1
|
Shen C, Zuo Q, Shao Z, Lin Y, Chen S. Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review). Int J Mol Med 2025; 55:86. [PMID: 40183403 PMCID: PMC12005369 DOI: 10.3892/ijmm.2025.5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Muscarinic acetylcholine (ACh) receptors (also known as M receptors) are widely distributed in all organs and tissues of the body, mainly playing a role in cholinergic nerve conduction. There are five known subtypes of muscarinic ACh receptors, but their pharmacological mechanisms of action on myocardial function have remained to be clearly defined. Functional myocardial diseases and myocardial injuries, such as arrhythmia, myocardial ischemia, myocarditis and myocardial fibrosis, may be affected by muscarinic ACh receptors. This article reviews the research progress of the regulation of myocardial function by muscarinic ACh receptors and related diseases, with the aim of developing better strategies and providing references for further revealing and clarifying the signal transduction and mechanisms of muscarinic ACh receptors in cardiomyocytes, and finding potential myocardial protective drugs that act on muscarinic ACh receptors.
Collapse
Affiliation(s)
- Chuqiao Shen
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Qiang Zuo
- Department of Cardiology, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Zhengbin Shao
- Department of Cardiology, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yixuan Lin
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Shuo Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P.R. China
| |
Collapse
|
2
|
Hafez OA, Chang RB. Regulation of Cardiac Function by the Autonomic Nervous System. Physiology (Bethesda) 2025; 40:0. [PMID: 39585760 DOI: 10.1152/physiol.00018.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
The autonomic nervous system is critical for regulating cardiovascular physiology. The neurocardiac axis encompasses multiple levels of control, including the motor circuits of the sympathetic and parasympathetic nervous systems, sensory neurons that contribute to cardiac reflexes, and the intrinsic cardiac nervous system that provides localized sensing and regulation of the heart. Disruption of these systems can lead to significant clinical conditions. Recent advances have enhanced our understanding of the autonomic control of the heart, detailing the specific neuronal populations involved and their physiologic roles. In this review, we discuss this research at each level of the neurocardiac axis. We conclude by discussing the clinical field of neurocardiology and attempts to translate this new understanding of neurocardiac physiology to the clinic. We highlight the contributions of autonomic dysfunction in prevalent cardiovascular diseases and assess the current status of novel neuroscience-based treatment approaches.
Collapse
Affiliation(s)
- Omar A Hafez
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
- M.D.-Ph.D. Program, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Rui B Chang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
3
|
Lizot G, Bescond J, De Koninck Y, Chahine M, Bois P, Faivre JF, Chatelier A. Excitability Properties of Cardiac Calbindin Neurons: Identifying a Unique Neuronal Population. Heart Rhythm 2025:S1547-5271(25)02314-8. [PMID: 40221111 DOI: 10.1016/j.hrthm.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND The intrinsic cardiac nervous system is a complex system that plays a critical role in the regulation of cardiac physiological parameters and has been shown to contribute to cardiac arrhythmias. To date, several types of neurons with distinct neurochemical and electrophysiological phenotypes have been identified. However, no study has correlated the neurochemical phenotype to a specific electrophysiological behavior. Calbindin-D28k, a calcium binding protein, is expressed in numerous cardiac neurons. OBJECTIVE Given that changes in neuronal excitability have been associated with arrhythmia susceptibility and that calbindin expression has been associated with modulations of neuronal excitability, our objective is to assess whether the cardiac calbindin neuronal population has specific properties that could be involved in cardiac regulation and arrhythmias. METHODS By using a Cre-Lox mouse model to specifically target calbindin neurons with a fluorescent reporter, we characterized the neurochemical and the electrophysiological phenotype of this cardiac neuronal population. RESULTS Calbindin neurons exhibit a specific neurochemical expression profile and a larger soma with shorter neurite length compared to other neurons. This was combined with a distinct electrophysiological signature characterized by a lower excitability with a predominantly phasic profile associated to a lower N-type calcium current density. CONCLUSION Calbindin cardiac neurons display distinct neurochemical, morphological, and electrophysiological properties, resembling the cardiac neuronal remodeling observed in pathologies such as heart failure. Therefore, we believe that this specific neuronal population deserves investigations in the context of cardiac pathologies.
Collapse
Affiliation(s)
- Guénaëlle Lizot
- PReTI Laboratory, UR 24184, University of Poitiers, Poitiers, France
| | - Jocelyn Bescond
- PReTI Laboratory, UR 24184, University of Poitiers, Poitiers, France
| | - Yves De Koninck
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Patrick Bois
- PReTI Laboratory, UR 24184, University of Poitiers, Poitiers, France
| | | | - Aurélien Chatelier
- PReTI Laboratory, UR 24184, University of Poitiers, Poitiers, France; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
4
|
Sato T, Fishbein MC, Hanna P, Ajijola OA, Shivkumar K, Mori S. The vestigial fold in humans: Characterization of a potential novel target for selective cardiac sympathetic denervation. Heart Rhythm 2025:S1547-5271(25)02194-0. [PMID: 40107399 DOI: 10.1016/j.hrthm.2025.03.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The vestigial fold is an epicardial structure related to the posterior hilum of the heart, containing the remnant of the left superior vena cava. It is the superior continuation of the ligament/vein of Marshall. Although neural structures along the human ligament/vein of Marshall have been characterized, those within the human vestigial fold remain unexplored. OBJECTIVE This study aimed to characterize the neural structures within the human vestigial fold. METHODS Twelve human vestigial fold samples (67% men, 50.0 ± 12.7 years) were analyzed. Nerve fascicles ≥ 50 μm in diameter were counted and characterized by immunohistochemistry staining. Percentage area of sympathetic, parasympathetic, and sensory nerve fibers (axons) within individual nerve fascicles was measured. RESULTS A total of 87 nerve fascicles were analyzed. The size of the vestigial fold averaged 12.7 ± 5.1 mm in length and 3.6 ± 1.7 mm in width. Each vestigial fold contained 7.3 ± 4.2 nerve fascicles (102.0 ± 51.8 μm in diameter). The minimum distance from the epicardium to nerve fascicles was 487.1 ± 440.2 μm. Immunohistochemistry showed sympathetic predominance (Percentage area within each fascicle; sympathetic 16.9 ± 12.7%, parasympathetic 1.6 ± 1.0%, and sensory 1.2 ± 1.0%, P < .001). Representative whole-mount staining of the tissue-cleared sample also confirmed 3-dimensional distribution of the predominant sympathetic nerve fascicles within the vestigial fold. CONCLUSION The vestigial fold predominantly contains sympathetic nerve fascicles. This epicardial structure is a potential novel target for selective human cardiac sympathetic denervation, especially in cases with uncontrollable ventricular arrhythmia arising from the inferior left ventricle.
Collapse
Affiliation(s)
- Takanori Sato
- David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California
| | - Peter Hanna
- David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California
| | - Olujimi A Ajijola
- David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California
| | - Kalyanam Shivkumar
- David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California
| | - Shumpei Mori
- David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, California.
| |
Collapse
|
5
|
Valenza G, Matić Z, Catrambone V. The brain-heart axis: integrative cooperation of neural, mechanical and biochemical pathways. Nat Rev Cardiol 2025:10.1038/s41569-025-01140-3. [PMID: 40033035 DOI: 10.1038/s41569-025-01140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The neural and cardiovascular systems are pivotal in regulating human physiological, cognitive and emotional states, constantly interacting through anatomical and functional connections referred to as the brain-heart axis. When this axis is dysfunctional, neurological conditions can lead to cardiovascular disorders and, conversely, cardiovascular dysfunction can substantially affect brain health. However, the mechanisms and fundamental physiological components of the brain-heart axis remain largely unknown. In this Review, we elucidate these components and identify three primary pathways: neural, mechanical and biochemical. The neural pathway involves the interaction between the autonomic nervous system and the central autonomic network in the brain. The mechanical pathway involves mechanoreceptors, particularly those expressing mechanosensitive Piezo protein channels, which relay crucial information about blood pressure through peripheral and cerebrovascular connections. The biochemical pathway comprises many endogenous compounds that are important mediators of neural and cardiovascular function. This multisystem perspective calls for the development of integrative approaches, leading to new clinical specialties in neurocardiology.
Collapse
Affiliation(s)
- Gaetano Valenza
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
| | - Zoran Matić
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Vincenzo Catrambone
- Neurocardiovascular Intelligence Lab, Department of Information Engineering & Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2025; 603:1689-1728. [PMID: 38778747 PMCID: PMC11582088 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Saglietto A, Falasconi G, Penela D, Francia P, Viveros D, Berruezo A, Russo V, Brignole M, Aksu T, Anselmino M, De Ferrari GM, Dusi V. Cardioneuroablation: a new treatment for vasovagal syncope. J Cardiovasc Med (Hagerstown) 2025; 26:131-142. [PMID: 39976065 DOI: 10.2459/jcm.0000000000001703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 02/21/2025]
Abstract
Cardioneuroablation (CNA) is emerging as an appealing therapeutic option for patients with vasovagal reflex syncope. This review examines key aspects of CNA, including patient selection, procedural aspects and mid-term effects. We critically evaluate procedural results from recent studies and address ongoing challenges, such as the need for standardized procedural protocols and harmonized postprocedural data collection. In addition, we outline current gaps in knowledge concerning long-term pathophysiological effects of the procedure, in particular regarding ventricular arrhythmia susceptibility and exercise capacity.
Collapse
Affiliation(s)
- Andrea Saglietto
- Division of Cardiology, Cardiovascular and Thoracic Department, "Citta della Salute e della Scienza" Hospital
- Department of Medical Sciences, University of Turin, Turin, Italy
- Heart Institute, Teknon Medical Centre, Calle Villana 12
| | - Giulio Falasconi
- Heart Institute, Teknon Medical Centre, Calle Villana 12
- Campus Clínic, University of Barcelona, Barcelona, Spain
| | - Diego Penela
- Heart Institute, Teknon Medical Centre, Calle Villana 12
- Arrhythmology Department, IRCCS Humanitas Research Hospital, Rozzano
| | - Pietro Francia
- Heart Institute, Teknon Medical Centre, Calle Villana 12
- Division of Cardiology, Department of Clinical and Molecular Medicine, St. Andrea Hospital, Sapienza University, Rome
| | - Daniel Viveros
- Heart Institute, Teknon Medical Centre, Calle Villana 12
| | | | - Vincenzo Russo
- Cardiology and Syncope Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli"- Monaldi Hospital, Naples
| | - Michele Brignole
- IRCCS Istituto Auxologico Italiano, Department of Cardiology, Hospital S. Luca, Milan, Italy
| | - Tolga Aksu
- Department of Cardiology, Yeditepe University Hospital, Istanbul, Turkey
| | - Matteo Anselmino
- Division of Cardiology, Cardiovascular and Thoracic Department, "Citta della Salute e della Scienza" Hospital
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department, "Citta della Salute e della Scienza" Hospital
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Veronica Dusi
- Division of Cardiology, Cardiovascular and Thoracic Department, "Citta della Salute e della Scienza" Hospital
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Evans AJ, Li YL. Remodeling of the Intracardiac Ganglia During the Development of Cardiovascular Autonomic Dysfunction in Type 2 Diabetes: Molecular Mechanisms and Therapeutics. Int J Mol Sci 2024; 25:12464. [PMID: 39596529 PMCID: PMC11594459 DOI: 10.3390/ijms252212464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most significant health issues worldwide, with associated healthcare costs estimated to surpass USD 1054 billion by 2045. The leading cause of death in T2DM patients is the development of cardiovascular disease (CVD). In the early stages of T2DM, patients develop cardiovascular autonomic dysfunction due to the withdrawal of cardiac parasympathetic activity. Diminished cardiac parasympathetic tone can lead to cardiac arrhythmia-related sudden cardiac death, which accounts for 50% of CVD-related deaths in T2DM patients. Regulation of cardiovascular parasympathetic activity is integrated by neural circuitry at multiple levels including afferent, central, and efferent components. Efferent control of cardiac parasympathetic autonomic tone is mediated through the activity of preganglionic parasympathetic neurons located in the cardiac extensions of the vagus nerve that signals to postganglionic parasympathetic neurons located in the intracardiac ganglia (ICG) on the heart. Postganglionic parasympathetic neurons exert local control on the heart, independent of higher brain centers, through the release of neurotransmitters, such as acetylcholine. Structural and functional alterations in cardiac parasympathetic postganglionic neurons contribute to the withdrawal of cardiac parasympathetic tone, resulting in arrhythmogenesis and sudden cardiac death. This review provides an overview of the remodeling of parasympathetic postganglionic neurons in the ICG, and potential mechanisms contributing to the withdrawal of cardiac parasympathetic tone, ventricular arrhythmogenesis, and sudden cardiac death in T2DM. Improving cardiac parasympathetic tone could be a therapeutic avenue to reduce malignant ventricular arrhythmia and sudden cardiac death, increasing both the lifespan and improving quality of life of T2DM patients.
