1
|
Li M, Li B, Wang S, Liu P, Liu Z, Zheng T, Geng R, Li B, Zheng Q, Ma P. Novel_circ_0004013 targeting miR-29a-3p affects age-related hearing loss in miR-29a mouse model by RNA-seq analysis. Exp Gerontol 2025; 205:112758. [PMID: 40252715 DOI: 10.1016/j.exger.2025.112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Age-related hearing loss (ARHL) is a gradual, symmetrical sensorineural disorder. Exploring the pathogenesis of ARHL from a biological perspective is important for its treatment. In this study, we analyzed the circRNA expression profiles of 2-month-old miR-29a+/+ mice and miR-29a-/- mice by transcriptome sequencing to investigate the role of circRNAs in ARHL. We identified 12 differentially expressed circRNAs in the two groups. Our focus was on circRNAs predicted to regulate miR-29a, with novel_circ_0004013 identified as having a targeted binding relationship with miR-29a-3p. Dual luciferase assays confirmed that miR-29a-3p is a direct target of novel_circ_0004013. Fluorescence in situ hybridization (FISH) was employed to localize the novel_circ_0004013 in HEI-OC1 cells and the cochlea. Novel_circ_0004013 was mainly expressed in the cytoplasm. In the hair cells (HCs) and stria vascularis (SV) regions of miR-29a-/- mice, novel_circ_0004013 expression was higher than the corresponding regions in miR-29a+/+ mice. Furthermore, Western blot assays revealed that levels of oxidative stress and apoptosis were significantly decreased in HEI-OC1 cells following the knockdown of novel_circ_0004013, whereas these levels were significantly increased in HEI-OC1 cells after the knockdown of miR-29a-3p. It was indicated in rescue assays that novel_circ_0004013 expedited oxidative stress and apoptosis of HEI-OC1 cells via modulation on miR-29a-3p. These findings may reveal the important role of novel_circ_0004013 in hearing loss and provide a new perspective and theoretical basis for the molecular mechanism of ARHL.
Collapse
Affiliation(s)
- Mulan Li
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Bingqian Li
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Pengcheng Liu
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Zhen Liu
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Peng Ma
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China; Department of Medical Genetics and Cell Biology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
2
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen LL, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. Cell 2024; 187:7621-7636.e19. [PMID: 39672162 PMCID: PMC11682929 DOI: 10.1016/j.cell.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/21/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues and functions as a decoy receptor that potently inhibits interferon signaling, including in cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David M Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lily L Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cody J Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Liliana D Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sara L Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Edward B Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
3
|
Shuster M, Lyu Z, Augenstreich J, Mathur S, Ganesh A, Ling J, Briken V. Salmonella Typhimurium infection inhibits macrophage IFNβ signaling in a TLR4-dependent manner. Infect Immun 2024; 92:e0009824. [PMID: 39269166 PMCID: PMC11475681 DOI: 10.1128/iai.00098-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Type I Interferons (IFNs) generally have a protective role during viral infections, but their function during bacterial infections is dependent on the bacterial species. Legionella pneumophila, Shigella sonnei and Mycobacterium tuberculosis can inhibit type I IFN signaling. Here we examined the role of type I IFN, specifically IFNβ, in the context of Salmonella enterica serovar Typhimurium (STm) macrophage infections and the capacity of STm to inhibit type I IFN signaling. We demonstrate that IFNβ has no effect on the intracellular growth of STm in infected bone marrow derived macrophages (BMDMs) derived from C57BL/6 mice. STm infection inhibits IFNβ signaling but not IFNγ signaling in a murine macrophage cell line. We show that this inhibition is independent of the type III and type VI secretion systems expressed by STm and is also independent of bacterial phagocytosis. The inhibition is Toll-like receptor 4 (TLR4)-dependent as the TLR4 ligand, lipopolysaccharide (LPS), alone is sufficient to inhibit IFNβ-mediated signaling. Cells downregulated their surface levels of IFNα/β receptor 1 (IFNAR1) in response to LPS, which may be mediating our observed inhibition. Lastly, we examined this inhibition in the context of TLR4-deficient BMDMs as well as TLR4 RNA interference and we observed a loss of inhibition with LPS stimulation as well as STm infection. In summary, we show that macrophages exposed to STm have reduced IFNβ signaling via crosstalk with TLR4 signaling, which may be mediated by reduced host cell surface IFNAR1, and that IFNβ signaling does not affect cell-autonomous host defense against STm.
Collapse
Affiliation(s)
- Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Shrestha Mathur
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
4
|
Lee AM, Nathan CF. Type I interferon exacerbates Mycobacterium tuberculosis induced human macrophage death. EMBO Rep 2024; 25:3064-3089. [PMID: 38866980 PMCID: PMC11239827 DOI: 10.1038/s44319-024-00171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Type I interferons (IFN-I) are implicated in exacerbation of tuberculosis (TB), but the mechanisms are unclear. Mouse macrophages infected with Mycobacterium tuberculosis (Mtb) produce IFN-I, which contributes to their death. Here we investigate whether the same is true for human monocyte-derived macrophages (MDM). MDM prepared by a conventional method markedly upregulate interferon-stimulated genes (ISGs) upon Mtb infection, while MDM prepared to better restrict Mtb do so much less. A mixture of antibodies inhibiting IFN-I signaling prevents ISG induction. Surprisingly, secreted IFN-I are undetectable until nearly two days after ISG induction. These same antibodies do not diminish Mtb-infected MDM death. MDM induce ISGs in response to picogram/mL levels of exogenous IFN-I while depleting similar quantities from the medium. Exogenous IFN-I increase the proportion of dead MDM. We speculate that Mtb-infected MDM produce and respond to minute levels of IFN-I, and that only some of the resultant signaling is susceptible to neutralizing antibodies. Many types of cells may secrete IFN-I in patients with TB, where IFN-I is likely to promote the death of infected macrophages.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
- Immunology & Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Immunology & Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Smeets MWE, Steeghs EMP, Orsel J, Stalpers F, Vermeeren MMP, Veltman CHJ, Slenders L, Nierkens S, Van de Ven C, Den Boer ML. B-cell precursor acute lymphoblastic leukemia elicits an interferon-α/β response in bone marrow-derived mesenchymal stroma. Haematologica 2024; 109:2073-2084. [PMID: 38426282 PMCID: PMC11215384 DOI: 10.3324/haematol.2023.283494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) can hijack the normal bone marrow microenvironment to create a leukemic niche which facilitates blast cell survival and promotes drug resistance. Bone marrow-derived mesenchymal stromal cells (MSC) mimic this protective environment in ex vivo co-cultures with leukemic cells obtained from children with newly diagnosed BCP-ALL. We examined the potential mechanisms of this protection by RNA sequencing of flow-sorted MSC after co-culture with BCP-ALL cells. Leukemic cells induced an interferon (IFN)-related gene signature in MSC, which was partially dependent on direct cell-cell signaling. The signature was selectively induced by BCP-ALL cells, most profoundly by ETV6-RUNX1-positive ALL cells, as co-culture of MSC with healthy immune cells did not provoke a similar IFN signature. Leukemic cells and MSC both secreted IFNα and IFNβ, but not IFNγ. In line, the IFN gene signature was sensitive to blockade of IFNα/β signaling, but less to that of IFNγ. The viability of leukemic cells and level of resistance to three chemotherapeutic agents was not affected by interference with IFN signaling using selective IFNα/β inhibitors or silencing of IFN-related genes. Taken together, our data suggest that the leukemia-induced expression of IFNα/β-related genes by MSC does not support survival of BCP-ALL cells but may serve a different role in the pathobiology of BCP-ALL.
Collapse
Affiliation(s)
- Mandy W E Smeets
- Dept. of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht
| | | | - Jan Orsel
- Princess Máxima Center for Pediatric Oncology, Utrecht
| | | | | | | | | | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Center for Translational Immunology, University Medical Center, Utrecht
| | | | - Monique L Den Boer
- Dept. of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht.
| |
Collapse
|
6
|
Shuster M, Lyu Z, Augenstreich J, Mathur S, Ganesh A, Ling J, Briken V. Salmonella Typhimurium infection inhibits macrophage IFNβ signaling in a TLR4-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583530. [PMID: 38496427 PMCID: PMC10942315 DOI: 10.1101/2024.03.05.583530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Type I Interferons (IFNs) generally have a protective role during viral infections, but their function during bacterial infections is dependent on the bacterial species. Legionella pneumophila, Shigella sonnei and Mycobacterium tuberculosis can inhibit type I IFN signaling. Here we examined the role of type I IFN, specifically IFNβ, in the context of Salmonella enterica serovar Typhimurium (STm) macrophage infections and the capacity of STm to inhibit type I IFN signaling. We demonstrate that IFNβ has no effect on the intracellular growth of STm in infected bone marrow derived macrophages (BMDMs) derived from C57BL/6 mice. STm infection inhibits IFNβ signaling but not IFNγ signaling in a murine macrophage cell line. We show that this inhibition is independent of the type III and type VI secretion systems expressed by STm and is also independent of bacterial phagocytosis. The inhibition is Toll-like receptor 4 (TLR4)-dependent as the TLR4 ligand, lipopolysaccharide (LPS), alone is sufficient to inhibit IFNβ-mediated signaling and STm-infected, TLR4-deficient BMDMs do not exhibit inhibited IFNβ signaling. In summary, we show that macrophages exposed to STm have reduced IFNβ signaling via crosstalk with TLR4 signaling, and that IFNβ signaling does not affect cell autonomous host defense against STm.
