Portugal
| | - Craig Moritz
- Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
19
|
Neov B, Spassov N, Hristova L, Hristov P, Radoslavov G. New data on the evolutionary history of the European bison ( Bison bonasus) based on subfossil remains from Southeastern Europe. Ecol Evol 2021; 11:2842-2848. [PMID: 33767840 PMCID: PMC7981210 DOI: 10.1002/ece3.7241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/11/2022] Open
Abstract
The origin and evolutionary history of the European bison Bison bonasus (wisent) have become clearer after several morphological, genomic, and paleogenomic studies in the last few years, but these paleogenomic studies have raised new questions about the evolution of the species. Here, we present additional information about the population diversity of the species based on the analysis of new subfossil Holocene remains from the Balkan Peninsula. Seven ancient samples excavated from caves in Western Stara Planina in Bulgaria were investigated by mitochondrial D-loop (HVR1) sequence analysis. The samples were dated to 3,800 years BP by radiocarbon analysis. Additionally, a phylogenetic analysis was performed to investigate the genetic relationship among the investigated samples and all mitochondrial DNA sequences from the genus Bison available in GenBank. The results clustered with the sequences from the extinct Holocene South-Eastern (Balkan) wisent to the fossil Alpine population from France, Austria, and Switzerland, but not with those from the recent Central European (North Sea) one and the now extinct Caucasian population. In conclusion, these data indicate that the Balkan wisent that existed in historical time represented a relict and probably an isolated population of the Late Pleistocene-Holocene South-Western mountainous population of the wisent.
Collapse
Affiliation(s)
- Boyko Neov
- Department of Animal Diversity and ResourcesInstitute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
| | - Nikolai Spassov
- Palaeontology and Mineralogy DepartmentNational Museum of Natural HistoryBulgarian Academy of SciencesSofiaBulgaria
| | - Latinka Hristova
- Palaeontology and Mineralogy DepartmentNational Museum of Natural HistoryBulgarian Academy of SciencesSofiaBulgaria
| | - Peter Hristov
- Department of Animal Diversity and ResourcesInstitute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
| | - Georgi Radoslavov
- Department of Animal Diversity and ResourcesInstitute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
| |
Collapse
|
20
|
Mitchell KJ, Rawlence NJ. Examining Natural History through the Lens of Palaeogenomics. Trends Ecol Evol 2021; 36:258-267. [PMID: 33455740 DOI: 10.1016/j.tree.2020.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
The many high-resolution tools that are uniquely applicable to specimens from the Quaternary period (the past ~2.5 Ma) provide an opportunity to cross-validate data and test hypotheses based on the morphology and distribution of fossils. Among these tools is palaeogenomics - the genome-scale sequencing of genetic material from ancient specimens - that can provide direct insight into ecology and evolution, potentially improving the accuracy of inferences about past ecological communities over longer timescales. Palaeogenomics has revealed instances of over- and underestimation of extinct diversity, detected cryptic faunal migration and turnover, allowed quantification of widespread sex biases and sexual dimorphism in the fossil record, revealed past hybridisation events and hybrid individuals, and has highlighted previously unrecognised routes of zoonotic disease transfer.
Collapse
Affiliation(s)
- Kieren J Mitchell
- Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia; Australian Research Council (ARC) Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Nicolas J Rawlence
- Otago Palaeogenetics Laboratory, Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Koblik EA, Red’kin YA, Volkov SV, Mosalov AA. The Concept of Bird Species: Theory and Practice. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020070079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Parker C, Rohrlach AB, Friederich S, Nagel S, Meyer M, Krause J, Bos KI, Haak W. A systematic investigation of human DNA preservation in medieval skeletons. Sci Rep 2020; 10:18225. [PMID: 33106554 PMCID: PMC7588426 DOI: 10.1038/s41598-020-75163-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ancient DNA (aDNA) analyses necessitate the destructive sampling of archaeological material. Currently, the cochlea, part of the osseous inner ear located inside the petrous pyramid, is the most sought after skeletal element for molecular analyses of ancient humans as it has been shown to yield high amounts of endogenous DNA. However, destructive sampling of the petrous pyramid may not always be possible, particularly in cases where preservation of skeletal morphology is of top priority. To investigate alternatives, we present a survey of human aDNA preservation for each of ten skeletal elements in a skeletal collection from Medieval Germany. Through comparison of human DNA content and quality we confirm best performance of the petrous pyramid and identify seven additional sampling locations across four skeletal elements that yield adequate aDNA for most applications in human palaeogenetics. Our study provides a better perspective on DNA preservation across the human skeleton and takes a further step toward the more responsible use of ancient materials in human aDNA studies.