Collapse
Affiliation(s)
- Anthony J. Evans
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Farhat K, Po SS, Stavrakis S. Non-invasive Neuromodulation of Arrhythmias. Card Electrophysiol Clin 2024; 16:307-314. [PMID: 39084723 PMCID: PMC11292161 DOI: 10.1016/j.ccep.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The autonomic nervous system plays a central role in the pathogenesis of arrhythmias. Preclinical and clinical studies have demonstrated the therapeutic effect of neuromodulation at multiple anatomic targets across the neurocardiac axis for the treatment of arrhythmias. In this review, we discuss the rationale and clinical application of noninvasive neuromodulation techniques in treating arrhythmias and explore associated barriers and future directions, including optimization of stimulation parameters and patient selection.
Collapse
Affiliation(s)
| | - Sunny S Po
- University of Oklahoma Health Sciences Center
| | | |
Collapse
|
10
|
Read DF, Booth GT, Daza RM, Jackson DL, Gladden RG, Srivatsan SR, Ewing B, Franks JM, Spurrell CH, Gomes AR, O'Day D, Gogate AA, Martin BK, Larson H, Pfleger C, Starita L, Lin Y, Shendure J, Lin S, Trapnell C. Single-cell analysis of chromatin and expression reveals age- and sex-associated alterations in the human heart. Commun Biol 2024; 7:1052. [PMID: 39187646 PMCID: PMC11347658 DOI: 10.1038/s42003-024-06582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2024] [Indexed: 08/28/2024] Open
Abstract
Sex differences and age-related changes in the human heart at the tissue, cell, and molecular level have been well-documented and many may be relevant for cardiovascular disease. However, how molecular programs within individual cell types vary across individuals by age and sex remains poorly characterized. To better understand this variation, we performed single-nucleus combinatorial indexing (sci) ATAC- and RNA-Seq in human heart samples from nine donors. We identify hundreds of differentially expressed genes by age and sex and find epigenetic signatures of variation in ATAC-Seq data in this discovery cohort. We then scale up our single-cell RNA-Seq analysis by combining our data with five recently published single nucleus RNA-Seq datasets of healthy adult hearts. We find variation such as metabolic alterations by sex and immune changes by age in differential expression tests, as well as alterations in abundance of cardiomyocytes by sex and neurons with age. In addition, we compare our adult-derived ATAC-Seq profiles to analogous fetal cell types to identify putative developmental-stage-specific regulatory factors. Finally, we train predictive models of cell-type-specific RNA expression levels utilizing ATAC-Seq profiles to link distal regulatory sequences to promoters, quantifying the predictive value of a simple TF-to-expression regulatory grammar and identifying cell-type-specific TFs. Our analysis represents the largest single-cell analysis of cardiac variation by age and sex to date and provides a resource for further study of healthy cardiac variation and transcriptional regulation at single-cell resolution.
Collapse
Affiliation(s)
- David F Read
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gregory T Booth
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rula Green Gladden
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brent Ewing
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jennifer M Franks
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | - Diana O'Day
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Aishwarya A Gogate
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Haleigh Larson
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Christian Pfleger
- University of Washington School of Medicine, Division of Cardiology, Seattle, WA, USA
| | - Lea Starita
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Yiing Lin
- Department of Surgery, Washington University, St Louis, MO, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Seattle Children's Research Institute, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Shin Lin
- University of Washington School of Medicine, Division of Cardiology, Seattle, WA, USA.
| | - Cole Trapnell
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
11
|
Aksu T. Cardioneuroablation for the treatment of reflex syncope and functional bradyarrhythmias: A Scientific Statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS) and the Latin American Heart Rhythm Society (LAHRS). Europace 2024; 26:euae206. [PMID: 39082698 PMCID: PMC11350289 DOI: 10.1093/europace/euae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Cardioneuroablation has emerged as a potential alternative to cardiac pacing in selected cases with vasovagal reflex syncope, extrinsic vagally induced sinus bradycardia-arrest or atrioventricular block. The technique was first introduced decades ago, and its use has risen over the past decade. However, as with any intervention, proper patient selection and technique are a prerequisite for a safe and effective use of cardioneuroablation therapy. This document aims to review and interpret available scientific evidence and provide a summary position on the topic.
Collapse
Affiliation(s)
- Tolga Aksu
- Department of Cardiology, Yeditepe University Hospital, İçerenköy Mah. Hastahane Sok. 4,4/1 34752 Ataşehir/İstanbul, Turkey
| |
Collapse
|
12
|
Chung WH, Ajijola OA. Reply to the Editor- Cardiac denervation and its consequences in heart disease. Heart Rhythm 2024; 21:507-508. [PMID: 38176515 DOI: 10.1016/j.hrthm.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Affiliation(s)
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center & Neurocardiology Research Program of Excellence, Ronald Reagan UCLA Medical Center, Los Angeles, California
| |
Collapse
|
13
|
Giannino G, Braia V, Griffith Brookles C, Giacobbe F, D'Ascenzo F, Angelini F, Saglietto A, De Ferrari GM, Dusi V. The Intrinsic Cardiac Nervous System: From Pathophysiology to Therapeutic Implications. BIOLOGY 2024; 13:105. [PMID: 38392323 PMCID: PMC10887082 DOI: 10.3390/biology13020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The cardiac autonomic nervous system (CANS) plays a pivotal role in cardiac homeostasis as well as in cardiac pathology. The first level of cardiac autonomic control, the intrinsic cardiac nervous system (ICNS), is located within the epicardial fat pads and is physically organized in ganglionated plexi (GPs). The ICNS system does not only contain parasympathetic cardiac efferent neurons, as long believed, but also afferent neurons and local circuit neurons. Thanks to its high degree of connectivity, combined with neuronal plasticity and memory capacity, the ICNS allows for a beat-to-beat control of all cardiac functions and responses as well as integration with extracardiac and higher centers for longer-term cardiovascular reflexes. The present review provides a detailed overview of the current knowledge of the bidirectional connection between the ICNS and the most studied cardiac pathologies/conditions (myocardial infarction, heart failure, arrhythmias and heart transplant) and the potential therapeutic implications. Indeed, GP modulation with efferent activity inhibition, differently achieved, has been studied for atrial fibrillation and functional bradyarrhythmias, while GP modulation with efferent activity stimulation has been evaluated for myocardial infarction, heart failure and ventricular arrhythmias. Electrical therapy has the unique potential to allow for both kinds of ICNS modulation while preserving the anatomical integrity of the system.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Carola Griffith Brookles
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Filippo Angelini
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Andrea Saglietto
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| |
Collapse
|
14
|
Sassu E, Tumlinson G, Stefanovska D, Fernández MC, Iaconianni P, Madl J, Brennan TA, Koch M, Cameron BA, Preissl S, Ravens U, Schneider-Warme F, Kohl P, Zgierski-Johnston CM, Hortells L. Age-related structural and functional changes of the intracardiac nervous system. J Mol Cell Cardiol 2024; 187:1-14. [PMID: 38103633 DOI: 10.1016/j.yjmcc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Although aging is known to be associated with an increased incidence of both atrial and ventricular arrhythmias, there is limited knowledge about how Schwann cells (SC) and the intracardiac nervous system (iCNS) remodel with age. Here we investigate the differences in cardiac SC, parasympathetic nerve fibers, and muscarinic acetylcholine receptor M2 (M2R) expression in young and old mice. Additionally, we examine age-related changes in cardiac responses to sympathomimetic and parasympathomimetic drugs. METHODS AND RESULTS Lower SC density, lower SC proliferation and fewer parasympathetic nerve fibers were observed in cardiac and, as a control sciatic nerves from old (20-24 months) compared to young mice (2-3 months). In old mice, chondroitin sulfate proteoglycan 4 (CSPG4) was increased in sciatic but not cardiac nerves. Expression of M2R was lower in ventricular myocardium and ventricular conduction system from old mice compared to young mice, while no significant difference was seen in M2R expression in sino-atrial or atrio-ventricular node pacemaker tissue. Heart rate was slower and PQ intervals were longer in Langendorff-perfused hearts from old mice. Ventricular tachycardia and fibrillation were more frequently observed in response to carbachol administration in hearts from old mice versus those from young mice. CONCLUSIONS On the background of reduced presence of SC and parasympathetic nerve fibers, and of lower M2R expression in ventricular cardiomyocytes and conduction system of aged hearts, the propensity of ventricular arrhythmogenesis upon parasympathomimetic drug application is increased. Whether this is caused by an increase in heterogeneity of iCNS structure and function remains to be elucidated.
Collapse
Affiliation(s)
- Eliza Sassu
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany
| | - Gavin Tumlinson
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Dragana Stefanovska
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany
| | - Marbely C Fernández
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Pia Iaconianni
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Tomás A Brennan
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Manuel Koch
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Breanne A Cameron
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.
| | - Luis Hortells
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany.
| |
Collapse
|
15
|
Hsu IU, Lin Y, Guo Y, Xu QJ, Shao Y, Wang RL, Yin D, Zhao J, Young LH, Zhao H, Zhang L, Chang RB. Differential developmental blueprints of organ-intrinsic nervous systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571306. [PMID: 38168446 PMCID: PMC10759999 DOI: 10.1101/2023.12.12.571306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The organ-intrinsic nervous system is a major interface between visceral organs and the brain, mediating important sensory and regulatory functions in the body-brain axis and serving as critical local processors for organ homeostasis. Molecularly, anatomically, and functionally, organ-intrinsic neurons are highly specialized for their host organs. However, the underlying mechanism that drives this specialization is largely unknown. Here, we describe the differential strategies utilized to achieve organ-specific organization between the enteric nervous system (ENS) 1 and the intrinsic cardiac nervous system (ICNS) 2 , a neuronal network essential for heart performance but poorly characterized. Integrating high-resolution whole-embryo imaging, single-cell genomics, spatial transcriptomics, proteomics, and bioinformatics, we uncover that unlike the ENS which is highly mobile and colonizes the entire gastrointestinal (GI) tract, the ICNS uses a rich set of extracellular matrix (ECM) genes that match with surrounding heart cells and an intermediate dedicated neuronal progenitor state to stabilize itself for a 'beads-on-the-necklace' organization on heart atria. While ICNS- and ENS-precursors are genetically similar, their differentiation paths are influenced by their host-organs, leading to distinct mature neuron types. Co-culturing ENS-precursors with heart cells shifts their identity towards the ICNS and induces the expression of heart-matching ECM genes. Our cross-organ study thus reveals fundamental principles for the maturation and specialization of organ-intrinsic neurons.
Collapse
|
16
|
Chung WH, Masuyama K, Challita R, Hayase J, Mori S, Cha S, Bradfield JS, Ardell JL, Shivkumar K, Ajijola OA. Ischemia-induced ventricular proarrhythmia and cardiovascular autonomic dysreflexia after cardioneuroablation. Heart Rhythm 2023; 20:1534-1545. [PMID: 37562487 DOI: 10.1016/j.hrthm.2023.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Cardioneuroablation (CNA) is an attractive treatment of vasovagal syncope. Its long-term efficacy and safety remain unknown. OBJECTIVE The purpose of this study was to develop a chronic porcine model of CNA to examine the susceptibility to ventricular tachyarrhythmia (ventricular tachycardia/ventricular fibrillation [VT/VF]) and cardiac autonomic function after CNA. METHODS A percutaneous CNA model was developed by ablation of left- and right-sided ganglionated plexi (n = 5), confirmed by histology. Reproducible bilateral vagal denervation was confirmed after CNA by extracardiac vagal nerve stimulation (VNS) and histology. Chronic studies included 16 pigs randomized to CNA (n = 8) and sham ablation (n = 8, Control). After 6 weeks, animals underwent hemodynamic studies, assessment of cardiac sympathetic and parasympathetic function using sympathetic chain stimulation and direct VNS, respectively, and proarrhythmic potential after left anterior descending (LAD) coronary artery ligation. RESULTS After CNA, extracardiac VNS responses remained abolished for 6 weeks despite ganglia remaining in ablated ganglionated plexi. In the CNA group, direct VNS resulted in paradoxical increases in blood pressure, but not in sham-ablated animals (CNA group vs sham group: 8.36% ± 7.0% vs -4.83% ± 8.7%, respectively; P = .009). Left sympathetic chain stimulation (8 Hz) induced significant corrected QT interval prolongation in the CNA group vs the sham group (11.23% ± 4.0% vs 1.49% ± 4.0%, respectively; P < .001). VT/VF after LAD ligation was more prevalent and occurred earlier in the CNA group than in the control group (61.44 ± 73.7 seconds vs 245.11 ± 104.0 seconds, respectively; P = .002). CONCLUSION Cardiac vagal denervation is maintained long-term after CNA in a porcine model. However, chronic CNA was associated with cardiovascular dysreflexia, diminished cardioprotective effects of cardiac vagal tone, and increased susceptibility to VT/VF in ischemia. These potential long-term negative effects of CNA suggest the need for rigorous clinical studies on CNA.
