1
|
Ye S, Shi D, Li X, Yang Y, Pan X, Wang L, Wu H. Development and bioevaluation of 18F-labeled bivalent cyclic peptides for PET imaging of αvβ6 integrin overexpression. Bioorg Chem 2025; 159:108362. [PMID: 40096805 DOI: 10.1016/j.bioorg.2025.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Integrin αvβ6 has emerged as a critical target in cancer diagnostics and therapeutics. In this study, we developed two bivalent ligands, NOTA-(SDM17)2 and NOTA-(AvB6)2, for positron emission tomography (PET) imaging of αvβ6 integrins. Surface plasmon resonance (SPR) revealed affinities for NOTA-(SDM17)2 and NOTA-(AvB6)2 with KD values of 2.15 μM and 5.21 μM, respectively. Micro-PET imaging demonstrated significantly higher uptake of [18F]AlF-NOTA-(SDM17)2 and [18F]AlF-NOTA-(AvB6)2 in H2009 tumors (αvβ6-positive) compared to MDA-MB-231 tumors (αvβ6-negative) ([18F]AlF-NOTA-(SDM17)2: 3.2 ± 0.3 vs. 0.3 ± 0.07 %ID/g; [18F]AlF-NOTA-(AvB6)2: 6.4 ± 0.5 vs. 1.0 ± 0.2 %ID/g at 60 min p.i., P < 0.05). Both bivalent tracers exhibited enhanced tumor uptake and retention relative to their monovalent counterparts ([18F]AlF-NOTA-SDM17 and [18F]AlF-NOTA-AvB6) at 60 min p.i., (P < 0.05). Notably, [18F]AlF-NOTA-(SDM17)2 demonstrated a superior tumor-to-liver ratio (13.24 vs. 5.93, P = 0.029) and longer retention, as confirmed by in vivo biodistribution studies. These findings highlight the potential of [18F]AlF-NOTA-(SDM17)2 and [18F]AlF-NOTA-(AvB6)2 as bivalent PET tracers to enhance tumor uptake and prolong retention. Among them, [18F]AlF-NOTA-(SDM17)2 shows particular promise for clinical translation due to its higher tumor-to-non-tumor ratio and prolonged retention.
Collapse
Affiliation(s)
- Shimin Ye
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Dazhi Shi
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Xuefei Li
- Central Research Institute, United Imaging Healthcare, 2258 Chengbei Road, Shanghai 201807, China
| | - Yali Yang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Xingzhu Pan
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China
| | - Lijuan Wang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China.
| | - Hubing Wu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
2
|
Hwang YJ, Lee H, Hong SK, Yu SJ, Kim H. Membranous Overexpression of Fibronectin Predicts Microvascular Invasion and Poor Survival Outcomes in Patients with Hepatocellular Carcinoma. Gut Liver 2025; 19:275-285. [PMID: 39778882 PMCID: PMC11907257 DOI: 10.5009/gnl240254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Aims Fibronectin (FN) has recently been identified as being overexpressed in patients with hepatocellular carcinoma (HCC) and deemed a promising biomarker of vascular invasion. The aim of this study was to examine the patterns of FN expression in HCC cells and their clinicopathological significance, such as their association with vascular invasion and angiogenesis patterns. Methods Immunohistochemical analysis of FN was conducted using tissue microarrays from 258 surgically resected HCCs and matched nontumorous liver tissues. Three distinct FN expression patterns were observed: cytoplasmic, membranous, and sinusoidal. Moderate or strong expression was considered FN-positive. Results Cytoplasmic or sinusoidal FN expression was significantly more common in HCC cells than in the adjacent liver tissue (p<0.001). FN expression was detected in the membranes of HCC cells and absent in nonneoplastic hepatocytes (p<0.001). Overall survival and disease-free survival in patients with HCC cells with membranous FN expression were significantly shorter than those in patients without membranous FN expression. Membranous FN expression in HCC was significantly associated with high serum alpha-fetoprotein (AFP) and protein induced by vitamin K absence-II (PIVKA-II) levels, infiltrative gross type, poor Edmondson-Steiner grade, major vessel invasion, microvascular invasion, macrotrabecular massive subtype, advanced T stage, and vessel-encapsulating tumor cluster pattern. Sinusoidal pattern of FN expression in HCC was significantly associated with high serum AFP and PIVKA-II levels, infiltrative gross type, large tumor size, microvascular invasion, macrotrabecular massive subtype, and vessel-encapsulating tumor cluster patterns. Conclusions Evaluating FN expression in HCC cells may be useful for identifying aggressive cases of HCC with vascular invasion via biopsy.
Collapse
Affiliation(s)
- Yoon Jung Hwang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyejung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Suk Kyun Hong
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine and Biomedical Research Institute, Center for Medical Innovation, Seoul National University Hospital, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
3
|
Wang R, Qian Y, Guo X, Song F, Xiong Z, Cai S, Bian X, Wong MH, Cao Q, Cheng L, Lu G, Leung KS. STModule: identifying tissue modules to uncover spatial components and characteristics of transcriptomic landscapes. Genome Med 2025; 17:18. [PMID: 40033360 PMCID: PMC11874447 DOI: 10.1186/s13073-025-01441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Here we present STModule, a Bayesian method developed to identify tissue modules from spatially resolved transcriptomics that reveal spatial components and essential characteristics of tissues. STModule uncovers diverse expression signals in transcriptomic landscapes such as cancer, intraepithelial neoplasia, immune infiltration, outcome-related molecular features and various cell types, which facilitate downstream analysis and provide insights into tumor microenvironments, disease mechanisms, treatment development, and histological organization of tissues. STModule captures a broader spectrum of biological signals compared to other methods and detects novel spatial components. The tissue modules characterized by gene sets demonstrate greater robustness and transferability across different biopsies. STModule: https://github.com/rwang-z/STModule.git .
Collapse
Affiliation(s)
- Ran Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong, 999077, China
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yan Qian
- Department of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 519082, China
| | - Xiaojing Guo
- Health Data Science Center, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Fangda Song
- School of Data Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Zhiqiang Xiong
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery Center, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 519082, China
| | - Xiuwu Bian
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Man Hon Wong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Lixin Cheng
- Health Data Science Center, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong, 999077, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Kwong Sak Leung
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Department of Applied Data Science, Hong Kong Shue Yan University, North Point, Hong Kong Island, Hong Kong, 999077, China.
| |
Collapse
|
4
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
5
|
López de Andrés J, Rodríguez-Santana C, de Lara-Peña L, Jiménez G, Escames G, Marchal JA. A bioengineered tumor matrix-based scaffold for the evaluation of melatonin efficacy on head and neck squamous cancer stem cells. Mater Today Bio 2024; 29:101246. [PMID: 39351489 PMCID: PMC11440243 DOI: 10.1016/j.mtbio.2024.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) presents a significant challenge worldwide due to its aggressiveness and high recurrence rates post-treatment, often linked to cancer stem cells (CSCs). Melatonin shows promise as a potent tumor suppressor; however, the effects of melatonin on CSCs remain unclear, and the development of models that closely resemble tumor heterogeneity could help to better understand the effects of this molecule. This study developed a tumor scaffold based on patient fibroblast-derived decellularized extracellular matrix that mimics the HNSCC microenvironment. Our study investigates the antitumoral effects of melatonin within this context. We validated its strong antiproliferative effect on HNSCC CSCs and the reduction of tumor invasion and migration markers, even in a strongly chemoprotective environment, as it is required to increase the minimum doses necessary to impact tumor viability compared to the non-scaffolded tumorspheres culture. Moreover, melatonin exhibited no cytotoxic effects on healthy cells co-cultured in the tumor hydrogel. This scaffold-based platform allows an in vitro study closer to HNSCC tumor reality, including CSCs, stromal component, and a biomimetic matrix, providing a new valuable research tool in precision oncology.
Collapse
Affiliation(s)
- Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- BioFab i3D Lab-Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - César Rodríguez-Santana
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Laura de Lara-Peña
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- BioFab i3D Lab-Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- BioFab i3D Lab-Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, Granada, Spain
- Department of Health Sciences, University of Jaén, Jaen, Spain
| | - Germaine Escames
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Granada, Spain
- BioFab i3D Lab-Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Shen YQ, Sun L, Wang SM, Zheng XY, Xu R. Exosomal integrins in tumor progression, treatment and clinical prediction (Review). Int J Oncol 2024; 65:118. [PMID: 39540373 PMCID: PMC11575930 DOI: 10.3892/ijo.2024.5706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Integrins are a large family of cell adhesion molecules involved in tumor cell differentiation, migration, proliferation and neovascularization. Tumor cell‑derived exosomes carry a large number of integrins, which are closely associated with tumor progression. As crucial mediators of intercellular communication, exosomal integrins have gained attention in the field of cancer biology. The present review examined the regulatory mechanisms of exosomal integrins in tumor cell proliferation, migration and invasion, and emphasized their notable roles in tumor initiation and progression. The potential of exosomal integrins as drug delivery systems in cancer treatment was explored. Additionally, the potential of exosomal integrins in clinical tumor prediction was considered, while summarizing their applications in diagnosis, prognosis assessment and treatment response prediction. Thus, the present review aimed to provide guidance and insights for future basic research and the clinical translation of exosomal integrins. The study of exosomal integrins is poised to offer new perspectives and methods for precise cancer treatment and clinical prediction.