Collapse
Affiliation(s)
- Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Shrestha Mathur
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
7
|
Hormann FM, Mooij EJ, van de Mheen M, Beverloo HB, den Boer ML, Boer JM. The impact of an additional copy of chromosome 21 in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2024; 63:e23217. [PMID: 38087879 DOI: 10.1002/gcc.23217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/04/2024] Open
Abstract
A common finding in pediatric B-cell precursor acute lymphoblastic leukemia (BCPALL) is that chromosome 21 is never lost and an extra chromosome 21 is often gained. This implies an important role for chromosome 21 in the pathobiology of BCPALL, emphasized by the increased risk of BCPALL in children with Down syndrome. However, model systems of chromosome 21 gain are lacking. We therefore developed a BCPALL cell line (Nalm-6, DUX4-rearranged) with an additional chromosome 21 by means of microcell-mediated chromosome transfer. FISH, PCR, multiplex ligation-dependent probe amplification, and whole exome sequencing showed that an additional chromosome 21 was successfully transferred to the recipient cells. Transcription of some but not all genes on chromosome 21 was increased, indicating tight transcriptional regulation. Nalm-6 cells with an additional chromosome 21 proliferated slightly slower compared with parental Nalm-6 and sensitivity to induction chemotherapeutics was mildly increased. The extra copy of chromosome 21 did not confer sensitivity to targeted signaling inhibitors. In conclusion, a BCPALL cell line with an additional human chromosome 21 was developed, validated, and subjected to functional studies, which showed a minor but potentially relevant effect in vitro. This cell line offers the possibility to study further the role of chromosome 21 in ALL.
Collapse
Affiliation(s)
- Femke M Hormann
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Eva J Mooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
8
|
Korwek Z, Czerkies M, Jaruszewicz-Błońska J, Prus W, Kosiuk I, Kochańczyk M, Lipniacki T. Nonself RNA rewires IFN-β signaling: A mathematical model of the innate immune response. Sci Signal 2023; 16:eabq1173. [PMID: 38085817 DOI: 10.1126/scisignal.abq1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Type I interferons (IFNs) are key coordinators of the innate immune response to viral infection, which, through activation of the transcriptional regulators STAT1 and STAT2 (STAT1/2) in bystander cells, induce the expression of IFN-stimulated genes (ISGs). Here, we showed that in cells transfected with poly(I:C), an analog of viral RNA, the transcriptional activity of STAT1/2 was terminated because of depletion of the interferon-β (IFN-β) receptor, IFNAR. Activation of RNase L and PKR, products of two ISGs, not only hindered the replenishment of IFNAR but also suppressed negative regulators of IRF3 and NF-κB, consequently promoting IFNB transcription. We incorporated these findings into a mathematical model of innate immunity. By coupling signaling through the IRF3-NF-κB and STAT1/2 pathways with the activities of RNase L and PKR, the model explains how poly(I:C) switches the transcriptional program from being STAT1/2 induced to being IRF3 and NF-κB induced, which converts IFN-β-responding cells to IFN-β-secreting cells.
Collapse
Affiliation(s)
- Zbigniew Korwek
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Maciej Czerkies
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Joanna Jaruszewicz-Błońska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Wiktor Prus
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Ilona Kosiuk
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Kochańczyk
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Tomasz Lipniacki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
9
|
Li H, Wang X, Wang Y, Li Y, Chen Y, Wong YT, He J, He ML. Secreted LRPAP1 binds and triggers IFNAR1 degradation to facilitate virus evasion from cellular innate immunity. Signal Transduct Target Ther 2023; 8:374. [PMID: 37743411 PMCID: PMC10518340 DOI: 10.1038/s41392-023-01630-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
The crucial role of interferon (IFN) signaling is well known in the restriction or eradication of pathogen invasion. Viruses take a variety of ways to antagonize host defense through eliminating IFN-signaling intracellularly for decades. However, the way by viruses target IFN-signaling extracellularly has not been discovered. Infection by both coronavirus SARS-CoV-2 and enterovirus 71 (EV71 or EV-A71) can cause severe diseases such as neurological disorders and even death in children.1-3 Here, we show evidence that the protease of SARS-CoV-2 (3CLpro) and EV71 (2Apro) upregulates the expression and secretion of LDL-receptor-related protein-associated protein 1 (LRPAP1). As a ligand, the N-terminus of secreted LRPAP1 binds with the extracellular domain of IFNAR1 that triggers the receptor ubiquitination and degradation and promotes virus infection both in vitro, ex vivo in the mouse brain, and in vivo in newborn mice. A small peptide from the N-terminus of LRPAP1 effectively binds and causes IFNAR1 degradation that enhances both DNA and RNA viral infections, including herpesvirus HSV-1, hepatitis B virus (HBV), EV71, and beta-coronavirus HCoV-OC43; whereas α2M, a LRPAP1 inhibitor, arrests virus infections by stabilizing IFNAR1. Our study demonstrates a new mechanism used by viruses for evading host cell immunity, supporting a strategy for developing pan-antiviral drugs.
Collapse
Affiliation(s)
- Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- CityU Shenzhen Research Institute, Nanshan, Shenzhen, China
| | - Xiong Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yiran Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yin-Ting Wong
- Department of Neurosciences, City University of Hong Kong, Hong Kong, China
| | - Jufang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Department of Neurosciences, City University of Hong Kong, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- CityU Shenzhen Research Institute, Nanshan, Shenzhen, China.
| |
Collapse
|
10
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen L, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557241. [PMID: 37745311 PMCID: PMC10515820 DOI: 10.1101/2023.09.11.557241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells, and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues, and functions as a decoy receptor that potently inhibits interferon signaling including in cells infected with SARS-CoV-2. Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Lily Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Cody J. Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- The Ohio State University College of Veterinary Medicine, Columbus, OH, 43210
| | - Liliana D. Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Sara L. Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| |
Collapse
|
11
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
12
|
Huang T, Fakurazi S, Cheah PS, Ling KH. REST Targets JAK-STAT and HIF-1 Signaling Pathways in Human Down Syndrome Brain and Neural Cells. Int J Mol Sci 2023; 24:9980. [PMID: 37373133 DOI: 10.3390/ijms24129980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome. Gene expression datasets generated from healthy controls and DS samples of human brain tissues, cerebral organoids, NPC, neurons, and astrocytes were retrieved from the Gene Ontology (GEO) and Sequence Read Archive (SRA) databases. Differential expression analysis was performed on all datasets to produce differential expression genes (DEGs) between DS and control groups. REST-targeted DEGs were subjected to functional ontologies, pathways, and network analyses. We found that REST-targeted DEGs in DS were enriched for the JAK-STAT and HIF-1 signaling pathways across multiple distinct brain regions, ages, and neural cell types. We also identified REST-targeted DEGs involved in nervous system development, cell differentiation, fatty acid metabolism and inflammation in the DS brain. Based on the findings, we propose REST as the critical regulator and a promising therapeutic target to modulate homeostatic gene expression in the DS brain.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
13
|
Min J, Yang S, Cai Y, Vanderwall DR, Wu Z, Li S, Liu S, Liu B, Wang J, Ding Y, Chen J, Jiang C, Wren JD, Csiszar A, Ungvari Z, Greco C, Kanie T, Peng J, Zhang XA. Tetraspanin Tspan8 restrains interferon signaling to stabilize intestinal epithelium by directing endocytosis of interferon receptor. Cell Mol Life Sci 2023; 80:154. [PMID: 37204469 PMCID: PMC10484302 DOI: 10.1007/s00018-023-04803-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Inflammation can impair intestinal barrier, while increased epithelial permeability can lead to inflammation. In this study, we found that the expression of Tspan8, a tetraspanin expressed specifically in epithelial cells, is downregulated in mouse model of ulcerative disease (UC) but correlated with those of cell-cell junction components, such as claudins and E-cadherin, suggesting that Tspan8 supports intestinal epithelial barrier. Tspan8 removal increases intestinal epithelial permeability and upregulates IFN-γ-Stat1 signaling. We also demonstrated that Tspan8 coalesces with lipid rafts and facilitates IFNγ-R1 localization at or near lipid rafts. As IFN-γ induces its receptor undergoing clathrin- or lipid raft-dependent endocytosis and IFN-γR endocytosis plays an important role in Jak-Stat1 signaling, our analysis on IFN-γR endocytosis revealed that Tspan8 silencing impairs lipid raft-mediated but promotes clathrin-mediated endocytosis of IFN-γR1, leading to increased Stat1 signaling. These changes in IFN-γR1 endocytosis upon Tspan8 silencing correlates with fewer lipid raft component GM1 at the cell surface and more clathrin heavy chain in the cells. Our findings indicate that Tspan8 determines the IFN-γR1 endocytosis route, to restrain Stat1 signaling, stabilize intestine epithelium, and subsequently prevent intestine from inflammation. Our finding also implies that Tspan8 is needed for proper endocytosis through lipid rafts.