Collapse
Affiliation(s)
- Wei-Hsin Chung
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California; China Medical University Hospital, Taichung, Taiwan
| | - Kiyoshi Masuyama
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Ronald Challita
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Justin Hayase
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Shumpei Mori
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Steven Cha
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Jason S Bradfield
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Jeffery L Ardell
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California.
| |
Collapse
|
17
|
Wagner JUG, Tombor LS, Malacarne PF, Kettenhausen LM, Panthel J, Kujundzic H, Manickam N, Schmitz K, Cipca M, Stilz KA, Fischer A, Muhly-Reinholz M, Abplanalp WT, John D, Mohanta SK, Weber C, Habenicht AJR, Buchmann GK, Angendohr S, Amin E, Scherschel K, Klöcker N, Kelm M, Schüttler D, Clauss S, Günther S, Boettger T, Braun T, Bär C, Pham MD, Krishnan J, Hille S, Müller OJ, Bozoglu T, Kupatt C, Nardini E, Osmanagic-Myers S, Meyer C, Zeiher AM, Brandes RP, Luxán G, Dimmeler S. Aging impairs the neurovascular interface in the heart. Science 2023; 381:897-906. [PMID: 37616346 DOI: 10.1126/science.ade4961] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.
Collapse
Affiliation(s)
- Julian U G Wagner
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Lukas S Tombor
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Pedro Felipe Malacarne
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Lisa-Maria Kettenhausen
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Josefine Panthel
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Haris Kujundzic
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Nivethitha Manickam
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Katja Schmitz
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Maria Cipca
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Kathrin A Stilz
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Marion Muhly-Reinholz
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Wesley T Abplanalp
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Sarajo K Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
| | - Giulia K Buchmann
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Stephan Angendohr
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katharina Scherschel
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- Division of Cardiology/Angiology/Intensive Care, EVK Düsseldorf, cNEP, cardiac Neuro- and Electrophysiology Research Consortium, 40217 Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dominik Schüttler
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, 81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICON), LMU Munich, 80539 Munich, Germany
| | - Sebastian Clauss
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, 81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICON), LMU Munich, 80539 Munich, Germany
| | - Stefan Günther
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Boettger
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Centre for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Minh-Duc Pham
- Department of Medicine, Cardiology, Goethe University Hospital, 60590 Frankfurt, Germany
- Genome Biologics, 60590 Frankfurt am Main, Germany
| | - Jaya Krishnan
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
- Department of Medicine, Cardiology, Goethe University Hospital, 60590 Frankfurt, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, University of Kiel, 24105 Kiel, Germany
- German Centre for Cardiovascular Research (partner site Hamburg/Kiel/Lübeck), 24105 Kiel, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, University of Kiel, 24105 Kiel, Germany
- German Centre for Cardiovascular Research (partner site Hamburg/Kiel/Lübeck), 24105 Kiel, Germany
| | - Tarik Bozoglu
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
- Klinik und Poliklinik für Innere Medizin I, University Clinic rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Christian Kupatt
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 80802 Munich, Germany
- Klinik und Poliklinik für Innere Medizin I, University Clinic rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Eleonora Nardini
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Selma Osmanagic-Myers
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, A-1090 Vienna, Austria
| | - Christian Meyer
- Division of Cardiology/Angiology/Intensive Care, EVK Düsseldorf, cNEP, cardiac Neuro- and Electrophysiology Research Consortium, 40217 Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas M Zeiher
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Ralf P Brandes
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Guillermo Luxán
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60590 Frankfurt, Germany
- Cardiopulmonary Institute (CPI), 60590 Frankfurt, Germany
| |
Collapse
|
18
|
van Weperen VYH, Ripplinger CM, Vaseghi M. Autonomic control of ventricular function in health and disease: current state of the art. Clin Auton Res 2023; 33:491-517. [PMID: 37166736 PMCID: PMC10173946 DOI: 10.1007/s10286-023-00948-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Cardiac autonomic dysfunction is one of the main pillars of cardiovascular pathophysiology. The purpose of this review is to provide an overview of the current state of the art on the pathological remodeling that occurs within the autonomic nervous system with cardiac injury and available neuromodulatory therapies for autonomic dysfunction in heart failure. METHODS Data from peer-reviewed publications on autonomic function in health and after cardiac injury are reviewed. The role of and evidence behind various neuromodulatory therapies both in preclinical investigation and in-use in clinical practice are summarized. RESULTS A harmonic interplay between the heart and the autonomic nervous system exists at multiple levels of the neuraxis. This interplay becomes disrupted in the setting of cardiovascular disease, resulting in pathological changes at multiple levels, from subcellular cardiac signaling of neurotransmitters to extra-cardiac, extra-thoracic remodeling. The subsequent detrimental cycle of sympathovagal imbalance, characterized by sympathoexcitation and parasympathetic withdrawal, predisposes to ventricular arrhythmias, progression of heart failure, and cardiac mortality. Knowledge on the etiology and pathophysiology of this condition has increased exponentially over the past few decades, resulting in a number of different neuromodulatory approaches. However, significant knowledge gaps in both sympathetic and parasympathetic interactions and causal factors that mediate progressive sympathoexcitation and parasympathetic dysfunction remain. CONCLUSIONS Although our understanding of autonomic imbalance in cardiovascular diseases has significantly increased, specific, pivotal mediators of this imbalance and the recognition and implementation of available autonomic parameters and neuromodulatory therapies are still lagging.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | | | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Martínez-Alday JD, Carazo CM, Rodríguez-Mañero M. Regarding 'Clinical controversy: methodology and indications of cardioneuroablation for reflex syncope'. Europace 2023; 25:euad179. [PMID: 37363927 PMCID: PMC10318384 DOI: 10.1093/europace/euad179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023] Open
|
20
|
O’Brien B, Reilly J, Coffey K, González-Suárez A, Quinlan L, van Zyl M. Cardioneuroablation Using Epicardial Pulsed Field Ablation for the Treatment of Atrial Fibrillation. J Cardiovasc Dev Dis 2023; 10:238. [PMID: 37367403 PMCID: PMC10299113 DOI: 10.3390/jcdd10060238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting millions of people worldwide. The cardiac autonomic nervous system (ANS) is widely recognized as playing a key role in both the initiation and propagation of AF. This paper reviews the background and development of a unique cardioneuroablation technique for the modulation of the cardiac ANS as a potential treatment for AF. The treatment uses pulsed electric field energy to selectively electroporate ANS structures on the epicardial surface of the heart. Insights from in vitro studies and electric field models are presented as well as data from both pre-clinical and early clinical studies.
Collapse
Affiliation(s)
- Barry O’Brien
- AtriAN Medical Ltd., Unit 204, Business Innovation Centre, Upper Newcastle, H91 W60E Galway, Ireland
| | - John Reilly
- AtriAN Medical Ltd., Unit 204, Business Innovation Centre, Upper Newcastle, H91 W60E Galway, Ireland
| | - Ken Coffey
- AtriAN Medical Ltd., Unit 204, Business Innovation Centre, Upper Newcastle, H91 W60E Galway, Ireland
| | - Ana González-Suárez
- School of Engineering, University of Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Lab, University of Galway, H91 YR71 Galway, Ireland
| | - Leo Quinlan
- Physiology and Cellular Physiology Research Laboratory, CURAM SFI Centre for Research in Medical Device, University of Galway, H91 TK33 Galway, Ireland
| | - Martin van Zyl
- Cardiac Electrophysiology, Royal Jubilee Hospital, Victoria, BC V8R 1J8, Canada
| |
Collapse
|
21
|
Abstract
The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.
Collapse
Affiliation(s)
- Sarajo K Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (C.Y.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Cristina Godinho-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal (C.G.-S., H.V.-F.)
| | | | - Qian J Xu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| |
Collapse
|
22
|
Chakraborty P, Farhat K, Po SS, Armoundas AA, Stavrakis S. Autonomic Nervous System and Cardiac Metabolism: Links Between Autonomic and Metabolic Remodeling in Atrial Fibrillation. JACC Clin Electrophysiol 2023:S2405-500X(23)00117-2. [PMID: 37086229 DOI: 10.1016/j.jacep.2023.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 04/23/2023]
Abstract
Simultaneous activation of the sympathetic and parasympathetic nervous systems is crucial for the initiation of paroxysmal atrial fibrillation (AF). However, unbalanced activation of the sympathetic system is characteristic of autonomic remodeling in long-standing persistent AF. Moreover, the adrenergic activation-induced metabolic derangements provide a milieu for acute AF and promote the transition from the paroxysmal to the persistent phase of AF. On the other hand, cholinergic activation ameliorates the maladaptive metabolic remodeling in the face of metabolic challenges. Selective inhibition of the sympathetic system and restoration of the balance of the cholinergic system by neuromodulation is emerging as a novel nonpharmacologic strategy for managing AF. This review explores the link between cardiac autonomic and metabolic remodeling and the potential roles of different autonomic modulation strategies on atrial metabolic aberrations in AF.
Collapse
Affiliation(s)
- Praloy Chakraborty
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kassem Farhat
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sunny S Po
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Broad Institute, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Stavros Stavrakis
- Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
23
|
Caldwell JL, Lee IJ, Ngo L, Wang L, Bahriz S, Xu B, Bers DM, Navedo MF, Bossuyt J, Xiang YK, Ripplinger CM. Whole-heart multiparametric optical imaging reveals sex-dependent heterogeneity in cAMP signaling and repolarization kinetics. SCIENCE ADVANCES 2023; 9:eadd5799. [PMID: 36662864 PMCID: PMC9858506 DOI: 10.1126/sciadv.add5799] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP) is a key second messenger in cardiomyocytes responsible for transducing autonomic signals into downstream electrophysiological responses. Previous studies have shown intracellular heterogeneity and compartmentalization of cAMP signaling. However, whether cAMP signaling occurs heterogeneously throughout the intact heart and how this drives sex-dependent functional responses are unknown. Here, we developed and validated a novel cardiac-specific fluorescence resonance energy transfer-based cAMP reporter mouse and a combined voltage-cAMP whole-heart imaging system. We showed that in male hearts, cAMP was uniformly activated in response to pharmacological β-adrenergic stimulation. In contrast, female hearts showed that cAMP levels decayed faster in apical versus basal regions, which was associated with nonuniform action potential changes and notable changes in the direction of repolarization. Apical phosphodiesterase (PDE) activity was higher in female versus male hearts, and PDE inhibition prevented repolarization changes in female hearts. Thus, our imaging approach revealed sex-dependent regional breakdown of cAMP and associated electrophysiological differences.
Collapse
Affiliation(s)
| | - I-Ju Lee
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Lena Ngo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Lianguo Wang
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Sherif Bahriz
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Bing Xu
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- VA Northern California, Mather, CA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- VA Northern California, Mather, CA, USA
| | | |
Collapse
|
24
|
Carbone AM, Del Calvo G, Nagliya D, Sharma K, Lymperopoulos A. Autonomic Nervous System Regulation of Epicardial Adipose Tissue: Potential Roles for Regulator of G Protein Signaling-4. Curr Issues Mol Biol 2022; 44:6093-6103. [PMID: 36547076 PMCID: PMC9776453 DOI: 10.3390/cimb44120415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The epicardial adipose tissue (EAT) or epicardial fat is a visceral fat depot in the heart that contains intrinsic adrenergic and cholinergic nerves, through which it interacts with the cardiac sympathetic (adrenergic) and parasympathetic (cholinergic) nervous systems. These EAT nerves represent a significant source of several adipokines and other bioactive molecules, including norepinephrine, epinephrine, and free fatty acids. The production of these molecules is biologically relevant for the heart, since abnormalities in EAT secretion are implicated in the development of pathological conditions, including coronary atherosclerosis, atrial fibrillation, and heart failure. Sympathetic hyperactivity and parasympathetic (cholinergic) derangement are associated with EAT dysfunction, leading to a variety of adverse cardiac conditions, such as heart failure, diastolic dysfunction, atrial fibrillation, etc.; therefore, several studies have focused on exploring the autonomic regulation of EAT as it pertains to heart disease pathogenesis and progression. In addition, Regulator of G protein Signaling (RGS)-4 is a protein with significant regulatory roles in both adrenergic and muscarinic receptor signaling in the heart. In this review, we provide an overview of the autonomic regulation of EAT, with a specific focus on cardiac RGS4 and the potential roles this protein plays in this regulation.