Collapse
Affiliation(s)
- Yu-Qing Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Lei Sun
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Shi-Ming Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Xian-Yu Zheng
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Rui Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
7
|
Singh P, Jay DG. The Role of eHsp90 in Extracellular Matrix Remodeling, Tumor Invasiveness, and Metastasis. Cancers (Basel) 2024; 16:3873. [PMID: 39594828 PMCID: PMC11592750 DOI: 10.3390/cancers16223873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Identifying proteins that act in tumor invasiveness and metastasis remains a critical unmet need in our search for effective cancer therapy. Hsp90, an abundant intracellular chaperone protein, plays a key role in maintaining cell homeostasis, and its elevated activity is pivotal in cancer progression. Due to the reliance of cancer cells on Hsp90's chaperone function to sustain tumor growth and spread, Hsp90 inhibitors have been the subject of numerous clinical trials over the past two decades. However, these efforts have largely been unsuccessful, primarily due to the cellular toxicity caused by pan-Hsp90 inhibitors at doses required for anticancer efficacy. Therefore, novel approaches to target Hsp90 are necessary. An identified subpopulation of Hsp90 located outside cells (eHsp90) may offer a promising alternative as a therapeutic target against cancer. Studies including our own have shown that eHsp90 is released specifically by cancer cells, and eHsp90 has unique interactors and functions extracellularly to promote tumor invasiveness, the initial step in metastasis. Inhibition of eHsp90 has been shown to suppress metastasis in animal models, indicating its therapeutic potential, although the underlying mechanisms remain incompletely understood. Cancer cells modulate the tumor microenvironment (TME) during the invasion, especially the ECM proteins and the state of the ECM is a strong predictor of invasive and metastatic cancer. Given that most of the known eHsp90 clients are ECM proteins or are proteins involved in ECM modulation, ECM remodelling could be the key mechanism through which eHsp90 enhances invasiveness. This review will focus on ECM modulation by eHsp90 as a driver of cancer invasion and metastasis. We will also discuss the potency of inhibiting eHsp90 in inhibiting invasion and metastatic spread in preclinical models and the using circulating Hsp90 patient samples as a biomarker of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Pragya Singh
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daniel G. Jay
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
8
|
Lu HJ, Shen CY, Chiu YW, Lin WL, Peng CY, Tseng HC, Hsin CH, Chuang CY, Chen CC, Wu MF, Huang WS, Shen WC. Radiomic biomarkers for platinum-refractory head and neck cancer in the era of immunotherapy. Oral Dis 2024; 30:4220-4230. [PMID: 38178608 DOI: 10.1111/odi.14854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE Immune checkpoint inhibitors (ICI) are recommended as the first-line therapy for platinum-refractory head and neck squamous cell carcinoma (HNSCC), a disease with a poor prognosis. However, biomarkers in this situation are rare. The objective was to identify radiomic features-associated biomarkers to guide the prognosis and treatment opinions in the era of ICI. METHODS A total of 31 platinum-refractory HNSCC patients were retrospectively enrolled. Of these, 65.5% (20/31) received ICI-based therapy and 35.5% (11/31) did not. Radiomic features of the primary site at the onset of recurrent metastatic (R/M) status were extracted. Prognostic and predictive radiomic biomarkers were analysed. RESULTS The median overall survival from R/M status (R/M OS) was 9.6 months. Grey-level co-occurrence matrix-associated texture features were the most important in identifying the patients with or without 9-month R/M death. A radiomic risk-stratification model was established and equally separated the patients into high-, intermittent- and lower-risk groups (1-year R/M death rate, 100.0% vs. 70.8% vs. 27.1%, p = 0.001). Short-run high grey-level emphasis (SRHGE) was more suitable than programmed death ligand 1 (PD-L1) expression in selecting whether patients received ICI-based therapy. CONCLUSIONS Radiomic features were effective prognostic and predictive biomarkers. Future studies are warranted.
Collapse
Affiliation(s)
- Hsueh-Ju Lu
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chao-Yu Shen
- College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Wei Chiu
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wea-Lung Lin
- College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pathology, Chung Shan Medical University and Hospital, Taichung, Taiwan
| | - Chih-Yu Peng
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsien-Chun Tseng
- College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Han Hsin
- College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Yi Chuang
- College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Chia Chen
- College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Plastic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Fang Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Shiou Huang
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Chih Shen
- Department of Medical Informatics, Chung Shan Medical University, Taichung, Taiwan
- Artificial Intelligence Center, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. Polyphosphate Nanoparticles: Balancing Energy Requirements in Tissue Regeneration Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309528. [PMID: 38470207 DOI: 10.1002/smll.202309528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Indexed: 03/13/2024]
Abstract
Nanoparticles of a particular, evolutionarily old inorganic polymer found across the biological kingdoms have attracted increasing interest in recent years not only because of their crucial role in metabolism but also their potential medical applicability: it is inorganic polyphosphate (polyP). This ubiquitous linear polymer is composed of 10-1000 phosphate residues linked by high-energy anhydride bonds. PolyP causes induction of gene activity, provides phosphate for bone mineralization, and serves as an energy supplier through enzymatic cleavage of its acid anhydride bonds and subsequent ATP formation. The biomedical breakthrough of polyP came with the development of a successful fabrication process, in depot form, as Ca- or Mg-polyP nanoparticles, or as the directly effective polymer, as soluble Na-polyP, for regenerative repair and healing processes, especially in tissue areas with insufficient blood supply. Physiologically, the platelets are the main vehicles for polyP nanoparticles in the circulating blood. To be biomedically active, these particles undergo coacervation. This review provides an overview of the properties of polyP and polyP nanoparticles for applications in the regeneration and repair of bone, cartilage, and skin. In addition to studies on animal models, the first successful proof-of-concept studies on humans for the healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| |
Collapse
|
10
|
Hu J, Xu H, Ma X, Bai M, Zhou Y, Miao R, Wang F, Li X, Cheng B. Modulating PCGF4/BMI1 Stability Is an Efficient Metastasis-Regulatory Strategy Used by Distinct Subtypes of Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1388-1404. [PMID: 38670529 DOI: 10.1016/j.ajpath.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm prone to metastasis. Whether cancer-associated fibroblasts (CAFs) affect the metastasis of ICC is unclear. Herein, ICC patient-derived CAF lines and related cancerous cell lines were established and the effects of CAFs on the tumor progressive properties of the ICC cancerous cells were analyzed. CAFs could be classified into cancer-restraining or cancer-promoting categories based on distinct tumorigenic effects. The RNA-sequencing analyses of ICC cancerous cell lines identified polycomb group ring finger 4 (PCGF4; alias BMI1) as a potential metastasis regulator. The changes of PCGF4 levels in ICC cells mirrored the restraining or promoting effects of CAFs on ICC migration. Immunohistochemical analyses on the ICC tissue microarrays indicated that PCGF4 was negatively correlated with overall survival of ICC. The promoting effects of PCGF4 on cell migration, drug resistance activity, and stemness properties were confirmed. Mechanistically, cancer-restraining CAFs triggered the proteasome-dependent degradation of PCGF4, whereas cancer-promoting CAFs enhanced the stability of PCGF4 via activating the IL-6/phosphorylated STAT3 pathway. In summary, the current data identified the role of CAFs in ICC metastasis and revealed a new mechanism of the CAFs on ICC progression in which PCGF4 acted as the key effector by both categories of CAFs. These findings shed light on developing comprehensive therapeutic strategies for ICC.
Collapse
Affiliation(s)
- Jinjing Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Hao Xu
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaojun Ma
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingzhen Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yongqiang Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ruidong Miao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fanghong Wang
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Bo Cheng
- School of Life Sciences, Lanzhou University, Lanzhou, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China.
| |
Collapse
|
11
|
Guerrero-Barberà G, Burday N, Costell M. Shaping Oncogenic Microenvironments: Contribution of Fibronectin. Front Cell Dev Biol 2024; 12:1363004. [PMID: 38660622 PMCID: PMC11039881 DOI: 10.3389/fcell.2024.1363004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins and glycans, dynamically remodeled and specifically tailored to the structure/function of each organ. The malignant transformation of cancer cells is determined by both cell intrinsic properties, such as mutations, and extrinsic variables, such as the mixture of surrounding cells in the tumor microenvironment and the biophysics of the ECM. During cancer progression, the ECM undergoes extensive remodeling, characterized by disruption of the basal lamina, vascular endothelial cell invasion, and development of fibrosis in and around the tumor cells resulting in increased tissue stiffness. This enhanced rigidity leads to aberrant mechanotransduction and further malignant transformation potentiating the de-differentiation, proliferation and invasion of tumor cells. Interestingly, this fibrotic microenvironment is primarily secreted and assembled by non-cancerous cells. Among them, the cancer-associated fibroblasts (CAFs) play a central role. CAFs massively produce fibronectin together with type I collagen. This review delves into the primary interactions and signaling pathways through which fibronectin can support tumorigenesis and metastasis, aiming to provide critical molecular insights for better therapy response prediction.
Collapse
Affiliation(s)
| | | | - Mercedes Costell
- Departament of Biochemistry and Molecular Biology, Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
12
|
Liu Z, Zhao P. Integrative analysis unveils ECM signatures and pathways driving hepatocellular carcinoma progression: A multi-omics approach and prognostic model development. J Cell Mol Med 2024; 28:e18230. [PMID: 38568083 PMCID: PMC10989547 DOI: 10.1111/jcmm.18230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a highly lethal form of cancer that is among the deadliest cancer types globally. In terms of cancer-related mortality rates, liver cancer ranks among the top three, underscoring the severity of this disease. Insufficient analysis has been conducted to fully understand the potential value of the extracellular matrix (ECM) in immune infiltration and the prognostic stratification of LIHC, despite its recognised importance in the development of this disease. The scRNA-seq data of GSE149614 was used to conduct single-cell analysis on 10 LIHC samples. CellChat scores were calculated for seven cell populations in the descending cohort to investigate cellular communication, while PROGENy scores were calculated to determine tumour-associated pathway scores in different cell populations. The pathway analysis using GO and KEGG revealed the enrichment of ECM-associated genes in the pathway, highlighting the potential role of the ECM in LIHC development. By utilizing the TCGA-LIHC cohort, an ECM-based prognostic model for LIHC was developed using Lasso regression. Immune infiltration scores were calculated using two methods, and the performance of the ECM-related risk score was evaluated using an independent cohort from the CheckMate study. To determine the precise expression of ECM-associated risk genes in LIHC, we evaluated hepatocellular carcinoma cell lines using a range of assays, including Western blotting, invasion assays and Transwell assays. Using single-cell transcriptome analysis, we annotated the spatially-specific distribution of major immune cell types in single-cell samples of LIHC. The main cell types identified and annotated included hepatocytes, T cells, myeloid cells, epithelial cells, fibroblasts, endothelial cells and B cells. The utilisation of cellchat and PROGENy analyses enabled the investigation and unveiling of signalling interactions, protein functionalities and the prominent influential pathways facilitated by the primary immune cell types within the LIHC. Numerous tumour pathways, including PI2K, EGFR and TGFb, demonstrated a close correlation with the involvement of ECM in LIHC. Moreover, an evaluation was conducted to assess the primary ECM-related functional changes and biological pathway enrichment in LIHC. Differential genes associated with ECM were identified and utilised to create prognostic models. The prognostic stratification value of these models for LIHC patients was confirmed through validation in multiple databases. Furthermore, through immune infiltration analysis, it was discovered that ECM might be linked to the irregular expression and regulation of numerous immune cells. Additionally, histone acetylation was mapped against gene mutation frequencies and differential expression profiles. The prognostic stratification efficacy of the ECM prediction model constructed in the context of PD-1 inhibitor therapy was also examined, and it exhibited strong stratification performance. Cellular experiments, including Western blotting, invasion and Transwell assays, revealed that ECM-associated risk genes have a promoting effect on the development of LIHC. The creation of biomarkers for LIHC using ECM-related genes unveiled substantial correlations with immune microenvironmental infiltration and functional mutations in various tumour pathways. This enlightens us to the possibility that the influence of ECM on tumours may extend beyond simply promoting the fibrotic process and the stromal composition of tumours.