Collapse
Affiliation(s)
- Jiang Min
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Shenglan Yang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Yang Cai
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - David R Vanderwall
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shuping Li
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Songlan Liu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Beibei Liu
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Jie Wang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Yingjun Ding
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Junxiong Chen
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Chao Jiang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Anna Csiszar
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Zoltan Ungvari
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Céline Greco
- Department of Pain and Palliative Care Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Tomoharu Kanie
- University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xin A Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, USA.
| |
Collapse
|
14
|
McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J 2023; 290:2525-2552. [PMID: 35246947 PMCID: PMC10952290 DOI: 10.1111/febs.16420] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Cytokines are soluble factors vital for mammalian physiology. Cytokines elicit highly pleiotropic activities, characterized by their ability to induce a wide spectrum of functional responses in a diverse range of cell subsets, which makes their study very challenging. Cytokines activate signalling via receptor dimerization/oligomerization, triggering activation of the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling pathway. Given the strong crosstalk and shared usage of key components of cytokine signalling pathways, a long-standing question in the field pertains to how functional diversity is achieved by cytokines. Here, we discuss how biophysical - for example, ligand-receptor binding affinity and topology - and cellular - for example, receptor, JAK and STAT protein levels, endosomal compartment - parameters contribute to the modulation and diversification of cytokine responses. We review how these parameters ultimately converge into a common mechanism to fine-tune cytokine signalling that involves the control of the number of Tyr residues phosphorylated in the receptor intracellular domain upon cytokine stimulation. This results in different kinetics of STAT activation, and induction of specific gene expression programs, ensuring the generation of functional diversity by cytokines using a limited set of signalling intermediaries. We describe how these first principles of cytokine signalling have been exploited using protein engineering to design cytokine variants with more specific and less toxic responses for immunotherapy.
Collapse
Affiliation(s)
- Alison McFarlane
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Elizabeth Pohler
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Ignacio Moraga
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
15
|
Zanin N, Viaris de Lesegno C, Podkalicka J, Meyer T, Gonzalez Troncoso P, Bun P, Danglot L, Chmiest D, Urbé S, Piehler J, Blouin CM, Lamaze C. STAM and Hrs interact sequentially with IFN-α Receptor to control spatiotemporal JAK-STAT endosomal activation. Nat Cell Biol 2023; 25:425-438. [PMID: 36797476 DOI: 10.1038/s41556-022-01085-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
Activation of the JAK-STAT pathway by type I interferons (IFNs) requires clathrin-dependent endocytosis of the IFN-α and -β receptor (IFNAR), indicating a role for endosomal sorting in this process. The molecular machinery that brings the selective activation of IFN-α/β-induced JAK-STAT signalling on endosomes remains unknown. Here we show that the constitutive association of STAM with IFNAR1 and TYK2 kinase at the plasma membrane prevents TYK2 activation by type I IFNs. IFN-α-stimulated IFNAR endocytosis delivers the STAM-IFNAR complex to early endosomes where it interacts with Hrs, thereby relieving TYK2 inhibition by STAM and triggering signalling of IFNAR at the endosome. In contrast, when stimulated by IFN-β, IFNAR signalling occurs independently of Hrs as IFNAR is sorted to a distinct endosomal subdomain. Our results identify the molecular machinery that controls the spatiotemporal activation of IFNAR by IFN-α and establish the central role of endosomal sorting in the differential regulation of JAK-STAT signalling by IFN-α and IFN-β.
Collapse
Affiliation(s)
- Natacha Zanin
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Namur Research Institute for Life Sciences (NARILIS), URBC, University of Namur, Namur, Belgium
| | - Christine Viaris de Lesegno
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Joanna Podkalicka
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, Paris, France.,Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Thomas Meyer
- Department of Biology and Center for Cellular Nanoanalytics, University of Osnabruck, Osnabruck, Germany
| | - Pamela Gonzalez Troncoso
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Philippe Bun
- Membrane Traffic in Healthy and Diseased Brain, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Lydia Danglot
- Membrane Traffic in Healthy and Diseased Brain, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Daniela Chmiest
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Department of Biochemistry, CIIL Biomedical Research Center, University of Lausanne, Epalinges, Switzerland
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics, University of Osnabruck, Osnabruck, Germany
| | - Cédric M Blouin
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France. .,Centre National de la Recherche Scientifique (CNRS), Paris, France.
| | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France. .,Centre National de la Recherche Scientifique (CNRS), Paris, France.
| |
Collapse
|
16
|
Luo TY, Shi Y, Wang G, Spaner DE. Enhanced IFN Sensing by Aggressive Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:1662-1673. [DOI: 10.4049/jimmunol.2200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Type I IFN is made by cells in response to stress. Cancer cells exist in a state of stress, but their IFN response is complex and not completely understood. This study investigated the role of autocrine IFN in human chronic lymphocytic leukemia (CLL) cells. CLL cells were found to make low amounts of IFN via TANK-binding kinase 1 pathways, but p-STAT1 and -STAT2 proteins along with IFN-stimulated genes that reflect IFN activation were variably downregulated in cultured CLL cells by the neutralizing IFNAR1 Ab anifrolumab. Patients with CLL were segregated into two groups based on the response of their leukemia cells to anifrolumab. Samples associated with more aggressive clinical behavior indicated by unmutated IGHV genes along with high CD38 and p-Bruton’s tyrosine kinase expression exhibited responses to low amounts of IFN that were blocked by anifrolumab. Samples with more indolent behavior were unaffected by anifrolumab. Hypersensitivity to IFN was associated with higher expression of IFNAR1, MX1, STAT1, and STAT2 proteins and lower activity of negative regulatory tyrosine phosphatases. Autocrine IFN protected responsive CLL cells from stressful tissue culture environments and therapeutic drugs such as ibrutinib and venetoclax in vitro, in part by upregulating Mcl-1 expression. These findings suggest hypersensitivity to IFN may promote aggressive clinical behavior. Specific blockade of IFN signaling may improve outcomes for patients with CLL with higher-risk disease.
Collapse
Affiliation(s)
- Tina YuXuan Luo
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yonghong Shi
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Guizhi Wang
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - David E. Spaner
- *Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- †Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- ‡Biology Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- §Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; and
- ¶Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Multifaceted Roles of Retromer in EGFR Trafficking and Signaling Activation. Cells 2022; 11:cells11213358. [DOI: 10.3390/cells11213358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mammalian retromer complex contributes to multiple early endosome-associated trafficking pathways whose origins are dependent on which sorting nexin (SNX) they are complexed with. In an attempt to dissect out the contribution of individual retromer–SNX complexes, we examined the trafficking of EGFR in detail within a series of KO cell line models. We demonstrated that the depletion of retromer subunit Vps35 leads to decreased EGFR protein levels in resting cells with enhanced association of EGFR with lysosomal compartments. Compared to control cells, the addition of EGF to Vps35 KO cells resulted in a reduced rate of EGFR degradation; AKT activation and cell prolferation rates were elevated, while ERK activation remained relatively unchanged. These observations are consistent with a prolonged temporal association of EGFR within early endosomes due to the inefficiency of early endosome-associated protein trafficking pathways or organelle maturation due to retromer absence. We did not fully delineate the discrete contributions from retromer-associated SNXs to the phenotypes observed from retromer Vps35 depletion. While each of the knock-outs of SNX1/2, SNX3, or SNX27 promotes the enhanced association of EGFR with early endosomal compartments, only the decreased EGF-mediated EGFR degradation was observed in SNX1/2 dKO cells, while the enhanced AKT activation was only increased in SNX3 KO or SNX27 KO cells. Despite this, each of the knock-outs showed increased EGF-stimulated cell proliferation rates.