Collapse
Affiliation(s)
| | | | | | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328-2018, USA
| |
Collapse
|
25
|
Korolev DV, Sonin DL, Medved MS, Shulmeister GA, Nikiforov AI, Murashova LA, Voronin SE, Mukhametdinova DV, Zaitseva EA, Mikhailov EN, Lebedev DS, Galagudza MM. Acute Effect of Selective Chemical Inactivation of Sympathetic or Parasympathetic Atrial Ganglionated Plexus Structures on Atrial Fibrillation Inducibility in Pigs. Bull Exp Biol Med 2022; 174:179-184. [PMID: 36600035 DOI: 10.1007/s10517-023-05669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 01/06/2023]
Abstract
We studied the role of both parts of the autonomic intracardiac nervous system in the pathogenesis of atrial fibrillation (AF). In 12 pigs weighing 39±3 kg, AF was induced by burst stimulation. Chemical inactivation of intrinsic cardiac neurons within the right atria was performed by transendocardial injections of liposomal neuromodulators into the dorsal part of the right atrial wall. Sympathetic and parasympathetic terminals were inactivated with 6-hydroxydopamine (6-OHDA, n=6) and ethylcholine aziridinium ion (AF64A, n=6), respectively. Neuromodulators were encapsulated in liposomes (LS) with diameters of 310±50 nm for OHDA and 290±50 nm for AF64A. LS-6-OHDA and LS-AF64A were injected into the ganglionated plexuses after measuring the baseline effective refractory period and assessing myocardial resistance to AF. These measurements were repeated 90 min after the injections. The optimal doses were 0.2 mg/kg for LS-6-OHDA and 0.4 mg/kg for LS-AF64A (in 4 ml of suspension). Immediately after injections of liposomal neuromodulators, almost all pigs showed an increase in HR, and a short-term BP elevation was observed in the LS-AF64A group. At the end of the experiment, similar decrease in the effective refractory period and similar increase in the resistance to AF were observed in all animals. Thus, selective chemical inactivation of cholinergic and adrenergic terminals of the intracardiac nervous system with liposomal neuromodulators increased the resistance to AF in an acute experiment. However, the short observation period does not allow making a definite conclusion about the role of the autonomic nervous system in the pathogenesis of AF, which requires verification of the obtained data in a chronic experiment.
Collapse
Affiliation(s)
- D V Korolev
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - D L Sonin
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
| | - M S Medved
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - G A Shulmeister
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - A I Nikiforov
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - L A Murashova
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - S E Voronin
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - D V Mukhametdinova
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - E A Zaitseva
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - E N Mikhailov
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - D S Lebedev
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - M M Galagudza
- Institute of Experimental Medicine, V. A. Almazov National Medical Research Center, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| |
Collapse
|
26
|
Kahle AK, Klatt N, Jungen C, Dietenberger A, Kuklik P, Münkler P, Willems S, Nikolaev V, Pauza DH, Scherschel K, Meyer C. Acute Modulation of Left Ventricular Control by Selective Intracardiac Sympathetic Denervation. JACC Clin Electrophysiol 2022; 9:371-384. [PMID: 36752452 DOI: 10.1016/j.jacep.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND The sympathetic nervous system plays an integral role in cardiac physiology. Nerve fibers innervating the left ventricle are amenable to transvenous catheter stimulation along the coronary sinus (CS). OBJECTIVES The aim of the present study was to modulate left ventricular control by selective intracardiac sympathetic denervation. METHODS First, the impact of epicardial CS ablation on cardiac electrophysiology was studied in a Langendorff model of decentralized murine hearts (n = 10 each, ablation and control groups). Second, the impact of transvenous, anatomically driven axotomy by catheter-based radiofrequency ablation via the CS was evaluated in healthy sheep (n = 8) before and during stellate ganglion stimulation. RESULTS CS ablation prolonged epicardial ventricular refractory period without (41.8 ± 8.4 ms vs 53.0 ± 13.5 ms; P = 0.049) and with β1-2-adrenergic receptor blockade (47.8 ± 7.8 ms vs 73.1 ± 13.2 ms; P < 0.001) in mice. Supported by neuromorphological studies illustrating a circumferential CS neural network, intracardiac axotomy by catheter ablation via the CS in healthy sheep diminished the blood pressure increase during stellate ganglion stimulation (Δ systolic blood pressure 21.9 ± 10.9 mm Hg vs 10.5 ± 12.0 mm Hg; P = 0.023; Δ diastolic blood pressure 9.0 ± 5.5 mm Hg vs 3.0 ± 3.5 mm Hg; P = 0.039). CONCLUSIONS Transvenous, anatomically driven axotomy targeting nerve fibers along the CS enables acute modulation of left ventricular control by selective intracardiac sympathetic denervation.
Collapse
Affiliation(s)
- Ann-Kathrin Kahle
- Division of Cardiology, Angiology, and Intensive Care Medicine, Cardiac Neuro- and Electrophysiology Research Consortium, EVK Düsseldorf, Düsseldorf, Germany; Institute of Neural and Sensory Physiology, Cardiac Neuro- and Electrophysiology Research Consortium, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Niklas Klatt
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Department of Cardiology, Schön Klinik Neustadt in Holstein, Neustadt in Holstein, Germany
| | - Christiane Jungen
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Clinic for Cardiology, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Aaron Dietenberger
- Clinic for Cardiology, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Pawel Kuklik
- Department of Cardiology and Internal Intensive Care Medicine, Asklepios Hospital St. Georg, Hamburg, Germany
| | - Paula Münkler
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Clinic for Cardiology, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Willems
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Department of Cardiology and Internal Intensive Care Medicine, Asklepios Hospital St. Georg, Hamburg, Germany
| | - Viacheslav Nikolaev
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dainius H Pauza
- Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Katharina Scherschel
- Division of Cardiology, Angiology, and Intensive Care Medicine, Cardiac Neuro- and Electrophysiology Research Consortium, EVK Düsseldorf, Düsseldorf, Germany; Institute of Neural and Sensory Physiology, Cardiac Neuro- and Electrophysiology Research Consortium, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Christian Meyer
- Division of Cardiology, Angiology, and Intensive Care Medicine, Cardiac Neuro- and Electrophysiology Research Consortium, EVK Düsseldorf, Düsseldorf, Germany; Institute of Neural and Sensory Physiology, Cardiac Neuro- and Electrophysiology Research Consortium, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany.
| |
Collapse
|
27
|
Abstract
INTRODUCTION Cardioneuroablation is increasingly being utilized to improve outcomes in patients with vagally mediated bradyarrhythmias. However, there are still controversial issues in the field including patient selection, safety and efficacy, and procedural end-points. AREAS COVERED In this review, the current role of cardioneuroablation is summarized, and controversial issues related to the modality are discussed. EXPERT OPINION According to small open-label cohort studies, overall freedom from syncope recurrence was higher than 90% after cardioneuroablation in patients with vasovagal syncope (VVS). Use of the electrogram-based strategy or high-frequency stimulation demonstrate similar success rate except in procedures limited to the right atrium. Based on a recently published randomized controlled trial and metanalysis, it may be possible now to make a strong recommendation for cardioneuroablation in patients <40 years of age, and those with the cardioinhibitory or mixed type of VVS who continue to experience frequent and/or burdensome syncope recurrences. Considering patients with VVS are prone to significant placebo/expectation effect, sham-controlled trials may help to quantify the placebo effect. In well-selected patients with functional atrioventricular block and sinus bradycardia, may result in encouraging medium-term outcomes. However, functional bradycardia is identified in a minority of patients presenting with high-grade atrioventricular block or sinus node dysfunction.
Collapse
Affiliation(s)
- Tolga Aksu
- Department of Cardiology, Yeditepe University Hospital, Istanbul, Turkey
| | - Asad Khan
- Department of Cardiology, Rush Medical College, Chicago, IL, USA
| | - Henry Huang
- Department of Cardiology, Rush Medical College, Chicago, IL, USA
| |
Collapse
|
28
|
Aksu T, Gupta D, D'Avila A, Morillo CA. Cardioneuroablation for Vasovagal Syncope and Atrioventricular Block: A Step-by-Step Guide. J Cardiovasc Electrophysiol 2022; 33:2205-2212. [PMID: 35362165 DOI: 10.1111/jce.15480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Catheter based cardioneuroablation is increasingly being utilized to improve outcomes in patients with vasovagal syncope and atrioventricular block due to vagal hyperactivity. There is now increasing convergence amongst enthusiasts on its various aspects, including patient selection, technical steps, and procedural end-points. This pragmatic review aims to take the reader through a step-by-step approach to cardioneuroablation: we begin with a brief overview of the anatomy of intrinsic cardiac autonomic nervous system, before focusing on the indications, pre- and post-procedure management, necessary equipment, and its potential limitations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tolga Aksu
- Yeditepe University Hospital, Department of Cardiology, Istanbul, Turkey
| | - Dhiraj Gupta
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Andre D'Avila
- Department of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Carlos A Morillo
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
29
|
Mehra R, Tjurmina OA, Ajijola OA, Arora R, Bolser DC, Chapleau MW, Chen PS, Clancy CE, Delisle BP, Gold MR, Goldberger JJ, Goldstein DS, Habecker BA, Handoko ML, Harvey R, Hummel JP, Hund T, Meyer C, Redline S, Ripplinger CM, Simon MA, Somers VK, Stavrakis S, Taylor-Clark T, Undem BJ, Verrier RL, Zucker IH, Sopko G, Shivkumar K. Research Opportunities in Autonomic Neural Mechanisms of Cardiopulmonary Regulation: A Report From the National Heart, Lung, and Blood Institute and the National Institutes of Health Office of the Director Workshop. JACC Basic Transl Sci 2022; 7:265-293. [PMID: 35411324 PMCID: PMC8993767 DOI: 10.1016/j.jacbts.2021.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022]
Abstract
This virtual workshop was convened by the National Heart, Lung, and Blood Institute, in partnership with the Office of Strategic Coordination of the Office of the National Institutes of Health Director, and held September 2 to 3, 2020. The intent was to assemble a multidisciplinary group of experts in basic, translational, and clinical research in neuroscience and cardiopulmonary disorders to identify knowledge gaps, guide future research efforts, and foster multidisciplinary collaborations pertaining to autonomic neural mechanisms of cardiopulmonary regulation. The group critically evaluated the current state of knowledge of the roles that the autonomic nervous system plays in regulation of cardiopulmonary function in health and in pathophysiology of arrhythmias, heart failure, sleep and circadian dysfunction, and breathing disorders. Opportunities to leverage the Common Fund's SPARC (Stimulating Peripheral Activity to Relieve Conditions) program were characterized as related to nonpharmacologic neuromodulation and device-based therapies. Common themes discussed include knowledge gaps, research priorities, and approaches to develop novel predictive markers of autonomic dysfunction. Approaches to precisely target neural pathophysiological mechanisms to herald new therapies for arrhythmias, heart failure, sleep and circadian rhythm physiology, and breathing disorders were also detailed.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- AD, autonomic dysregulation
- AF, atrial fibrillation
- ANS, autonomic nervous system
- Ach, acetylcholine
- CNS, central nervous system
- COPD, chronic obstructive pulmonary disease
- CSA, central sleep apnea
- CVD, cardiovascular disease
- ECG, electrocardiogram
- EV, extracellular vesicle
- GP, ganglionated plexi
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- HRV, heart rate variability
- LQT, long QT
- MI, myocardial infarction
- NE, norepinephrine
- NHLBI, National Heart, Lung, and Blood Institute
- NPY, neuropeptide Y
- NREM, non-rapid eye movement
- OSA, obstructive sleep apnea
- PAH, pulmonary arterial hypertension
- PV, pulmonary vein
- REM, rapid eye movement
- RV, right ventricular
- SCD, sudden cardiac death
- SDB, sleep disordered breathing
- SNA, sympathetic nerve activity
- SNSA, sympathetic nervous system activity
- TLD, targeted lung denervation
- asthma
- atrial fibrillation
- autonomic nervous system
- cardiopulmonary
- chronic obstructive pulmonary disease
- circadian
- heart failure
- pulmonary arterial hypertension
- sleep apnea
- ventricular arrhythmia
Collapse
Affiliation(s)
- Reena Mehra
- Cleveland Clinic, Cleveland, Ohio, USA
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Olga A. Tjurmina
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | - Rishi Arora
- Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| | | | - Mark W. Chapleau
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | - Michael R. Gold
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - David S. Goldstein
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Beth A. Habecker
- Oregon Health and Science University School of Medicine, Portland, Oregon, USA
| | - M. Louis Handoko
- Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - James P. Hummel
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - Marc A. Simon
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- University of California-San Francisco, San Francisco, California, USA
| | | | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | - Richard L. Verrier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - George Sopko
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
30
|
Beneke K, Molina CE. Live Cell Imaging of Cyclic Nucleotides in Human Cardiomyocytes. Methods Mol Biol 2022; 2483:195-204. [PMID: 35286677 DOI: 10.1007/978-1-0716-2245-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ubiquitous second messengers' 3',5'-cyclic adenosine monophosphate (cAMP ) and 3',5'-cyclic guanosine monophosphate (cGMP) are crucial in regulating cardiomyocyte function, as well as pathological processes, by acting in distinct subcellular microdomains and thus controlling excitation-contraction coupling. Spatio-temporal intracellular dynamics of cyclic nucleotides can be measured in living cells using fluorescence resonance energy transfer (FRET ) by transducing isolated cells with genetically encoded biosensors. While FRET experiments have been regularly performed in cardiomyocytes from different animal models, human-based translational experiments are very challenging due to the difficulty to culture and transduce adult human cardiomyocytes. Here, we describe a technique for obtaining human atrial and ventricular myocytes which allows to keep them alive in culture long enough to transduce them and visualize cAMP and cGMP in physiological and pathological human settings.
