1
|
Nóvoa E, da Silva Lima N, Gonzalez-Rellan MJ, Chantada-Vazquez MD, Verheij J, Rodriguez A, Esquinas-Roman EM, Fondevila MF, Koning M, Fernandez U, Cabaleiro A, Parracho T, Iglesias-Moure J, Seoane S, Porteiro B, Escudero A, Senra A, Perez-Fernandez R, López M, Fidalgo M, Guallar D, Martinez-Chantar ML, Dieguez C, Varela-Rey M, Prevot V, Schwaninger M, Meijnikman A, Bravo SB, Frühbeck G, Nogueiras R. Mitochondrial antiviral signaling protein enhances MASLD progression through the ERK/TNFα/NFκβ pathway. Hepatology 2025; 81:1535-1552. [PMID: 38761407 PMCID: PMC11999095 DOI: 10.1097/hep.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/19/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND AIMS Mitochondrial antiviral signaling protein (MAVS) is a critical regulator that activates the host's innate immunity against RNA viruses, and its signaling pathway has been linked to the secretion of proinflammatory cytokines. However, the actions of MAVS on inflammatory pathways during the development of metabolic dysfunction-associated steatotic liver disease (MASLD) have been little studied. APPROACH AND RESULTS Liver proteomic analysis of mice with genetically manipulated hepatic p63, a transcription factor that induces liver steatosis, revealed MAVS as a target downstream of p63. MAVS was thus further evaluated in liver samples from patients and in animal models with MASLD. Genetic inhibition of MAVS was performed in hepatocyte cell lines, primary hepatocytes, spheroids, and mice. MAVS expression is induced in the liver of both animal models and people with MASLD as compared with those without liver disease. Using genetic knockdown of MAVS in adult mice ameliorates diet-induced MASLD. In vitro, silencing MAVS blunts oleic and palmitic acid-induced lipid content, while its overexpression increases the lipid load in hepatocytes. Inhibiting hepatic MAVS reduces circulating levels of the proinflammatory cytokine TNFα and the hepatic expression of both TNFα and NFκβ. Moreover, the inhibition of ERK abolished the activation of TNFα induced by MAVS. The posttranslational modification O -GlcNAcylation of MAVS is required to activate inflammation and to promote the high lipid content in hepatocytes. CONCLUSIONS MAVS is involved in the development of steatosis, and its inhibition in previously damaged hepatocytes can ameliorate MASLD.
Collapse
Affiliation(s)
- Eva Nóvoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain
| | - Natália da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria J. Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria D.P. Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Amaia Rodriguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain
- Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain
| | - Eva M. Esquinas-Roman
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Marcos F. Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mirja Koning
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain
| | - Alba Cabaleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Iglesias-Moure
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Samuel Seoane
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Adriana Escudero
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Roman Perez-Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain
| | - Miguel Fidalgo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Diana Guallar
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Maria L. Martinez-Chantar
- Liver Disease Lab, BRTA CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Abraham Meijnikman
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Susana B. Bravo
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain
| | - Gema Frühbeck
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Gu L, Zhu Y, Nandi SP, Lee M, Watari K, Bareng B, Ohira M, Liu Y, Sakane S, Carlessi R, Sauceda C, Dhar D, Ganguly S, Hosseini M, Teneche MG, Adams PD, Gonzalez DJ, Kisseleva T, Tirnitz-Parker JEE, Simon MC, Alexandrov LB, Karin M. FBP1 controls liver cancer evolution from senescent MASH hepatocytes. Nature 2025; 637:461-469. [PMID: 39743585 DOI: 10.1038/s41586-024-08317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) originates from differentiated hepatocytes undergoing compensatory proliferation in livers damaged by viruses or metabolic-dysfunction-associated steatohepatitis (MASH)1. While increasing HCC risk2, MASH triggers p53-dependent hepatocyte senescence3, which we found to parallel hypernutrition-induced DNA breaks. How this tumour-suppressive response is bypassed to license oncogenic mutagenesis and enable HCC evolution was previously unclear. Here we identified the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) as a p53 target that is elevated in senescent-like MASH hepatocytes but suppressed through promoter hypermethylation and proteasomal degradation in most human HCCs. FBP1 first declines in metabolically stressed premalignant disease-associated hepatocytes and HCC progenitor cells4,5, paralleling the protumorigenic activation of AKT and NRF2. By accelerating FBP1 and p53 degradation, AKT and NRF2 enhance the proliferation and metabolic activity of previously senescent HCC progenitors. The senescence-reversing and proliferation-supportive NRF2-FBP1-AKT-p53 metabolic switch, operative in mice and humans, also enhances the accumulation of DNA-damage-induced somatic mutations needed for MASH-to-HCC progression.
Collapse
Affiliation(s)
- Li Gu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, China.
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Shuvro P Nandi
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Department of Bioengineering, UCSD, La Jolla, CA, USA
- Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Maiya Lee
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Kosuke Watari
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Breanna Bareng
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Masafumi Ohira
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Yuxiao Liu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | | | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Consuelo Sauceda
- Department of Pharmacology, UCSD, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA, USA
| | | | | | | | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David J Gonzalez
- Department of Pharmacology, UCSD, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA, USA
| | | | - Janina E E Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Department of Bioengineering, UCSD, La Jolla, CA, USA
- Moores Cancer Center, UCSD, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
3
|
Wu L, Jin W, Yu H, Liu B. Modulating autophagy to treat diseases: A revisited review on in silico methods. J Adv Res 2024; 58:175-191. [PMID: 37192730 PMCID: PMC10982871 DOI: 10.1016/j.jare.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Autophagy refers to the conserved cellular catabolic process relevant to lysosome activity and plays a vital role in maintaining the dynamic equilibrium of intracellular matter by degrading harmful and abnormally accumulated cellular components. Accumulating evidence has recently revealed that dysregulation of autophagy by genetic and exogenous interventions may disrupt cellular homeostasis in human diseases. In silico approaches as powerful aids to experiments have also been extensively reported to play their critical roles in the storage, prediction, and analysis of massive amounts of experimental data. Thus, modulating autophagy to treat diseases by in silico methods would be anticipated. AIM OF REVIEW Here, we focus on summarizing the updated in silico approaches including databases, systems biology network approaches, omics-based analyses, mathematical models, and artificial intelligence (AI) methods that sought to modulate autophagy for potential therapeutic purposes, which will provide a new insight into more promising therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Autophagy-related databases are the data basis of the in silico method, storing a large amount of information about DNA, RNA, proteins, small molecules and diseases. The systems biology approach is a method to systematically study the interrelationships among biological processes including autophagy from a macroscopic perspective. Omics-based analyses are based on high-throughput data to analyze gene expression at different levels of biological processes involving autophagy. mathematical models are visualization methods to describe the dynamic process of autophagy, and its accuracy is related to the selection of parameters. AI methods use big data related to autophagy to predict autophagy targets, design targeted small molecules, and classify diverse human diseases for potential therapeutic applications.
Collapse
Affiliation(s)
- Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenke Jin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
López-Alcalá J, Soler-Vázquez MC, Tercero-Alcázar C, Sánchez-Ceinos J, Guzmán-Ruiz R, Malagón MM, Gordon A. Rab18 Drift in Lipid Droplet and Endoplasmic Reticulum Interactions of Adipocytes under Obesogenic Conditions. Int J Mol Sci 2023; 24:17177. [PMID: 38139006 PMCID: PMC10743551 DOI: 10.3390/ijms242417177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The adipose tissue stores excess energy in the form of neutral lipids within adipocyte lipid droplets (LDs). The correct function of LDs requires the interaction with other organelles, such as the endoplasmic reticulum (ER) as well as with LD coat-associated proteins, including Rab18, a mediator of intracellular lipid trafficking and ER-LD interaction. Although perturbations of the inter-organelle contact sites have been linked to several diseases, such as cancer, no information regarding ER-LD contact sites in dysfunctional adipocytes from the obese adipose tissue has been published to date. Herein, the ER-LD connection and Rab18 distribution at ER-LD contact sites are examined in adipocytes challenged with fibrosis and inflammatory conditions, which represent known hallmarks of the adipose tissue in obesity. Our results show that adipocytes differentiated in fibrotic conditions caused ER fragmentation, the expansion of ER-LD contact sites, and modified Rab18 dynamics. Likewise, adipocytes exposed to inflammatory conditions favored ER-LD contact, Rab18 accumulation in the ER, and Rab18 redistribution to large LDs. Finally, our studies in human adipocytes supported the suggestion that Rab18 transitions to the LD coat from the ER. Taken together, our results suggest that obesity-related pathogenic processes alter the maintenance of ER-LD interactions and interfere with Rab18 trafficking through these contact sites.