Collapse
Affiliation(s)
- Cody Parker
- Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Adam B Rohrlach
- Max Planck Institute for the Science of Human History, Jena, Germany
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, SA, Australia
| | - Susanne Friederich
- Landesamt für Denkmalpflege und Archäologie, Sachsen-Anhalt, Halle (Saale), Germany
| | - Sarah Nagel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Wolfgang Haak
- Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
23
|
Zhang K, Lenstra JA, Zhang S, Liu W, Liu J. Evolution and domestication of the Bovini species. Anim Genet 2020; 51:637-657. [PMID: 32716565 DOI: 10.1111/age.12974] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Domestication of the Bovini species (taurine cattle, zebu, yak, river buffalo and swamp buffalo) since the early Holocene (ca. 10 000 BCE) has contributed significantly to the development of human civilization. In this study, we review recent literature on the origin and phylogeny, domestication and dispersal of the three major Bos species - taurine cattle, zebu and yak - and their genetic interactions. The global dispersion of taurine and zebu cattle was accompanied by population bottlenecks, which resulted in a marked phylogeographic differentiation of the mitochondrial and Y-chromosomal DNA. The high diversity of European breeds has been shaped through isolation-by-distance, different production objectives, breed formation and the expansion of popular breeds. The overlapping and broad ranges of taurine and zebu cattle led to hybridization with each other and with other bovine species. For instance, Chinese gayal carries zebu mitochondrial DNA; several Indonesian zebu descend from zebu bull × banteng cow crossings; Tibetan cattle and yak have exchanged gene variants; and about 5% of the American bison contain taurine mtDNA. Analysis at the genomic level indicates that introgression may have played a role in environmental adaptation.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht Yalelaan 104, Utrecht, 3584 CM, The Netherlands
| | - S Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - W Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
24
|
Abstract
Mobile devices for on-field DNA analysis have been used for medical diagnostics
at the point-of-care, forensic investigations and environmental surveys, but
still have to be validated for ancient DNA studies. We report here on a mobile
laboratory that we setup using commercially available devices, including a
compact real-time PCR machine, and describe procedures to perform DNA extraction
and analysis from a variety of archeological samples within 4 hours. The process
is carried out on 50 mg samples that are identified at the species level using
custom TaqMan real-time PCR assays for mitochondrial DNA fragments. We evaluated
the potential of this approach in museums lacking facilities for DNA studies by
analyzing samples from the Enlène (MIS 2 layer) and the Portel-Ouest cave (MIS 3
deposits), and also performed experiments during an excavation campaign at the
Roc-en-Pail (MIS 5) open-air site. Enlène Bovinae bone samples
only yielded DNA for the extinct steppe bison (Bison priscus),
whereas Portel-Ouest cave coprolites contained cave hyena (Crocuta
crocuta spelaea) DNA together, for some of them, with DNA for the
European bison sister species/subspecies (Bison
schoetensacki/Bb1-X), thus highlighting the cave hyena diet.
Roc-en-Pail Bovinae bone and tooth samples also contained DNA
for the Bison schoetensacki/Bb1-X clade, and
Cervidae bone samples only yielded reindeer
(Rangifer tarandus) DNA. Subsequent DNA sequencing analyses
confirmed that correct species identification had been achieved using our TaqMan
assays, hence validating these assays for future studies. We conclude that our
approach enables the rapid genetic characterization of tens of millennia-old
archeological samples and is expected to be useful for the on-site screening of
museums and freshly excavated samples for DNA content. Because our mobile
laboratory is made up of commercially available instruments, this approach is
easily accessible to other investigators.
Collapse
|
25
|
Westbury MV, Hartmann S, Barlow A, Preick M, Ridush B, Nagel D, Rathgeber T, Ziegler R, Baryshnikov G, Sheng G, Ludwig A, Wiesel I, Dalen L, Bibi F, Werdelin L, Heller R, Hofreiter M. Hyena paleogenomes reveal a complex evolutionary history of cross-continental gene flow between spotted and cave hyena. SCIENCE ADVANCES 2020; 6:eaay0456. [PMID: 32201717 PMCID: PMC7069707 DOI: 10.1126/sciadv.aay0456] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
The genus Crocuta (African spotted and Eurasian cave hyenas) includes several closely related extinct and extant lineages. The relationships among these lineages, however, are contentious. Through the generation of population-level paleogenomes from late Pleistocene Eurasian cave hyena and genomes from modern African spotted hyena, we reveal the cross-continental evolutionary relationships between these enigmatic hyena lineages. We find a deep divergence (~2.5 Ma) between African and Eurasian Crocuta populations, suggesting that ancestral Crocuta left Africa around the same time as early Homo. Moreover, we find discordance between nuclear and mitochondrial phylogenies and evidence for bidirectional gene flow between African and Eurasian Crocuta after the lineages split, which may have complicated prior taxonomic classifications. Last, we find a number of introgressed loci that attained high frequencies within the recipient lineage, suggesting some level of adaptive advantage from admixture.