Collapse
Affiliation(s)
- Kira Beneke
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg -Eppendorf (UKE), Hamburg, Germany
- Germany DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg -Eppendorf (UKE), Hamburg, Germany.
- Germany DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
31
|
Kikel-Coury NL, Brandt JP, Correia IA, O’Dea MR, DeSantis DF, Sterling F, Vaughan K, Ozcebe G, Zorlutuna P, Smith CJ. Identification of astroglia-like cardiac nexus glia that are critical regulators of cardiac development and function. PLoS Biol 2021; 19:e3001444. [PMID: 34793438 PMCID: PMC8601506 DOI: 10.1371/journal.pbio.3001444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
Glial cells are essential for functionality of the nervous system. Growing evidence underscores the importance of astrocytes; however, analogous astroglia in peripheral organs are poorly understood. Using confocal time-lapse imaging, fate mapping, and mutant genesis in a zebrafish model, we identify a neural crest-derived glial cell, termed nexus glia, which utilizes Meteorin signaling via Jak/Stat3 to drive differentiation and regulate heart rate and rhythm. Nexus glia are labeled with gfap, glast, and glutamine synthetase, markers that typically denote astroglia cells. Further, analysis of single-cell sequencing datasets of human and murine hearts across ages reveals astrocyte-like cells, which we confirm through a multispecies approach. We show that cardiac nexus glia at the outflow tract are critical regulators of both the sympathetic and parasympathetic system. These data establish the crucial role of glia on cardiac homeostasis and provide a description of nexus glia in the PNS.
Collapse
Affiliation(s)
- Nina L. Kikel-Coury
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jacob P. Brandt
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Isabel A. Correia
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael R. O’Dea
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Dana F. DeSantis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Felicity Sterling
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kevin Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gulberk Ozcebe
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody J. Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
32
|
Nguyen DD, Akoum N, Hourmozdi J, Prutkin JM, Robinson M, Tregoning DM, Saour BM, Chatterjee NA, Sridhar AR. Catheter ablation of atrial fibrillation results in significant QTc prolongation in the postoperative period. Heart Rhythm O2 2021; 2:500-510. [PMID: 34667966 PMCID: PMC8505209 DOI: 10.1016/j.hroo.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The corrected QT interval (QTc) is a measure of ventricular repolarization time, and a prolonged QTc increases risk for malignant ventricular arrhythmias. Pulmonary vein isolation (PVI) may increase QTc but its effects have not been well studied. Objective Determine the incidence, risk factors, and outcomes of patients presenting for PVI in sinus and atrial fibrillation with postoperative QTc prolongation in a large cohort. Methods We performed a single-center retrospective study of consecutive atrial fibrillation ablations. QTc durations using Bazett correction were obtained from electrocardiograms at different postoperative intervals and compared to preoperative QTc. We studied clinical outcomes including clinically significant ventricular arrhythmia and death. A multivariable model was used to identify factors associated with clinically significant QTc prolongation, defined as ΔQTc ≥60 ms or new QTc duration ≥500 ms. Results A total of 352 PVIs were included in this study. We observed a statistically significant increase in mean QTc compared to baseline (446.3 ± 37.8 ms) on postoperative day (POD)0 (471.7 ± 38.2 ms, P < .001) and at POD1 (456.5 ± 35.0 ms, P < .001). There was no significant difference at 1 month (452.4 ± 33.5 ms, P = .39) and 3 months (447.3 ± 40.0 ms, P = .78). Sixty-six patients (19.2%) developed ΔQTc ≥60 ms or QTc ≥500 ms on POD0, with 4.1% persisting past 90 days. Female sex (odds ratio [OR] = 1.82, 95% confidence interval [CI] =1.01–3.29, P = .047) and history of coronary artery disease (OR = 2.16, 95% CI = 1.03–4.55, P = .042) were independently predictive of QTc prolongation ≥500 ms or ΔQTc ≥60 ms. There were no episodes of clinically significant ventricular arrhythmia or death attributable to arrhythmia. Conclusion QTc duration increased significantly immediately post-PVI and returned to baseline by 1 month. PVI did not provoke significant ventricular arrhythmias in our cohort.
Collapse
Affiliation(s)
- Dan D Nguyen
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| | - Nazem Akoum
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| | - Jonathan Hourmozdi
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| | - Jordan M Prutkin
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| | - Melissa Robinson
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| | - Deanna M Tregoning
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| | - Basil M Saour
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| | - Neal A Chatterjee
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| | - Arun R Sridhar
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| |
Collapse
|
33
|
Harper AA, Adams DJ. Electrical properties and synaptic transmission in mouse intracardiac ganglion neurons in situ. Physiol Rep 2021; 9:e15056. [PMID: 34582125 PMCID: PMC8477906 DOI: 10.14814/phy2.15056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
The intrinsic cardiac nervous system represents the final site of signal integration for neurotransmission to the myocardium to enable local control of cardiac performance. The electrophysiological characteristics and ganglionic transmission of adult mouse intrinsic cardiac ganglion (ICG) neurons were investigated using a whole-mount ganglion preparation of the excised right atrial ganglion plexus and intracellular microelectrode recording techniques. The passive and active electrical properties of ICG neurons and synaptic transmission including synaptic response strength and efficacy as a function of stimulation frequency were examined. The resting membrane potential and input resistance of ICG neurons were -47.9 ± 4.0 mV and 197.2 ± 81.5 MΩ, respectively. All neurons had somatic action potentials with overshoots of >+15 mV and after-hyperpolarizations having an average of 10 mV amplitude and ~45 ms half duration. Phasic discharge activities were recorded from the majority of neurons studied and several types of excitatory synaptic responses were recorded following inputs from the vagus or interganglionic nerve trunk(s). Most postganglionic neurons (>75%) received a strong, suprathreshold synaptic input and reliably followed high-frequency repetitive nerve stimulation up to at least 50 Hz. Nerve-evoked synaptic transmission was blocked by extracellular Cd2+ , ω-conotoxin CVIE, or α-conotoxin RegIIA, a selective α3-containing nicotinic acetylcholine receptor antagonist. Synaptic transmission and the electrical properties of murine ICG neurons contribute to the pattern of discharge which regulates chronotropic, dromotropic, and inotropic elements of cardiac function.
Collapse
Affiliation(s)
- Alexander A. Harper
- Illawarra Health and Medical Research Institute (IHMRI)University of WollongongWollongongNew South WalesAustralia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI)University of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
34
|
Qi B, Dai S, Song Y, Shen D, Li F, Wei L, Zhang C, Nie Z, Lin J, Cai L, Ge J. Blockade of Na V1.8 Increases the Susceptibility to Ventricular Arrhythmias During Acute Myocardial Infarction. Front Cardiovasc Med 2021; 8:708279. [PMID: 34409080 PMCID: PMC8365037 DOI: 10.3389/fcvm.2021.708279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
SCN10A/NaV1.8 may be associated with a lower risk of ventricular fibrillation in the setting of acute myocardial infarction (AMI), but if and by which mechanism NaV1.8 impacts on ventricular electrophysiology is still a matter of debate. The purpose of this study was to elucidate the contribution of NaV1.8 in ganglionated plexi (GP) to ventricular arrhythmias in the AMI model. Twenty beagles were randomized to either the A-803467 group (n = 10) or the control group (n = 10). NaV1.8 blocker (A-803467, 1 μmol/0.5 mL per GP) or DMSO (0.5 mL per GP) was injected into four major GPs. Ventricular effective refractory period, APD90, ventricular fibrillation threshold, and the incidence of ventricular arrhythmias were measured 1 h after left anterior descending coronary artery occlusion. A-803467 significantly shortened ventricular effective refractory period, APD90, and ventricular fibrillation threshold compared to control. In the A-803467 group, the incidence of ventricular arrhythmias was significantly higher compared to control. A-803467 suppressed the slowing of heart rate response to high-frequency electrical stimulation of the anterior right GP, suggesting that A-803467 could inhibit GP activity. SCN10A/NaV1.8 was readily detected in GPs, but was not validated in ventricles by quantitative RT-PCR, western blot and immunohistochemistry. While SCN10A/NaV1.8 is detectible in canine GPs but not in ventricles, blockade of NaV1.8 in GP increases the incidence of ventricular arrhythmias in AMI hearts. Our study shows for the first time an influence of SCN10A/NaV1.8 on the regulation of ventricular arrhythmogenesis via modulating GP activity in the AMI model.
Collapse
Affiliation(s)
- Baozhen Qi
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, China
| | - Shimo Dai
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, China
| | - Yu Song
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, China
| | - Dongli Shen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, China
| | - Fuhai Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, China
| | - Lanfang Wei
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, China
| | - Chunyu Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, China
| | - Zhenning Nie
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, China
| | - Jiaxiong Lin
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, China
| | - Lidong Cai
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Gottlieb LA, Dekker LRC, Coronel R. The Blinding Period Following Ablation Therapy for Atrial Fibrillation: Proarrhythmic and Antiarrhythmic Pathophysiological Mechanisms. JACC Clin Electrophysiol 2021; 7:416-430. [PMID: 33736761 DOI: 10.1016/j.jacep.2021.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 02/01/2023]
Abstract
Atrial fibrillation (AF) causes heart failure, ischemic strokes, and poor quality of life. The number of patients with AF is estimated to increase to 18 million in Europe in 2050. Pharmacological therapy does not cure AF in all patients. Ablative pulmonary vein isolation is recommended for patients with drug-resistant symptomatic paroxysmal AF but is successful in only about 60%. In patients in whom ablative therapy is successful on the long term, recurrence of AF may occur in the first weeks to months after pulmonary vein ablation. The early recurrence (or delayed cure) of AF is not understood but forms the basis for the generally accepted 3-month blinding (or blanking) period after ablation therapy, which is not included in the evaluation of the eventual success rate of the procedures. The underlying pathophysiological processes responsible for early recurrence and the delayed cure are unknown. The implicit assumption of the blinding period is that the AF mechanism in this period is different from the ablation-targeted AF mechanism (ectopy from the pulmonary veins). In this review, we evaluate the temporary and long-lasting pro- and antiarrhythmic effects of each of the pathophysiological processes and interventions (necrosis, ischemia, oxidative stress, edema, inflammation, autonomic nervous activity, tissue repair, mechanical remodeling, and use of antiarrhythmic drugs) occurring in the blinding period that can modulate AF mechanisms. We propose that stretch-reducing ablation scar is a permanent antiarrhythmic mechanism that develops during the blinding period and is the reason for delayed cure.