Collapse
Affiliation(s)
- Jaime López-Alcalá
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| | - M. Carmen Soler-Vázquez
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Instituto de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carmen Tercero-Alcázar
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| | - Julia Sánchez-Ceinos
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institute (KI), Karolinska University Hospital (NKS), 17177 Stockholm, Sweden;
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M. Malagón
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Gordon
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| |
Collapse
|
5
|
Zheng W, Sun Q, Li L, Cheng Y, Chen Y, Lv M, Xiang X. Role of endoplasmic reticulum stress in hepatic glucose and lipid metabolism and therapeutic strategies for metabolic liver disease. Int Immunopharmacol 2022; 113:109458. [DOI: 10.1016/j.intimp.2022.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
|
6
|
Sun CY, Yang LL, Zhao P, Yan PZ, Li J, Zhao DS. Mechanisms of Cynarine for treatment of non-alcoholic fatty liver disease based on the integration of network pharmacology, molecular docking and cell experiment. Hereditas 2022; 159:44. [PMID: 36451177 PMCID: PMC9714250 DOI: 10.1186/s41065-022-00256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Nonalcoholic Fatty Liver Disease (NAFLD) is a chronic Liver Disease prevalent all over the world. It has become more and more common in Japan, China and most western developed countries. The global prevalence rate is 25.24%, and the trend is increasing year by year. Related studies have shown that Cynarine has certain liver protection, lipid lowering and immune intervention effects. So, this study to systematically predict and analyze the mechanism of Cynarine in the treatment of non-alcoholic fatty liver disease (NAFLD) based on the integration of network pharmacology, molecular docking, and cell experiment. METHODS We performed Heatmap and Venn diagram analyses to identify genes and targets in Cynarine treat NAFLD. The network of Cynarine-therapeutic targets and the protein-protein interaction network (PPI) was constructed. We used gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to visualize associated functional pathways. The Sybyl tool was used to dock the Cynarine with key therapeutic targets molecularly. Finally, cell experiments were applied to validate the role of Cynarine in the treatment of NAFLD. RESULTS The Cynarine could act on 48 targets of NAFLD, and the role of CASP3, TP53, MMP9, ELANE, NOTCH1 were more important. The PPI network showed that immune and inflammation-related targets played a pivotal role. The KEGG analysis found that the PI3K-Akt signaling pathway, cell cycle and MAPK signaling pathway may be the main pathways for Cynarine to prevent and treat NAFLD. Molecular docking studies confirmed that Cynarine has good binding activity with therapeutic targets. Cynarine reduced the fat deposition ability of NAFLD model cells, and effectively reduced the levels of ALT and AST released by liver cells due to excessive lipid accumulation. We also found that Cynarine inhibited the expression of AKT1 and MAPK1. CONCLUSIONS This study revealed that Cynarine could significantly reduce the fat deposition ability of NAFLD model cells, which may be closely related to the effective regulation of AKT1 and MAPK1 expression by Cynarine.
Collapse
Affiliation(s)
- Chun-Yong Sun
- grid.464402.00000 0000 9459 9325College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan, 250355 China
| | - Le-Le Yang
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078 China
| | - Pan Zhao
- grid.464402.00000 0000 9459 9325College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan, 250355 China
| | - Pei-Zheng Yan
- grid.464402.00000 0000 9459 9325College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan, 250355 China
| | - Jia Li
- grid.464402.00000 0000 9459 9325College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan, 250355 China
| | - Dong-Sheng Zhao
- grid.464402.00000 0000 9459 9325College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan, 250355 China
| |
Collapse
|
7
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Lin H, Wang L, Liu Z, Long K, Kong M, Ye D, Chen X, Wang K, Wu KKL, Fan M, Song E, Wang C, Hoo RLC, Hui X, Hallenborg P, Piao H, Xu A, Cheng KKY. Hepatic MDM2 Causes Metabolic Associated Fatty Liver Disease by Blocking Triglyceride-VLDL Secretion via ApoB Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200742. [PMID: 35524581 PMCID: PMC9284139 DOI: 10.1002/advs.202200742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Indexed: 05/06/2023]
Abstract
Dysfunctional triglyceride-very low-density lipoprotein (TG-VLDL) metabolism is linked to metabolic-associated fatty liver disease (MAFLD); however, the underlying cause remains unclear. The study shows that hepatic E3 ubiquitin ligase murine double minute 2 (MDM2) controls MAFLD by blocking TG-VLDL secretion. A remarkable upregulation of MDM2 is observed in the livers of human and mouse models with different levels of severity of MAFLD. Hepatocyte-specific deletion of MDM2 protects against high-fat high-cholesterol diet-induced hepatic steatosis and inflammation, accompanied by a significant elevation in TG-VLDL secretion. As an E3 ubiquitin ligase, MDM2 targets apolipoprotein B (ApoB) for proteasomal degradation through direct protein-protein interaction, which leads to reduced TG-VLDL secretion in hepatocytes. Pharmacological blockage of the MDM2-ApoB interaction alleviates dietary-induced hepatic steatohepatitis and fibrosis by inducing hepatic ApoB expression and subsequent TG-VLDL secretion. The effect of MDM2 on VLDL metabolism is p53-independent. Collectively, these findings suggest that MDM2 acts as a negative regulator of hepatic ApoB levels and TG-VLDL secretion in MAFLD. Inhibition of the MDM2-ApoB interaction may represent a potential therapeutic approach for MAFLD treatment.
Collapse
Affiliation(s)
- Huige Lin
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Lin Wang
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
| | - Zhuohao Liu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
- Department of NeurosurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Kekao Long
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Mengjie Kong
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of EducationGuangdong Pharmaceutical UniversityGuangzhou510000P. R. China
| | - Xi Chen
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Kai Wang
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Kelvin KL Wu
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Mengqi Fan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of EducationGuangdong Pharmaceutical UniversityGuangzhou510000P. R. China
| | - Erfei Song
- Department of Metabolic and Bariatric SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510000P. R. China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510000P. R. China
| | - Ruby LC Hoo
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of Pharmacology and PharmacyThe University of Hong KongPokfulamHong Kong
| | - Xiaoyan Hui
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
| | - Philip Hallenborg
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkSouthern Denmark5230Denmark
| | - Hailong Piao
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116000P. R. China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
- Department of Pharmacology and PharmacyThe University of Hong KongPokfulamHong Kong
| | - Kenneth KY Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| |
Collapse
|
9
|
da Silva Lima N, Fondevila MF, Nóvoa E, Buqué X, Mercado-Gómez M, Gallet S, González-Rellan MJ, Fernandez U, Loyens A, Garcia-Vence M, Chantada-Vazquez MDP, Bravo SB, Marañon P, Senra A, Escudero A, Leiva M, Guallar D, Fidalgo M, Gomes P, Claret M, Sabio G, Varela-Rey M, Delgado TC, Montero-Vallejo R, Ampuero J, López M, Diéguez C, Herrero L, Serra D, Schwaninger M, Prevot V, Gallego-Duran R, Romero-Gomez M, Iruzubieta P, Crespo J, Martinez-Chantar ML, Garcia-Monzon C, Gonzalez-Rodriguez A, Aspichueta P, Nogueiras R. Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function. J Hepatol 2022; 76:11-24. [PMID: 34555423 DOI: 10.1016/j.jhep.2021.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/03/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Autophagy-related gene 3 (ATG3) is an enzyme mainly known for its actions in the LC3 lipidation process, which is essential for autophagy. Whether ATG3 plays a role in lipid metabolism or contributes to non-alcoholic fatty liver disease (NAFLD) remains unknown. METHODS By performing proteomic analysis on livers from mice with genetic manipulation of hepatic p63, a regulator of fatty acid metabolism, we identified ATG3 as a new target downstream of p63. ATG3 was evaluated in liver samples from patients with NAFLD. Further, genetic manipulation of ATG3 was performed in human hepatocyte cell lines, primary hepatocytes and in the livers of mice. RESULTS ATG3 expression is induced in the liver of animal models and patients with NAFLD (both steatosis and non-alcoholic steatohepatitis) compared with those without liver disease. Moreover, genetic knockdown of ATG3 in mice and human hepatocytes ameliorates p63- and diet-induced steatosis, while its overexpression increases the lipid load in hepatocytes. The inhibition of hepatic ATG3 improves fatty acid metabolism by reducing c-Jun N-terminal protein kinase 1 (JNK1), which increases sirtuin 1 (SIRT1), carnitine palmitoyltransferase 1a (CPT1a), and mitochondrial function. Hepatic knockdown of SIRT1 and CPT1a blunts the effects of ATG3 on mitochondrial activity. Unexpectedly, these effects are independent of an autophagic action. CONCLUSIONS Collectively, these findings indicate that ATG3 is a novel protein implicated in the development of steatosis. LAY SUMMARY We show that autophagy-related gene 3 (ATG3) contributes to the progression of non-alcoholic fatty liver disease in humans and mice. Hepatic knockdown of ATG3 ameliorates the development of NAFLD by stimulating mitochondrial function. Thus, ATG3 is an important factor implicated in steatosis.