Collapse
|
18
|
Ru(II)-modified TiO2 nanoparticles for hypoxia-adaptive photo-immunotherapy of oral squamous cell carcinoma. Biomaterials 2022; 289:121757. [DOI: 10.1016/j.biomaterials.2022.121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022]
|
19
|
Liu Y, Tong A, Gao X, Yuan S, Zhong R, Zhao C. Treponema primitia α1-2-fucosyltransferase-catalyzed one-pot multienzyme synthesis of fucosylated oligosaccharide lacto- N-fucopentaose I with antiviral activity against enterovirus 71. Food Chem X 2022; 14:100273. [PMID: 35265828 PMCID: PMC8899238 DOI: 10.1016/j.fochx.2022.100273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Fucosylated oligosaccharides have important biological functions as well as an excellent antiviral activity. A novel α 1-2-fucosyltransferase (α 2FT) from Treponema primitia (Tp2FT) was cloned and expressed in Escherichia coli BL21(DE3) and purified as an N-His6-tagged fusion protein (His6-Tp2FT). Mass spectrometry was carried out to identify the products of enzymatic reaction. The Tp2FT exhibited strict acceptor substrate specificity for type 1 structure (Galβ1-3GlcNAc)-containing glycans. It might be a promising emzyme for the chemo-enzymatic synthesis of lacto-N-fucopentaose I (LNFP I), which is one of the important fucosylated oligosaccharides. In this study, different in vitro experiments were used to study the biological activities of LNFP I. It could reduce the concentrations of inflammatory cytokines and effectively inhibit the synthesis of enterovirus 71 proliferation. LNFP I was an inhibitor of enterovirus 71 in the early stages of infection, it can used in infant nutrition and might provide a new drug for hand foot mouth disease.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aijun Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxiang Gao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sinan Yuan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruting Zhong
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
20
|
Frasca F, Scordio M, Santinelli L, Gabriele L, Gandini O, Criniti A, Pierangeli A, Angeloni A, Mastroianni CM, d'Ettorre G, Viscidi RP, Antonelli G, Scagnolari C. Anti-IFN-α/-ω neutralizing antibodies from COVID-19 patients correlate with downregulation of IFN response and laboratory biomarkers of disease severity. Eur J Immunol 2022; 52:1120-1128. [PMID: 35419822 PMCID: PMC9087404 DOI: 10.1002/eji.202249824] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
A significant number of COVID‐19 patients were shown to have neutralizing antibodies (NAB) against IFN; however, NAB specificity, fluctuation over time, associations with biochemical and hematological parameters, and IFN gene expression are not well characterized. Binding antibodies (BAB) to IFN‐α/‐β were screened in COVID‐19 patients’ serum. All BAB positive sera, and a subset of respiratory samples, were tested for NAB against IFN‐α/‐β/‐ω, using an antiviral bioassay. Transcript levels of IFN‐α/‐β/‐ω and IFN‐stimulated genes (ISGs) were quantified. Anti‐IFN‐I BAB were found in 61 out of 360 (17%) of patients. Among BAB positive sera, 21.3% had a high NAB titer against IFN‐α. A total of 69.2% of anti‐IFN‐α NAB sera displayed cross‐reactivity to IFN‐ω. Anti‐IFN‐I NAB persisted in all patients. NAB to IFN‐α were also detected in 3 out of 17 (17.6%) of respiratory samples. Anti‐IFN‐I NAB were higher in males (p = 0.0017), patients admitted to the ICU (p < 0.0001), and patients with a fatal outcome (p < 0.0001). NAB were associated with higher levels of CRP, LDH, d‐Dimer, and higher counts of hematological parameters. ISG‐mRNAs were reduced in patients with persistently NAB titer. NAB are detected in a significant proportion of severe COVID‐19. NAB positive patients presented a defective IFN response and increased levels of laboratory biomarkers of disease severity.
Collapse
Affiliation(s)
- Federica Frasca
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mirko Scordio
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Letizia Santinelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Orietta Gandini
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Anna Criniti
- Department of Experimental Medicine, Policlinico Umberto I, Sapienza University of Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Policlinico Umberto I, Sapienza University of Rome, Italy
| | - Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Policlinico Umberto I, Sapienza University of Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Policlinico Umberto I, Sapienza University of Rome, Italy
| | - Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guido Antonelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Kim NE, Song YJ. Coordinated regulation of interferon and inflammasome signaling pathways by SARS-CoV-2 proteins. J Microbiol 2022; 60:300-307. [PMID: 35089584 PMCID: PMC8795727 DOI: 10.1007/s12275-022-1502-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022]
Abstract
Type I and III interferons (IFNs) and the nucleotide-binding domain (NBD) leucine-rich repeat (LRR)-containing receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome play pivotal roles in the pathogenesis of SARS-CoV-2. While optimal IFN and inflammasome responses are essential for limiting SARS-CoV-2 infection, aberrant activation of these innate immune responses is associated with COVID-19 pathogenesis. In this review, we focus our discussion on recent findings on SARS-CoV-2-induced type I and III IFNs and NLRP3 inflammasome responses and the viral proteins regulating these mechanisms.
Collapse
Affiliation(s)
- Na-Eun Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
22
|
Kye YC, Lee GW, Lee SW, Ju YJ, Kim HO, Yun CH, Cho JH. STAT1 maintains naïve CD8 + T cell quiescence by suppressing the type I IFN-STAT4-mTORC1 signaling axis. SCIENCE ADVANCES 2021; 7:eabg8764. [PMID: 34516905 PMCID: PMC8442933 DOI: 10.1126/sciadv.abg8764] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Naïve CD8+ T cell quiescence is maintained at a steady state. Although this state of quiescence involves various cell-intrinsic and cell-extrinsic regulators, the mechanisms underlying this regulation remain incompletely understood. Here, we found that signal transducer and activator of transcription 1 (STAT1), a key transcription factor downstream of interferon receptor (IFNR) signaling, plays a cell-intrinsic role in maintaining naïve CD8+ T cell quiescence. STAT1-deficient mice showed enhanced proliferation of peripheral naïve CD8+ T cells, which resulted in an abnormal increase in the number of CD44hi memory/activated phenotype cells and an enlargement of secondary lymphoid tissues. This phenomenon was not observed in IFNR-deficient mice but was paradoxically dependent on type I interferon and its alternative signaling pathway via the STAT4–RagD–lysosomal mTORC1 axis. Collectively, these findings underline the importance of STAT1 in regulating the homeostasis of peripheral naïve CD8+ T cells by suppressing their responsiveness to homeostatic cues at a steady state.
Collapse
Affiliation(s)
- Yoon-Chul Kye
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Gil-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
- Department of Microbiology and Immunology and Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun 58128, Korea
- Immunotherapy Innovation Center, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Sung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
- Department of Microbiology and Immunology and Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun 58128, Korea
- Immunotherapy Innovation Center, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Young-Jun Ju
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Hee-Ok Kim
- Immunotherapy Innovation Center, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jae-Ho Cho
- Department of Microbiology and Immunology and Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun 58128, Korea
- Immunotherapy Innovation Center, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Sciences Graduate Program, Chonnam National University, Hwasun 58128, Korea
| |
Collapse
|
23
|
Budden CF, Gearing LJ, Kaiser R, Standke L, Hertzog PJ, Latz E. Inflammasome-induced extracellular vesicles harbour distinct RNA signatures and alter bystander macrophage responses. J Extracell Vesicles 2021; 10:e12127. [PMID: 34377374 PMCID: PMC8329986 DOI: 10.1002/jev2.12127] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Infectious organisms and damage of cells can activate inflammasomes, which mediate tissue inflammation and adaptive immunity. These mechanisms evolved to curb the spread of microbes and to induce repair of the damaged tissue. Chronic activation of inflammasomes, however, contributes to non-resolving inflammatory responses that lead to immuno-pathologies. Inflammasome-activated cells undergo an inflammatory cell death associated with the release of potent pro-inflammatory cytokines and poorly characterized extracellular vesicles (EVs). Since inflammasome-induced EVs could signal inflammasome pathway activation in patients with chronic inflammation and modulate bystander cell activation, we performed a systems analysis of the ribonucleic acid (RNA) content and function of two EV classes. We show that EVs released from inflammasome-activated macrophages carry a specific RNA signature and contain interferon β (IFNβ). EV-associated IFNβ induces an interferon signature in bystander cells and results in dampening of NLRP3 inflammasome responses. EVs could, therefore, serve as biomarkers for inflammasome activation and act to prevent systemic hyper-inflammatory states by restricting NLRP3 activation in bystander cells.
Collapse
Affiliation(s)
- Christina F. Budden
- Institute of Innate ImmunityUniversity HospitalUniversity of BonnBonnGermany
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Linden J. Gearing
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Romina Kaiser
- Institute of Innate ImmunityUniversity HospitalUniversity of BonnBonnGermany
| | - Lena Standke
- Institute of Innate ImmunityUniversity HospitalUniversity of BonnBonnGermany
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Paul J. Hertzog
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Eicke Latz
- Institute of Innate ImmunityUniversity HospitalUniversity of BonnBonnGermany
- Department of Infectious Diseases and ImmunologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
- German Centre for Neurodegenerative Diseases (DZNE)BonnGermany
| |
Collapse
|
24
|
Down syndrome and type I interferon: not so simple. Curr Opin Immunol 2021; 72:196-205. [PMID: 34174697 DOI: 10.1016/j.coi.2021.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Down syndrome (DS) is characterized by a collection of clinical features including intellectual disability, congenital malformations, and susceptibility to infections and autoimmune diseases. While the presence of an extra chromosome 21 is known to cause DS, the precise genetic annotation linked to specific clinical features is largely missing. However, there is growing evidence that two genes located on chromosome 21, IFNAR1 and IFNAR2, play an important role in disease pathogenesis. These genes encode the two subunits of the receptor for type I interferons (IFN-I), a group of potent antiviral and pro-inflammatory cytokines. Human monogenic diseases caused by uncontrolled IFN-I production and response have been well characterized, and they clinically overlap with DS but also have notable differences. Herein, we review the literature characterizing the role of IFN-I in DS and compare and contrast DS to other IFN-mediated conditions. The existing IFN-I literature serves as a rich resource for testable hypotheses to elucidate disease mechanisms in DS and is likely to open novel therapeutic avenues.