Collapse
Affiliation(s)
- Zhen Liu
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Pengfei Zhao
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
13
|
Longstreth JH, Wang K. The role of fibronectin in mediating cell migration. Am J Physiol Cell Physiol 2024; 326:C1212-C1225. [PMID: 38372136 DOI: 10.1152/ajpcell.00633.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Fibronectin (FN) is a major extracellular matrix (ECM) protein involved in a wide range of physiological processes, including cell migration. These FN-mediated cell migration events are essential to processes such as wound repair, cancer metastasis, and vertebrate development. This review synthesizes mainly current literature to provide an overview of the mechanoregulatory role of FN-mediated cell migration. Background on FN structure and role in mechanotransduction is provided. Cell migration concepts are introduced, including the general cell migration mechanism and classification of cell migration types. Then, FN-mediated events that directly affect cell migration are explored. Finally, a focus on FN in tissue repair and cancer migration is presented, as these topics represent a large amount of current research.
Collapse
Affiliation(s)
- Jessica H Longstreth
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
14
|
Henderson EA, Ivey A, Choi SJ, Santiago S, McNitt D, Liu TW, Lukomski S, Boone BA. Group A streptococcal collagen-like protein 1 restricts tumor growth in murine pancreatic adenocarcinoma and inhibits cancer-promoting neutrophil extracellular traps. Front Immunol 2024; 15:1363962. [PMID: 38515758 PMCID: PMC10955053 DOI: 10.3389/fimmu.2024.1363962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. Methods In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Mice harboring Panc02 or KPC subcutaneous tumors injected with three different M-type GAS strains. Tumors and spleens were harvested at the endpoint of the experiments to assess bacterial colonization and systemic spread, while sera were analyzed for humoral responses toward the streptococcal antigens, especially the M1 and Scl1 proteins. Role of the streptococcal collagen-like protein 1 (Scl1) in anti-PDAC activity was assessed in vivo after intratumoral injection with M1 GAS wild-type, an isogenic mutant strain devoid of Scl1, or a complemented mutant strain with restored scl1 expression. In addition, recombinant Scl1 proteins were tested for NET inhibition using in vitro and ex vivo assays assessing NET production and myeloperoxidase activity. Results Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on Scl1, as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were weakly immunogenic toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Discussion Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Abby Ivey
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Soo Jeon Choi
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Stell Santiago
- Department of Pathology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Dudley McNitt
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Tracy W. Liu
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
15
|
Kim HAJ, Zeng PYF, Cecchini M, Shaikh MH, Laxague F, Deng X, Jarycki L, Ryan SEB, Dawson A, Liu MH, Palma DA, Patel K, Mundi N, Barrett JW, Mymryk JS, Boutros PC, Nichols AC. HPV-negative head and neck cancers with adverse pathological features carry specific molecular changes that are associated with survival. Head Neck 2024; 46:353-366. [PMID: 38059331 DOI: 10.1002/hed.27591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/21/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Adverse pathological features following surgery in head and neck squamous cell carcinoma (HNSCC) are strongly associated with survival and guide adjuvant therapy. We investigated molecular changes associated with these features. METHODS We downloaded data from the Cancer Genome Atlas and Cancer Proteome Atlas HNSCC cohorts. We compared tumors positive versus negative for perineural invasion (PNI), lymphovascular invasion (LVI), extracapsular spread (ECS), and positive margins (PSM), with multivariable analysis. RESULTS All pathological features were associated with poor survival, as were the following molecular changes: low cyclin E1 (HR = 1.7) and high PKC-alpha (HR = 1.8) in tumors with PNI; six of 13 protein abundance changes with LVI; greater tumor hypoxia and high Raptor (HR = 2.0) and Rictor (HR = 1.6) with ECS; and low p38 (HR = 2.3), high fibronectin (HR = 1.6), low annexin A1 (HR = 3.1), and high caspase-9 (HR = 1.6) abundances with PSM. CONCLUSIONS Pathological features in HNSCC carry specific molecular changes that may explain their poor prognostic associations.
Collapse
Affiliation(s)
- Hugh Andrew Jinwook Kim
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Peter Y F Zeng
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Matthew Cecchini
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Mushfiq Hassan Shaikh
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Francisco Laxague
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Xiaoxiao Deng
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Laura Jarycki
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Sarah Elizabeth Belle Ryan
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Alice Dawson
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Mu Han Liu
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - David A Palma
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Krupal Patel
- Department of Otolaryngology-Head & Neck Surgery, Moffitt Cancer Center, Tampa, Florida, USA
| | - Neil Mundi
- Department of Otolaryngology-Head & Neck Surgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - John W Barrett
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Joe S Mymryk
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, California, USA
- Department of Urology, University of California, Los Angeles, California, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, USA
- Institute for Precision Health, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California, USA
| | - Anthony C Nichols
- Department of Otolaryngology-Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Henderson EA, Ivey A, Choi S, Santiago S, McNitt D, Liu TW, Lukomski S, Boone BA. Group A Streptococcal Collagen-like Protein 1 Restricts Tumor Growth in Murine Pancreatic Adenocarcinoma and Inhibits Cancer-Promoting Neutrophil Extracellular Traps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576060. [PMID: 38293049 PMCID: PMC10827155 DOI: 10.1101/2024.01.17.576060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on streptococcal collagen-like protein 1 (Scl1), as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were negative toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.
Collapse
Affiliation(s)
- Emily A Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Abby Ivey
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Soo Choi
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Stell Santiago
- Department of Pathology, West Virginia University, Morgantown, WV
| | - Dudley McNitt
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Tracy W Liu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Brian A Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
- Department of Surgery, West Virginia University, Morgantown, WV
| |
Collapse
|
17
|
Cappelletto A, Alfì E, Volf N, Vu TVA, Bortolotti F, Ciucci G, Vodret S, Fantuz M, Perin M, Colliva A, Rozzi G, Rossi M, Ruozi G, Zentilin L, Vuerich R, Borin D, Lapasin R, Piazza S, Chiesa M, Lorizio D, Triboli L, Kumar S, Morello G, Tripodo C, Pinamonti M, Piperno GM, Benvenuti F, Rustighi A, Jo H, Piccolo S, Del Sal G, Carrer A, Giacca M, Zacchigna S. EMID2 is a novel biotherapeutic for aggressive cancers identified by in vivo screening. J Exp Clin Cancer Res 2024; 43:15. [PMID: 38195652 PMCID: PMC10777502 DOI: 10.1186/s13046-023-02942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFβ maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.
Collapse
Affiliation(s)
- Ambra Cappelletto
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Edoardo Alfì
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Nina Volf
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Thi Van Anh Vu
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Francesca Bortolotti
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulio Ciucci
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Fantuz
- Veneto Institute of Molecular Medicine, Padova, Italy
- University of Padova, Padova, Italy
| | - Martina Perin
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Andrea Colliva
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giacomo Rozzi
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Matilde Rossi
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lorena Zentilin
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Daniele Borin
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Romano Lapasin
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Silvano Piazza
- Bioinformatics, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Bioinformatics Facility, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | | | | | - Luca Triboli
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Cancer Cell Signaling, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gaia Morello
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
- Histopathology Unit, Institute of Molecular Oncology Foundation (IFOM), ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Maurizio Pinamonti
- Pathology Department Azienda Sanitaria Universitaria Giuliano-Isontina and University of Trieste, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandra Rustighi
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Cancer Cell Signaling, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Cancer Cell Signaling, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine, Padova, Italy
- University of Padova, Padova, Italy
| | - Mauro Giacca
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King's College London, British Heart Foundation Centre of Research Excellence, London, UK
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
18
|
Chen T, Zhou H, Yuan S, Deng X, Li Y, Chen N, You J, Li R, Li T, Zheng Y, Luo M, Lv H, Wu J, Wang L. Glycation of fibronectin impairs angiopoietin-1/Tie-2 signaling through uncoupling Tie-2-α5β1 integrin crosstalk. Cell Signal 2023; 112:110916. [PMID: 37806542 DOI: 10.1016/j.cellsig.2023.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The dysfunction of angiopoietin-1 (Ang-1)/Tie-2 signaling pathways has been implicated in diabetic complications. However, the underlying molecular mechanisms remain unclear. Fibronectin (FN) is thought to have an important role in regulating Ang-1/Tie-2 signaling activation. But no previous study has investigated the effects of FN glycation on Ang-1/Tie-2 signaling. In the present study, FN was glycated by methylglyoxal (MGO) to investigate whether the glycation of FN contributes to diabetes-induced Ang-1/Tie-2 signaling impairment and to understand the molecular mechanisms involved. The results demonstrated that MGO-glycated FN significantly impaired Ang-1-evoked phosphorylation of Tie-2 and Akt, Ang-1-induced endothelial cell migration and tube formation and Ang-1-mediated cell survival. The glycation of FN also inhibited the binding of α5β1 integrin to Tie-2. Moreover, FN was remarkably modified by AGEs in aortae derived from db/db mice, indicating the glycation of FN in vivo. Ang-1-induced aortic ring vessel outgrowth and Ang-1-mediated cell survival were also both significantly inhibited in aortae from db/db mice compared to that from the wild type littermates. Moreover, FN, rather than glycated FN partly restored aortic ring angiogenesis in db/db mice, indicating that the angiogenesis defect in the db/db mice are due to FN glycation. Collectively, the results in the present study suggest that the glycation of FN impairs Ang-1/Tie-2 signaling pathway by uncoupling Tie-2-α5β1 integrin crosstalk. This may provide a mechanism for Ang-1/Tie-2 signaling dysfunction and angiogenesis failure in diabetic ischaemic diseases.
Collapse
Affiliation(s)
- Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Haiyan Zhou
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Shuangshuang Yuan
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Xin Deng
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Yongjie Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Ni Chen
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Rong Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Tian Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jianbo Wu
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China.
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China; Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China.
| |
Collapse
|
19
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Role of Microenvironmental Components in Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:1616. [PMID: 38003931 PMCID: PMC10672525 DOI: 10.3390/jpm13111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is one of the ten most common malignant neoplasms, characterized by an aggressive course, high recurrence rate, poor response to treatment, and low survival rate. This creates the need for a deeper understanding of the mechanisms of the pathogenesis of this cancer. The tumor microenvironment (TME) of HNSCC consists of stromal and immune cells, blood and lymphatic vessels, and extracellular matrix. It is known that HNSCC is characterized by complex relationships between cancer cells and TME components. TME components and their dynamic interactions with cancer cells enhance tumor adaptation to the environment, which provides the highly aggressive potential of HNSCC and resistance to antitumor therapy. Basic research aimed at studying the role of TME components in HNSCC carcinogenesis may serve as a key to the discovery of both new biomarkers-predictors of prognosis and targets for new antitumor drugs. This review article focuses on the role and interaction with cancer of TME components such as newly formed vessels, cancer-associated fibroblasts, and extracellular matrix.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
20
|
Barbazan J, Pérez-González C, Gómez-González M, Dedenon M, Richon S, Latorre E, Serra M, Mariani P, Descroix S, Sens P, Trepat X, Vignjevic DM. Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction. Nat Commun 2023; 14:6966. [PMID: 37907483 PMCID: PMC10618488 DOI: 10.1038/s41467-023-42382-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
During tumor progression, cancer-associated fibroblasts (CAFs) accumulate in tumors and produce an excessive extracellular matrix (ECM), forming a capsule that enwraps cancer cells. This capsule acts as a barrier that restricts tumor growth leading to the buildup of intratumoral pressure. Combining genetic and physical manipulations in vivo with microfabrication and force measurements in vitro, we found that the CAFs capsule is not a passive barrier but instead actively compresses cancer cells using actomyosin contractility. Abrogation of CAFs contractility in vivo leads to the dissipation of compressive forces and impairment of capsule formation. By mapping CAF force patterns in 3D, we show that compression is a CAF-intrinsic property independent of cancer cell growth. Supracellular coordination of CAFs is achieved through fibronectin cables that serve as scaffolds allowing force transmission. Cancer cells mechanosense CAF compression, resulting in an altered localization of the transcriptional regulator YAP and a decrease in proliferation. Our study unveils that the contractile capsule actively compresses cancer cells, modulates their mechanical signaling, and reorganizes tumor morphology.