Collapse
Affiliation(s)
- Natália da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain
| | - Eva Nóvoa
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Xabier Buqué
- Department of Physiology, University of the Basque Country UPV/EHU, Spain; Biocruces Bizkaia Health Research Institute, Spain
| | - Maria Mercado-Gómez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Sarah Gallet
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), F-59000 Lille, France
| | - Maria J González-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Anne Loyens
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), F-59000 Lille, France
| | - Maria Garcia-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705 A Coruña, Spain
| | | | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705 A Coruña, Spain
| | - Patricia Marañon
- LiverResearchUnit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Adriana Escudero
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Diana Guallar
- Department of Biochemistry, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Miguel Fidalgo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Pedro Gomes
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research(iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036, Barcelona, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Varela-Rey
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Gene Regulatory Control in Disease, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Teresa C Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Rocio Montero-Vallejo
- UGC Aparato Digestivo, Instituto de Biomedicina de Sevilla. Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Javier Ampuero
- UGC Aparato Digestivo, Instituto de Biomedicina de Sevilla. Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain
| | - Laura Herrero
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Dolors Serra
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Markus Schwaninger
- University of Lübeck, Institute for Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), F-59000 Lille, France
| | - Rocio Gallego-Duran
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Manuel Romero-Gomez
- UGC Aparato Digestivo, Instituto de Biomedicina de Sevilla. Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital. Clinical and Translational Digestive Research Group, IDIVAL, Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital. Clinical and Translational Digestive Research Group, IDIVAL, Santander, Spain
| | - Maria L Martinez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Carmelo Garcia-Monzon
- LiverResearchUnit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Agueda Gonzalez-Rodriguez
- LiverResearchUnit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Spain
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country UPV/EHU, Spain; Biocruces Bizkaia Health Research Institute, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain.
| |
Collapse
|
10
|
Gonzalez-Rellan MJ, Fondevila MF, Fernandez U, Rodríguez A, Varela-Rey M, Veyrat-Durebex C, Seoane S, Bernardo G, Lopitz-Otsoa F, Fernández-Ramos D, Bilbao J, Iglesias C, Novoa E, Ameneiro C, Senra A, Beiroa D, Cuñarro J, Dp Chantada-Vazquez M, Garcia-Vence M, Bravo SB, Da Silva Lima N, Porteiro B, Carneiro C, Vidal A, Tovar S, Müller TD, Ferno J, Guallar D, Fidalgo M, Sabio G, Herzig S, Yang WH, Cho JW, Martinez-Chantar ML, Perez-Fernandez R, López M, Dieguez C, Mato JM, Millet O, Coppari R, Woodhoo A, Fruhbeck G, Nogueiras R. O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nat Commun 2021; 12:5068. [PMID: 34417460 PMCID: PMC8379189 DOI: 10.1038/s41467-021-25390-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/06/2021] [Indexed: 01/20/2023] Open
Abstract
p53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis. More specifically, p53 binds to PCK1 promoter and regulates its transcriptional activation, thereby controlling hepatic glucose production. Mice lacking p53 in the liver show a reduced gluconeogenic response during calorie restriction. Glucagon, adrenaline and glucocorticoids augment protein levels of p53, and administration of these hormones to p53 deficient human hepatocytes and to liver-specific p53 deficient mice fails to increase glucose levels. Moreover, insulin decreases p53 levels, and over-expression of p53 impairs insulin sensitivity. Finally, protein levels of p53, as well as genes responsible of O-GlcNAcylation are elevated in the liver of type 2 diabetic patients and positively correlate with glucose and HOMA-IR. Overall these results indicate that the O-GlcNAcylation of p53 plays an unsuspected key role regulating in vivo glucose homeostasis.
Collapse
Affiliation(s)
- Maria J Gonzalez-Rellan
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Marcos F Fondevila
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Uxia Fernandez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Amaia Rodríguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Marta Varela-Rey
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Samuel Seoane
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Ganeko Bernardo
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
- ATLAS Molecular Pharma S. L., Derio, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - David Fernández-Ramos
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Jon Bilbao
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Cristina Iglesias
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Eva Novoa
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Cristina Ameneiro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Ana Senra
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Daniel Beiroa
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Juan Cuñarro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Maria Dp Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Coruña, Spain
| | - Maria Garcia-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Coruña, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Coruña, Spain
| | - Natalia Da Silva Lima
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Begoña Porteiro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Carmen Carneiro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Anxo Vidal
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Sulay Tovar
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) and German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Johan Ferno
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Diana Guallar
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Miguel Fidalgo
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC) and Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center Munich, Neuherberg, Germany
| | - Won Ho Yang
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Jin Won Cho
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Maria Luz Martinez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Roman Perez-Fernandez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Miguel López
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Carlos Dieguez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Jose M Mato
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
- ATLAS Molecular Pharma S. L., Derio, Spain
| | - Oscar Millet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | | | - Ashwin Woodhoo
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- CIMUS, University of Santigo de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Nerve Disorder Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Gema Fruhbeck
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Ruben Nogueiras
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Madrid, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Chronowski C, Akhanov V, Chan D, Catic A, Finegold M, Sahin E. Fructose Causes Liver Damage, Polyploidy, and Dysplasia in the Setting of Short Telomeres and p53 Loss. Metabolites 2021; 11:metabo11060394. [PMID: 34204343 PMCID: PMC8234056 DOI: 10.3390/metabo11060394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
Studies in humans and model systems have established an important role of short telomeres in predisposing to liver fibrosis through pathways that are incompletely understood. Recent studies have shown that telomere dysfunction impairs cellular metabolism, but whether and how these metabolic alterations contribute to liver fibrosis is not well understood. Here, we investigated whether short telomeres change the hepatic response to metabolic stress induced by fructose, a sugar that is highly implicated in non-alcoholic fatty liver disease. We find that telomere shortening in telomerase knockout mice (TKO) imparts a pronounced susceptibility to fructose as reflected in the activation of p53, increased apoptosis, and senescence, despite lower hepatic fat accumulation in TKO mice compared to wild type mice with long telomeres. The decreased fat accumulation in TKO is mediated by p53 and deletion of p53 normalizes hepatic fat content but also causes polyploidy, polynuclearization, dysplasia, cell death, and liver damage. Together, these studies suggest that liver tissue with short telomers are highly susceptible to fructose and respond with p53 activation and liver damage that is further exacerbated when p53 is lost resulting in dysplastic changes.
Collapse
Affiliation(s)
- Christopher Chronowski
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
| | - Viktor Akhanov
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
| | - Doug Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andre Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ergün Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
- Department of Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-6685; Fax: +1-713-798-4146
| |
Collapse
|
12
|
Li XJ, Li QL, Ju LG, Zhao C, Zhao LS, Du JW, Wang Y, Zheng L, Song BL, Li LY, Li L, Wu M. Deficiency of Histone Methyltransferase SET Domain-Containing 2 in Liver Leads to Abnormal Lipid Metabolism and HCC. Hepatology 2021; 73:1797-1815. [PMID: 33058300 DOI: 10.1002/hep.31594] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Trimethylation of Lys36 on histone 3 (H3K36me3) catalyzed by histone methyltransferase SET domain-containing 2 (SETD2) is one of the most conserved epigenetic marks from yeast to mammals. SETD2 is frequently mutated in multiple cancers and acts as a tumor suppressor. APPROACH AND RESULTS Here, using a liver-specific Setd2 depletion model, we found that Setd2 deficiency is sufficient to trigger spontaneous HCC. Meanwhile, Setd2 depletion significantly increased tumor and tumor size of a diethylnitrosamine-induced HCC model. The mechanistic study showed that Setd2 suppresses HCC not only through modulating DNA damage response, but also by regulating lipid metabolism in the liver. Setd2 deficiency down-regulated H3K36me3 enrichment and expression of cholesterol efflux genes and caused lipid accumulation. High-fat diet enhanced lipid accumulation and promoted the development of HCC in Setd2-deficient mice. Chromatin immunoprecipitation sequencing analysis further revealed that Setd2 depletion induced c-Jun/activator protein 1 (AP-1) activation in the liver, which was trigged by accumulated lipid. c-Jun acts as an oncogene in HCC and functions through inhibiting p53 in Setd2-deficient cells. CONCLUSIONS We revealed the roles of Setd2 in HCC and the underlying mechanisms in regulating cholesterol homeostasis and c-Jun/AP-1 signaling.
Collapse
Affiliation(s)
- Xue-Jing Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qing-Lan Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin-Gao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Zhao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lan-Shen Zhao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jia-Wen Du
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Wang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ling Zheng
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
López-Cánovas JL, Del Rio-Moreno M, García-Fernandez H, Jiménez-Vacas JM, Moreno-Montilla MT, Sánchez-Frias ME, Amado V, L-López F, Fondevila MF, Ciria R, Gómez-Luque I, Briceño J, Nogueiras R, de la Mata M, Castaño JP, Rodriguez-Perálvarez M, Luque RM, Gahete MD. Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma. Cancer Lett 2021; 496:72-83. [PMID: 33038489 DOI: 10.1016/j.canlet.2020.10.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Splicing alterations represent an actionable cancer hallmark. Splicing factor 3B subunit 1 (SF3B1) is a crucial splicing factor that can be targeted pharmacologically (e.g. pladienolide-B). Here, we show that SF3B1 is overexpressed (RNA/protein) in hepatocellular carcinoma (HCC) in two retrospective (n = 154 and n = 172 samples) and in five in silico cohorts (n > 900 samples, including TCGA) and that its expression is associated with tumor aggressiveness, oncogenic splicing variants expression (KLF6-SV1, BCL-XL) and decreased overall survival. In vitro, SF3B1 silencing reduced cell viability, proliferation and migration and its pharmacological blockade with pladienolide-B inhibited proliferation, migration, and formation of tumorspheres and colonies in liver cancer cell lines (HepG2, Hep3B, SNU-387), whereas its effects on normal-like hepatocyte-derived THLE-2 proliferation were negligible. Pladienolide-B also reduced the in vivo growth and the expression of tumor-markers in Hep3B-induced xenograft tumors. Moreover, SF3B1 silencing and/or blockade markedly modulated the activation of key signaling pathways (PDK1, GSK3b, ERK, JNK, AMPK) and the expression of cancer-associated genes (CDK4, CD24) and oncogenic SVs (KLF6-SV1). Therefore, the genetic and/or pharmacological inhibition of SF3B1 may represent a promising novel therapeutic strategy worth to be explored through randomized controlled trials.