Collapse
|
25
|
Huang B, Chen H, Zheng Y. MiR-103/miR-107 inhibits enterovirus 71 replication and facilitates type I interferon response by regulating SOCS3/STAT3 pathway. Biotechnol Lett 2021; 43:1357-1369. [PMID: 33796959 DOI: 10.1007/s10529-021-03115-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Enterovirus71 (EV71), the major cause of hand, foot, and-mouth disease (HFMD), has increasingly become a public health challenge. Type I interferons (IFNs) can regulate innate and adaptive immune responses to pathogens. MicroRNAs (miRNAs) play regulatory roles in host innate immune responses to viral infections. However, the roles of miR-103 and miR-107 in EV71 infection remain unclear. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine the expression of miR-103, miR-107, suppressor of cytokine signaling 3 (SOCS3), VP1, IFN-α, and IFN-β. Virus titers were measured by 50% tissue culture infectious dose (TCID50) assay. Western blot assay was conducted to detect the protein levels of VP1, IFN-α, IFN-β, SOCS3, signal transducer and activator of transcription 3 (STAT3), and phospho-STAT3 (p-STAT3). Immunofluorescence assay was used to detect the protein level of VP1. The concentrations of IFN-α and IFN-β were examined by Enzyme-linked immunosorbent assay (ELISA). The interaction between SOCS3 and miR-103/miR-107 was predicted by starBase and verified by dual-luciferase reporter assay and RNA pull-down assay. RESULTS MiR-103 and miR-107 were downregulated and SOCS3 was upregulated in serum from patients with EV71 and EV71-infected cells. Overexpression of miR-103 and miR-107 repressed EV71 replication by inhibiting EV71 titers and VP1 expression. Moreover, upregulation of miR-103 and miR-107 enhanced EV71-triggered the production of type I IFNs. In addition, miR-103 and miR-107 directly targeted SOCS3, and SOCS3 upregulation reversed the effects of miR-103 and miR-107 on EV71 replication and type I IFN response. Importantly, miR-103 and miR-107 increased STAT3 phosphorylation by targeting SOCS3 after EV71 infection. CONCLUSION MiR-103 and miR-107 suppressed EV71 replication and increased the production of type I IFNs by regulating SOCS3/STAT3 pathway, which might provide a novel strategy for developing effective antiviral therapy.
Collapse
Affiliation(s)
- Baizhi Huang
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, Dongguan, China.
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, No. 111 Humen Avenue, Humen Town, Dongguan City, 523900, Guangdong Province, China.
| | - Haiping Chen
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Yanbing Zheng
- Department of Pediatrics, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| |
Collapse
|
26
|
Respiratory syncytial virus activates Rab5a to suppress IRF1-dependent IFN-λ production, subverting the antiviral defense of airway epithelial cells. J Virol 2021; 95:JVI.02333-20. [PMID: 33504607 PMCID: PMC8103688 DOI: 10.1128/jvi.02333-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The limited antiviral options and lack of an effective vaccine against human respiratory syncytial virus (RSV) highlight the need for a novel antiviral therapy. One alternative is to identify and target the host factors required for viral infection. Here, using RNA interference to knock down Rab proteins, we provide multiple lines of evidence that Rab5a is required for RSV infection: (a) Rab5a is upregulated both in RSV-A2-infected A549 cells and RSV-A2-challenged BALB/c mice's airway epithelial cells at early infection phase; (b) shRNA-mediated knockdown of Rab5a is associated with reduced lung pathology in RSV A2 challenged mice; (c) Rab5a expression is correlated with disease severity of RSV infection of infants. Knockdown of Rab5a increases IFN-λ (lambda) production by mediating IRF1 nuclear translocation. Our results highlight a new role for Rab5a in RSV infection, such that its depletion inhibits RSV infection by stimulating the endogenous respiratory epithelial antiviral immunity, which suggests that Rab5a is a potential target for novel therapeutics against RSV infection.Importance This study highlights the important role of Rab5a in RSV infection, such that its depletion inhibits RSV infection by stimulating the endogenous respiratory epithelial antiviral immunity and attenuates inflammation of the airway, which suggests that Rab5a is a powerful potential target for novel therapeutics against RSV infection.
Collapse
|
27
|
When Rab GTPases meet innate immune signaling pathways. Cytokine Growth Factor Rev 2021; 59:95-100. [PMID: 33608190 DOI: 10.1016/j.cytogfr.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Ras-related protein in brain (Rab) GTPases, the subfamily of small GTP-binding proteins superfamily, play a vital role in regulating and controlling vesicles' transport between different membrane-bound organelles. As the first-line defense against invading pathogens, the host's innate immune system recognizes various pathogen-associated molecular patterns through a series of membrane-bound or cytoplasmic pathogen recognition receptors to activate the downstream signaling pathway and induce the type I interferons (IFN-I). Numerous studies have demonstrated that Rab GTPases participate in innate immunity by regulating transmembrane signals' transduction and the transport, adhesion, anchoring, and fusion of vesicles. However, the underlying mechanism of Rab GTPases regulating innate immunity is not entirely understood. A comprehensive understanding of the interplay between the Rab GTPases and innate immunity will help develop novel therapeutics against microbial infections and chronic inflammations.
Collapse
|
28
|
Seaman MNJ. The Retromer Complex: From Genesis to Revelations. Trends Biochem Sci 2021; 46:608-620. [PMID: 33526371 DOI: 10.1016/j.tibs.2020.12.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The retromer complex has a well-established role in endosomal protein sorting, being necessary for maintaining the dynamic localisation of hundreds of membrane proteins that traverse the endocytic system. Retromer function and dysfunction is linked with neurodegenerative diseases, including Alzheimer's and Parkinson's disease, and many pathogens, both viral and bacterial, exploit or interfere in retromer function for their own ends. In this review, the history of retromer is distilled into a concentrated form that spans the identification of retromer to recent discoveries that have shed new light on how retromer functions in endosomal protein sorting and why retromer is increasingly being viewed as a potential therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew N J Seaman
- University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
29
|
Zanin N, Viaris de Lesegno C, Lamaze C, Blouin CM. Interferon Receptor Trafficking and Signaling: Journey to the Cross Roads. Front Immunol 2021; 11:615603. [PMID: 33552080 PMCID: PMC7855707 DOI: 10.3389/fimmu.2020.615603] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Like most plasma membrane proteins, type I interferon (IFN) receptor (IFNAR) traffics from the outer surface to the inner compartments of the cell. Long considered as a passive means to simply control subunits availability at the plasma membrane, an array of new evidence establishes IFNAR endocytosis as an active contributor to the regulation of signal transduction triggered by IFN binding to IFNAR. During its complex journey initiated at the plasma membrane, the internalized IFNAR complex, i.e. IFNAR1 and IFNAR2 subunits, will experience post-translational modifications and recruit specific effectors. These finely tuned interactions will determine not only IFNAR subunits destiny (lysosomal degradation vs. plasma membrane recycling) but also the control of IFN-induced signal transduction. Finally, the IFNAR system perfectly illustrates the paradigm of the crosstalk between membrane trafficking and intracellular signaling. Investigating the complexity of IFN receptor intracellular routes is therefore necessary to reveal new insight into the role of IFNAR membrane dynamics in type I IFNs signaling selectivity and biological activity.
Collapse
Affiliation(s)
- Natacha Zanin
- NDORMS, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christine Viaris de Lesegno
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Christophe Lamaze
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Cedric M Blouin
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| |
Collapse
|
30
|
Wittling MC, Cahalan SR, Levenson EA, Rabin RL. Shared and Unique Features of Human Interferon-Beta and Interferon-Alpha Subtypes. Front Immunol 2021; 11:605673. [PMID: 33542718 PMCID: PMC7850986 DOI: 10.3389/fimmu.2020.605673] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Type I interferons (IFN-I) were first discovered as an antiviral factor by Isaacs and Lindenmann in 1957, but they are now known to also modulate innate and adaptive immunity and suppress proliferation of cancer cells. While much has been revealed about IFN-I, it remains a mystery as to why there are 16 different IFN-I gene products, including IFNβ, IFNω, and 12 subtypes of IFNα. Here, we discuss shared and unique aspects of these IFN-I in the context of their evolution, expression patterns, and signaling through their shared heterodimeric receptor. We propose that rather than investigating responses to individual IFN-I, these contexts can serve as an alternative approach toward investigating roles for IFNα subtypes. Finally, we review uses of IFNα and IFNβ as therapeutic agents to suppress chronic viral infections or to treat multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | - Ronald L. Rabin
- Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
31
|
Fox LE, Locke MC, Lenschow DJ. Context Is Key: Delineating the Unique Functions of IFNα and IFNβ in Disease. Front Immunol 2020; 11:606874. [PMID: 33408718 PMCID: PMC7779635 DOI: 10.3389/fimmu.2020.606874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) are critical effector cytokines of the immune system and were originally known for their important role in protecting against viral infections; however, they have more recently been shown to play protective or detrimental roles in many disease states. Type I IFNs consist of IFNα, IFNβ, IFNϵ, IFNκ, IFNω, and a few others, and they all signal through a shared receptor to exert a wide range of biological activities, including antiviral, antiproliferative, proapoptotic, and immunomodulatory effects. Though the individual type I IFN subtypes possess overlapping functions, there is growing appreciation that they also have unique properties. In this review, we summarize some of the mechanisms underlying differential expression of and signaling by type I IFNs, and we discuss examples of differential functions of IFNα and IFNβ in models of infectious disease, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Lindsey E. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Marissa C. Locke
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Deborah J. Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
32
|
Cancer-driving mutations and variants of components of the membrane trafficking core machinery. Life Sci 2020; 264:118662. [PMID: 33127517 DOI: 10.1016/j.lfs.2020.118662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
The core machinery for vesicular membrane trafficking broadly comprises of coat proteins, RABs, tethering complexes and SNAREs. As cellular membrane traffic modulates key processes of mitogenic signaling, cell migration, cell death and autophagy, its dysregulation could potentially results in increased cell proliferation and survival, or enhanced migration and invasion. Changes in the levels of some components of the core machinery of vesicular membrane trafficking, likely due to gene amplifications and/or alterations in epigenetic factors (such as DNA methylation and micro RNA) have been extensively associated with human cancers. Here, we provide an overview of association of membrane trafficking with cancer, with a focus on mutations and variants of coat proteins, RABs, tethering complex components and SNAREs that have been uncovered in human cancer cells/tissues. The major cellular and molecular cancer-driving or suppression mechanisms associated with these components of the core membrane trafficking machinery shall be discussed.