Collapse
Affiliation(s)
- Jorge Barbazan
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), 15706, Santiago de Compostela, Spain
| | | | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
| | - Mathieu Dedenon
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France
| | - Ernest Latorre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
| | - Marco Serra
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Pascale Mariani
- Institut Curie, Department of surgical oncology, Curie Institute, F-75005, Paris, France
| | - Stéphanie Descroix
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain.
- Facutltat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain.
| | | |
Collapse
|
21
|
Mahdi AF, Nolan J, O’Connor RÍ, Lowery AJ, Allardyce JM, Kiely PA, McGourty K. Collagen-I influences the post-translational regulation, binding partners and role of Annexin A2 in breast cancer progression. Front Oncol 2023; 13:1270436. [PMID: 37941562 PMCID: PMC10628465 DOI: 10.3389/fonc.2023.1270436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction The extracellular matrix (ECM) has been heavily implicated in the development and progression of cancer. We have previously shown that Annexin A2 is integral in the migration and invasion of breast cancer cells and in the clinical progression of ER-negative breast cancer, processes which are highly influenced by the surrounding tumor microenvironment and ECM. Methods We investigated how modulations of the ECM may affect the role of Annexin A2 in MDA-MB-231 breast cancer cells using western blotting, immunofluorescent confocal microscopy and immuno-precipitation mass spectrometry techniques. Results We have shown that the presence of collagen-I, the main constituent of the ECM, increases the post-translational phosphorylation of Annexin A2 and subsequently causes the translocation of Annexin A2 to the extracellular surface. In the presence of collagen-I, we identified fibronectin as a novel interactor of Annexin A2, using mass spectrometry analysis. We then demonstrated that reducing Annexin A2 expression decreases the degradation of fibronectin by cancer cells and this effect on fibronectin turnover is increased according to collagen-I abundance. Discussion Our results suggest that Annexin A2's role in promoting cancer progression is mediated by collagen-I and Annexin A2 maybe a therapeutic target in the bi-directional cross-talk between cancer cells and ECM remodeling that supports metastatic cancer progression.
Collapse
Affiliation(s)
- Amira F. Mahdi
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Joanne Nolan
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Ruth Í. O’Connor
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Aoife J. Lowery
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | - Joanna M. Allardyce
- Health Research Institute, University of Limerick, Limerick, Ireland
- School of Allied Health, University of Limerick, Limerick, Ireland
| | - Patrick A. Kiely
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Kieran McGourty
- Health Research Institute, University of Limerick, Limerick, Ireland
- Science Foundation Ireland Research Centre in Pharmaceuticals (SSPC), University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
22
|
Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S, Khori V. Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol 2023; 957:175991. [PMID: 37619785 DOI: 10.1016/j.ejphar.2023.175991] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The use of repurposing drugs that may have neoplastic and anticancer effects increases the efficiency and decrease resistance to chemotherapy drugs through a biochemical and mechanical transduction mechanisms through modulation of fibroblast/fibrosis remodeling in tumor microenvironment (TME). Interestingly, fibroblast/fibrosis remodeling plays a vital role in mediating cancer metastasis and drug resistance after immune chemotherapy. The most essential hypothesis for induction of chemo-immunotherapy resistance is via activation of fibroblast/fibrosis remodeling and preventing the infiltration of T cells after is mainly due to the interference between cytoskeleton, mechanical, biochemical, metabolic, vascular, and remodeling signaling pathways in TME. The structural components of the tumor that can be targeted in the fibroblast/fibrosis remodeling include the depletion of the TME components, targeting the cancer-associated fibroblasts and tumor associated macrophages, alleviating the mechanical stress within the ECM, and normalizing the blood vessels. It has also been found that during immune-chemotherapy, TME injury and fibroblast/fibrosis remodeling causes the up-regulation of inhibitory signals and down-regulation of activated signals, which results in immune escape or chemo-resistance of the tumor. In this regard, repurposing or neo-adjuvant drugs with various transduction signaling mechanisms, including anti-fibrotic effects, are used to target the TME and fibroblast/fibrosis signaling pathway such as angiotensin 2, transforming growth factor-beta, physical barriers of the TME, cytokines and metabolic factors which finally led to the reverse of the chemo-resistance. Consistent to many repurposing drugs such as pirfenidone, metformin, losartan, tranilast, dexamethasone and pentoxifylline are used to decrease immune-suppression by abrogation of TME inhibitory signal that stimulates the immune system and increases efficiency and reduces resistance to chemotherapy drugs. To overcome immunosuppression based on fibroblast/fibrosis remodeling, in this review, we focus on inhibitory signal transduction, which is the physical barrier, alleviates mechanical stress and prevents mechano-metabolic activation.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciencess, Catastega Institue of Medical Sciences, Mashhad, Iran
| | - Parham Aref
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farahnazsadat Ahmadi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
23
|
Shieh JM, Chang TW, Wang JH, Liang SP, Kao PL, Chen LY, Yen CJ, Chen YJ, Chang WC, Chen BK. RNA-binding protein-regulated fibronectin is essential for EGFR-activated metastasis of head and neck squamous cell carcinoma. FASEB J 2023; 37:e23206. [PMID: 37718485 DOI: 10.1096/fj.202300527r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
There is a higher expression level of epidermal growth factor receptor (EGFR) in up to 90% of advanced head and neck squamous cell carcinoma (HNSCC) tissue than in normal surrounding tissues. However, the role of RNA-binding proteins (RBPs) in EGFR-associated metastasis of HNSCC remains unclear. In this study, we reveal that RBPs, specifically nucleolin (NCL) and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1), correlated with the mesenchymal phenotype of HNSCC. The depletion of RBPs significantly attenuated EGF-induced HNSCC metastasis. Intriguingly, the EGF-induced EMT markers, such as fibronectin, were regulated by RBPs through the ERK and NF-κB pathway, followed by the enhancement of mRNA stability of fibronectin through the 5' untranslated region (5'-UTR) of the gene. The upregulation of fibronectin triggered the integrin signaling activation to enhance tumor cells' attachment to endothelial cells and increase endothelial permeability. In addition, the concurrence of EGFR and RBPs or EGFR and fibronectin was associated with overall survival and disease-free survival of HNSCC. The in vivo study showed that depletion of NCL, hnRNPA2B1, and fibronectin significantly inhibited EGF-promoted extravasation of tumor cells into lung tissues. The depletion of fibronectin or treatment with integrin inhibitors dramatically attenuated EGF-induced HNSCC metastatic nodules in the lung. Our data suggest that the RBPs/fibronectin axis is essential for EGF-induced tumor-endothelial cell interactions to enhance HNSCC cell metastasis.
Collapse
Affiliation(s)
- Jiunn-Min Shieh
- Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan, ROC
| | - Ting-Wei Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jing-He Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Song-Ping Liang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Pei-Lu Kao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Liang-Yi Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chia-Jui Yen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yun-Ju Chen
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan, ROC
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan, ROC
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ben-Kuen Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
24
|
Wu JL, Xu CF, Yang XH, Wang MS. Fibronectin promotes tumor progression through integrin αvβ3/PI3K/AKT/SOX2 signaling in non-small cell lung cancer. Heliyon 2023; 9:e20185. [PMID: 37809806 PMCID: PMC10559956 DOI: 10.1016/j.heliyon.2023.e20185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The tumor microenvironment, especially the extracellular matrix (ECM), is strongly associated with tumor cell proliferation and metastasis. Numerous studies have provided evidence suggesting that fibronectin (FN) in ECM supports cancer cell escape and contributes to cell migration, resulting in distant cancer metastasis and poor outcomes in patients. In our study, it was demonstrated that FN expression was elevated in tumor tissues from highly malignant NSCLC patients, compared to those with low malignancy (p = 0.0076). Importantly, FN promoted proliferative phenotypes and strengthened tumorigenesis capabilities in NSCLC cells, including A549 and Lewis cells, leading to sustained tumor growth in vivo. Mechanistically, it was identified that FN facilitated the activation of the integrin αvβ3/PI3K/AKT signaling pathway, which subsequently upregulated tumor stemness through the downstream transcription factor SOX2. Blockade of integrin αvβ3 signal efficiently suppressed NSCLC proliferation and tumorigenesis both in vitro and in vivo. In conclusion, our study demonstrated that extracellular FN could facilitate NSCLC development through the integrin αvβ3/PI3K/AKT/SOX2 signaling pathway. Blockade of integrin αvβ3 could efficiently enhance the anticancer effects of chemotherapy, offering an innovative approach for clinical NSCLC therapy.