Collapse
Affiliation(s)
- Juan L López-Cánovas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Mercedes Del Rio-Moreno
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Helena García-Fernandez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Juan M Jiménez-Vacas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - M Trinidad Moreno-Montilla
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Marina E Sánchez-Frias
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain
| | - Víctor Amado
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Hepatic and Digestive Diseases (CIBERehd), Córdoba, 14004, Spain
| | - Fernando L-López
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Marcos F Fondevila
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Rubén Ciria
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Unit of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, Cordoba, 14004, Spain
| | - Irene Gómez-Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Unit of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, Cordoba, 14004, Spain
| | - Javier Briceño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Unit of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, Cordoba, 14004, Spain
| | - Rubén Nogueiras
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Manuel de la Mata
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Hepatic and Digestive Diseases (CIBERehd), Córdoba, 14004, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Manuel Rodriguez-Perálvarez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Hepatic and Digestive Diseases (CIBERehd), Córdoba, 14004, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, 14004, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, 14004, Spain; Reina Sofía University Hospital, Córdoba, 14004, Spain; CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
| |
Collapse
|
14
|
Reedich EJ, Kalski M, Armijo N, Cox GA, DiDonato CJ. Spinal motor neuron loss occurs through a p53-and-p21-independent mechanism in the Smn 2B/- mouse model of spinal muscular atrophy. Exp Neurol 2020; 337:113587. [PMID: 33382987 DOI: 10.1016/j.expneurol.2020.113587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a pediatric neuromuscular disease caused by genetic deficiency of the survival motor neuron (SMN) protein. Pathological hallmarks of SMA are spinal motor neuron loss and skeletal muscle atrophy. The molecular mechanisms that elicit and drive preferential motor neuron degeneration and death in SMA remain unclear. Transcriptomic studies consistently report p53 pathway activation in motor neurons and spinal cord tissue of SMA mice. Recent work has identified p53 as an inducer of spinal motor neuron loss in severe Δ7 SMA mice. Additionally, the cyclin-dependent kinase inhibitor P21 (Cdkn1a), an inducer of cell cycle arrest and mediator of skeletal muscle atrophy, is consistently increased in motor neurons, spinal cords, and other tissues of various SMA models. p21 is a p53 transcriptional target but can be independently induced by cellular stressors. To ascertain whether p53 and p21 signaling pathways mediate spinal motor neuron death in milder SMA mice, and how they affect the overall SMA phenotype, we introduced Trp53 and P21 null alleles onto the Smn2B/- background. We found that p53 and p21 depletion did not modulate the timing or degree of Smn2B/- motor neuron loss as evaluated using electrophysiological and immunohistochemical methods. Moreover, we determined that Trp53 and P21 knockout differentially affected Smn2B/- mouse lifespan: p53 ablation impaired survival while p21 ablation extended survival through Smn-independent mechanisms. These results demonstrate that p53 and p21 are not primary drivers of spinal motor neuron death in Smn2B/- mice, a milder SMA mouse model, as motor neuron loss is not alleviated by their ablation.
Collapse
Affiliation(s)
- Emily J Reedich
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin Kalski
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Nicholas Armijo
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Christine J DiDonato
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
15
|
Genome-wide RNA interference screening reveals a COPI-MAP2K3 pathway required for YAP regulation. Proc Natl Acad Sci U S A 2020; 117:19994-20003. [PMID: 32747557 DOI: 10.1073/pnas.1915387117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transcriptional regulator YAP, which plays important roles in the development, regeneration, and tumorigenesis, is activated when released from inhibition by the Hippo kinase cascade. The regulatory mechanism of YAP in Hippo-low contexts is poorly understood. Here, we performed a genome-wide RNA interference screen to identify genes whose loss of function in a Hippo-null background affects YAP activity. We discovered that the coatomer protein complex I (COPI) is required for YAP nuclear enrichment and that COPI dependency of YAP confers an intrinsic vulnerability to COPI disruption in YAP-driven cancer cells. We identified MAP2K3 as a YAP regulator involved in inhibitory YAP phosphorylation induced by COPI subunit depletion. The endoplasmic reticulum stress response pathway activated by COPI malfunction appears to connect COPI and MAP2K3. In addition, we provide evidence that YAP inhibition by COPI disruption may contribute to transcriptional up-regulation of PTGS2 and proinflammatory cytokines. Our study offers a resource for investigating Hippo-independent YAP regulation as a therapeutic target for cancers and suggests a link between YAP and COPI-associated inflammatory diseases.
Collapse
|
16
|
Gómez‐Santos B, Saenz de Urturi D, Nuñez‐García M, Gonzalez‐Romero F, Buque X, Aurrekoetxea I, Gutiérrez de Juan V, Gonzalez‐Rellan MJ, García‐Monzón C, González‐Rodríguez Á, Mosteiro L, Errazti G, Mifsut P, Gaztambide S, Castaño L, Martin C, Nogueiras R, Martinez‐Chantar ML, Syn W, Aspichueta P. Liver osteopontin is required to prevent the progression of age-related nonalcoholic fatty liver disease. Aging Cell 2020; 19:e13183. [PMID: 32638492 PMCID: PMC7431823 DOI: 10.1111/acel.13183] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/14/2020] [Accepted: 06/06/2020] [Indexed: 12/17/2022] Open
Abstract
Osteopontin (OPN), a senescence-associated secretory phenotype factor, is increased in patients with nonalcoholic fatty liver disease (NAFLD). Cellular senescence has been associated with age-dependent hepatosteatosis. Thus, we investigated the role of OPN in the age-related hepatosteatosis. For this, human serum samples, animal models of aging, and cell lines in which senescence was induced were used. Metabolic fluxes, lipid, and protein concentration were determined. Among individuals with a normal liver, we observed a positive correlation between serum OPN levels and increasing age. This correlation with age, however, was absent in patients with NAFLD. In wild-type (WT) mice, serum and liver OPN were increased at 10 months old (m) along with liver p53 levels and remained elevated at 20m. Markers of liver senescence increased in association with synthesis and concentration of triglycerides (TG) in 10m OPN-deficient (KO) hepatocytes when compared to WT hepatocytes. These changes in senescence and lipid metabolism in 10m OPN-KO mice liver were associated with the decrease of 78 kDa glucose-regulated protein (GRP78), induction of ER stress, and the increase in fatty acid synthase and CD36 levels. OPN deficiency in senescent cells also diminished GRP78, the accumulation of intracellular TG, and the increase in CD36 levels. In 20m mice, OPN loss led to increased liver fibrosis. Finally, we showed that OPN expression in vitro and in vivo was regulated by p53. In conclusion, OPN deficiency leads to earlier cellular senescence, ER stress, and TG accumulation during aging. The p53-OPN axis is required to inhibit the onset of age-related hepatosteatosis.