Collapse
Affiliation(s)
- Lisa A Gottlieb
- Electrophysiology and Heart Modelling Institute, University of Bordeaux, Pessac, France; Department of Experimental Cardiology, Amsterdam University Medical Centre, Academic Medical Centre, Amsterdam, the Netherlands
| | - Lukas R C Dekker
- Department of Electrical Engineering, University of Technology, Eindhoven, the Netherlands; Cardiology Department, Catharina Hospital, Eindhoven, the Netherlands.
| | - Ruben Coronel
- Electrophysiology and Heart Modelling Institute, University of Bordeaux, Pessac, France; Department of Experimental Cardiology, Amsterdam University Medical Centre, Academic Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Rathjens FS, Blenkle A, Iyer LM, Renger A, Syeda F, Noack C, Jungmann A, Dewenter M, Toischer K, El-Armouche A, Müller OJ, Fabritz L, Zimmermann WH, Zelarayan LC, Zafeiriou MP. Preclinical evidence for the therapeutic value of TBX5 normalization in arrhythmia control. Cardiovasc Res 2021; 117:1908-1922. [PMID: 32777030 PMCID: PMC8262635 DOI: 10.1093/cvr/cvaa239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 06/26/2020] [Accepted: 07/29/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS Arrhythmias and sudden cardiac death (SCD) occur commonly in patients with heart failure. We found T-box 5 (TBX5) dysregulated in ventricular myocardium from heart failure patients and thus we hypothesized that TBX5 reduction contributes to arrhythmia development in these patients. To understand the underlying mechanisms, we aimed to reveal the ventricular TBX5-dependent transcriptional network and further test the therapeutic potential of TBX5 level normalization in mice with documented arrhythmias. METHODS AND RESULTS We used a mouse model of TBX5 conditional deletion in ventricular cardiomyocytes. Ventricular (v) TBX5 loss in mice resulted in mild cardiac dysfunction and arrhythmias and was associated with a high mortality rate (60%) due to SCD. Upon angiotensin stimulation, vTbx5KO mice showed exacerbated cardiac remodelling and dysfunction suggesting a cardioprotective role of TBX5. RNA-sequencing of a ventricular-specific TBX5KO mouse and TBX5 chromatin immunoprecipitation was used to dissect TBX5 transcriptional network in cardiac ventricular tissue. Overall, we identified 47 transcripts expressed under the control of TBX5, which may have contributed to the fatal arrhythmias in vTbx5KO mice. These included transcripts encoding for proteins implicated in cardiac conduction and contraction (Gja1, Kcnj5, Kcng2, Cacna1g, Chrm2), in cytoskeleton organization (Fstl4, Pdlim4, Emilin2, Cmya5), and cardiac protection upon stress (Fhl2, Gpr22, Fgf16). Interestingly, after TBX5 loss and arrhythmia development in vTbx5KO mice, TBX5 protein-level normalization by systemic adeno-associated-virus (AAV) 9 application, re-established TBX5-dependent transcriptome. Consequently, cardiac dysfunction was ameliorated and the propensity of arrhythmia occurrence was reduced. CONCLUSIONS This study uncovers a novel cardioprotective role of TBX5 in the adult heart and provides preclinical evidence for the therapeutic value of TBX5 protein normalization in the control of arrhythmia.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Chromatin Immunoprecipitation Sequencing
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Disease Models, Animal
- Gene Expression Profiling
- Genetic Therapy
- Heart Rate
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/therapy
- Isolated Heart Preparation
- Mice, Inbred C57BL
- Mice, Knockout
- RNA-Seq
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- Transcription, Genetic
- Transcriptome
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/therapy
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
Collapse
Affiliation(s)
- Franziska S Rathjens
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Alica Blenkle
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
| | - Lavanya M Iyer
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Anke Renger
- Institut für Erziehungswissenschaften, Humboldt University, Berlin, Germany
| | - Fahima Syeda
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Claudia Noack
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Andreas Jungmann
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Disease), partner site Heidelberg/Mannheim, Germany
| | - Matthias Dewenter
- DZHK (German Center for Cardiovascular Disease), partner site Heidelberg/Mannheim, Germany
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center, Goettingen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Technology-Dresden, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
- Division of Rhythmology, Department of Cardiovascular Medicine, Hospital of the University of Münster, Münster, Germany
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Germany
| | - Laura C Zelarayan
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
| | - Maria-Patapia Zafeiriou
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany
- DZHK (German Center for Cardiovascular Disease), partner site, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, Germany
| |
Collapse
|
37
|
Hanna P, Buch E, Stavrakis S, Meyer C, Tompkins JD, Ardell JL, Shivkumar K. Neuroscientific therapies for atrial fibrillation. Cardiovasc Res 2021; 117:1732-1745. [PMID: 33989382 PMCID: PMC8208752 DOI: 10.1093/cvr/cvab172] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The cardiac autonomic nervous system (ANS) plays an integral role in normal cardiac physiology as well as in disease states that cause cardiac arrhythmias. The cardiac ANS, comprised of a complex neural hierarchy in a nested series of interacting feedback loops, regulates atrial electrophysiology and is itself susceptible to remodelling by atrial rhythm. In light of the challenges of treating atrial fibrillation (AF) with conventional pharmacologic and myoablative techniques, increasingly interest has begun to focus on targeting the cardiac neuraxis for AF. Strong evidence from animal models and clinical patients demonstrates that parasympathetic and sympathetic activity within this neuraxis may trigger AF, and the ANS may either induce atrial remodelling or undergo remodelling itself to serve as a substrate for AF. Multiple nexus points within the cardiac neuraxis are therapeutic targets, and neuroablative and neuromodulatory therapies for AF include ganglionated plexus ablation, epicardial botulinum toxin injection, vagal nerve (tragus) stimulation, renal denervation, stellate ganglion block/resection, baroreceptor activation therapy, and spinal cord stimulation. Pre-clinical and clinical studies on these modalities have had promising results and are reviewed here.
Collapse
Affiliation(s)
- Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Eric Buch
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 1100 N Lindsay Ave, Oklahoma City, OK 73104, USA
| | - Christian Meyer
- Division of Cardiology, cardiac Neuro- and Electrophysiology Research Consortium (cNEP), EVK Düsseldorf, Teaching Hospital University of Düsseldorf, Kirchfeldstraße 40, 40217 Düsseldorf, Germany
- Institute of Neural and Sensory Physiology, cardiac Neuro- and Electrophysiology Research Consortium (cNEP), University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - John D Tompkins
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Jeffrey L Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| | - Kalyanam Shivkumar
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Neurocardiology Research Program of Excellence, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
- Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Lu SF, Wang JM, Yuan J, Yang WX, Chen LY, Zhang T, Jing XY, Zhuang Y, Zhang CS, Fu SP, Yu ML. Electroacupuncture improves cardiac function and reduces infarct size by modulating cardiac autonomic remodeling in a mouse model of myocardial ischemia. Acupunct Med 2021; 39:681-690. [PMID: 34056953 DOI: 10.1177/09645284211009536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Sympathetic and parasympathetic nerve remodeling play an important role in cardiac function after myocardial ischemia (MI) injury. Increasing evidence indicates that electroacupuncture (EA) can regulate cardiac function by modulating the autonomic nervous system (ANS), but little is known about its effectiveness on neural remodeling post-MI. OBJECTIVES To investigate the role of EA in ANS remodeling post-MI. METHODS Adult male C57/BL6 mice were equally divided into the Control (Ctrl), MI and EA groups after generating the MI model by ligating the left anterior descending (LAD) coronary artery. Echocardiography and 2,3,5-triphenyltetrazolium (TTC) staining were employed to evaluate cardiac function and infarct size after EA treatment for five consecutive days. Serum norepinephrine (NE) levels were measured by ELISA to quantify sympathetic activation. Then, ANS remodeling was detected by immunohistochemistry (IHC), RT-qPCR, and Western blotting. RESULTS Our preliminary findings showed that EA increased ejection fraction and fractional shortening and reduced infarct area after MI injury. Serum NE levels in the EA group were significantly decreased compared with those in the MI group. IHC staining results demonstrated that the density of growth associated protein (GAP)43 and tyrosine hydroxylase (TH) positive nerve fibers in the EA group were decreased with increased choline acetyltransferase (CHAT) and vesicular acetylcholine transporter (VACHT). Meanwhile, the results verified that mRNA and protein expression of GAP43 and TH were significantly inhibited by EA treatment in the MI mice, accompanied by elevated CHAT and VACHT. CONCLUSIONS EA treatment could improve cardiac function and reduce infarct size by modulating sympathetic and parasympathetic nerve remodeling post-MI, thus helping the cardiac ANS reach a new balance to try to protect the heart from further possible injury.
Collapse
Affiliation(s)
- Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Meng Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Xiu Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Yao Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Zhuang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Shun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu-Ping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei-Ling Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
39
|
Chatterjee NA, Singh JP. Autonomic modulation and cardiac arrhythmias: old insights and novel strategies. Europace 2021; 23:1708-1721. [PMID: 34050642 DOI: 10.1093/europace/euab118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
The autonomic nervous system (ANS) plays a critical role in both health and states of cardiovascular disease. There has been a long-recognized role of the ANS in the pathogenesis of both atrial and ventricular arrhythmias (VAs). This historical understanding has been expanded in the context of evolving insights into the anatomy and physiology of the ANS, including dysfunction of the ANS in cardiovascular disease such as heart failure and myocardial infarction. An expanding armamentarium of therapeutic strategies-both invasive and non-invasive-have brought the potential of ANS modulation to contemporary clinical practice. Here, we summarize the integrative neuro-cardiac anatomy underlying the ANS, review the physiological rationale for autonomic modulation in atrial and VAs, highlight strategies for autonomic modulation, and finally frame future challenges and opportunities for ANS therapeutics.
Collapse
Affiliation(s)
- Neal A Chatterjee
- Electrophysiology Section, Cardiology Division, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Jagmeet P Singh
- Cardiac Arrhythmia Service, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Aksu T, Gopinathannair R, Gupta D, Pauza DH. Intrinsic cardiac autonomic nervous system: What do clinical electrophysiologists need to know about the "heart brain"? J Cardiovasc Electrophysiol 2021; 32:1737-1747. [PMID: 33928710 DOI: 10.1111/jce.15058] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022]
Abstract
It is increasingly recognized that the autonomic nervous system (ANS) is a major contributor in many cardiac arrhythmias. Cardiac ANS can be divided into extrinsic and intrinsic parts according to the course of nerve fibers and localization of ganglia and neuron bodies. Although the role of the extrinsic part has historically gained more attention, the intrinsic cardiac ANS may affect cardiac function independently as well as influence the effects of the extrinsic nerves. Catheter-based modulation of the intrinsic cardiac ANS is emerging as a novel therapy for the management of patients with brady and tachyarrhythmias resulting from hyperactive vagal activation. However, the distribution of intrinsic cardiac nerve plexus in the human heart and the functional properties of intrinsic cardiac neural elements remain insufficiently understood. The present review aims to bring the clinical and anatomical elements of the immune effector cell-associated neurotoxicity together, by reviewing neuroanatomical terminologies and physiological functions, to guide the clinical electrophysiologist in the catheter lab and to serve as a reference for further research.