Collapse
Affiliation(s)
- Jin-Long Wu
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai City, 200011, China
| | - Cheng-Feng Xu
- Department of Pharmacy, Shidong Hospital of Shanghai Yangpu District, Shanghai City, 200438, China
| | - Xu-Hui Yang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai City, 200011, China
| | - Ming-Song Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai City, 200011, China
| |
Collapse
|
25
|
Raudenska M, Balvan J, Hanelova K, Bugajova M, Masarik M. Cancer-associated fibroblasts: Mediators of head and neck tumor microenvironment remodeling. Biochim Biophys Acta Rev Cancer 2023; 1878:188940. [PMID: 37331641 DOI: 10.1016/j.bbcan.2023.188940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are involved in critical aspects of head and neck squamous cell carcinoma (HNSCC) pathogenesis, such as the formation of a tumor-permissive extracellular matrix structure, angiogenesis, or immune and metabolic reprogramming of the tumor microenvironment (TME), with implications for metastasis and resistance to radiotherapy and chemotherapy. The pleiotropic effect of CAFs in TME is likely to reflect the heterogeneity and plasticity of their population, with context-dependent effects on carcinogenesis. The specific properties of CAFs provide many targetable molecules that could play an important role in the future therapy of HNSCC. In this review article, we will focus on the role of CAFs in the TME of HNSCC tumors. We will also discuss clinically relevant agents targeting CAFs, their signals, and signaling pathways, which are activated by CAFs in cancer cells, with the potential for repurposing for HNSCC therapy.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Klara Hanelova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Institute of Pathophysiology, First Faculty of Medicine, Charles University, / U Nemocnice 5, CZ-128 53 Prague, Czech Republic.
| |
Collapse
|
26
|
Zhang Z, Liu C, Wang M, Sun R, Yang Z, Hua Z, Wu Y, Wu M, Wang H, Qiu W, Yin H, Yang M. Treating solid tumors with TCR-based chimeric antigen receptor targeting extra domain B-containing fibronectin. J Immunother Cancer 2023; 11:e007199. [PMID: 37586774 PMCID: PMC10432677 DOI: 10.1136/jitc-2023-007199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND The suppression of chimeric antigen receptor (CAR) T cells by the tumor microenvironment (TME) is a crucial obstacle in the T-cell-based treatment of solid tumors. Extra domain B (EDB)-fibronectin is an oncofetal antigen expressed on the endothelium layer of the neovasculature and cancer cells. Though recognized as a T cell therapy target, engineered CAR T cells thus far have failed to demonstrate satisfactory in vivo efficacy. In this study, we report that targeting EDB-fibronectin by redirected TCR-CAR T cells (rTCR-CAR) bypasses the suppressive TME for solid tumor treatment and sufficiently suppressed tumor growth.We generated EDB-targeting CAR by fusing single-chain variable fragment to CD3ε, resulting in rTCR-CAR. Human primary T cells and Jurkat cells were used to study the EDB-targeting T cells. Differences to the traditional second-generation CAR T cell in signaling, immune synapse formation, and T cell exhaustion were characterized. Cytotoxicity of the rTCR-CAR T cells was tested in vitro, and therapeutic efficacies were demonstrated using xenograft models. METHODS RESULTS: In the xenograft models, the rTCR-CAR T cells demonstrated in vivo efficacies superior to that based on traditional CAR design. A significant reduction in tumor vessel density was observed alongside tumor growth inhibition, extending even to tumor models established with EDB-negative cancer cells. The rTCR-CAR bound to immobilized EDB, and the binding led to immune synapse structures superior to that formed by second-generation CARs. By a mechanism similar to that for the conventional TCR complex, EDB-fibronectin activated the rTCR-CAR, resulting in rTCR-CAR T cells with low basal activation levels and increased in vivo expansion. CONCLUSION Our study has demonstrated the potential of rTCR-CAR T cells targeting the EDB-fibronectin as an anticancer therapeutic. Engineered to possess antiangiogenic and cytotoxic activities, the rTCR-CAR T cells showed therapeutic efficacies not impacted by the suppressive TMEs. These combined characteristics of a single therapeutic agent point to its potential to achieve sustained control of solid tumors.
Collapse
Affiliation(s)
- Zhijie Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chang Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Muhan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Rongcheng Sun
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Cell Tech Medical Research Institute, Nanjing, Jiangsu, China
| | - Zhe Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhen Hua
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yushuang Wu
- Jiangsu Cell Tech Medical Research Institute, Nanjing, Jiangsu, China
| | - Mengting Wu
- Jiangsu Cell Tech Medical Research Institute, Nanjing, Jiangsu, China
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meijia Yang
- Jiangsu Cell Tech Medical Research Institute, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Ahn S, Sharma U, Kasuba KC, Strohmeyer N, Müller DJ. Engineered Biomimetic Fibrillar Fibronectin Matrices Regulate Cell Adhesion Initiation, Migration, and Proliferation via α5β1 Integrin and Syndecan-4 Crosstalk. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300812. [PMID: 37357136 PMCID: PMC10460904 DOI: 10.1002/advs.202300812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Indexed: 06/27/2023]
Abstract
Cells regulate adhesion to the fibrillar extracellular matrix (ECM) of which fibronectin is an essential component. However, most studies characterize cell adhesion to globular fibronectin substrates at time scales long after cells polarize and migrate. To overcome this limitation, a simple and scalable method to engineer biomimetic 3D fibrillar fibronectin matrices is introduced and how they are sensed by fibroblasts from the onset of attachment is characterized. Compared to globular fibronectin substrates, fibroblasts accelerate adhesion initiation and strengthening within seconds to fibrillar fibronectin matrices via α5β1 integrin and syndecan-4. This regulation, which additionally accelerates on stiffened fibrillar matrices, involves actin polymerization, actomyosin contraction, and the cytoplasmic proteins paxillin, focal adhesion kinase, and phosphoinositide 3-kinase. Furthermore, this immediate sensing and adhesion of fibroblast to fibrillar fibronectin guides migration speed, persistency, and proliferation range from hours to weeks. The findings highlight that fibrillar fibronectin matrices, compared to widely-used globular fibronectin, trigger short- and long-term cell decisions very differently and urge the use of such matrices to better understand in vivo interactions of cells and ECMs. The engineered fibronectin matrices, which can be printed onto non-biological surfaces without loss of function, open avenues for various cell biological, tissue engineering and medical applications.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBasel4058Switzerland
| | - Upnishad Sharma
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBasel4058Switzerland
| | - Krishna Chaitanya Kasuba
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBasel4058Switzerland
| | - Nico Strohmeyer
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBasel4058Switzerland
| | - Daniel J. Müller
- Department of Biosystems Science and EngineeringEidgenössische Technische Hochschule (ETH) ZurichBasel4058Switzerland
| |
Collapse
|
28
|
Henderson EA, Lukomski S, Boone BA. Emerging applications of cancer bacteriotherapy towards treatment of pancreatic cancer. Front Oncol 2023; 13:1217095. [PMID: 37588093 PMCID: PMC10425600 DOI: 10.3389/fonc.2023.1217095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Pancreatic cancer is a highly aggressive form of cancer with a five-year survival rate of only ten percent. Pancreatic ductal adenocarcinoma (PDAC) accounts for ninety percent of those cases. PDAC is associated with a dense stroma that confers resistance to current treatment modalities. Increasing resistance to cancer treatments poses a challenge and a need for alternative therapies. Bacterial mediated cancer therapies were proposed in the late 1800s by Dr. William Coley when he injected osteosarcoma patients with live streptococci or a fabrication of heat-killed Streptococcus pyogenes and Serratia marcescens known as Coley's toxin. Since then, several bacteria have gained recognition for possible roles in potentiating treatment response, enhancing anti-tumor immunity, and alleviating adverse effects to standard treatment options. This review highlights key bacterial mechanisms and structures that promote anti-tumor immunity, challenges and risks associated with bacterial mediated cancer therapies, and applications and opportunities for use in PDAC management.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
29
|
Greco S, Zannotti A, Pellegrino P, Giantomassi F, Delli Carpini G, D'Agostino M, Goteri G, Ciavattini A, Donati C, Bernacchioni C, Petraglia F, La Teana A, Ciarmela P. High levels of hypusinated eIF5A in leiomyoma and leiomyosarcoma pathologies: a possible novel therapeutic target. Reprod Biomed Online 2023; 47:15-25. [PMID: 37137790 DOI: 10.1016/j.rbmo.2023.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
RESEARCH QUESTION Is the hypusinated form of the eukaryotic translation initiation factor 5A (EIF5A) present in human myometrium, leiomyoma and leiomyosarcoma, and does it regulate cell proliferation and fibrosis? DESIGN The hypusination status of eIF5A in myometrial and leiomyoma patient-matched tissues was evaluated by immunohistochemistry and Western blotting as well as in leiomyosarcoma tissues by immunohistochemistry. Myometrial, leiomyoma and leiomyosarcoma cell lines were treated with N1-guanyl-1,7-diaminoheptane (GC-7), responsible for the inhibition of the first step of eIF5A hypunization, and the proliferation rate was determined by MTT assay; fibronectin expression was analysed by Western blotting. Finally, expression of fibronectin in leiomyosarcoma tissues was detected by immunohistochemistry. RESULTS The hypusinated form of eIF5A was present in all tissues examined, with an increasing trend of hypusinated eIF5A levels from normal myometrium to neoplastic benign leiomyoma up to neoplastic malignant leiomyosarcoma. The higher levels in leiomyoma compared with myometrium were confirmed by Western blotting (P = 0.0046). The inhibition of eIF5A hypusination, with GC-7 treatment at 100 nM, reduced the cell proliferation in myometrium (P = 0.0429), leiomyoma (P = 0.0030) and leiomyosarcoma (P = 0.0044) cell lines and reduced the expression of fibronectin in leiomyoma (P = 0.0077) and leiomyosarcoma (P = 0.0280) cells. The immunohistochemical staining of leiomyosarcoma tissue revealed that fibronectin was highly expressed in the malignant aggressive (central) part of the leiomyosarcoma lesion, where hypusinated eIF5A was also highly represented. CONCLUSIONS These data support the hypothesis that eIF5A may be involved in the pathogenesis of myometrial benign and malignant pathologies.
Collapse
Affiliation(s)
- Stefania Greco
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Alessandro Zannotti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; Department of Specialist and Odontostomatological Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Pamela Pellegrino
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federica Giantomassi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Giovanni Delli Carpini
- Department of Specialist and Odontostomatological Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Mattia D'Agostino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY, MaSBIC), Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Andrea Ciavattini
- Department of Specialist and Odontostomatological Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", Università di Firenze, 50134 Firenze, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", Università di Firenze, 50134 Firenze, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", Università di Firenze, 50134 Firenze, Italy
| | - Anna La Teana
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY, MaSBIC), Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy.
| |
Collapse
|
30
|
Anu RI, Shiu KK, Khan KH. The immunomodulatory role of IDO1-Kynurenine-NAD + pathway in switching cold tumor microenvironment in PDAC. Front Oncol 2023; 13:1142838. [PMID: 37456260 PMCID: PMC10348419 DOI: 10.3389/fonc.2023.1142838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common exocrine tumor of the pancreas characterized by late diagnosis, adverse overall 5-year survival, a higher propensity for metastatic disease, and lack of efficacy of systemic therapy options. These adverse outcomes can be partly attributed to complex tumor microenvironment (TME). Over the past decade, immunotherapy has revolutionized the management of certain cancers; thus far, the immunologically 'non-inflamed' tumor microenvironment in PDACs has proven to be challenging. Indolamine 2,3-dioxygenase 1 (IDO1) is the rate-limiting enzyme in the catabolic pathway of L-Tryptophan, an essential amino acid, that gives rise to the immunosuppressive metabolite Kynurenine. IDO1, Indolamine 2,3-dioxygenase 2 (IDO2), and Tryptophan 2,3-dioxygenase (TDO) are the key enzymes in the tryptophan catabolic pathway but we focus on the role of the predominant enzyme form IDO1 in this review. Nicotinamide phosphoribosyl transferase (iNAMPT) regulates the intracellular concentration of NAD and is upregulated in the tumor. In light of the potential role of IDO1 as a driver of hostile TME in PDAC and NAD+ as a key coenzyme in anti-tumor immune response, this review urges focus on extensive research and initiation of clinical trials using IDO1 and NAMPT inhibitors in pancreatic cancer in the future.