Collapse
Affiliation(s)
- Michael V. Westbury
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Stefanie Hartmann
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Axel Barlow
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Michaela Preick
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Bogdan Ridush
- Department of Physical Geography, Geomorphology and Paleogeography, Chernivtsi ‘Yuriy Fed'kovych’ National University, Kotsubynskogo 2, 58012 Chernivtsi, Ukraine
| | - Doris Nagel
- Department of Palaeontology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Thomas Rathgeber
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| | - Reinhard Ziegler
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
| | - Gennady Baryshnikov
- Laboratory of Theriology, Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Guilian Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
| | - Arne Ludwig
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University Berlin, 10115 Berlin, Germany
| | - Ingrid Wiesel
- Brown Hyena Research Project, Luderitz, Namibia, Centre of Wildlife Management, University of Pretoria, Pretoria, South Africa
| | - Love Dalen
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| | - Faysal Bibi
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Lars Werdelin
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
| | - Rasmus Heller
- Section of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
26
|
Liu Y, Weyrich LS, Llamas B. More Arrows in the Ancient DNA Quiver: Use of Paleoepigenomes and Paleomicrobiomes to Investigate Animal Adaptation to Environment. Mol Biol Evol 2020; 37:307-319. [PMID: 31638147 DOI: 10.1093/molbev/msz231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Whether and how epigenetic mechanisms and the microbiome play a role in mammalian adaptation raised considerable attention and controversy, mainly because they have the potential to add new insights into the Modern Synthesis. Recent attempts to reconcile neo-Darwinism and neo-Lamarckism in a unified theory of molecular evolution give epigenetic mechanisms and microbiome a prominent role. However, supporting empirical data are still largely missing. Because experimental studies using extant animals can hardly be done over evolutionary timescales, we propose that advances in ancient DNA techniques provide a valid alternative. In this piece, we evaluate 1) the possible roles of epigenomes and microbiomes in animal adaptation, 2) advances in the retrieval of paleoepigenome and paleomicrobiome data using ancient DNA techniques, and 3) the plasticity of either and interactions between the epigenome and the microbiome, while emphasizing that it is essential to take both into account, as well as the underlying genetic factors that may confound the findings. We propose that advanced ancient DNA techniques should be applied to a wide range of past animals, so novel dynamics in animal evolution and adaption can be revealed.
Collapse
Affiliation(s)
- Yichen Liu
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura S Weyrich
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, Environment Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
The Krasnoborsky population of the European bison: history of emergence, present state, and growth perspectives. THERIOLOGIA UKRAINICA 2019. [DOI: 10.15407/pts2019.18.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Fenderson LE, Kovach AI, Llamas B. Spatiotemporal landscape genetics: Investigating ecology and evolution through space and time. Mol Ecol 2019; 29:218-246. [DOI: 10.1111/mec.15315] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/22/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Lindsey E. Fenderson
- Australian Centre for Ancient DNA School of Biological Sciences Environment Institute University of Adelaide Adelaide South Australia Australia
- Department of Natural Resources and the Environment University of New Hampshire Durham NH USA
| | - Adrienne I. Kovach
- Department of Natural Resources and the Environment University of New Hampshire Durham NH USA
| | - Bastien Llamas
- Australian Centre for Ancient DNA School of Biological Sciences Environment Institute University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
29
|
Abstract
Ruminants (Ruminantia) are among the most successful herbivorous mammals, exhibiting wide-ranging morphological and ecological characteristics (such as headgear and multichambered stomach) and including various key livestock species (e.g., cattle, buffalo, yak, sheep, and goat). Understanding their evolution is of great significance not only in scientific research but also in applications potential for human society. The rapid growth of genomic resources provides unprecedented opportunities to dissect the evolutionary histories and molecular mechanisms underlying the distinct characteristics of ruminants. Here we summarize our current understanding of the genetic, morphological, and ecological diversity of ruminants and provide prospects for future studies.
Collapse
Affiliation(s)
- Bao Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Le Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an Shaanxi 710072, China, E-mail:chen_
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:.,Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an Shaanxi 710072, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| |
Collapse
|
30
|
Gower G, Fenderson LE, Salis AT, Helgen KM, van Loenen AL, Heiniger H, Hofman-Kamińska E, Kowalczyk R, Mitchell KJ, Llamas B, Cooper A. Widespread male sex bias in mammal fossil and museum collections. Proc Natl Acad Sci U S A 2019; 116:19019-19024. [PMID: 31481609 PMCID: PMC6754617 DOI: 10.1073/pnas.1903275116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A recent study of mammoth subfossil remains has demonstrated the potential of using relatively low-coverage high-throughput DNA sequencing to genetically sex specimens, revealing a strong male-biased sex ratio [P. Pečnerová et al., Curr. Biol. 27, 3505-3510.e3 (2017)]. Similar patterns were predicted for steppe bison, based on their analogous female herd-based structure. We genetically sexed subfossil remains of 186 Holarctic bison (Bison spp.), and also 91 brown bears (Ursus arctos), which are not female herd-based, and found that ∼75% of both groups were male, very close to the ratio observed in mammoths (72%). This large deviation from a 1:1 ratio was unexpected, but we found no evidence for sex differences with respect to DNA preservation, sample age, material type, or overall spatial distribution. We further examined ratios of male and female specimens from 4 large museum mammal collections and found a strong male bias, observable in almost all mammalian orders. We suggest that, in mammals at least, 1) wider male geographic ranges can lead to considerably increased chances of detection in fossil studies, and 2) sexual dimorphic behavior or appearance can facilitate a considerable sex bias in fossil and modern collections, on a previously unacknowledged scale. This finding has major implications for a wide range of studies of fossil and museum material.