Collapse
|
33
|
Moore R, Vogt K, Acosta-Martin AE, Shire P, Zeidler M, Smythe E. Integration of JAK/STAT receptor-ligand trafficking, signalling and gene expression in Drosophila melanogaster cells. J Cell Sci 2020; 133:jcs246199. [PMID: 32917740 DOI: 10.1242/jcs.246199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
The JAK/STAT pathway is an essential signalling cascade required for multiple processes during development and for adult homeostasis. A key question in understanding this pathway is how it is regulated in different cell contexts. Here, we have examined how endocytic processing contributes to signalling by the single cytokine receptor in Drosophila melanogaster cells, Domeless. We identify an evolutionarily conserved di-leucine (di-Leu) motif that is required for Domeless internalisation and show that endocytosis is required for activation of a subset of Domeless targets. Our data indicate that endocytosis both qualitatively and quantitatively regulates Domeless signalling. STAT92E, the single STAT transcription factor in Drosophila, appears to be the target of endocytic regulation, and our studies show that phosphorylation of STAT92E on Tyr704, although necessary, is not always sufficient for target transcription. Finally, we identify a conserved residue, Thr702, which is essential for Tyr704 phosphorylation. Taken together, our findings identify previously unknown aspects of JAK/STAT pathway regulation likely to play key roles in the spatial and temporal regulation of signalling in vivo.
Collapse
Affiliation(s)
- Rachel Moore
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Katja Vogt
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Adelina E Acosta-Martin
- biOMICS Facility, Faculty of Science Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Patrick Shire
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Martin Zeidler
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth Smythe
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
34
|
Guo J, Sun J, Liu X, Wang Z, Gao W. Head-to-tail macrocyclization of albumin-binding domain fused interferon alpha improves the stability, activity, tumor penetration, and pharmacology. Biomaterials 2020; 250:120073. [DOI: 10.1016/j.biomaterials.2020.120073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
|
35
|
Abstract
Type I IFN (IFN-I) is thought to be rapidly internalized and degraded following binding to its receptor and initiation of signaling. However, many studies report the persistent effects mediated by IFN-I for days or even weeks, both ex vivo and in vivo. These long-lasting effects are attributed to downstream signaling molecules or induced effectors having a long half-life, particularly in specific cell types. Here, we describe a mechanism explaining the long-term effects of IFN-I. Following receptor binding, IFN-I is siloed into endosomal compartments. These intracellular “IFN silos” persist for days and can be visualized by fluorescence and electron microscopy. However, they are largely dormant functionally, due to IFN-I−induced negative regulators. By contrast, in individuals lacking these negative regulators, such as ISG15 or USP18, this siloed IFN-I can continue to signal from within the endosome. This mechanism may underlie the long-term effects of IFN-I therapy and may contribute to the pathophysiology of type I interferonopathies.
Collapse
|
36
|
Induction of SOCS Expression by EV71 Infection Promotes EV71 Replication. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2430640. [PMID: 32149091 PMCID: PMC7054758 DOI: 10.1155/2020/2430640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/03/2020] [Indexed: 12/30/2022]
Abstract
Enterovirus 71 (EV71) is the causative pathogen of hand, foot, and mouth disease (HFMD). However, no effective antiviral therapy is currently available. Some viruses could escape the host's innate immunity by upregulating suppressor of cytokine signaling (SOCS) proteins. Until now, whether EV71 evades the host immune system by regulating the expression of SOCS proteins remains unknown. In this study, we found that EV71 infection promoted SOCS expression at both mRNA and protein levels in vitro and in vivo. Consistently, the infectivity of EV71 was decreased significantly in the SOCS3 or SOCS1 knockdown cells, suggesting that SOCS1 and especially SOCS3 are crucial for EV71 infection. Further investigation showed that SOCS3 promoted virus infection by inhibiting interferon-induced STAT3 phosphorylation. SOCS1 and SOCS3 mRNA expressions were independent on virus-induced type I interferon expression but were blocked by the inhibitor of NF-κB. Therefore, EV71 infection stimulates the expression of SOCS proteins in an interferon-independent way and negatively regulates the JAK/STAT signaling pathway, thus escaping host immunity. All these results may add new information to the mechanism of EV71 in fighting against type I interferon responses.
Collapse
|
37
|
Stanifer ML, Pervolaraki K, Boulant S. Differential Regulation of Type I and Type III Interferon Signaling. Int J Mol Sci 2019; 20:E1445. [PMID: 30901970 PMCID: PMC6471306 DOI: 10.3390/ijms20061445] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are very powerful cytokines, which play a key role in combatting pathogen infections by controlling inflammation and immune response by directly inducing anti-pathogen molecular countermeasures. There are three classes of IFNs: type I, type II and type III. While type II IFN is specific for immune cells, type I and III IFNs are expressed by both immune and tissue specific cells. Unlike type I IFNs, type III IFNs have a unique tropism where their signaling and functions are mostly restricted to epithelial cells. As such, this class of IFN has recently emerged as a key player in mucosal immunity. Since the discovery of type III IFNs, the last 15 years of research in the IFN field has focused on understanding whether the induction, the signaling and the function of these powerful cytokines are regulated differently compared to type I IFN-mediated immune response. This review will cover the current state of the knowledge of the similarities and differences in the signaling pathways emanating from type I and type III IFN stimulation.
Collapse
Affiliation(s)
- Megan L Stanifer
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Kalliopi Pervolaraki
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Steeve Boulant
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
38
|
Cullen PJ, Steinberg F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 2018; 19:679-696. [PMID: 30194414 DOI: 10.1038/s41580-018-0053-7] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Newly endocytosed integral cell surface proteins are typically either directed for degradation or subjected to recycling back to the plasma membrane. The sorting of integral cell surface proteins, including signalling receptors, nutrient transporters, ion channels, adhesion molecules and polarity markers, within the endolysosomal network for recycling is increasingly recognized as an essential feature in regulating the complexities of physiology at the cell, tissue and organism levels. Historically, endocytic recycling has been regarded as a relatively passive process, where the majority of internalized integral proteins are recycled via a nonspecific sequence-independent 'bulk membrane flow' pathway. Recent work has increasingly challenged this view. The discovery of sequence-specific sorting motifs and the identification of cargo adaptors and associated coat complexes have begun to uncover the highly orchestrated nature of endosomal cargo recycling, thereby providing new insight into the function and (patho)physiology of this process.
Collapse
Affiliation(s)
- Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
39
|
Zanin N, Blouin CM. [Endosomal control of intracellular signaling]. Biol Aujourdhui 2018; 212:45-51. [PMID: 30362455 DOI: 10.1051/jbio/2018023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 11/14/2022]
Abstract
Membrane receptors control essential processes such as cell growth, adhesion, differentiation and metabolism through the activation of specific signaling pathways. Nowadays, these receptors are not only known to signal from the plasma membrane but also from intracellular compartments. Indeed, after being internalized with their ligands via different endocytic pathways, some membrane receptors can initiate signal only after reaching the sorting endosome where they associate with specific protein partners. This review illustrates how this spatio-temporal regulation of signal transduction can occur, with several examples, including interferon receptors which activate JAK/STAT signaling pathways. The literature presented here explains why this control of signaling pathways occuring at the endosomal level creates a higher degree of tuning for the affected cellular processes.
Collapse
Affiliation(s)
- Natacha Zanin
- The Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY, Oxford, UK
| | - Cedric M Blouin
- Institut Curie - Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, 75248 Paris Cedex 05, France - Institut National de la Santé et de la Recherche Médicale (INSERM), U1143, Paris, France - Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| |
Collapse
|
40
|
Zhang HX, Xu ZS, Lin H, Li M, Xia T, Cui K, Wang SY, Li Y, Shu HB, Wang YY. TRIM27 mediates STAT3 activation at retromer-positive structures to promote colitis and colitis-associated carcinogenesis. Nat Commun 2018; 9:3441. [PMID: 30143645 PMCID: PMC6109048 DOI: 10.1038/s41467-018-05796-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/24/2018] [Indexed: 12/26/2022] Open
Abstract
STAT3 is a transcription factor that plays central roles in various physiological processes and its deregulation results in serious diseases including cancer. The mechanisms on how STAT3 activity is regulated remains enigmatic. Here we identify TRIM27 as a positive regulator of II-6-induced STAT3 activation and downstream gene expression. TRIM27 localizes to retromer-positive punctate structures and serves as a critical link for recruiting gp130, JAK1, and STAT3 to and subsequent phosphorylation of STAT3 at the retromer-positive structures. Overexpression of TRIM27 promotes cancer cell growth in vitro and tumor growth in nude mice, whereas knockdown of TRIM27 has opposite effects. Deficiency of TRIM27 significantly impairs dextran sulfate sodium (DSS)-induced STAT3 activation, inflammatory cytokine expression and colitis as well as azoxymethane (AOM)/DSS-induced colitis-associated cancer in mice. These findings reveal a retromer-dependent mechanism for regulation of STAT3 activation, inflammation, and inflammation-associated cancer development. Aberrant and persistent activation of the transcription factor STAT3 has been found in various types of cancers. Here the authors identify TRIM27 as a positive regulator of IL-6-induced STAT3 activation through the formation of JAK1-STAT3 complex, thus impacting inflammation-induced colon cancer development.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China
| | - Zhi-Sheng Xu
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, 510623, Guangzhou, China.,Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Hen Lin
- College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Mi Li
- College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Tian Xia
- College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Kaisa Cui
- College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Su-Yun Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Youjun Li
- College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Hong-Bing Shu
- College of Life Sciences, Wuhan University, 430072, Wuhan, China. .,Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.