Collapse
Affiliation(s)
- R. I. Anu
- Department of Cancer Biology and Therapeutics, Precision Oncology and Multi-Omics Clinic, Genetic Counseling Clinic, Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, Kerala, India
| | - Kai-Keen Shiu
- Gastrointestinal Oncology Service, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Universtiy College London (UCL) Cancer Institute, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
| | - Khurum Hayat Khan
- Gastrointestinal Oncology Service, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Universtiy College London (UCL) Cancer Institute, University College London Hospitals National Health Services (NHS) Foundation Trust, London, United Kingdom
- Whittington Health, National Health Services (NHS), London, United Kingdom
| |
Collapse
|
31
|
Greco S, Pellegrino P, Giampieri F, Capocasa F, Delli Carpini G, Battino M, Mezzetti B, Giannubilo SR, Ciavattini A, Ciarmela P. The In Vitro Effects of Romina Strawberry Extract on 3D Uterine Leiomyosarcoma Cells. Nutrients 2023; 15:nu15112557. [PMID: 37299521 DOI: 10.3390/nu15112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Leiomyosarcoma is an aggressive soft tissue sarcoma derived from the smooth muscle cells of the uterus. We tested the effect of Romina strawberry extract treatment on three-dimensional cultured uterine leiomyosarcoma cells. We established 3D cultures in agarose gel, where the cells seeded were able to form spheroids. We performed the observation and counting of the spheroids with a phase-contrast optical microscope, finding a decrease in the number of spheroids formed in the plates after 24 and 48 h treatment with 250 µg/mL of cultivar Romina strawberry extract. We also characterized the spheroids morphology by DNA binding fluorescent-stain observation, hematoxylin and eosin stain, and Masson's trichrome stain. Finally, the real-time PCR showed a reduced expression of extracellular matrix genes after strawberry treatment. Overall, our data suggest that the fruit extract of this strawberry cultivar may be a useful therapeutic adjuvant for the management of uterine leiomyosarcoma.
Collapse
Affiliation(s)
- Stefania Greco
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Pamela Pellegrino
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Franco Capocasa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Giovanni Delli Carpini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | | | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
32
|
Liu F, Wu Q, Dong Z, Liu K. Integrins in cancer: Emerging mechanisms and therapeutic opportunities. Pharmacol Ther 2023:108458. [PMID: 37245545 DOI: 10.1016/j.pharmthera.2023.108458] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Integrins are vital surface adhesion receptors that mediate the interactions between the extracellular matrix (ECM) and cells and are essential for cell migration and the maintenance of tissue homeostasis. Aberrant integrin activation promotes initial tumor formation, growth, and metastasis. Recently, many lines of evidence have indicated that integrins are highly expressed in numerous cancer types and have documented many functions of integrins in tumorigenesis. Thus, integrins have emerged as attractive targets for the development of cancer therapeutics. In this review, we discuss the underlying molecular mechanisms by which integrins contribute to most of the hallmarks of cancer. We focus on recent progress on integrin regulators, binding proteins, and downstream effectors. We highlight the role of integrins in the regulation of tumor metastasis, immune evasion, metabolic reprogramming, and other hallmarks of cancer. In addition, integrin-targeted immunotherapy and other integrin inhibitors that have been used in preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Fangfang Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Qiong Wu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zigang Dong
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| |
Collapse
|
33
|
Lu H, Liang J, He X, Ye H, Ruan C, Shao H, Zhang R, Li Y. A Novel Oncogenic Role of FDX1 in Human Melanoma Related to PD-L1 Immune Checkpoint. Int J Mol Sci 2023; 24:ijms24119182. [PMID: 37298135 DOI: 10.3390/ijms24119182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this study was to evaluate the association between Ferredoxin 1 (FDX1) expression and the prognostic survival of tumor patients and predict the efficacy of immunotherapy response to antitumor drug sensitivity. FDX1 plays an oncogenic role in thirty-three types of tumors, based on TCGA and GEO databases, and further experimental validation in vitro was provided through multiple cell lines. FDX1 was expressed highly in multiple types of cancer and differently linked to the survival prognosis of tumorous patients. A high phosphorylation level was correlated with the FDX1 site of S177 in lung cancer. FDX1 exhibited a significant association with infiltrated cancer-associated fibroblasts and CD8+ T cells. Moreover, FDX1 demonstrated correlations with immune and molecular subtypes, as well as functional enrichments in GO/KEGG pathways. Additionally, FDX1 displayed relationships with the tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, and RNA and DNA synthesis (RNAss/DNAss) within the tumor microenvironment. Notably, FDX1 exhibited a strong connection with immune checkpoint genes in the co-expression network. The validity of these findings was further confirmed through Western blotting, RT-qPCR, and flow cytometry experiments conducted on WM115 and A375 tumor cells. Elevated FDX1 expression has been linked to the enhanced effectiveness of PD-L1 blockade immunotherapy in melanoma, as observed in the GSE22155 and GSE172320 cohorts. Autodocking simulations have suggested that FDX1 may influence drug resistance by affecting the binding sites of antitumor drugs. Collectively, these findings propose that FDX1 could serve as a novel and valuable biomarker and represent an immunotherapeutic target for augmenting immune responses in various human cancers when used in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Huijiao Lu
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Liang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue He
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huabin Ye
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuangdong Ruan
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongwei Shao
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
34
|
Prieto-Fernández L, Montoro-Jiménez I, de Luxan-Delgado B, Otero-Rosales M, Rodrigo JP, Calvo F, García-Pedrero JM, Álvarez-Teijeiro S. Dissecting the functions of cancer-associated fibroblasts to therapeutically target head and neck cancer microenvironment. Biomed Pharmacother 2023; 161:114502. [PMID: 37002578 DOI: 10.1016/j.biopha.2023.114502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Head and neck cancers (HNC) are a diverse group of aggressive malignancies with high morbidity and mortality, leading to almost half-million deaths annually worldwide. A better understanding of the molecular processes governing tumor formation and progression is crucial to improve current diagnostic and prognostic tools as well as to develop more personalized treatment strategies. Tumors are highly complex and heterogeneous structures in which growth and dissemination is not only governed by the cancer cells intrinsic mechanisms, but also by the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) emerge as predominant TME components and key players in the generation of permissive conditions that ultimately impact in tumor progression and metastatic dissemination. Although CAFs were initially considered a consequence of tumor development, it is now well established that they actively contribute to numerous cancer hallmarks i.e., tumor cell growth, migration and invasion, cancer cell stemness, angiogenesis, metabolic reprograming, inflammation, and immune system modulation. In this scenario, therapeutic strategies targeting CAF functions could potentially have a major impact in cancer therapeutics, providing avenues for new treatment options or for improving efficacy in established approaches. This review is focused on thoroughly dissecting existing evidences supporting the contribution of CAFs in HNC biology with an emphasis on current knowledge of the key molecules and pathways involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effectively interfere the tumor-stroma crosstalk for HNC patients benefit. involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effec- tively interfere the tumor-stroma crosstalk for HNC patients benefit.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz de Luxan-Delgado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
35
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
36
|
Hernandez S, Das P, Holliday EB, Shen L, Lu W, Johnson B, Messick CA, Taniguchi CM, Skibber J, Ludmir EB, You YN, Smith GL, Bednarski B, Kostousov L, Koay EJ, Minsky BD, Tillman M, Portier S, Eng C, Koong AC, Chang GJ, Foo WC, Wang J, Soto LS, Morris VK. Differential Spatial Gene and Protein Expression Associated with Recurrence Following Chemoradiation for Localized Anal Squamous Cell Cancer. Cancers (Basel) 2023; 15:1701. [PMID: 36980587 PMCID: PMC10046657 DOI: 10.3390/cancers15061701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
The identification of transcriptomic and protein biomarkers prognosticating recurrence risk after chemoradiation of localized squamous cell carcinoma of the anus (SCCA) has been limited by a lack of available fresh tissue at initial presentation. We analyzed archival FFPE SCCA specimens from pretreatment biopsies prior to chemoradiation for protein and RNA biomarkers from patients with localized SCCA who recurred (N = 23) and who did not recur (N = 25). Tumor cells and the tumor microenvironment (TME) were analyzed separately to identify biomarkers with significantly different expression between the recurrent and non-recurrent groups. Recurrent patients had higher mean protein expression of FoxP3, MAPK-activation markers (BRAF, p38-MAPK) and PI3K/Akt activation (phospho-Akt) within the tumor regions. The TME was characterized by the higher protein expression of immune checkpoint biomarkers such as PD-1, OX40L and LAG3. For patients with recurrent SCCA, the higher mean protein expression of fibronectin was observed in the tumor and TME compartments. No significant differences in RNA expression were observed. The higher baseline expression of immune checkpoint biomarkers, together with markers of MAPK and PI3K/Akt signaling, are associated with recurrence following chemoradiation for patients with localized SCCA. These data provide a rationale towards the application of immune-based therapeutic strategies to improve curative-intent outcomes beyond conventional therapies for patients with SCCA.
Collapse
Affiliation(s)
- Sharia Hernandez
- Translational Molecular Pathology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA; (S.H.)
| | - Prajnan Das
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emma B. Holliday
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Shen
- Bioinformatics, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Lu
- Translational Molecular Pathology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA; (S.H.)
| | - Benny Johnson
- Gastrointestinal Medical Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Craig A. Messick
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cullen M. Taniguchi
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John Skibber
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ethan B. Ludmir
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Y. Nancy You
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Grace Li Smith
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brian Bednarski
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Larisa Kostousov
- Translational Molecular Pathology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA; (S.H.)
| | - Eugene J. Koay
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bruce D. Minsky
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Tillman
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaelynn Portier
- Gastrointestinal Medical Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cathy Eng
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Albert C. Koong
- Gastrointestinal Radiation Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George J. Chang
- Colon and Rectal Surgery, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wai Chin Foo
- Pathology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Bioinformatics, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa Solis Soto
- Translational Molecular Pathology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA; (S.H.)
| | - Van K. Morris
- Gastrointestinal Medical Oncology, The University of Texas—MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
37
|
Hall RC, Vaidya AM, Schiemann WP, Pan Q, Lu ZR. RNA-Seq Analysis of Extradomain A and Extradomain B Fibronectin as Extracellular Matrix Markers for Cancer. Cells 2023; 12:cells12050685. [PMID: 36899821 PMCID: PMC10000746 DOI: 10.3390/cells12050685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Alternatively spliced forms of fibronectin, called oncofetal fibronectin, are aberrantly expressed in cancer, with little to no expression in normal tissue, making them attractive biomarkers to exploit for tumor-targeted therapeutics and diagnostics. While prior studies have explored oncofetal fibronectin expression in limited cancer types and limited sample sizes, no studies have performed a large-scale pan-cancer analysis in the context of clinical diagnostics and prognostics to posit the utility of these biomarkers across multiple cancer types. In this study, RNA-Seq data sourced from the UCSC Toil Recompute project were extracted and analyzed to determine the correlation between the expression of oncofetal fibronectin, including extradomain A and extradomain B fibronectin, and patient diagnosis and prognosis. We determined that oncofetal fibronectin is significantly overexpressed in most cancer types relative to corresponding normal tissues. In addition, strong correlations exist between increasing oncofetal fibronectin expression levels and tumor stage, lymph node activity, and histological grade at the time of diagnosis. Furthermore, oncofetal fibronectin expression is shown to be significantly associated with overall patient survival within a 10-year window. Thus, the results presented in this study suggest oncofetal fibronectin as a commonly upregulated biomarker in cancer with the potential to be used for tumor-selective diagnosis and treatment applications.