Collapse
Affiliation(s)
- Beatriz Gómez‐Santos
- Department of Physiology Faculty of Medicine and Nursing University of Basque Country UPV/EHU Leioa Spain
| | - Diego Saenz de Urturi
- Department of Physiology Faculty of Medicine and Nursing University of Basque Country UPV/EHU Leioa Spain
| | - Maitane Nuñez‐García
- Department of Physiology Faculty of Medicine and Nursing University of Basque Country UPV/EHU Leioa Spain
| | - Francisco Gonzalez‐Romero
- Department of Physiology Faculty of Medicine and Nursing University of Basque Country UPV/EHU Leioa Spain
| | - Xabier Buque
- Department of Physiology Faculty of Medicine and Nursing University of Basque Country UPV/EHU Leioa Spain
- Biocruces Bizkaia Health Research Institute Cruces University Hospital Barakaldo Spain
| | - Igor Aurrekoetxea
- Department of Physiology Faculty of Medicine and Nursing University of Basque Country UPV/EHU Leioa Spain
- Biocruces Bizkaia Health Research Institute Cruces University Hospital Barakaldo Spain
| | - Virginia Gutiérrez de Juan
- Liver Disease Lab, Center for Cooperative Research in Bioscience (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) e Derio Bizkaia Spain
| | - Maria J. Gonzalez‐Rellan
- Department of Physiology CIMUS University of Santiago de Compostela‐Instituto de Investigación Sanitaria Santiago de Compostela Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) Madrid Spain
| | - Carmelo García‐Monzón
- Liver Research Unit Santa Cristina University Hospital Instituto de Investigación Sanitaria Princesa Madrid Spain
- Centro de investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute Madrid Spain
| | - Águeda González‐Rodríguez
- Liver Research Unit Santa Cristina University Hospital Instituto de Investigación Sanitaria Princesa Madrid Spain
- Centro de investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute Madrid Spain
| | - Lorena Mosteiro
- Biocruces Bizkaia Health Research Institute Cruces University Hospital Barakaldo Spain
| | - Gaizka Errazti
- Biocruces Bizkaia Health Research Institute Cruces University Hospital Barakaldo Spain
| | - Patricia Mifsut
- Biocruces Bizkaia Health Research Institute Cruces University Hospital Barakaldo Spain
| | - Sonia Gaztambide
- Biocruces Bizkaia Health Research Institute Cruces University Hospital Barakaldo Spain
| | - Luis Castaño
- Biocruces Bizkaia Health Research Institute Cruces University Hospital Barakaldo Spain
| | - Cesar Martin
- Department of Biochemistry and Molecular Biology Biofisika Institute (UPV/EHU, CSIC) UPV/EHU Spain
| | - Rubén Nogueiras
- Department of Physiology CIMUS University of Santiago de Compostela‐Instituto de Investigación Sanitaria Santiago de Compostela Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) Madrid Spain
| | - María L. Martinez‐Chantar
- Liver Disease Lab, Center for Cooperative Research in Bioscience (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) e Derio Bizkaia Spain
- Centro de investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute Madrid Spain
| | - Wing‐Kin Syn
- Department of Physiology Faculty of Medicine and Nursing University of Basque Country UPV/EHU Leioa Spain
- Section of Gastroenterology Ralph H Johnson VAMC Charleston SC USA
- Division of Gastroenterology and Hepatology Medical University of South Carolina Charleston SC USA
| | - Patricia Aspichueta
- Department of Physiology Faculty of Medicine and Nursing University of Basque Country UPV/EHU Leioa Spain
- Biocruces Bizkaia Health Research Institute Cruces University Hospital Barakaldo Spain
| |
Collapse
|
17
|
Transcriptional Regulation in Non-Alcoholic Fatty Liver Disease. Metabolites 2020; 10:metabo10070283. [PMID: 32660130 PMCID: PMC7408131 DOI: 10.3390/metabo10070283] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is the primary risk factor for the pathogenesis of non-alcoholic fatty liver disease (NAFLD), the worldwide prevalence of which continues to increase dramatically. The liver plays a pivotal role in the maintenance of whole-body lipid and glucose homeostasis. This is mainly mediated by the transcriptional activation of hepatic pathways that promote glucose and lipid production or utilization in response to the nutritional state of the body. However, in the setting of chronic excessive nutrition, the dysregulation of hepatic transcriptional machinery promotes lipid accumulation, inflammation, metabolic stress, and fibrosis, which culminate in NAFLD. In this review, we provide our current understanding of the transcription factors that have been linked to the pathogenesis and progression of NAFLD. Using publicly available transcriptomic data, we outline the altered activity of transcription factors among humans with NAFLD. By expanding this analysis to common experimental mouse models of NAFLD, we outline the relevance of mouse models to the human pathophysiology at the transcriptional level.
Collapse
|
18
|
Simon J, Nuñez-García M, Fernández-Tussy P, Barbier-Torres L, Fernández-Ramos D, Gómez-Santos B, Buqué X, Lopitz-Otsoa F, Goikoetxea-Usandizaga N, Serrano-Macia M, Rodriguez-Agudo R, Bizkarguenaga M, Zubiete-Franco I, Gutiérrez-de Juan V, Cabrera D, Alonso C, Iruzubieta P, Romero-Gomez M, van Liempd S, Castro A, Nogueiras R, Varela-Rey M, Falcón-Pérez JM, Villa E, Crespo J, Lu SC, Mato JM, Aspichueta P, Delgado TC, Martínez-Chantar ML. Targeting Hepatic Glutaminase 1 Ameliorates Non-alcoholic Steatohepatitis by Restoring Very-Low-Density Lipoprotein Triglyceride Assembly. Cell Metab 2020; 31:605-622.e10. [PMID: 32084378 PMCID: PMC7259377 DOI: 10.1016/j.cmet.2020.01.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/05/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by the accumulation of hepatic fat in an inflammatory/fibrotic background. Herein, we show that the hepatic high-activity glutaminase 1 isoform (GLS1) is overexpressed in NASH. Importantly, GLS1 inhibition reduces lipid content in choline and/or methionine deprivation-induced steatotic mouse primary hepatocytes, in human hepatocyte cell lines, and in NASH mouse livers. We suggest that under these circumstances, defective glutamine fueling of anaplerotic mitochondrial metabolism and concomitant reduction of oxidative stress promotes a reprogramming of serine metabolism, wherein serine is shifted from the generation of the antioxidant glutathione and channeled to provide one-carbon units to regenerate the methionine cycle. The restored methionine cycle can induce phosphatidylcholine synthesis from the phosphatidylethanolamine N-methyltransferase-mediated and CDP-choline pathways as well as by base-exchange reactions between phospholipids, thereby restoring hepatic phosphatidylcholine content and very-low-density lipoprotein export. Overall, we provide evidence that hepatic GLS1 targeting is a valuable therapeutic approach in NASH.
Collapse
Affiliation(s)
- Jorge Simon
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Maitane Nuñez-García
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Pablo Fernández-Tussy
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Lucía Barbier-Torres
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Beatriz Gómez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Xabier Buqué
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Marina Serrano-Macia
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Rubén Rodriguez-Agudo
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Maider Bizkarguenaga
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Imanol Zubiete-Franco
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Virginia Gutiérrez-de Juan
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Diana Cabrera
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | | | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; Clinical and Traslational Digestive Research Group, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Manuel Romero-Gomez
- Unit for the Clinical Management of Digestive Diseases, Hospital Universitario Virgen del Rocío, CIBERehd, University of Seville, 41013 Seville, Spain
| | - Sebastiaan van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | | | - Ruben Nogueiras
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Galician Agency of Innovation (GAIN), Xunta de Galicia, 15782 Santiago de Compostela, Spain
| | - Marta Varela-Rey
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Juan Manuel Falcón-Pérez
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Erica Villa
- Department of Gastroenterology, Azienda Ospedaliero-Universitaria & University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; Clinical and Traslational Digestive Research Group, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Jose M Mato
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
19
|
Folgueira C, Torres-Leal FL, Beiroa D, Pena-León V, Da Silva Lima N, Milbank E, Senra A, Al-Massadi O, López M, Diéguez C, Seoane LM, Nogueiras R. Oral Pharmacological Activation of Hypothalamic Guanylate Cyclase 2C Receptor Stimulates Brown Fat Thermogenesis to Reduce Body Weight. Neuroendocrinology 2020; 110:1042-1054. [PMID: 31945763 DOI: 10.1159/000505972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
Linaclotide is a synthetic peptide approved by the FDA for the treatment of constipation-predominant irritable bowel syndrome and chronic constipation. Linaclotide binds and activates the transmembrane receptor guanylate cyclase 2C (Gucy2c). Uroguanylin (UGN) is a 16 amino acid peptide that is mainly secreted by enterochromaffin cells in the duodenum and proximal small intestine. UGN is the endogenous ligand of Gucy2c and decreases body weight in diet-induced obese (DIO) mice via the activation of the thermogenic program in brown adipose tissue. Therefore, we wanted to evaluate whether oral linaclotide could also improve DIO mice metabolic phenotype. In this study, we have demonstrated that DIO mice orally treated with linaclotide exhibited a significant reduction of body weight without modifying food intake. Linaclotide exerts its actions through the central nervous system, and more specifically, via Gucy2c receptors located in the mediobasal hypothalamus, leading to the activation of the sympathetic nervous system to trigger the thermogenic activity of brown fat stimulating energy expenditure. These findings indicate for first time that, in addition to its effects at intestinal level to treat irritable bowel syndrome with constipation and chronic constipation, linaclotide also exerts a beneficial effect in whole body metabolism.
Collapse
Affiliation(s)
- Cintia Folgueira
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria Santiago de Compostela, Complejo Hospitalario Universitario Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Francisco Leonardo Torres-Leal
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Department of Biophysics and Physiology, Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Center for Health Sciences, Federal University of Piaui, Teresina, Brazil
| | - Daniel Beiroa
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Verónica Pena-León
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria Santiago de Compostela, Complejo Hospitalario Universitario Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Natália Da Silva Lima
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Edward Milbank
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Omar Al-Massadi
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria Santiago de Compostela, Complejo Hospitalario Universitario Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain,
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain,
- Galician Agency of Innovation, Xunta de Galicia, Santiago de Compostela, Spain,
| |
Collapse
|
20
|
Fernández-Tussy P, Fernández-Ramos D, Lopitz-Otsoa F, Simón J, Barbier-Torres L, Gomez-Santos B, Nuñez-Garcia M, Azkargorta M, Gutiérrez-de Juan V, Serrano-Macia M, Rodríguez-Agudo R, Iruzubieta P, Anguita J, Castro RE, Champagne D, Rincón M, Elortza F, Arslanow A, Krawczyk M, Lammert F, Kirchmeyer M, Behrmann I, Crespo J, Lu SC, Mato JM, Varela-Rey M, Aspichueta P, Delgado TC, Martínez-Chantar ML. miR-873-5p targets mitochondrial GNMT-Complex II interface contributing to non-alcoholic fatty liver disease. Mol Metab 2019; 29:40-54. [PMID: 31668391 PMCID: PMC6728756 DOI: 10.1016/j.molmet.2019.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is a complex pathology in which several dysfunctions, including alterations in metabolic pathways, mitochondrial functionality and unbalanced lipid import/export, lead to lipid accumulation and progression to inflammation and fibrosis. The enzyme glycine N-methyltransferase (GNMT), the most important enzyme implicated in S-adenosylmethionine catabolism in the liver, is downregulated during NAFLD progression. We have studied the mechanism involved in GNMT downregulation by its repressor microRNA miR-873-5p and the metabolic pathways affected in NAFLD as well as the benefit of recovery GNMT expression. METHODS miR-873-5p and GNMT expression were evaluated in liver biopsies of NAFLD/NASH patients. Different in vitro and in vivo NAFLD murine models were used to assess miR-873-5p/GNMT involvement in fatty liver progression through targeting of the miR-873-5p as NAFLD therapy. RESULTS We describe a new function of GNMT as an essential regulator of Complex II activity in the electron transport chain in the mitochondria. In NAFLD, GNMT expression is controlled by miR-873-5p in the hepatocytes, leading to disruptions in mitochondrial functionality in a preclinical murine non-alcoholic steatohepatitis (NASH) model. Upregulation of miR-873-5p is shown in the liver of NAFLD/NASH patients, correlating with hepatic GNMT depletion. Importantly, NASH therapies based on anti-miR-873-5p resolve lipid accumulation, inflammation and fibrosis by enhancing fatty acid β-oxidation in the mitochondria. Therefore, miR-873-5p inhibitor emerges as a potential tool for NASH treatment. CONCLUSION GNMT participates in the regulation of metabolic pathways and mitochondrial functionality through the regulation of Complex II activity in the electron transport chain. In NAFLD, GNMT is repressed by miR-873-5p and its targeting arises as a valuable therapeutic option for treatment.