Collapse
Affiliation(s)
- Tolga Aksu
- Department of Cardiology, Yeditepe University Hospital, Istanbul, Turkey
| | - Rakesh Gopinathannair
- Departments of Electrophysiology, Kansas City Heart Rhythm Institute and Research Foundation, Kansas City, Missouri, USA
| | - Dhiraj Gupta
- Department of Electrophysiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Dainius H Pauza
- Department of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
41
|
Flenner F, Jungen C, Küpker N, Ibel A, Kruse M, Koivumäki JT, Rinas A, Zech ATL, Rhoden A, Wijnker PJM, Lemoine MD, Steenpass A, Girdauskas E, Eschenhagen T, Meyer C, van der Velden J, Patten-Hamel M, Christ T, Carrier L. Translational investigation of electrophysiology in hypertrophic cardiomyopathy. J Mol Cell Cardiol 2021; 157:77-89. [PMID: 33957110 PMCID: PMC8320769 DOI: 10.1016/j.yjmcc.2021.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) patients are at increased risk of ventricular arrhythmias and sudden cardiac death, which can occur even in the absence of structural changes of the heart. HCM mouse models suggest mutations in myofilament components to affect Ca2+ homeostasis and thereby favor arrhythmia development. Additionally, some of them show indications of pro-arrhythmic changes in cardiac electrophysiology. In this study, we explored arrhythmia mechanisms in mice carrying a HCM mutation in Mybpc3 (Mybpc3-KI) and tested the translatability of our findings in human engineered heart tissues (EHTs) derived from CRISPR/Cas9-generated homozygous MYBPC3 mutant (MYBPC3hom) in induced pluripotent stem cells (iPSC) and to left ventricular septum samples obtained from HCM patients. We observed higher arrhythmia susceptibility in contractility measurements of field-stimulated intact cardiomyocytes and ventricular muscle strips as well as in electromyogram recordings of Langendorff-perfused hearts from adult Mybpc3-KI mice than in wild-type (WT) controls. The latter only occurred in homozygous (Hom-KI) but not in heterozygous (Het-KI) mouse hearts. Both Het- and Hom-KI are known to display pro-arrhythmic increased Ca2+ myofilament sensitivity as a direct consequence of the mutation. In the electrophysiological characterization of the model, we observed smaller repolarizing K+ currents in single cell patch clamp, longer ventricular action potentials in sharp microelectrode recordings and longer ventricular refractory periods in Langendorff-perfused hearts in Hom-KI, but not Het-KI. Interestingly, reduced K+ channel subunit transcript levels and prolonged action potentials were already detectable in newborn, pre-hypertrophic Hom-KI mice. Human iPSC-derived MYBPC3hom EHTs, which genetically mimicked the Hom-KI mice, did exhibit lower mutant mRNA and protein levels, lower force, beating frequency and relaxation time, but no significant alteration of the force-Ca2+ relation in skinned EHTs. Furthermore, MYBPC3hom EHTs did show higher spontaneous arrhythmic behavior, whereas action potentials measured by sharp microelectrode did not differ to isogenic controls. Action potentials measured in septal myectomy samples did not differ between patients with HCM and patients with aortic stenosis, except for the only sample with a MYBPC3 mutation. The data demonstrate that increased myofilament Ca2+ sensitivity is not sufficient to induce arrhythmias in the Mybpc3-KI mouse model and suggest that reduced K+ currents can be a pro-arrhythmic trigger in Hom-KI mice, probably already in early disease stages. However, neither data from EHTs nor from left ventricular samples indicate relevant reduction of K+ currents in human HCM. Therefore, our study highlights the species difference between mouse and human and emphasizes the importance of research in human samples and human-like models. Sudden cardiac death is threatening hypertrophic cardiomyopathy (HCM) patients. Arrhythmia mechanisms are not well understood. Mouse HCM models showed relevant reduction in K+ currents. Human iPSC-EHT model and HCM patient septal myectomies did not display this mechanism.
Collapse
Affiliation(s)
- Frederik Flenner
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Christiane Jungen
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, the Netherlands
| | - Nadine Küpker
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Ibel
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Kruse
- Department of Biology and Program in Neuroscience, Bates College, Lewiston, ME, USA
| | - Jussi T Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna Rinas
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia T L Zech
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Alexandra Rhoden
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Paul J M Wijnker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Marc D Lemoine
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany; Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Steenpass
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Christian Meyer
- Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart and Vascular Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Division of Cardiology/Angiology/Intensiv Care, cardiac Neuro- and Electrophysiology Research Consortium (cNEP), EVK Düsseldorf, Teaching Hospital University of Düsseldorf, Düsseldorf, Germany; Institute of Neural and Sensory Physiology, cardiac Neuro- and Electrophysiology Research Consortium (cNEP), University of Düsseldorf, Düsseldorf, Germany
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Monica Patten-Hamel
- Department of General and Interventional Cardiology, University Heart Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
42
|
Hanna P, Dacey MJ, Brennan J, Moss A, Robbins S, Achanta S, Biscola NP, Swid MA, Rajendran PS, Mori S, Hadaya JE, Smith EH, Peirce SG, Chen J, Havton LA, Cheng Z(J, Vadigepalli R, Schwaber J, Lux RL, Efimov I, Tompkins JD, Hoover DB, Ardell JL, Shivkumar K. Innervation and Neuronal Control of the Mammalian Sinoatrial Node a Comprehensive Atlas. Circ Res 2021; 128:1279-1296. [PMID: 33629877 PMCID: PMC8284939 DOI: 10.1161/circresaha.120.318458] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/23/2021] [Indexed: 01/01/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
- UCLA Molecular, Cellular & Integrative Physiology Program, UCLA
| | - Michael J. Dacey
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
- UCLA Molecular, Cellular & Integrative Physiology Program, UCLA
| | - Jaclyn Brennan
- Bioengineering, George Washington University, Washington, DC
| | - Alison Moss
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Shaina Robbins
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Sirisha Achanta
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | | | - Mohammed A. Swid
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | - Pradeep S. Rajendran
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | - Shumpei Mori
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | - Joseph E. Hadaya
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | | | | | - Jin Chen
- University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine, Orlando, FL
| | - Leif A. Havton
- Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY
- Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
- VA RR&D National Center of Excellence for the Medical Consequences of Spinal and; Cord Injury and Neurology Service, James J. Peters Veterans Administration Medical Center, Bronx, NY
| | - Zixi (Jack) Cheng
- University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine, Orlando, FL
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - James Schwaber
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - Robert L. Lux
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | - Igor Efimov
- Bioengineering, George Washington University, Washington, DC
| | - John D. Tompkins
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
| | - Donald B. Hoover
- Biomedical Sciences
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University
| | - Jeffrey L. Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
- UCLA Molecular, Cellular & Integrative Physiology Program, UCLA
| | - Kalyanam Shivkumar
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Department of Medicine
- UCLA Molecular, Cellular & Integrative Physiology Program, UCLA
| |
Collapse
|
43
|
Characterization of the HCN Interaction Partner TRIP8b/PEX5R in the Intracardiac Nervous System of TRIP8b-Deficient and Wild-Type Mice. Int J Mol Sci 2021; 22:ijms22094772. [PMID: 33946275 PMCID: PMC8125662 DOI: 10.3390/ijms22094772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
The tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b/PEX5R) is an interaction partner and auxiliary subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are key for rhythm generation in the brain and in the heart. Since TRIP8b is expressed in central neurons but not in cardiomyocytes, the TRIP8b-HCN interaction has been studied intensely in the brain, but is deemed irrelevant in the cardiac conduction system. Still, to date, TRIP8b has not been studied in the intrinsic cardiac nervous system (ICNS), a neuronal network located within epicardial fat pads. In vitro electrophysiological studies revealed that TRIP8b-deficient mouse hearts exhibit increased atrial refractory and atrioventricular nodal refractory periods, compared to hearts of wild-type littermates. Meanwhile, heart rate, sino-nodal recovery time, and ventricular refractory period did not differ between genotypes. Trip8b mRNA was detected in the ICNS by quantitative polymerase chain reaction. RNAscope in situ hybridization confirmed Trip8b localization in neuronal somata and nerve fibers. Additionally, we found a very low amount of mRNAs in the sinus node and atrioventricular node, most likely attributable to the delicate fibers innervating the conduction system. In contrast, TRIP8b protein was not detectable. Our data suggest that TRIP8b in the ICNS may play a role in the modulation of atrial electrophysiology beyond HCN-mediated sino-nodal control of the heart.
Collapse
|
44
|
Berisha F, Götz KR, Wegener JW, Brandenburg S, Subramanian H, Molina CE, Rüffer A, Petersen J, Bernhardt A, Girdauskas E, Jungen C, Pape U, Kraft AE, Warnke S, Lindner D, Westermann D, Blankenberg S, Meyer C, Hasenfuß G, Lehnart SE, Nikolaev VO. cAMP Imaging at Ryanodine Receptors Reveals β 2-Adrenoceptor Driven Arrhythmias. Circ Res 2021; 129:81-94. [PMID: 33902292 DOI: 10.1161/circresaha.120.318234] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Filip Berisha
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (F.B., H.S., C.E.M., A.E.K., V.O.N.).,Department of Cardiology (F.B., C.J., U.P., S.W., D.L., D.W., S. Blankenberg, C.M.), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (F.B., H.S., C.E.M., A.E., S.W., D.L., D.W., S. Blankenberg, V.O.N.)
| | - Konrad R Götz
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, Georg August University Medical Center, Germany (K.R.G., J.W.W., S. Brandenburg, G.H., S.E.L.)
| | - Jörg W Wegener
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, Georg August University Medical Center, Germany (K.R.G., J.W.W., S. Brandenburg, G.H., S.E.L.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany (J.W.W., S. Brandenburg, G.H., S.E.L.)
| | - Sören Brandenburg
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, Georg August University Medical Center, Germany (K.R.G., J.W.W., S. Brandenburg, G.H., S.E.L.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany (J.W.W., S. Brandenburg, G.H., S.E.L.)
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (F.B., H.S., C.E.M., A.E.K., V.O.N.).,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (F.B., H.S., C.E.M., A.E., S.W., D.L., D.W., S. Blankenberg, V.O.N.)
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (F.B., H.S., C.E.M., A.E.K., V.O.N.).,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (F.B., H.S., C.E.M., A.E., S.W., D.L., D.W., S. Blankenberg, V.O.N.)
| | - André Rüffer
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Germany (A.R., J.P., A.B., E.G.)
| | - Johannes Petersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Germany (A.R., J.P., A.B., E.G.)
| | - Alexander Bernhardt
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Germany (A.R., J.P., A.B., E.G.)
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Germany (A.R., J.P., A.B., E.G.)
| | - Christiane Jungen
- Department of Cardiology (F.B., C.J., U.P., S.W., D.L., D.W., S. Blankenberg, C.M.), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Cardiology-Electrophysiology, cNEP (Cardiac Neuro- and Electrophysiology Research Group) (C.J., U.P., C.M.), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Pape
- Department of Cardiology (F.B., C.J., U.P., S.W., D.L., D.W., S. Blankenberg, C.M.), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Cardiology-Electrophysiology, cNEP (Cardiac Neuro- and Electrophysiology Research Group) (C.J., U.P., C.M.), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel E Kraft
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (F.B., H.S., C.E.M., A.E.K., V.O.N.).,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (F.B., H.S., C.E.M., A.E., S.W., D.L., D.W., S. Blankenberg, V.O.N.)
| | - Svenja Warnke
- Department of Cardiology (F.B., C.J., U.P., S.W., D.L., D.W., S. Blankenberg, C.M.), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (F.B., H.S., C.E.M., A.E., S.W., D.L., D.W., S. Blankenberg, V.O.N.)
| | - Diana Lindner
- Department of Cardiology (F.B., C.J., U.P., S.W., D.L., D.W., S. Blankenberg, C.M.), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (F.B., H.S., C.E.M., A.E., S.W., D.L., D.W., S. Blankenberg, V.O.N.)
| | - Dirk Westermann
- Department of Cardiology (F.B., C.J., U.P., S.W., D.L., D.W., S. Blankenberg, C.M.), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (F.B., H.S., C.E.M., A.E., S.W., D.L., D.W., S. Blankenberg, V.O.N.)
| | - Stefan Blankenberg
- Department of Cardiology (F.B., C.J., U.P., S.W., D.L., D.W., S. Blankenberg, C.M.), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (F.B., H.S., C.E.M., A.E., S.W., D.L., D.W., S. Blankenberg, V.O.N.)
| | - Christian Meyer
- Department of Cardiology (F.B., C.J., U.P., S.W., D.L., D.W., S. Blankenberg, C.M.), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Cardiology-Electrophysiology, cNEP (Cardiac Neuro- and Electrophysiology Research Group) (C.J., U.P., C.M.), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, Georg August University Medical Center, Germany (K.R.G., J.W.W., S. Brandenburg, G.H., S.E.L.).,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany (J.W.W., S. Brandenburg, G.H., S.E.L.)
| | - Stephan E Lehnart
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany (J.W.W., S. Brandenburg, G.H., S.E.L.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (F.B., H.S., C.E.M., A.E.K., V.O.N.).,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany (F.B., H.S., C.E.M., A.E., S.W., D.L., D.W., S. Blankenberg, V.O.N.)
| |
Collapse
|
45
|
Hermans BJM, Zink MD, van Rosmalen F, Crijns HJGM, Vernooy K, Postema P, Pison L, Schotten U, Delhaas T. Pulmonary vein isolation in a real-world population does not influence QTc interval. Europace 2021; 23:i48-i54. [PMID: 33751076 PMCID: PMC7943360 DOI: 10.1093/europace/euaa390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS We aimed to examine whether routine pulmonary vein isolation (PVI) induces significant ventricular repolarization changes as suggested earlier. METHODS AND RESULTS Five-minute electrocardiograms were recorded at hospital's admission (T-1d), 1 day after the PVI-procedure (T+1d) and at 3 months post-procedure (T+3m) from a registry of consecutive atrial fibrillation (AF) patients scheduled for routine PVI with different PVI modalities (radiofrequency, cryo-ablation, and hybrid). Only patients who were in sinus rhythm at all three recordings (n = 117) were included. QT-intervals and QT-dispersion were evaluated with custom-made software and QTc was calculated using Bazett's, Fridericia's, Framingham's, and Hodges' formulas. Both QT- and RR-intervals were significantly shorter at T+1d (399 ± 37 and 870 ± 141 ms) and T+3m (407 ± 36 and 950 ± 140 ms) compared with baseline (417 ± 36 and 1025 ± 164 ms). There was no statistically significant within-subject difference in QTc Fridericia (T-1d 416 ± 28 ms, T+1d 419 ± 33 ms, and T+3m 414 ± 25 ms) and QT-dispersion (T-1d 18 ± 12 ms, T+1d 21 ± 19 ms, and T+3m 17 ± 12 ms) between the recordings. A multiple linear regression model with age, sex, AF type, ablation technique, first/re-do ablation, and AF recurrence to predict the change in QTc at T+3m with respect to QTc at T-1d did not reach significance which indicates that the change in QTc does not differ between all subgroups (age, sex, AF type, ablation technique, first/re-do ablation, and AF recurrence). CONCLUSION Based on our data a routine PVI does not result in a prolongation of QTc in a real-world population. These findings, therefore, suggest that there is no need to intensify post-PVI QT-interval monitoring.