| | - Yan-Yi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.
| |
Collapse
|
41
|
Fisher KH, Fragiadaki M, Pugazhendhi D, Bausek N, Arredondo MA, Thomas SJ, Brown S, Zeidler MP. A genome-wide RNAi screen identifies MASK as a positive regulator of cytokine receptor stability. J Cell Sci 2018; 131:jcs.209551. [PMID: 29848658 DOI: 10.1242/jcs.209551] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/16/2018] [Indexed: 01/01/2023] Open
Abstract
Cytokine receptors often act via the Janus kinase and signal transducer and activator of transcription (JAK/STAT) pathway to form a signalling cascade that is essential for processes such as haematopoiesis, immune responses and tissue homeostasis. In order to transduce ligand activation, cytokine receptors must dimerise. However, mechanisms regulating their dimerisation are poorly understood. In order to better understand the processes regulating cytokine receptor levels, and their activity and dimerisation, we analysed the highly conserved JAK/STAT pathway in Drosophila, which acts via a single receptor, known as Domeless. We performed a genome-wide RNAi screen in Drosophila cells, identifying MASK as a positive regulator of Domeless dimerisation and protein levels. We show that MASK is able to regulate receptor levels and JAK/STAT signalling both in vitro and in vivo We also show that its human homologue, ANKHD1, is also able to regulate JAK/STAT signalling and the levels of a subset of pathway receptors in human cells. Taken together, our results identify MASK as a novel regulator of cytokine receptor levels, and suggest functional conservation, which may have implications for human health.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Katherine H Fisher
- The Bateson Centre, Department of Biomedical Science, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Maria Fragiadaki
- The Bateson Centre, Department of Biomedical Science, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Dhamayanthi Pugazhendhi
- The Bateson Centre, Department of Biomedical Science, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Nina Bausek
- The Bateson Centre, Department of Biomedical Science, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Maria A Arredondo
- Department of Oncology & Human Metabolism, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Sally J Thomas
- Department of Oncology & Human Metabolism, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Stephen Brown
- The Sheffield RNAi Screening Facility, Department of Biomedical Science, The University of Sheffield, S10 2TN, UK
| | - Martin P Zeidler
- The Bateson Centre, Department of Biomedical Science, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| |
Collapse
|
42
|
Kowalski E, Geng S, Rathes A, Lu R, Li L. Toll-interacting protein differentially modulates HIF1α and STAT5-mediated genes in fibroblasts. J Biol Chem 2018; 293:12239-12247. [PMID: 29921584 DOI: 10.1074/jbc.ra118.003382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/11/2018] [Indexed: 11/06/2022] Open
Abstract
Toll-interacting protein (Tollip) deficiency has been implicated in complex inflammatory and infectious diseases whose mechanisms are poorly understood. Comparing the gene expression profiles of WT and Tollip-deficient murine embryonic fibroblasts, we observed here that Tollip deficiency selectively reduces the expression of the inflammatory cytokines interleukin 6 (IL-6), IL-12, and tumor necrosis factor α (TNFα) but potentiates the expression of fatty acid-binding protein 4 (FABP4) in these cells. We also observed that expression of hypoxia-inducible factor 1-α (HIF1α) is reduced, whereas that of signal transducer and activator of transcription 5 (STAT5) is elevated, in Tollip-deficient cells, correlating with the decreased expression of inflammatory cytokines and increased expression of FABP4 in these cells. We further found that the coupling of ubiquitin to ER degradation (CUE) domain of Tollip is required for stimulating HIF1α activity, because Tollip CUE-domain mutant cells exhibited reduced levels of HIF1α and selected cytokines. Tollip is known to mediate autophagy and lysosome fusion, and herein we observed that Tollip's autophagy function is required for modulating STAT5 and FABP4 expression. Bafilomycin A, an inhibitor of lysosome fusion, enhanced STAT5 and FABP4 expression in WT fibroblasts, whereas torin 2, an activator of autophagy, reduced STAT5 and FABP4 expression in Tollip-deficient fibroblasts. Taken together, our study reveals that Tollip differentially modulates HIF1α and STAT5 expression in fibroblasts, potentially explaining the complex and context-dependent contribution of Tollip to disease development.
Collapse
Affiliation(s)
- Elizabeth Kowalski
- Department of Biological Sciences and Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Shuo Geng
- Department of Biological Sciences and Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Allison Rathes
- Department of Biological Sciences and Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Ran Lu
- Department of Biological Sciences and Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Liwu Li
- Department of Biological Sciences and Biochemistry, Virginia Tech, Blacksburg, Virginia 24061.
| |
Collapse
|
43
|
He CL, Liu M, Tan ZX, Hu YJ, Zhang QY, Kuang XM, Kong WL, Mao Q. Hepatitis C virus core protein-induced miR-93-5p up-regulation inhibits interferon signaling pathway by targeting IFNAR1. World J Gastroenterol 2018; 24:226-236. [PMID: 29375208 PMCID: PMC5768941 DOI: 10.3748/wjg.v24.i2.226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the mechanism by which hepatitis C virus (HCV) core protein-induced miR-93-5p up-regulation regulates the interferon (IFN) signaling pathway.
METHODS HCV-1b core protein was exogenously expressed in Huh7 cells using pcDNA3.1 (+) vector. The expression of miR-93-5p and interferon receptor 1 (IFNAR1) was measured using quantitative reverse transcription-polymerase chain reaction and Western blot. The protein expression and phosphorylation level of STAT1 were evaluated by Western blot. The overexpression and silencing of miR-93-5p and IFNAR1 were performed using miR-93-5p agomir and antagomir, and pcDNA3.1-IFNAR1 and IFNAR1 siRNA, respectively. Luciferase assay was used to identify whether IFNAR1 is a target of miR-93-5p. Cellular experiments were also conducted.
RESULTS Serum miR-93-5p level was increased in patients with HCV-1b infection and decreased to normal level after HCV-1b clearance, but persistently increased in those with pegylated interferon-α resistance, compared with healthy subjects. Serum miR-93-5p expression had an AUC value of 0.8359 in distinguishing patients with pegylated interferon-α resistance from those with pegylated interferon-α sensitivity. HCV-1b core protein increased miR-93-5p expression and induced inactivation of the IFN signaling pathway in Huh7 cells. Furthermore, IFNAR1 was identified as a direct target of miR-93-5p, and IFNAR1 restore could rescue miR-93-5p-reduced STAT1 phosphorylation, suggesting that the miR-93-5p-IFNAR1 axis regulates the IFN signaling pathway.
CONCLUSION HCV-1b core protein-induced miR-93-5p up-regulation inhibits the IFN signaling pathway by directly targeting IFNAR1, and the miR-93-5p-IFNAR1 axis regulates STAT1 phosphorylation. This axis may be a potential therapeutic target for HCV-1b infection.
Collapse
Affiliation(s)
- Chang-Long He
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Ming Liu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Zhao-Xia Tan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Ya-Jun Hu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Qiao-Yue Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Xue-Mei Kuang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Wei-Long Kong
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| |
Collapse
|
44
|
Seaman MNJ. Retromer and Its Role in Regulating Signaling at Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:137-149. [PMID: 30097774 DOI: 10.1007/978-3-319-96704-2_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The retromer complex is a key element of the endosomal protein sorting machinery being involved in trafficking of proteins from endosomes to the Golgi and also endosomes to the cell surface. There is now accumulating evidence that retromer also has a prominent role in regulating the activity of many diverse signaling proteins that traffic through endosomes and this activity has profound implications for the functioning of many different cell and tissue types from neuronal cells to cells of the immune system to specialized polarized epithelial cells of the retina. In this review, the protein composition of the retromer complex will be described along with many of the accessory factors that facilitate retromer-mediated endosomal protein sorting to detail how retromer activity contributes to the regulation of several distinct signaling pathways.