Collapse
Affiliation(s)
- Graham Gower
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lindsey E Fenderson
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Alexander T Salis
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kristofer M Helgen
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ayla L van Loenen
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Holly Heiniger
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
31
|
Hofman-Kamińska E, Bocherens H, Drucker DG, Fyfe RM, Gumiński W, Makowiecki D, Pacher M, Piličiauskienė G, Samojlik T, Woodbridge J, Kowalczyk R. Adapt or die-Response of large herbivores to environmental changes in Europe during the Holocene. GLOBAL CHANGE BIOLOGY 2019; 25:2915-2930. [PMID: 31298814 DOI: 10.1111/gcb.14733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/26/2019] [Accepted: 05/19/2019] [Indexed: 06/10/2023]
Abstract
Climate warming and human landscape transformation during the Holocene resulted in environmental changes for wild animals. The last remnants of the European Pleistocene megafauna that survived into the Holocene were particularly vulnerable to changes in habitat. To track the response of habitat use and foraging of large herbivores to natural and anthropogenic changes in environmental conditions during the Holocene, we investigated carbon (δ13 C) and nitrogen (δ15 N) stable isotope composition in bone collagen of moose (Alces alces), European bison (Bison bonasus) and aurochs (Bos primigenius) in Central and Eastern Europe. We found strong variations in isotope compositions in the studied species throughout the Holocene and diverse responses to changing environmental conditions. All three species showed significant changes in their δ13 C values reflecting a shift of foraging habitats from more open in the Early and pre-Neolithic Holocene to more forest during the Neolithic and Late Holocene. This shift was strongest in European bison, suggesting higher plasticity, more limited in moose, and the least in aurochs. Significant increases of δ15 N values in European bison and moose are evidence of a diet change towards more grazing, but may also reflect increased nitrogen in soils following deglaciation and global temperature increases. Among the factors explaining the observed isotope variations were time (age of samples), longitude and elevation in European bison, and time, longitude and forest cover in aurochs. None of the analysed factors explained isotope variations in moose. Our results demonstrate the strong influence of natural (forest expansion) and anthropogenic (deforestation and human pressure) changes on the foraging ecology of large herbivores, with forests playing a major role as a refugial habitat since the Neolithic, particularly for European bison and aurochs. We propose that high flexibility in foraging strategy was the key for survival of large herbivores in the changing environmental conditions of the Holocene.
Collapse
Affiliation(s)
| | - Hervé Bocherens
- Department of Geosciences, Research Area Paleobiology, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), University of Tübingen, Tübingen, Germany
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), University of Tübingen, Tübingen, Germany
| | - Ralph M Fyfe
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Witold Gumiński
- The Institute of Archaeology, Warsaw University, Warsaw, Poland
| | - Daniel Makowiecki
- Institute of Archaeology, Nicolaus Copernicus University, Toruń, Poland
| | - Martina Pacher
- Institut für Paläontologie, Universität Wien, Geozentrum, UZA II, Wien, Austria
| | | | - Tomasz Samojlik
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Jessie Woodbridge
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| |
Collapse
|
32
|
Large-scale mitogenomic analysis of the phylogeography of the Late Pleistocene cave bear. Sci Rep 2019; 9:10700. [PMID: 31417104 PMCID: PMC6695494 DOI: 10.1038/s41598-019-47073-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/10/2019] [Indexed: 12/04/2022] Open
Abstract
The cave bear (Ursus spelaeus) is one of the Late Pleistocene megafauna species that faced extinction at the end of the last ice age. Although it is represented by one of the largest fossil records in Europe and has been subject to several interdisciplinary studies including palaeogenetic research, its fate remains highly controversial. Here, we used a combination of hybridisation capture and next generation sequencing to reconstruct 59 new complete cave bear mitochondrial genomes (mtDNA) from 14 sites in Western, Central and Eastern Europe. In a Bayesian phylogenetic analysis, we compared them to 64 published cave bear mtDNA sequences to reconstruct the population dynamics and phylogeography during the Late Pleistocene. We found five major mitochondrial DNA lineages resulting in a noticeably more complex biogeography of the European lineages during the last 50,000 years than previously assumed. Furthermore, our calculated effective female population sizes suggest a drastic cave bear population decline starting around 40,000 years ago at the onset of the Aurignacian, coinciding with the spread of anatomically modern humans in Europe. Thus, our study supports a potential significant human role in the general extinction and local extirpation of the European cave bear and illuminates the fate of this megafauna species.