Collapse
Affiliation(s)
- Pablo Fernández-Tussy
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - David Fernández-Ramos
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Fernando Lopitz-Otsoa
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Jorge Simón
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Lucía Barbier-Torres
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Beatriz Gomez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Bizkaia, Spain; Biocruces Health Research Institute, Barakaldo, Spain.
| | - Maitane Nuñez-Garcia
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Bizkaia, Spain; Biocruces Health Research Institute, Barakaldo, Spain.
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain.
| | - Virginia Gutiérrez-de Juan
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Marina Serrano-Macia
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Rubén Rodríguez-Agudo
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Paula Iruzubieta
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Infection, Immunity and Digestive Pathology Group, Research Institute Marqués de Valdecilla (IDIVAL), Santander, 39008, Spain.
| | - Juan Anguita
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Bizkaia Science and Technology Park, Derio 48160 Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain.
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Devin Champagne
- Department of Medicine, University of Vermont College of Medicine, Burlington, 05405, VT, USA.
| | - Mercedes Rincón
- Department of Medicine, University of Vermont College of Medicine, Burlington, 05405, VT, USA.
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, 48160, Spain.
| | - Anita Arslanow
- Department of Medicine II, Saarland University Medical Center, 66421, Homburg, Germany.
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, 66421, Homburg, Germany.
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, 66421, Homburg, Germany.
| | - Mélanie Kirchmeyer
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, House of Biomedicine II, 4367, Belvaux, Luxembourg.
| | - Iris Behrmann
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, House of Biomedicine II, 4367, Belvaux, Luxembourg.
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Infection, Immunity and Digestive Pathology Group, Research Institute Marqués de Valdecilla (IDIVAL), Santander, 39008, Spain.
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - José M Mato
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Marta Varela-Rey
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Bizkaia, Spain; Biocruces Health Research Institute, Barakaldo, Spain.
| | - Teresa C Delgado
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| | - María L Martínez-Chantar
- Liver disease Laboratory, Liver metabolism Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160, Derio, Bizkaia, Spain.
| |
Collapse
|
21
|
Zheng Y, Qu H, Xiong X, Wang Y, Liu X, Zhang L, Liao X, Liao Q, Sun Z, Ouyang Q, Yang G, Zhu Z, Xu J, Zheng H. Deficiency of Mitochondrial Glycerol 3-Phosphate Dehydrogenase Contributes to Hepatic Steatosis. Hepatology 2019; 70:84-97. [PMID: 30653687 PMCID: PMC6597300 DOI: 10.1002/hep.30507] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/05/2019] [Indexed: 12/25/2022]
Abstract
Mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) is an integral component of the respiratory chain, and recent studies have suggested that it plays an important role in hepatic glucose homeostasis. However, its function in hepatic lipid metabolism is unclear. Here, we identified a role for mGPDH in nonalcoholic fatty liver disease (NAFLD). Specifically, mGPDH expression and activity were lower in fatty livers from patients and mice with NAFLD (ob/ob, high-fat diet [HFD] and db/db). Liver-specific depletion of mGPDH in mice or mGPDH knockdown in cultured hepatocytes exacerbated diet-induced triglyceride accumulation and steatosis through enhanced lipogenesis. RNA-sequencing revealed that mGPDH regulated endoplasmic reticulum (ER)-related proteins and processes. mGPDH deletion exacerbated tunicamycin (ER stress inducer)-induced hepatic steatosis, whereas tauroursodeoxycholic acid (ER stress inhibitor) rescued mGPDH depletion-induced steatosis on an HFD. Moreover, ER stress induced by mGPDH depletion could be abrogated by the intracellular Ca2+ chelator 1,2-bis (2-aminophenoxy) ethane N,N,N´,N´-tetraacetic acid acetoxymethyl ester, mitochondrial permeability transition pore (mPTP) inhibitor cyclosporine A, or cyclophilin-D (Cyp-D) knockdown. mGPDH promoting Cyp-D ubiquitination was also observed. Finally, liver-specific mGPDH overexpression attenuated hepatic steatosis in ob/ob and HFD mice. Conclusion: mGPDH is a pivotal regulator of hepatic lipid metabolism. Its deficiency induces ER stress by suppressing Cyp-D ubiquitination, a key regulator of the mitochondrial Ca2+ conductance channel mPTP, and results in hepatic steatosis. mGPDH may be a potential therapeutic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hua Qu
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xin Xiong
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuren Wang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiufei Liu
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyu Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qian Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zheng Sun
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing Xu
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Correspondence addressed to: Hongting Zheng, M.D., Ph.D., Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China, , Phone: +8602368755709, Fax: +8602368755707
| |
Collapse
|
22
|
Guo HH, Feng CL, Zhang WX, Luo ZG, Zhang HJ, Zhang TT, Ma C, Zhan Y, Li R, Wu S, Abliz Z, Li C, Li XL, Ma XL, Wang LL, Zheng WS, Han YX, Jiang JD. Liver-target nanotechnology facilitates berberine to ameliorate cardio-metabolic diseases. Nat Commun 2019; 10:1981. [PMID: 31040273 PMCID: PMC6491597 DOI: 10.1038/s41467-019-09852-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular and metabolic disease (CMD) remains a main cause of premature death worldwide. Berberine (BBR), a lipid-lowering botanic compound with diversified potency against metabolic disorders, is a promising candidate for ameliorating CMD. The liver is the target of BBR so that liver-site accumulation could be important for fulfilling its therapeutic effect. In this study a rational designed micelle (CTA-Mic) consisting of α-tocopheryl hydrophobic core and on-site detachable polyethylene glycol-thiol shell is developed for effective liver deposition of BBR. The bio-distribution analysis proves that the accumulation of BBR in liver is increased by 248.8% assisted by micelles. Up-regulation of a range of energy-related genes is detectable in the HepG2 cells and in vivo. In the high fat diet-fed mice, BBR-CTA-Mic intervention remarkably improves metabolic profiles and reduces the formation of aortic arch plaque. Our results provide proof-of-concept for a liver-targeting strategy to ameliorate CMD using natural medicines facilitated by Nano-technology.
Collapse
Affiliation(s)
- Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chen-Lin Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Xuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhi-Gang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Juan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ting-Ting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chen Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yun Zhan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Wen-Sheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
23
|
p53 as a double-edged sword in the progression of non-alcoholic fatty liver disease. Life Sci 2018; 215:64-72. [DOI: 10.1016/j.lfs.2018.10.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
|
24
|
Cunarro J, Buque X, Casado S, Lugilde J, Vidal A, Mora A, Sabio G, Nogueiras R, Aspichueta P, Diéguez C, Tovar S. p107 Deficiency Increases Energy Expenditure by Inducing Brown-Fat Thermogenesis and Browning of White Adipose Tissue. Mol Nutr Food Res 2018; 63:e1801096. [PMID: 30383332 DOI: 10.1002/mnfr.201801096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/24/2018] [Indexed: 11/07/2022]
Abstract
SCOPE The tumor suppressor p107, a pocket protein member of the retinoblastoma susceptibility protein family, plays an important role in the cell cycle and cellular adipocyte differentiation. Nonetheless, the mechanism by which it influences whole body Energy homeostasis is unknown. METHODS AND RESULTS The phenotype of p107 knockout (KO) mixed-background C57BL6/129 mice phenotype is studied by focusing on the involvement of white and brown adipose tissue (WAT and BAT) in energy metabolism. It is shown that p107 KO mice are leaner and have high-fat diet resistence. This phenomenon is explained by an increase of energy expenditure. The higher energy expenditure is caused by the activation of thermogenesis and may be mediated by both BAT and the browning of WAT. Consequently, it leads to the resistance of p107 KO mice to high-fat diet effects, prevention of liver steatosis, and improvement of the lipid profile and glucose homeostasis. CONCLUSION These data allowed the unmasking of a mechanism by which a KO of p107 prevents diet-induced obesity by increasing energy expenditure via increased thermogenesis in BAT and browning of WAT, indicating the relevance of p107 as a modulator of metabolic activity of both brown and white adipocytes. Therefore, it can be targeted for the development of new therapies to ameliorate the metabolic syndrome.