Collapse
Affiliation(s)
- Ben J M Hermans
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Matthias D Zink
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Frank van Rosmalen
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, Maastricht University Medical Center Maastricht, Maastricht, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Maastricht University Medical Center Maastricht, Maastricht, The Netherlands
| | - Pieter Postema
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, The Netherlands
| | - Laurent Pison
- Department of Cardiology, Ziekenhuis Oost, Limburg, Genk, Belgium
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
46
|
Tapa S, Wang L, Francis Stuart SD, Wang Z, Jiang Y, Habecker BA, Ripplinger CM. Adrenergic supersensitivity and impaired neural control of cardiac electrophysiology following regional cardiac sympathetic nerve loss. Sci Rep 2020; 10:18801. [PMID: 33139790 PMCID: PMC7608682 DOI: 10.1038/s41598-020-75903-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Myocardial infarction (MI) can result in sympathetic nerve loss in the infarct region. However, the contribution of hypo-innervation to electrophysiological remodeling, independent from MI-induced ischemia and fibrosis, has not been comprehensively investigated. We present a novel mouse model of regional cardiac sympathetic hypo-innervation utilizing a targeted-toxin (dopamine beta-hydroxylase antibody conjugated to saporin, DBH-Sap), and measure resulting electrophysiological and Ca2+ handling dynamics. Five days post-surgery, sympathetic nerve density was reduced in the anterior left ventricular epicardium of DBH-Sap hearts compared to control. In Langendorff-perfused hearts, there were no differences in mean action potential duration (APD80) between groups; however, isoproterenol (ISO) significantly shortened APD80 in DBH-Sap but not control hearts, resulting in a significant increase in APD80 dispersion in the DBH-Sap group. ISO also produced spontaneous diastolic Ca2+ elevation in DBH-Sap but not control hearts. In innervated hearts, sympathetic nerve stimulation (SNS) increased heart rate to a lesser degree in DBH-Sap hearts compared to control. Additionally, SNS produced APD80 prolongation in the apex of control but not DBH-Sap hearts. These results suggest that hypo-innervated hearts have regional super-sensitivity to circulating adrenergic stimulation (ISO), while having blunted responses to SNS, providing important insight into the mechanisms of arrhythmogenesis following sympathetic nerve loss.
Collapse
Affiliation(s)
- Srinivas Tapa
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Lianguo Wang
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Samantha D Francis Stuart
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Zhen Wang
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Yanyan Jiang
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, UC Davis School of Medicine, 2419B Tupper Hall, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
47
|
Zasadny FM, Dyavanapalli J, Dowling NM, Mendelowitz D, Kay MW. Cholinergic stimulation improves electrophysiological rate adaptation during pressure overload-induced heart failure in rats. Am J Physiol Heart Circ Physiol 2020; 319:H1358-H1368. [PMID: 33006920 PMCID: PMC7792708 DOI: 10.1152/ajpheart.00293.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Left ventricular (LV) electrical maladaptation to increased heart rate in failing myocardium contributes to morbidity and mortality. Recently, cardiac cholinergic neuron activation reduced loss of contractile function resulting from chronic trans-aortic constriction (TAC) in rats. We hypothesized that chronic activation of cardiac cholinergic neurons would also reduce TAC-induced derangement of cardiac electrical activity. METHODS We investigated electrophysiological rate adaptation in TAC rat hearts with and without daily chemogenetic activation of hypothalamic oxytocin neurons for downstream cardiac cholinergic neuron stimulation. Sprague Dawley rat hearts were excised, perfused, and optically mapped under dynamic pacing after 16 weeks of TAC with or without 12 weeks of daily chemogenetic treatment. Action potential duration (APD60) and conduction velocity (CV) maps were analyzed for regional rate adaptation to dynamic pacing. RESULTS At lower pacing rates, untreated TAC induced elevated LV epicardial APD60. Fitted APD60 steady state (APDss) was reduced in treated TAC hearts. At higher pacing rates, treatment heterogeneously reduced APD60 compared to untreated TAC hearts. Variance of conduction loss was reduced in treated hearts compared to untreated hearts during fast pacing. However, CV was markedly reduced in both treated and untreated TAC hearts throughout dynamic pacing. At 150msec pacing cycle length, APD60 v. diastolic interval (DI) dispersion was reduced in treated hearts compared to untreated hearts. CONCLUSIONS Chronic activation of cardiac cholinergic neurons improved electrophysiological adaptation to increases in pacing rate during development of TAC-induced heart failure. This provides insight into the electrophysiological benefits of cholinergic stimulation as a treatment for heart failure patients.
Collapse
Affiliation(s)
| | | | | | - David Mendelowitz
- Pharmacology and Physiology, George Washington University, United States
| | - Matthew W Kay
- Biomedical Engineering, George Washington University, United States
| |
Collapse
|
48
|
Scherschel K, Hedenus K, Jungen C, Lemoine MD, Rübsamen N, Veldkamp MW, Klatt N, Lindner D, Westermann D, Casini S, Kuklik P, Eickholt C, Klöcker N, Shivkumar K, Christ T, Zeller T, Willems S, Meyer C. Cardiac glial cells release neurotrophic S100B upon catheter-based treatment of atrial fibrillation. Sci Transl Med 2020; 11:11/493/eaav7770. [PMID: 31118294 DOI: 10.1126/scitranslmed.aav7770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Atrial fibrillation (AF), the most common sustained heart rhythm disorder worldwide, is linked to dysfunction of the intrinsic cardiac autonomic nervous system (ICNS). The role of ICNS damage occurring during catheter-based treatment of AF, which is the therapy of choice for many patients, remains controversial. We show here that the neuronal injury marker S100B is expressed in cardiac glia throughout the ICNS and is released specifically upon catheter ablation of AF. Patients with higher S100B release were more likely to be AF free during follow-up. Subsequent in vitro studies revealed that murine intracardiac neurons react to S100B with diminished action potential firing and increased neurite growth. This suggests that release of S100B from cardiac glia upon catheter-based treatment of AF is a hallmark of acute neural damage that contributes to nerve sprouting and can be used to assess ICNS damage.
Collapse
Affiliation(s)
- Katharina Scherschel
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Katja Hedenus
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christiane Jungen
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Marc D Lemoine
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicole Rübsamen
- Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marieke W Veldkamp
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, 1105 AZ, Amsterdam, Netherlands
| | - Niklas Klatt
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Diana Lindner
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dirk Westermann
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simona Casini
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, 1105 AZ, Amsterdam, Netherlands
| | - Pawel Kuklik
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christian Eickholt
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Torsten Christ
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Zeller
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephan Willems
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christian Meyer
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| |
Collapse
|
49
|
Manolis AA, Manolis TA, Apostolopoulos EJ, Apostolaki NE, Melita H, Manolis AS. The role of the autonomic nervous system in cardiac arrhythmias: The neuro-cardiac axis, more foe than friend? Trends Cardiovasc Med 2020; 31:290-302. [PMID: 32434043 DOI: 10.1016/j.tcm.2020.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The autonomic nervous system (ANS) with its two limbs, the sympathetic (SNS) and parasympathetic nervous system (PSNS), plays a critical role in the modulation of cardiac arrhythmogenesis. It can be both pro- and/or anti-arrhythmic at both the atrial and ventricular level of the myocardium. Intricate mechanisms, different for specific cardiac arrhythmias, are involved in this modulatory process. More data are available for the arrhythmogenic effects of the SNS, which, when overactive, can trigger atrial and/or ventricular "adrenergic" arrhythmias in susceptible individuals (e.g. in patients with paroxysmal atrial fibrillation-PAF, ventricular pre-excitation, specific channelopathies, ischemic heart disease or cardiomyopathies), while it can also negate the protective anti-arrhythmic drug effects. However, there is also evidence that PSNS overactivity may be responsible for triggering "vagotonic" arrhythmias (e.g. PAF, Brugada syndrome, idiopathic ventricular fibrillation). Thus, a fine balance is necessary to attain in these two limbs of the ANS in order to maintain eurhythmia, which is a difficult task to accomplish. Over the years, in addition to classical drug therapies, where beta-blockers prevail, several ANS-modulating interventions have been developed aiming at prevention and management of arrhythmias. Among them, techniques of cardiac sympathetic denervation, renal denervation, vagal stimulation, ganglionated plexi ablation and the newer experimental method of optogenetics have been employed. However, in many arrhythmogenic diseases, ANS modulation is still an investigative tool. Initial data are encouraging; however, further studies are needed to explore the efficacy of such interventions. These issues are herein reviewed and old and recent literature data are discussed, tabulated and pictorially illustrated.
Collapse
|
50
|
Wagner L, Darche FF, Thomas D, Lugenbiel P, Xynogalos P, Seide S, Scholz EP, Katus HA, Schweizer PA. Cryoballoon pulmonary vein isolation-mediated rise of sinus rate in patients with paroxysmal atrial fibrillation. Clin Res Cardiol 2020; 110:124-135. [PMID: 32405738 PMCID: PMC7806555 DOI: 10.1007/s00392-020-01659-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/27/2020] [Indexed: 02/05/2023]
Abstract
Background Modulation of the cardiac autonomic nervous system by pulmonary vein isolation (PVI) influences the sinoatrial nodal rate. Little is known about the causes, maintenance and prognostic value of this phenomenon. We set out to explore the effects of cryoballoon PVI (cryo-PVI) on sinus rate and its significance for clinical outcome. Methods and results We evaluated 110 patients with paroxysmal atrial fibrillation (AF), who underwent PVI using a second-generation 28 mm cryoballoon by pre-, peri- and postprocedural heart rate acquisition and analysis of clinical outcome. Ninety-one patients could be included in postinterventional follow-up, indicating that cryo-PVI resulted in a significant rise of sinus rate by 16.5% (+ 9.8 ± 0.9 beats/min, p < 0.001) 1 day post procedure compared to preprocedural acquisition. This effect was more pronounced in patients with initial sinus bradycardia (< 60 beats/min.) compared to patients with faster heart rate. Increase of rate was primarily driven by ablation of the right superior pulmonary vein and for a subset of patients, in whom this could be assessed, persisted ≥ 1 year after the procedure. AF recurrence was neither predicted by the magnitude of the initial rate, nor by the extent of rate change, but postprocedural sinus bradycardia was associated with higher recurrence of AF in the year post PVI. Conclusions Cryo-PVI causes a significant rise of sinus rate that is more pronounced in subjects with previous sinus bradycardia. Patient follow-up indicates persistence of this effect and suggests an increased risk of AF recurrence in patients with postprocedural bradycardia. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00392-020-01659-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lara Wagner
- Department of Cardiology, University Hospital Heidelberg, INF 410, 69120, Heidelberg, Germany
| | - Fabrice F Darche
- Department of Cardiology, University Hospital Heidelberg, INF 410, 69120, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, University Hospital Heidelberg, INF 410, 69120, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, University Hospital Heidelberg, INF 410, 69120, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
| | - Panagiotis Xynogalos
- Department of Cardiology, University Hospital Heidelberg, INF 410, 69120, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
| | - Svenja Seide
- Institute of Medical Biometry and Informatics, University of Heidelberg, INF 130.3, 69120, Heidelberg, Germany
| | - Eberhard P Scholz
- Department of Cardiology, University Hospital Heidelberg, INF 410, 69120, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University Hospital Heidelberg, INF 410, 69120, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, University Hospital Heidelberg, INF 410, 69120, Heidelberg, Germany. .,Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|