Collapse
|
33
|
Adams CIM, Knapp M, Gemmell NJ, Jeunen GJ, Bunce M, Lamare MD, Taylor HR. Beyond Biodiversity: Can Environmental DNA (eDNA) Cut It as a Population Genetics Tool? Genes (Basel) 2019; 10:E192. [PMID: 30832286 PMCID: PMC6470983 DOI: 10.3390/genes10030192] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 01/23/2023] Open
Abstract
Population genetic data underpin many studies of behavioral, ecological, and evolutionary processes in wild populations and contribute to effective conservation management. However, collecting genetic samples can be challenging when working with endangered, invasive, or cryptic species. Environmental DNA (eDNA) offers a way to sample genetic material non-invasively without requiring visual observation. While eDNA has been trialed extensively as a biodiversity and biosecurity monitoring tool with a strong taxonomic focus, it has yet to be fully explored as a means for obtaining population genetic information. Here, we review current research that employs eDNA approaches for the study of populations. We outline challenges facing eDNA-based population genetic methodologies, and suggest avenues of research for future developments. We advocate that with further optimizations, this emergent field holds great potential as part of the population genetics toolkit.
Collapse
Affiliation(s)
- Clare I M Adams
- Department of Anatomy, University of Otago, 270 Great King Street, Dunedin, Otago 9016, New Zealand.
| | - Michael Knapp
- Department of Anatomy, University of Otago, 270 Great King Street, Dunedin, Otago 9016, New Zealand.
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, 270 Great King Street, Dunedin, Otago 9016, New Zealand.
| | - Gert-Jan Jeunen
- Department of Anatomy, University of Otago, 270 Great King Street, Dunedin, Otago 9016, New Zealand.
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| | - Miles D Lamare
- Department of Marine Science, University of Otago, 310 Castle Street, Dunedin, Otago 9016, New Zealand.
| | - Helen R Taylor
- Department of Anatomy, University of Otago, 270 Great King Street, Dunedin, Otago 9016, New Zealand.
| |
Collapse
|
34
|
Richards SM, Hovhannisyan N, Gilliham M, Ingram J, Skadhauge B, Heiniger H, Llamas B, Mitchell KJ, Meachen J, Fincher GB, Austin JJ, Cooper A. Low-cost cross-taxon enrichment of mitochondrial DNA using in-house synthesised RNA probes. PLoS One 2019; 14:e0209499. [PMID: 30716066 PMCID: PMC6361428 DOI: 10.1371/journal.pone.0209499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/06/2018] [Indexed: 11/23/2022] Open
Abstract
Hybridization capture with in-solution oligonucleotide probes has quickly become the preferred method for enriching specific DNA loci from degraded or ancient samples prior to high-throughput sequencing (HTS). Several companies synthesize sets of probes for in-solution hybridization capture, but these commercial reagents are usually expensive. Methods for economical in-house probe synthesis have been described, but they do not directly address one of the major advantages of commercially synthesised probes: that probe sequences matching many species can be synthesised in parallel and pooled. The ability to make “phylogenetically diverse” probes increases the cost-effectiveness of commercial probe sets, as they can be used across multiple projects (or for projects involving multiple species). However, it is labour-intensive to replicate this with in-house methods, as template molecules must first be generated for each species of interest. While it has been observed that probes can be used to enrich for phylogenetically distant targets, the ability of this effect to compensate for the lack of phylogenetically diverse probes in in-house synthesised probe sets has not been tested. In this study, we present a refined protocol for in-house RNA probe synthesis and evaluated the ability of probes generated using this method from a single species to successfully enrich for the target locus in phylogenetically distant species. We demonstrated that probes synthesized using long-range PCR products from a placental mammal mitochondrion (Bison spp.) could be used to enrich for mitochondrial DNA in birds and marsupials (but not plants). Importantly, our results were obtained for approximately a third of the cost of similar commercially available reagents.