Collapse
Affiliation(s)
- Juan Cunarro
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Xabier Buque
- Department of Physiology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
- Biocruces Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Sabela Casado
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Javier Lugilde
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
| | - Anxo Vidal
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
| | - Alfonso Mora
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
| | - Guadalupe Sabio
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
| | - Rubén Nogueiras
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
- Biocruces Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Carlos Diéguez
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Sulay Tovar
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela and Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología, de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| |
Collapse
|
25
|
González-García I, Contreras C, Estévez-Salguero Á, Ruíz-Pino F, Colsh B, Pensado I, Liñares-Pose L, Rial-Pensado E, Martínez de Morentin PB, Fernø J, Diéguez C, Nogueiras R, Le Stunff H, Magnan C, Tena-Sempere M, López M. Estradiol Regulates Energy Balance by Ameliorating Hypothalamic Ceramide-Induced ER Stress. Cell Rep 2018; 25:413-423.e5. [PMID: 30304681 PMCID: PMC6198289 DOI: 10.1016/j.celrep.2018.09.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Compelling evidence has shown that, besides its putative effect on the regulation of the gonadal axis, estradiol (E2) exerts a dichotomic effect on the hypothalamus to regulate food intake and energy expenditure. The anorectic effect of E2 is mainly mediated by its action on the arcuate nucleus (ARC), whereas its effects on brown adipose tissue (BAT) thermogenesis occur in the ventromedial nucleus (VMH). Here, we demonstrate that central E2 decreases hypothalamic ceramide levels and endoplasmic reticulum (ER) stress. Pharmacological or genetic blockade of ceramide synthesis and amelioration of ER stress selectively occurring in the VMH recapitulate the effect of E2, leading to increased BAT thermogenesis, weight loss, and metabolic improvement. These findings demonstrate that E2 regulation of ceramide-induced hypothalamic lipotoxicity and ER stress is an important determinant of energy balance, suggesting that dysregulation of this mechanism may underlie some changes in energy homeostasis seen in females.
Collapse
Affiliation(s)
- Ismael González-García
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Cristina Contreras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Ánxela Estévez-Salguero
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Francisco Ruíz-Pino
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, Córdoba, 14004, Spain
| | - Benoit Colsh
- CEA-Centre d'Etude de Saclay, Laboratoire d'étude du Métabolisme des Médicaments, Gif-sur-Yvette, France
| | - Iván Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Laura Liñares-Pose
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Eva Rial-Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Pablo B Martínez de Morentin
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, 5021, Norway
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Hervé Le Stunff
- Paris-Saclay Institute of Neuroscience, CNRS UMR 9197, Université Paris-Sud, University Paris Saclay, Orsay 91405 Cedex, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75205, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75205, France
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, Córdoba, 14004, Spain; FiDiPro Program, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
26
|
p53 Functions in Adipose Tissue Metabolism and Homeostasis. Int J Mol Sci 2018; 19:ijms19092622. [PMID: 30181511 PMCID: PMC6165290 DOI: 10.3390/ijms19092622] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
Abstract
As a tumor suppressor and the most frequently mutated gene in cancer, p53 is among the best-described molecules in medical research. As cancer is in most cases an age-related disease, it seems paradoxical that p53 is so strongly conserved from early multicellular organisms to humans. A function not directly related to tumor suppression, such as the regulation of metabolism in nontransformed cells, could explain this selective pressure. While this role of p53 in cellular metabolism is gradually emerging, it is imperative to dissect the tissue- and cell-specific actions of p53 and its downstream signaling pathways. In this review, we focus on studies reporting p53’s impact on adipocyte development, function, and maintenance, as well as the causes and consequences of altered p53 levels in white and brown adipose tissue (AT) with respect to systemic energy homeostasis. While whole body p53 knockout mice gain less weight and fat mass under a high-fat diet owing to increased energy expenditure, modifying p53 expression specifically in adipocytes yields more refined insights: (1) p53 is a negative regulator of in vitro adipogenesis; (2) p53 levels in white AT are increased in diet-induced and genetic obesity mouse models and in obese humans; (3) functionally, elevated p53 in white AT increases senescence and chronic inflammation, aggravating systemic insulin resistance; (4) p53 is not required for normal development of brown AT; and (5) when p53 is activated in brown AT in mice fed a high-fat diet, it increases brown AT temperature and brown AT marker gene expression, thereby contributing to reduced fat mass accumulation. In addition, p53 is increasingly being recognized as crucial player in nutrient sensing pathways. Hence, despite existence of contradictory findings and a varying density of evidence, several functions of p53 in adipocytes and ATs have been emerging, positioning p53 as an essential regulatory hub in ATs. Future studies need to make use of more sophisticated in vivo model systems and should identify an AT-specific set of p53 target genes and downstream pathways upon different (nutrient) challenges to identify novel therapeutic targets to curb metabolic diseases.
Collapse
|
27
|
Ye J, Lv L, Wu W, Li Y, Shi D, Fang D, Guo F, Jiang H, Yan R, Ye W, Li L. Butyrate Protects Mice Against Methionine-Choline-Deficient Diet-Induced Non-alcoholic Steatohepatitis by Improving Gut Barrier Function, Attenuating Inflammation and Reducing Endotoxin Levels. Front Microbiol 2018; 9:1967. [PMID: 30186272 PMCID: PMC6111843 DOI: 10.3389/fmicb.2018.01967] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Butyrate exerts protective effects against non-alcoholic steatohepatitis (NASH), but the underlying mechanisms are unclear. We aimed to investigate the role of butyrate-induced gut microbiota and metabolism in NASH development. Sixty-five C57BL/6J mice were divided into four groups (n = 15–17 per group) and were fed either a methionine–choline-sufficient (MCS) diet or methionine–choline-deficient (MCD) diet with or without sodium butyrate (SoB; 0.6 g/kg body weight) supplementation for 6 weeks. Liver injury, systematic inflammation, and gut barrier function were determined. Fecal microbiome and metabolome were analyzed using 16S rRNA deep sequencing and gas chromatography-mass spectrometry (GC-MS). The results showed that butyrate alleviated the MCD diet-induced microbiome dysbiosis, as evidenced by a significantly clustered configuration separate from that of the MCD group and by the depletion of Bilophila and Rikenellaceae and enrichment of promising probiotic genera Akkermansia, Roseburia, Coprococcus, Coprobacillus, Delftia, Sutterella, and Coriobacteriaceae genera. The fecal metabolomic profile was also substantially improved by butyrate; several butyrate-responsive metabolites involved in lipid metabolism and other pathways, such as stearic acid, behenic acid, oleic acid, linoleic acid, squalene, and arachidonic acid, were identified. Correlation analysis of the interaction matrix indicated that the modified gut microbiota and fecal metabolites induced by butyrate were strongly correlated with the alleviation of hepatic injury, fibrosis progression, inflammation, and lipid metabolism and intestinal barrier dysfunction. In conclusion, our results demonstrated that butyrate exerts protective effects against NASH development, and these effects may be driven by the protective gut microbiome and metabolome induced by butyrate. This study thus provides new insights into NASH prevention.
Collapse
Affiliation(s)
- Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Feifei Guo
- Department of Infectious Disease, Shulan Hangzhou Hospital, Zhejiang University, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wanchun Ye
- Department of Chemotherapy 2, Wenzhou Central Hospital, Wenzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
28
|
Labuschagne CF, Zani F, Vousden KH. Control of metabolism by p53 - Cancer and beyond. Biochim Biophys Acta Rev Cancer 2018; 1870:32-42. [PMID: 29883595 PMCID: PMC6102416 DOI: 10.1016/j.bbcan.2018.06.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022]
Abstract
p53 is an important tumour suppressor gene, with loss of p53 contributing to the development of most human cancers. However, the activation of p53 in response to stress signals underpins a role for p53 in diverse aspects of health and disease. Activities of p53 that regulate metabolism can play a role in maintaining homeostasis and protecting cells from damage - so preventing disease development. By contrast, either loss or over-activation of p53 can contribute to numerous metabolic pathologies, including aging, obesity and diabetes.
Collapse
Affiliation(s)
| | - Fabio Zani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
29
|
Genetic Targeting of GRP78 in the VMH Improves Obesity Independently of Food Intake. Genes (Basel) 2018; 9:genes9070357. [PMID: 30018241 PMCID: PMC6070933 DOI: 10.3390/genes9070357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Recent data have demonstrated that the hypothalamic GRP78/BiP (glucose regulated protein 78 kDa/binding immunoglobulin protein) modulates brown adipose tissue (BAT) thermogenesis by acting downstream on AMP-activated protein kinase (AMPK). Herein, we aimed to investigate whether genetic over-expression of GRP78 in the ventromedial nucleus of the hypothalamus (VMH: a key site regulating thermogenesis) could ameliorate very high fat diet (vHFD)-induced obesity. Our data showed that stereotaxic treatment with adenoviruses harboring GRP78 in the VMH reduced hypothalamic endoplasmic reticulum ER stress and reversed vHFD-induced obesity. Herein, we also demonstrated that this body weight decrease was more likely associated with an increased BAT thermogenesis and browning of white adipose tissue (WAT) than to anorexia. Overall, these results indicate that the modulation of GRP78 in the VMH may be a target against obesity.