Collapse
Affiliation(s)
- Ryan C. Hall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amita M. Vaidya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Quintin Pan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-0187; Fax: +1-216-368-4969
| |
Collapse
|
38
|
Margadant C. Cell Migration in Three Dimensions. Methods Mol Biol 2023; 2608:1-14. [PMID: 36653698 DOI: 10.1007/978-1-0716-2887-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell migration plays an essential role in many pathophysiological processes, including embryonic development, wound healing, immunity, and cancer invasion, and is therefore a widely studied phenomenon in many different fields from basic cell biology to regenerative medicine. During the past decades, a multitude of increasingly complex methods have been developed to study cell migration. Here we compile a series of current state-of-the-art methods and protocols to investigate cell migration in a variety of model systems ranging from cells, organoids, tissue explants, and microfluidic systems to Drosophila, zebrafish, and mice. Together they cover processes as diverse as nuclear deformation, energy consumption, endocytic trafficking, and matrix degradation, as well as tumor vascularization and cancer cell invasion, sprouting angiogenesis, and leukocyte extravasation. Furthermore, methods to study developmental processes such as neural tube closure, germ layer specification, and branching morphogenesis are included, as well as scripts for the automated analysis of several aspects of cell migration. Together, this book constitutes a unique collection of methods of prime importance to those interested in the analysis of cell migration.
Collapse
Affiliation(s)
- Coert Margadant
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Zhang H, Zhu H, Feng J, Zhang Z, Zhang S, Wang Z, Sun L, Zhang W, Gao B, Zhang Y, Lin M. Reprogramming of Activated Pancreatic Stellate Cells via Mechanical Modulation of Transmembrane Force-sensitive N-cadherin Receptor. J Mol Biol 2023; 435:167819. [PMID: 36089055 DOI: 10.1016/j.jmb.2022.167819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023]
Abstract
Cancer has been the leading cause of death due mainly to tumor metastasis. The tumor microenvironment plays a key role in tumor metastasis. As the main stromal cells in tumor microenvironment originated from activated fibroblast, cancer-associated fibroblasts (CAFs) play a major role in promoting tumor metastasis. A promising therapeutic avenue is reprogramming of CAFs into tumor-restraining quiescence state. In this study, we observed that CAF-like active pancreatic stellate cells (PSCs) interact with each other via N-cadherin, a force-sensitive transmembrane receptor. Since N-cadherin ligation mediated mechanotransduction has been reported to restrict integrin mediated signalling, we thus hypothesized that the reprogramming of activated PSCs by mechanical modulation of N-cadherin ligation might be possible. To test this hypothesis, we grafted N-cadherin ligand (HAVDI peptide) onto soft polyethylene glycol hydrogel substrate prior to cell adhesion to mimic cell-cell interaction via N-cadherin ligation. We found that the activated PSCs could be reprogrammed to their original quiescent state when transferred onto the substrate with immobilized HAVDI peptide. These results reveal a key role of mechanosensing by intercellular transmembrane receptor in reprogramming of activated PSCs, and provide a potential way for designing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Huan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jinteng Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Simei Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Lin Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Wencheng Zhang
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038, PR China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038, PR China
| | - Ying Zhang
- Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an 710054, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
40
|
Chen JY, Yiu WH, Tang PMK, Tang SCW. New insights into fibrotic signaling in renal cell carcinoma. Front Cell Dev Biol 2023; 11:1056964. [PMID: 36910160 PMCID: PMC9996540 DOI: 10.3389/fcell.2023.1056964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
Fibrotic signaling plays a pivotal role in the development and progression of solid cancers including renal cell carcinoma (RCC). Intratumoral fibrosis (ITF) and pseudo-capsule (PC) fibrosis are significantly correlated to the disease progression of renal cell carcinoma. Targeting classic fibrotic signaling processes such as TGF-β signaling and epithelial-to-mesenchymal transition (EMT) shows promising antitumor effects both preclinically and clinically. Therefore, a better understanding of the pathogenic mechanisms of fibrotic signaling in renal cell carcinoma at molecular resolution can facilitate the development of precision therapies against solid cancers. In this review, we systematically summarized the latest updates on fibrotic signaling, from clinical correlation and molecular mechanisms to its therapeutic strategies for renal cell carcinoma. Importantly, we examined the reported fibrotic signaling on the human renal cell carcinoma dataset at the transcriptome level with single-cell resolution to assess its translational potential in the clinic.
Collapse
Affiliation(s)
- Jiao-Yi Chen
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai-Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sydney Chi-Wai Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
41
|
Aleman J, Young CD, Karam SD, Wang XJ. Revisiting laminin and extracellular matrix remodeling in metastatic squamous cell carcinoma: What have we learned after more than four decades of research? Mol Carcinog 2023; 62:5-23. [PMID: 35596706 PMCID: PMC9676410 DOI: 10.1002/mc.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Patients with squamous cell carcinoma (SCC) have significantly lower survival upon the development of distant metastases. The extracellular matrix (ECM) is a consistent yet dynamic influence on the metastatic capacity of SCCs. The ECM encompasses a milieu of structural proteins, signaling molecules, and enzymes. Just over 40 years ago, the fibrous ECM glycoprotein laminin was identified. Roughly four decades of research have revealed a pivotal role of laminins in metastasis. However, trends in ECM alterations in some cancers have been applied broadly to all metastatic diseases, despite evidence that these characteristics vary by tumor type. We will summarize how laminins influence the SCC metastatic process exclusively. Enhanced laminin protein deposition occurs at the invasive edge of SCC tumors, which correlates with elevated levels of laminin-binding β1 integrins on SCC cells, increased MMP-3 presence, worse prognosis, and lymphatic dissemination. Although these findings are significant, gaps in knowledge of the formation of a premetastatic niche, the processes of intra- and extravasation, and the contributions of the ECM to SCC metastatic cell dormancy persist. Bridging these gaps requires novel in vitro systems and animal models that reproduce tumor-stromal interactions and spontaneous metastasis seen in the clinic. These advances will allow accurate assessment of laminins to predict responders to transforming growth factor-β inhibitors and immunotherapy, as well as potential combinatorial therapies with the standard of care. Such clinical interventions may drastically improve quality of life and patient survival by explicitly targeting SCC metastasis.
Collapse
Affiliation(s)
- John Aleman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian D. Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| |
Collapse
|
42
|
Benwell CJ, Johnson RT, Taylor JA, Price CA, Robinson SD. Endothelial VEGFR Coreceptors Neuropilin-1 and Neuropilin-2 Are Essential for Tumor Angiogenesis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1626-1640. [PMID: 36970722 PMCID: PMC10036134 DOI: 10.1158/2767-9764.crc-22-0250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Neuropilin (NRP) expression is highly correlated with poor outcome in multiple cancer subtypes. As known coreceptors for VEGFRs, core drivers of angiogenesis, past investigations have alluded to their functional roles in facilitating tumorigenesis by promoting invasive vessel growth. Despite this, it remains unclear as to whether NRP1 and NRP2 act in a synergistic manner to enhance pathologic angiogenesis. Here we demonstrate, using NRP1 ECKO , NRP2 ECKO , and NRP1/NRP2 ECKO mouse models, that maximum inhibition of primary tumor development and angiogenesis is achieved when both endothelial NRP1 and NRP2 are targeted simultaneously. Metastasis and secondary site angiogenesis were also significantly inhibited in NRP1/NRP2 ECKO animals. Mechanistic studies revealed that codepleting NRP1 and NRP2 in mouse-microvascular endothelial cells stimulates rapid shuttling of VEGFR-2 to Rab7+ endosomes for proteosomal degradation. Our results highlight the importance of targeting both NRP1 and NRP2 to modulate tumor angiogenesis. Significance The findings presented in this study demonstrate that tumor angiogenesis and growth can be arrested completely by cotargeting endothelial NRP1 and NRP2. We provide new insight into the mechanisms of action regulating NRP-dependent tumor angiogenesis and signpost a novel approach to halt tumor progression.
Collapse
Affiliation(s)
- Christopher J. Benwell
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Robert T. Johnson
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - James A.G.E. Taylor
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Christopher A. Price
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Stephen D. Robinson
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
43
|
Xu H, Xu B, Hu J, Xia J, Tong L, Zhang P, Yang L, Tang L, Chen S, Du J, Wang Y, Li Y. Development of a novel autophagy-related gene model for gastric cancer prognostic prediction. Front Oncol 2022; 12:1006278. [PMID: 36276067 PMCID: PMC9585256 DOI: 10.3389/fonc.2022.1006278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is a major global health issue and one of the leading causes of tumor-associated mortality worldwide. Autophagy is thought to play a critical role in the development and progression of GC, and this process is controlled by a set of conserved regulators termed autophagy-related genes (ATGs). However, the complex contribution of autophagy to cancers is not completely understood. Accordingly, we aimed to develop a prognostic model based on the specific role of ATGs in GC to improve the prediction of GC outcomes. First, we screened 148 differentially expressed ATGs between GC and normal tissues in The Cancer Genome Atlas (TCGA) cohort. Consensus clustering in these ATGs was performed, and based on that, 343 patients were grouped into two clusters. According to Kaplan–Meier survival analysis, cluster C2 had a worse prognosis than cluster C1. Then, a disease risk model incorporating nine differentially expressed ATGs was constructed based on the least absolute shrinkage and selection operator (LASSO) regression analysis, and the ability of this model to stratify patients into high- and low-risk groups was verified. The predictive value of the model was confirmed using both training and validation cohorts. In addition, the results of functional enrichment analysis suggested that GC risk is correlated with immune status. Moreover, autophagy inhibition increased sensitivity to cisplatin and exacerbated reactive oxygen species accumulation in GC cell lines. Collectively, the results indicated that this novel constructed risk model is an effective and reliable tool for predicting GC outcomes and could help with individual treatment through ATG targeting.