Collapse
Affiliation(s)
- Stephen M. Richards
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia
- * E-mail:
| | | | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, University of Adelaide, Adelaide, Australia
| | - Joshua Ingram
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia
| | | | - Holly Heiniger
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia
| | - Kieren J. Mitchell
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia
| | - Julie Meachen
- Des Moines University, Des Moines, Iowa, United States of America
| | - Geoffrey B. Fincher
- ARC Centre of Excellence in Cell Walls, Waite Research Institute, University of Adelaide, Adelaide, Australia
| | - Jeremy J. Austin
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia
| |
Collapse
|
35
|
Hahn C. Assembly of Ancient Mitochondrial Genomes Without a Closely Related Reference Sequence. Methods Mol Biol 2019; 1963:195-213. [PMID: 30875055 DOI: 10.1007/978-1-4939-9176-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent methodological advances have transformed the field of ancient DNA (aDNA). Basic bioinformatics skills are becoming essential requirements to process and analyze the sheer amounts of data generated by current aDNA studies and in biomedical research in general. This chapter is intended as a practical guide to the assembly of ancient mitochondrial genomes, directly from genomic DNA-derived next-generation sequencing (NGS) data, specifically in the absence of closely related reference genomes. In a hands-on tutorial suitable for readers with little to no prior bioinformatics experience, we reconstruct the mitochondrial genome of a woolly mammoth deposited ~45,000 years ago. We introduce key software tools and outline general strategies for mitogenome assembly, including the critical quality assessment of assembly results without a reference genome.
Collapse
Affiliation(s)
- Christoph Hahn
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| |
Collapse
|
36
|
Incomplete lineage sorting rather than hybridization explains the inconsistent phylogeny of the wisent. Commun Biol 2018; 1:169. [PMID: 30374461 PMCID: PMC6195592 DOI: 10.1038/s42003-018-0176-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022] Open
Abstract
The wisent or European bison is the largest European herbivore and is completely cross-fertile with its American relative. However, mtDNA genome of wisent is similar to that of cattle, which suggests that wisent emerged as a hybrid of bison and an extinct cattle-like species. Here, we analyzed nuclear whole-genome sequences of the bovine species, and found only a minor and recent gene flow between wisent and cattle. Furthermore, we identified an appreciable heterogeneity of the nuclear gene tree topologies of the bovine species. The relative frequencies of various topologies, including the mtDNA topology, were consistent with frequencies of incomplete lineage sorting (ILS) as estimated by tree coalescence analysis. This indicates that ILS has occurred and may well account for the anomalous wisent mtDNA phylogeny as the outcome of a rare event. We propose that ILS is a possible explanation of phylogenomic anomalies among closely related species. Kun Wang et al. present a genomic analysis identifying incomplete lineage sorting and hybridization in the mitochondrial DNA of the European bison (wisent). They find that incomplete lineage sorting is the most feasible explanation for the phylogenetic heterogeneity observed in Bovidae.
Collapse
|
37
|
The Evolution and Population Diversity of Bison in Pleistocene and Holocene Eurasia: Sex Matters. DIVERSITY 2018. [DOI: 10.3390/d10030065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Knowledge about the origin and evolutionary history of the bison has been improved recently owing to several genomic and paleogenomic studies published in the last two years, which elucidated large parts of the evolution of bison populations during the Upper Pleistocene and Holocene in Eurasia. The produced data, however, were interpreted in contradicting manners. Here, we have gathered, reanalyzed and compared previously published or unpublished morphometric and genetic data that have not yet been integrated and that we synthesize in a unified framework. In particular, we re-estimate dates of divergence of mitogenome lineages based on an extended dataset comprising 81 complete ancient bison mitogenomes and we revisit putative gene flow between the Bos and Bison genera based on comparative analyses of ancient and modern bison genomes, thereby questioning published conclusions. Morphometric analyses taking into account sexual dimorphism invalidate a previous claim that Bison schoetensacki was present in France during the Late Pleistocene. Both morphometric and genome analyses reveal that Eurasian bison belonging to different Bison priscus and Bison bonasus lineages maintained parallel evolutionary paths with gene flow during a long period of incomplete speciation that ceased only upon the migration of B. priscus to the American continent establishing the American bison lineage. Our nuclear genome analysis of the evolutionary history of B. bonasus allows us to reject the previous hypothesis that it is a hybrid of B. priscus and Bos primigenius. Based on present-day behavioral studies of European and American bison, we propose that apparently conflicting lines of evidence can be reconciled by positing that female bison drove the specialization of bison populations to different ecological niches while male bison drove regular homogenizing genetic exchanges between populations.