Collapse
Affiliation(s)
- Matthew N J Seaman
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrookes Hospital, Cambridge, CB2 0XY, UK.
| |
Collapse
|
45
|
Luo Z, Ge M, Chen J, Geng Q, Tian M, Qiao Z, Bai L, Zhang Q, Zhu C, Xiong Y, Wu K, Liu F, Liu Y, Wu J. HRS plays an important role for TLR7 signaling to orchestrate inflammation and innate immunity upon EV71 infection. PLoS Pathog 2017; 13:e1006585. [PMID: 28854257 PMCID: PMC5595348 DOI: 10.1371/journal.ppat.1006585] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022] Open
Abstract
Enterovirus 71 (EV71) is an RNA virus that causes hand-foot-mouth disease (HFMD), and even fatal encephalitis in children. Although EV71 pathogenesis remains largely obscure, host immune responses may play important roles in the development of diseases. Recognition of pathogens mediated by Toll-like receptors (TLRs) induces host immune and inflammatory responses. Intracellular TLRs must traffic from the endoplasmic reticulum (ER) to the endolysosomal network from where they initiate complete signaling, leading to inflammatory response. This study reveals a novel mechanism underlying the regulation of TLR7 signaling during EV71 infection. Initially, we show that multiple cytokines are differentially expressed during viral infection and demonstrate that EV71 infection induces the production of proinflammatory cytokines through regulating TLR7-mediated p38 MAPK, and NF-κB signaling pathways. Further studies reveal that the expression of the endosome-associated protein hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) is upregulated and highly correlated with the expression of TLR7 in EV71 infected patients, mice, and cultured cells. Virus-induced HRS subsequently enhances TLR7 complex formation in early- and late-endosome by interacting with TLR7 and TAB1. Moreover, HRS is involved in the regulation of the TLR7/NF-κB/p38 MAPK and the TLR7/NF-κB/IRF3 signaling pathways to induce proinflammatory cytokines and interferons, respectively, resulting in the orchestration of inflammatory and immune responses to the EV71 infection. Therefore, this study demonstrates that HRS acts as a key component of TLR7 signaling to orchestrate immune and inflammatory responses during EV71 infection, and provides new insights into the mechanisms underlying the regulation of host inflammation and innate immunity during EV71 infection. Enterovirus 71 (EV71) is a highly infectious positive-stranded RNA virus that causes hand-foot-mouth disease (HFMD). As a major pathogen, EV71 infection leads to host immune responses in the disease severity. Toll-like receptors (TLRs) can recognize pathogens to induce host immunity and inflammation. Most TLRs must traffic from the endoplasmic reticulum (ER) to endolysosomal network before responding to ligands. The hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) regulates ESCRT-0 complex and endosomal sorting of membrane proteins. HRS is required for ubiquitin-dependent TLR9 targeting to the endolysosome, however, the mechanism by which HRS regulates inflammation and immunity mediated by TLR7 is still largely unknown. Here, we reveal that HRS is a key component of TLR7 signaling to orchestrate immunity and inflammation during EV71 infection. EV71 infection induces the expression of HRS, which subsequently enhances the TLR7 complex formation by binding with TLR7 and TAB1. HRS facilitates TLR7/NF-κB/p38 MAPK and TLR7/NF-κB/IRF3 signaling pathways to produce proinflammatory cytokines and interferons, leading to induction of inflammatory and immune responses. Thus, we identify HRS as a key regulator of TLR7 signaling and illustrate a novel mechanism underlying the regulation of host immunity and inflammation during viral infection.
Collapse
Affiliation(s)
- Zhen Luo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Maolin Ge
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junbo Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qibin Geng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lan Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Xiong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (JW); (YL); (FL)
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (JW); (YL); (FL)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (JW); (YL); (FL)
| |
Collapse
|
46
|
Niedergang F, Gasman S, Vitale N, Desnos C, Lamaze C. Meeting after meeting: 20 years of discoveries by the members of the Exocytosis-Endocytosis Club. Biol Cell 2017; 109:339-353. [DOI: 10.1111/boc.201700026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Florence Niedergang
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1016 Institut Cochin Paris France
- Centre National de la Recherche Scientifique (CNRS); UMR 8104 Paris France
- Université Paris Descartes, Sorbonne Paris Cité; Paris France
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives; CNRS UPR3212; Université de Strasbourg; France
- INSERM; 75654 Paris Cedex 13 France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives; CNRS UPR3212; Université de Strasbourg; France
- INSERM; 75654 Paris Cedex 13 France
| | - Claire Desnos
- Université Paris Descartes, Sorbonne Paris Cité; Paris France
- CNRS; UMR 8250 Paris France
| | - Christophe Lamaze
- Institut Curie - Centre de Recherche; PSL Research University; Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory; Paris France
- CNRS; UMR 3666 Paris France
- INSERM; U1143 Paris France
| |
Collapse
|
47
|
Ischemia/Reperfusion Induces Interferon-Stimulated Gene Expression in Microglia. J Neurosci 2017; 37:8292-8308. [PMID: 28747383 DOI: 10.1523/jneurosci.0725-17.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022] Open
Abstract
Innate immune signaling is important in the pathophysiology of ischemia/reperfusion (stroke)-induced injury and recovery. Several lines of evidence support a central role for microglia in these processes. Recent work has identified Toll-like receptors (TLRs) and type I interferon (IFN) signaling in both ischemia/reperfusion-induced brain injury and ischemic preconditioning-mediated neuroprotection. To determine the effects of "ischemia/reperfusion-like" conditions on microglia, we performed genomic analyses on wild-type (WT) and TLR4-/- cultured microglia after sequential exposure to hypoxia/hypoglycemia and normoxia/normoglycemia (H/H-N/N). We observed increased expression of type 1 IFN-stimulated genes (ISGs) as the predominant transcriptomal feature of H/H-N/N-exposed WT, but not TLR4-/-, microglia. Microarray analysis on ex vivo sorted microglia from ipsilateral male mouse cortex after a transient in vivo ischemic pulse also demonstrated robust expression of ISGs. Type 1 IFNs, including the IFN-αs and IFN-β, activate the interferon-α/β receptor (IFNAR) complex. We confirmed both in vitro H/H-N/N- and in vivo ischemia/reperfusion-induced microglial ISG responses by quantitative real-time PCR and demonstrated that both were dependent on IFNAR1. We characterized the effects of hypoxia/hypoglycemia on phosphorylation of signal transducer and activator of transcription 1 (STAT1), release of type 1 IFNs, and surface expression of IFNAR1 in microglia. We demonstrated that IFN-β induces dose-dependent secretion of ISG chemokines in cultured microglia and robust ISG expression in microglia both in vitro and in vivo Finally, we demonstrated that the microglial ISG chemokine responses to TLR4 agonists were dependent on TLR4 and IFNAR1. Together, these data suggest novel ischemia/reperfusion-induced pathways for both TLR4-dependent and -independent, IFNAR1-dependent, type 1 IFN signaling in microglia.SIGNIFICANCE STATEMENT Stroke is the fifth leading cause of death in the United States and is a leading cause of serious long-term disability worldwide. Innate immune responses are critical in stroke pathophysiology, and microglia are key cellular effectors in the CNS response to ischemia/reperfusion. Using a transcriptional analysis approach, we identified a robust interferon (IFN)-stimulated gene response within microglia exposed to ischemia/reperfusion in both in vitro and in vivo experimental paradigms. Using a number of complementary techniques, we have demonstrated that these responses are dependent on innate immune signaling components including Toll-like receptor-4 and type I IFNs. We have also elucidated several novel ischemia/reperfusion-induced microglial signaling mechanisms.
Collapse
|
48
|
Abubakar YS, Zheng W, Olsson S, Zhou J. Updated Insight into the Physiological and Pathological Roles of the Retromer Complex. Int J Mol Sci 2017; 18:ijms18081601. [PMID: 28757549 PMCID: PMC5577995 DOI: 10.3390/ijms18081601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Retromer complexes mediate protein trafficking from the endosomes to the trans-Golgi network (TGN) or through direct recycling to the plasma membrane. In yeast, they consist of a conserved trimer of the cargo selective complex (CSC), Vps26-Vps35-Vps29 and a dimer of sorting nexins (SNXs), Vps5-Vps17. In mammals, the CSC interacts with different kinds of SNX proteins in addition to the mammalian homologues of Vps5 and Vps17, which further diversifies retromer functions. The retromer complex plays important roles in many cellular processes including restriction of invading pathogens. In this review, we summarize some recent developments in our understanding of the physiological and pathological functions of the retromer complex.
Collapse
Affiliation(s)
- Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
49
|
Abstract
Type I interferons (IFN-1) are cytokines that affect the expression of thousands of genes, resulting in profound cellular changes. IFN-1 activates the cell by dimerizing its two-receptor chains, IFNAR1 and IFNAR2, which are expressed on all nucleated cells. Despite a similar mode of binding, the different IFN-1s activate a spectrum of activities. The causes for differential activation may stem from differences in IFN-1-binding affinity, duration of binding, number of surface receptors, induction of feedbacks, and cell type-specific variations. All together these will alter the signal that is transmitted from the extracellular domain inward. The intracellular domain binds, directly or indirectly, different effector proteins that transmit signals. The composition of effector molecules deviates between different cell types and tissues, inserting an additional level of complexity to the system. Moreover, IFN-1s do not act on their own, and clearly there is much cross-talk between the activated effector molecules by IFN-1 and other cytokines. The outcome generated by all of these factors (processing step) is an observed phenotype, which can be the transformation of the cell to an antiviral state, differentiation of the cell to a specific immune cell, senescence, apoptosis, and many more. IFN-1 activities can be divided into robust and tunable. Antiviral activity, which is stimulated by minute amounts of IFN-1 and is common to all cells, is termed robust. The other activities, which we term tunable, are cell type-specific and often require more stringent modes of activation. In this review, I summarize the current knowledge on the mode of activation and processing that is initiated by IFN-1, in perspective of the resulting phenotypes.
Collapse
Affiliation(s)
- Gideon Schreiber
- From the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|