Collapse
Affiliation(s)
- Haifeng Xu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Bing Xu
- Department of Clinical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China
| | - Jiayu Hu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Le Tong
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lei Yang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Sufeng Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Jing Du, ; Ying Wang, ; Yanchun Li,
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jing Du, ; Ying Wang, ; Yanchun Li,
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jing Du, ; Ying Wang, ; Yanchun Li,
| |
Collapse
|
44
|
Zitnay RG, Herron MR, Carney KR, Potter S, Emerson LL, Weiss JA, Mendoza MC. Mechanics of lung cancer: A finite element model shows strain amplification during early tumorigenesis. PLoS Comput Biol 2022; 18:e1010153. [PMID: 36279309 PMCID: PMC9632844 DOI: 10.1371/journal.pcbi.1010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/03/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Early lung cancer lesions develop within a unique microenvironment that undergoes constant cyclic stretch from respiration. While tumor stiffening is an established driver of tumor progression, the contribution of stress and strain to lung cancer is unknown. We developed tissue scale finite element models of lung tissue to test how early lesions alter respiration-induced strain. We found that an early tumor, represented as alveolar filling, amplified the strain experienced in the adjacent alveolar walls. Tumor stiffening further increased the amplitude of the strain in the adjacent alveolar walls and extended the strain amplification deeper into the normal lung. In contrast, the strain experienced in the tumor proper was less than the applied strain, although regions of amplification appeared at the tumor edge. Measurements of the alveolar wall thickness in clinical and mouse model samples of lung adenocarcinoma (LUAD) showed wall thickening adjacent to the tumors, consistent with cellular response to strain. Modeling alveolar wall thickening by encircling the tumor with thickened walls moved the strain amplification radially outward, to the next adjacent alveolus. Simulating iterative thickening in response to amplified strain produced tracks of thickened walls. We observed such tracks in early-stage clinical samples. The tracks were populated with invading tumor cells, suggesting that strain amplification in very early lung lesions could guide pro-invasive remodeling of the tumor microenvironment. The simulation results and tumor measurements suggest that cells at the edge of a lung tumor and in surrounding alveolar walls experience increased strain during respiration that could promote tumor progression.
Collapse
Affiliation(s)
- Rebecca G. Zitnay
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Michael R. Herron
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Keith R. Carney
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Scott Potter
- Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Lyska L. Emerson
- Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
- Scientific Computing and Imaging Institute, Salt Lake City, Utah, United States of America
| | - Michelle C. Mendoza
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
45
|
Islam MS, Morshed MR, Babu G, Khan MA. The role of inflammations and EMT in carcinogenesis. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 5:100055. [DOI: 10.1016/j.adcanc.2022.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
46
|
Si H, Zhao N, Pedroza A, Zaske AM, Rosen JM, Creighton CJ, Roarty K. Noncanonical Wnt/Ror2 signaling regulates cell-matrix adhesion to prompt directional tumor cell invasion in breast cancer. Mol Biol Cell 2022; 33:ar103. [PMID: 36001375 PMCID: PMC9582800 DOI: 10.1091/mbc.e22-02-0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cell-extracellular matrix (ECM) interactions represent fundamental exchanges during tumor progression, yet how particular signal-transduction factors prompt the conversion of tumor cells into migratory populations capable of systemic spread during metastasis remains elusive. We demonstrate that the noncanonical Wnt receptor, Ror2, regulates tumor cell-driven matrix remodeling and invasion in breast cancer. Ror2 loss-of-function (LOF) triggers the disruption of E-cadherin within tumor cells, accompanied by an increase in tumor cell invasion and collagen realignment in three-dimensional cultures. RNA sequencing of Ror2-deficient organoids further uncovered alterations in actin cytoskeleton, cell adhesion, and collagen cross-linking gene expression programs. Spatially, we pinpoint the up-regulation and redistribution of α5 and β3 integrins together with the production of fibronectin in areas of invasion downstream of Ror2 loss. Wnt/β-catenin-dependent and Wnt/Ror2 alternative Wnt signaling appear to regulate distinct functions for tumor cells regarding their ability to modify cell-ECM exchanges during invasion. Furthermore, blocking either integrin or focal adhesion kinase (FAK), a downstream mediator of integrin-mediated signal transduction, abrogates the enhanced migration observed upon Ror2 loss. These results reveal a critical function for the alternative Wnt receptor, Ror2, as a determinant of tumor cell-driven ECM exchanges during cancer invasion and metastasis.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Andrea Pedroza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ana-Maria Zaske
- University of Texas Health Science Center at Houston, Houston, TX 77054
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Breast Cancer Program, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Chad J. Creighton
- Breast Cancer Program, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Breast Cancer Program, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
47
|
Phosphorylation of Arl4A/D promotes their binding by the HYPK chaperone for their stable recruitment to the plasma membrane. Proc Natl Acad Sci U S A 2022; 119:e2207414119. [PMID: 35857868 PMCID: PMC9335210 DOI: 10.1073/pnas.2207414119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal development. Whereas small GTPases are typically regulated by their GTPase cycle, Arl4 proteins have been found to act independent of this canonical regulatory mechanism. Here, we show that Arl4A and Arl4D (Arl4A/D) are unstable due to proteasomal degradation, but stimulation of cells by fibronectin (FN) inhibits this degradation to promote Arl4A/D stability. Proteomic analysis reveals that FN stimulation induces phosphorylation at S143 of Arl4A and at S144 of Arl4D. We identify Pak1 as the responsible kinase for these phosphorylations. Moreover, these phosphorylations promote the chaperone protein HYPK to bind Arl4A/D, which stabilizes their recruitment to the plasma membrane to promote cell migration. These findings not only advance a major mechanistic understanding of how Arl4 proteins act in cell migration but also achieve a fundamental understanding of how these small GTPases are modulated by revealing that protein stability, rather than the GTPase cycle, acts as a key regulatory mechanism.
Collapse
|
48
|
Suryawanshi H, Yang H, Lubetzky M, Morozov P, Lagman M, Thareja G, Alonso A, Li C, Snopkowski C, Belkadi A, Mueller FB, Lee JR, Dadhania DM, Salvatore SP, Seshan SV, Sharma VK, Suhre K, Suthanthiran M, Tuschl T, Muthukumar T. Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts. PLoS One 2022; 17:e0267704. [PMID: 35657798 PMCID: PMC9165878 DOI: 10.1371/journal.pone.0267704] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
We tested the hypothesis that single-cell RNA-sequencing (scRNA-seq) analysis of human kidney allograft biopsies will reveal distinct cell types and states and yield insights to decipher the complex heterogeneity of alloimmune injury. We selected 3 biopsies of kidney cortex from 3 individuals for scRNA-seq and processed them fresh using an identical protocol on the 10x Chromium platform; (i) HK: native kidney biopsy from a living donor, (ii) AK1: allograft kidney with transplant glomerulopathy, tubulointerstitial fibrosis, and worsening graft function, and (iii) AK2: allograft kidney after successful treatment of active antibody-mediated rejection. We did not study T-cell-mediated rejections. We generated 7217 high-quality single cell transcriptomes. Taking advantage of the recipient-donor sex mismatches revealed by X and Y chromosome autosomal gene expression, we determined that in AK1 with fibrosis, 42 months after transplantation, more than half of the kidney allograft fibroblasts were recipient-derived and therefore likely migratory and graft infiltrative, whereas in AK2 without fibrosis, 84 months after transplantation, most fibroblasts were donor-organ-derived. Furthermore, AK1 was enriched for tubular progenitor cells overexpressing profibrotic extracellular matrix genes. AK2, eight months after successful treatment of rejection, contained plasmablast cells with high expression of immunoglobulins, endothelial cell elaboration of T cell chemoattractant cytokines, and persistent presence of cytotoxic T cells. In addition to these key findings, our analysis revealed unique cell types and states in the kidney. Altogether, single-cell transcriptomics yielded novel mechanistic insights, which could pave the way for individualizing the care of transplant recipients.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Hua Yang
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Michelle Lubetzky
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Pavel Morozov
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Mila Lagman
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Alicia Alonso
- Epigenomics Core Facility, Weill Cornell Medical College, New York, NY, United States of America
| | - Carol Li
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Catherine Snopkowski
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Aziz Belkadi
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Franco B. Mueller
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - John R. Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Darshana M. Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Steven P. Salvatore
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Surya V. Seshan
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Vijay K. Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY, United States of America
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
49
|
Rekad Z, Izzi V, Lamba R, Ciais D, Van Obberghen-Schilling E. The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol 2022; 111:26-52. [DOI: 10.1016/j.matbio.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
|
50
|
Diehm YF, Marstaller K, Seckler AM, Berger MR, Zepp M, Gaida MM, Thomé J, Kotsougiani-Fischer D, Kneser U, Fischer S. The collagenase of the bacterium Clostridium histolyticum does not favor metastasis of breast cancer. Breast Cancer 2022; 29:599-609. [PMID: 35129812 DOI: 10.1007/s12282-022-01337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/23/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Breast cancer is the most common malignancy among women worldwide. As survival rates increase, breast reconstruction and quality of life gain importance. Of all women undergoing breast reconstruction, approximately, 70% opt for silicone implants and 50% of those develop capsular contracture, the most prevalent long-term complication. The collagenase of the bacterium Clostridium histolyticum (CCH) showed promising results in the therapy of capsule contracture; however, its influence on residual cancer cells is unknown. The aim of this study was to investigate whether CCH-treatment negatively impacts breast cancer cells in vitro and in vivo. METHODS MDA-MB-231 and MCF-7 cells were used in this study. In vitro, we tested the influence of CCH on proliferation, wound healing, migration and cell cycle by MTT-assay, scratch-assay, transwell-migration-assay, and flow cytometry. In vivo, solid tumors were induced in immune-deficient mice. CCH was injected into the tumors and tumor growth and metastasis formation was monitored by caliper measurement, in vivo bioluminescence imaging and histology. Gene expression analysis was performed by microarray including 27,190 genes. RESULTS CCH-incubation led to a dose-dependent reduction in proliferation for both cell lines, while wound healing was reduced only in MDA-MB-231 cells. No morphological alterations were monitored in cell cycle or apoptosis. In vivo, bioluminescence imaging and histology did not show any evidence of metastasis. Although CCH led to changes in gene expression of breast cancer cells, no relevant alterations in metastasis-related genes were monitored. CONCLUSION CCH has no impact on tumor growth or metastasis formation in vitro and in vivo. This paves the way for first clinical trials.
Collapse
Affiliation(s)
- Yannick Fabian Diehm
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
| | - Katharina Marstaller
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Anna-Maria Seckler
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Martin Reinhold Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Matthias Martin Gaida
- Institute of Pathology, University Medical Center, Johannes-Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Julia Thomé
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
| | - Dimitra Kotsougiani-Fischer
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
| | - Sebastian Fischer
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany.
| |
Collapse
|