Collapse
|
38
|
Malaney JL, Cook JA. A perfect storm for mammalogy: declining sample availability in a period of rapid environmental degradation. J Mammal 2018. [DOI: 10.1093/jmammal/gyy082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jason L Malaney
- Department of Biology and David Snyder Museum of Zoology, Austin Peay State University, Clarksville, TN, USA
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
39
|
Stronen AV, Iacolina L, Pertoldi C, Tokarska M, Sørensen BS, Bahrndorff S, Oleński K, Kamiński S, Nikolskiy P. Genomic variability in the extinct steppe bison (Bison priscus) compared to the European bison (Bison bonasus). MAMMAL RES 2018. [DOI: 10.1007/s13364-018-0387-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Shanker K, Vijayakumar SP, Ganeshaiah KN. Unpacking the species conundrum: philosophy, practice and a way forward. J Genet 2018; 96:413-430. [PMID: 28761006 DOI: 10.1007/s12041-017-0800-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The history of ecology and evolutionary biology is rife with attempts to define and delimit species. However, there has been confusion between concepts and criteria, which has led to discussion, debate, and conflict, eventually leading to lack of consistency in delimitation. Here, we provide a broad review of species concepts, a clarification of category versus concept, an account of the general lineage concept (GLC), and finally a way forward for species discovery and delimitation. Historically, species were considered as varieties bound together by reproduction. After over 200 years of uncertainty, Mayr attempted to bring coherence to the definition of species through the biological species concept (BSC). This has, however, received much criticism, and the last half century has spawned at least 20 other concepts. A central philosophical problem is that concepts treat species as 'individuals' while the criteria for categorization treats them as 'classes'. While not getting away from this problem entirely, the GLC attempts to provide a framework where lineage divergence is influenced by a number of different factors (and correlated to different traits) which relate to the different species concepts. We also introduce an 'inclusive' probabilistic approach for understanding and delimiting species. Finally, we provide aWallacean (geography related) approach to the Linnaean problem of identifying and delimiting species, particularly for cases of allopatric divergence, and map this to the GLC. Going one step further, we take a morphometric terrain approach to visualizing and understanding differences between lineages. In summary, we argue that while generalized frameworks may work well for concepts of what species are, plurality and 'inclusive' probabilistic approaches may work best for delimitation.
Collapse
Affiliation(s)
- Kartik Shanker
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560 012, India.
| | | | | |
Collapse
|
41
|
Abstract
SUMMARYAncient samples present a number of technical challenges for DNA barcoding, including damaged DNA with low endogenous copy number and short fragment lengths. Nevertheless, techniques are available to overcome these issues, and DNA barcoding has now been used to successfully recover parasite DNA from a wide variety of ancient substrates, including coprolites, cesspit sediment, mummified tissues, burial sediments and permafrost soils. The study of parasite DNA from ancient samples can provide a number of unique scientific insights, for example: (1) into the parasite communities and health of prehistoric human populations; (2) the ability to reconstruct the natural parasite faunas of rare or extinct host species, which has implications for conservation management and de-extinction; and (3) the ability to view in ‘real-time’ processes that may operate over century- or millenial-timescales, such as how parasites responded to past climate change events or how they co-evolved alongside their hosts. The application of DNA metabarcoding and high-throughput sequencing to ancient specimens has so far been limited, but in future promises great potential for gaining empirical data on poorly understood processes such as parasite co-extinction.
Collapse
|
42
|
Fordham DA, Saltré F, Brown SC, Mellin C, Wigley TML. Why decadal to century timescale palaeoclimate data are needed to explain present-day patterns of biological diversity and change. GLOBAL CHANGE BIOLOGY 2018; 24:1371-1381. [PMID: 28994170 DOI: 10.1111/gcb.13932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
The current distribution of species, environmental conditions and their interactions represent only one snapshot of a planet that is continuously changing, in part due to human influences. To distinguish human impacts from natural factors, the magnitude and pace of climate shifts, since the Last Glacial Maximum, are often used to determine whether patterns of diversity today are artefacts of past climate change. In the absence of high-temporal resolution palaeoclimate reconstructions, this is generally done by assuming that past climate change occurred at a linear pace between widely spaced (usually, ≥1,000 years) climate snapshots. We show here that this is a flawed assumption because regional climates have changed significantly across decades and centuries during glacial-interglacial cycles, likely causing rapid regional replacement of biota. We demonstrate how recent atmosphere-ocean general circulation model (AOGCM) simulations of the climate of the past 21,000 years can provide credible estimates of the details of climate change on decadal to centennial timescales, showing that these details differ radically from what might be inferred from longer timescale information. High-temporal resolution information can provide more meaningful estimates of the magnitude and pace of climate shifts, the location and timing of drivers of physiological stress, and the extent of novel climates. They also produce new opportunities to directly investigate whether short-term climate variability is more important in shaping biodiversity patterns rather than gradual changes in long-term climatic means. Together, these more accurate measures of past climate instability are likely to bring about a better understanding of the role of palaeoclimatic change and variability in shaping current macroecological patterns in many regions of the world.
Collapse
Affiliation(s)
- Damien A Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Frédérik Saltré
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stuart C Brown
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian Institute of Marine Science, PMB No. 3, Townsville, Qld, Australia
| | - Tom M L Wigley
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| |
Collapse
|
43
|
Retrospective and prospective studies on helminthiases in bisons of Prioksko-Terrasny Nature Reserve (Moscow Region, Serpukhov District). RUSSIAN JOURNAL OF THERIOLOGY 2017. [DOI: 10.15298/rusjtheriol.16.2.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Groves CP, Cotterill FPD, Gippoliti S, Robovský J, Roos C, Taylor PJ, Zinner D. Species definitions and conservation: a review and case studies from African mammals. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0976-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Palacio P, Berthonaud V, Guérin C, Lambourdière J, Maksud F, Philippe M, Plaire D, Stafford T, Marsolier-Kergoat MC, Elalouf JM. Genome data on the extinct Bison schoetensacki establish it as a sister species of the extant European bison (Bison bonasus). BMC Evol Biol 2017; 17:48. [PMID: 28187706 PMCID: PMC5303235 DOI: 10.1186/s12862-017-0894-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The European bison (Bison bonasus), now found in Europe and the Caucasus, has been proposed to originate either from the extinct steppe/extant American bison lineage or from the extinct Bison schoetensacki lineage. Bison schoetensacki remains are documented in Eurasian Middle Pleistocene sites, but their presence in Upper Pleistocene sites has been questioned. Despite extensive genetic studies carried out on the steppe and European bison, no remains from the fossil record morphologically identified as Bison schoetensacki has been analyzed up to now. RESULTS In this paper, we analyzed a 36,000-year-old Bison schoetensaki bone sample from the Siréjol cave (France) and a cave hyena coprolite (fossilized feces) found in a nearby cave and containing large amounts of Bovinae DNA. We show that the Bovinae mitochondrial DNA sequences from both samples, including a complete mitochondrial genome sequence, belong to a clade recently reported in the literature. This clade only includes ancient bison specimens without taxonomic identification and displays a sister relationship with the extant European bison. The genetic proximity of Bison schoetensacki with specimens from this clade is corroborated by the analysis of nuclear DNA single nucleotide polymorphisms. CONCLUSIONS This work provides genetic evidence supporting the continuing presence of Bison schoetensacki up to the Upper Pleistocene. Bison schoetensacki turns out to be a sister species of Bison bonasus, excluding the steppe bison Bison priscus as a direct ancestor of the European bison.
Collapse
Affiliation(s)
- Pauline Palacio
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Véronique Berthonaud
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Claude Guérin
- CNRS-UMR 5276, Laboratoire de Géologie de Lyon: Terre, planètes, environnement, Département des Sciences de la Terre, Université Claude Bernard, Lyon I, 27-43 Boulevard du 11 Novembre, 69622, Villeurbanne cedex, France
| | - Josie Lambourdière
- Service de Systématique Moléculaire, UMS 2700 CNRS-MNHN, CP26, 57 Rue Cuvier, 75231, Paris Cedex 05, France
| | - Frédéric Maksud
- Service Régional de l'Archéologie, 32 rue de la Dalbade, BP811 31080, Toulouse cedex 6, France
| | - Michel Philippe
- Centre de Conservation et d'Étude sur les Collections, 13A rue Bancel, 69007, Lyon, France
| | - Delphine Plaire
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,CNRS-UMR 7206, Eco-anthropologie et Ethnobiologie, Département Hommes, Natures et Sociétés, Musée de l'Homme, 17 place du Trocadéro et du 11 novembre, 75016, Paris, France
| | - Thomas Stafford
- Stafford Research, 200 Acadia Avenue, Lafayette, CO, 80026, USA
| | - Marie-Claude Marsolier-Kergoat
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,CNRS-UMR 7206, Eco-anthropologie et Ethnobiologie, Département Hommes, Natures et Sociétés, Musée de l'Homme, 17 place du Trocadéro et du 11 novembre, 75016, Paris, France
| | - Jean-Marc Elalouf
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France. .,CNRS-UMR 7206, Eco-anthropologie et Ethnobiologie, Département Hommes, Natures et Sociétés, Musée de l'Homme, 17 place du Trocadéro et du 11 novembre, 75016, Paris, France.
| |
Collapse
|
46
|
Did the historical range of the European bison (Bison bonasus L.) extend further south?—a new finding from the Yenikapı Metro and Marmaray excavation, Turkey. MAMMAL RES 2016. [DOI: 10.1007/s13364-016-0299-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Abstract
Delving into European prehistory, two recent studies analyze ancient DNA from bison species depicted by our ancestors on the walls of their caves. The DNA tells a story of migrations driven by climate change but leaves some mystery clouding the genetic descent and climate preference of the still-extant wisent, otherwise known as the European bison.See research articles: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0317-7 http://www.nature.com/articles/ncomms13158.
Collapse
Affiliation(s)
- Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, The Netherlands.
| | - Jianquan Liu
- Laboratory of Grassland Agro-Ecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
48
|
|
49
|
Bison's history in DNA and cave art. Nature 2016; 538:430. [DOI: 10.1038/538430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|