Collapse
|
30
|
Endoplasmic Reticulum Stress in Metabolic Disorders. Cells 2018; 7:cells7060063. [PMID: 29921793 PMCID: PMC6025008 DOI: 10.3390/cells7060063] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders have become among the most serious threats to human health, leading to severe chronic diseases such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, as well as cardiovascular diseases. Interestingly, despite the fact that each of these diseases has different physiological and clinical symptoms, they appear to share certain pathological traits such as intracellular stress and inflammation induced by metabolic disturbance stemmed from over nutrition frequently aggravated by a modern, sedentary life style. These modern ways of living inundate cells and organs with saturating levels of sugar and fat, leading to glycotoxicity and lipotoxicity that induce intracellular stress signaling ranging from oxidative to ER stress response to cope with the metabolic insults (Mukherjee, et al., 2015). In this review, we discuss the roles played by cellular stress and its responses in shaping metabolic disorders. We have summarized here current mechanistic insights explaining the pathogenesis of these disorders. These are followed by a discussion of the latest therapies targeting the stress response pathways.
Collapse
|
31
|
Krstic J, Galhuber M, Schulz TJ, Schupp M, Prokesch A. p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine. Int J Mol Sci 2018; 19:E921. [PMID: 29558460 PMCID: PMC5877782 DOI: 10.3390/ijms19030921] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehhbrücke, 14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| | - Michael Schupp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany.
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
- BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
32
|
Jiang Y, Xu E, Zhang J, Chen M, Flores E, Chen X. The Rbm38-p63 feedback loop is critical for tumor suppression and longevity. Oncogene 2018. [PMID: 29520104 PMCID: PMC5970038 DOI: 10.1038/s41388-018-0176-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The RNA-binding protein Rbm38 is a target of p63 tumor suppressor and can in-turn repress p63 expression via mRNA stability. Thus, Rbm38 and p63 form a negative feedback loop. To investigate the biological significance of the Rbm38-p63 loop in vivo, a cohort of WT, Rbm38-/-, TAp63+/-, and Rbm38-/-;TAp63+/- mice were generated and monitored throughout their lifespan. While mice deficient in Rbm38 or TAp63 alone died mostly from spontaneous tumors, compound Rbm38-/-;TAp63+/- mice had an extended lifespan along with reduced tumor incidence. We also found that loss-of-Rbm38 markedly decreased the percentage of liver steatosis in TAp63+/- mice. Moreover, we found that Rbm38 deficiency extends the lifespan of tumor-free TAp63+/- mice along with reduced expression of senescence-associated biomarkers. Consistent with this, Rbm38-/-;TAp63+/- MEFs were resistant, whereas Rbm38-/- or TAp63+/- MEFs were prone, to cellular senescence. Importantly, we showed that the levels of inflammatory cytokines (IL17D and Tnfsf15) were significantly reduced by Rbm38 deficiency in senescence-resistant Rbm38-/-;TAp63+/- mouse livers and MEFs. Together, our data suggest that Rbm38 and p63 function as intergenic suppressors in aging and tumorigenesis and that the Rbm38-p63 loop may be explored for enhancing longevity and cancer management.
Collapse
Affiliation(s)
- Yuqian Jiang
- Comparative Oncology Laboratory, University of California at Davis, Davis, CA, USA
| | - Enshun Xu
- Comparative Oncology Laboratory, University of California at Davis, Davis, CA, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, University of California at Davis, Davis, CA, USA.
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elsa Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, University of California at Davis, Davis, CA, USA.
| |
Collapse
|
33
|
Abstract
The chaperone GRP78 (glucose related protein 78), also called BiP (binding immunoglobulin protein) is a key regulator of endoplasmic reticulum (ER) stress. We recently described that over-expression of GRP78 specifically in the ventromedial nucleus of the hypothalamus (VMH) releases hypothalamic ER stress in rodent obese models leading to weight loss, reduced hepatic steatosis and improved insulin and leptin sensitivity. The action of GRP78 is mediated by a feeding-independent mechanism involving increased sympathetic tone, augmented brown adipose tissue (BAT) thermogenesis and induction browning of white adipose tissue (WAT).
Collapse
Affiliation(s)
- Cristina Contreras
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela, -Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Marcos F. Fondevila
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela, -Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela, -Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| |
Collapse
|
34
|
Porteiro B, Fondevila MF, Buque X, Gonzalez-Rellan MJ, Fernandez U, Mora A, Beiroa D, Senra A, Gallego R, Fernø J, López M, Sabio G, Dieguez C, Aspichueta P, Nogueiras R. Pharmacological stimulation of p53 with low-dose doxorubicin ameliorates diet-induced nonalcoholic steatosis and steatohepatitis. Mol Metab 2017; 8:132-143. [PMID: 29290620 PMCID: PMC5985045 DOI: 10.1016/j.molmet.2017.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Objective Recent reports have implicated the p53 tumor suppressor in the regulation of lipid metabolism. We hypothesized that the pharmacological activation of p53 with low-dose doxorubicin, which is widely used to treat several types of cancer, may have beneficial effects on nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Methods We used long-term pharmacological activation of p53 by i.p. or oral administration of low-dose doxorubicin in different animal models of NAFLD (high fat diet containing 45% and 60% kcal fat) and NASH (methionine- and choline-deficient diet and choline deficiency combined with high fat diet). We also administered doxorubicin in mice lacking p53 in the liver and in two human hepatic cells lines (HepG2 and THLE2). Results The attenuation of liver damage was accompanied by the stimulation of fatty acid oxidation and decrease of lipogenesis, inflammation, and ER stress. The effects of doxorubicin were abrogated in mice with liver-specific ablation of p53. Finally, the effects of doxorubicin on lipid metabolism found in animal models were also present in two human hepatic cells lines, in which the drug stimulated fatty acid oxidation and inhibited de novo lipogenesis at doses that did not cause changes in apoptosis or cell viability. Conclusion These data provide new evidence for targeting p53 as a strategy to treat liver disease. Intraperitoneal and oral low-dose doxorubicin ameliorates NAFLD and NASH in animal models. Doxorubicin requires p53 for its hepatic actions. Doxorubin decreases lipid content in human hepatocytes without affecting cell viability and apoptosis.
Collapse
Affiliation(s)
- Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Xabier Buque
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Spain; Biocruces Research Institute, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Daniel Beiroa
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Rosalia Gallego
- Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Johan Fernø
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Spain; Biocruces Research Institute, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
35
|
Nemajerova A, Amelio I, Gebel J, Dötsch V, Melino G, Moll UM. Non-oncogenic roles of TAp73: from multiciliogenesis to metabolism. Cell Death Differ 2017; 25:144-153. [PMID: 29077094 PMCID: PMC5729534 DOI: 10.1038/cdd.2017.178] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023] Open
Abstract
The p53 family of transcription factors (p53, p63 and p73) covers a wide range of functions critical for development, homeostasis and health of mammals across their lifespan. Beside the well-established tumor suppressor role, recent evidence has highlighted novel non-oncogenic functions exerted by p73. In particular, p73 is required for multiciliated cell (MCC) differentiation; MCCs have critical roles in brain and airways to move fluids across epithelial surfaces and to transport germ cells in the reproductive tract. This novel function of p73 provides a unifying cellular mechanism for the disparate inflammatory and immunological phenotypes of p73-deficient mice. Indeed, mice with Trp73 deficiency suffer from hydrocephalus, sterility and chronic respiratory tract infections due to profound defects in ciliogenesis and complete loss of mucociliary clearance since MCCs are essential for cleaning airways from inhaled pollutants, pathogens and allergens. Cross-species genomic analyses and functional rescue experiments identify TAp73 as the master transcriptional integrator of ciliogenesis, upstream of previously known central nodes. In addition, TAp73 shows a significant ability to regulate cellular metabolism and energy production through direct transcriptional regulation of several metabolic enzymes, such as glutaminase-2 and glucose-6 phosphate dehydrogenase. This recently uncovered role of TAp73 in the regulation of cellular metabolism strongly affects oxidative balance, thus potentially influencing all the biological aspects associated with p73 function, including development, homeostasis and cancer. Although through different mechanisms, p63 isoforms also contribute to regulation of cellular metabolism, thus indicating a common route used by all family members to control cell fate. At the structural level, the complexity of p73's function is further enhanced by its ability to form heterotetramers with some p63 isoforms, thus indicating the existence of an intrafamily crosstalk that determines the global outcome of p53 family function. In this review, we have tried to summarize all the recent evidence that have emerged on the novel non-oncogenic roles of p73, in an attempt to provide a unified view of the complex function of this gene within its family.
Collapse
Affiliation(s)
- Alice Nemajerova
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Hodgkin Building, Lancaster Road, PO Box 138, Leicester LE1 9HN, UK
| | - Jakob Gebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Hodgkin Building, Lancaster Road, PO Box 138, Leicester LE1 9HN, UK.,Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
36
|
Ma C, Zhang Q, Greten TF. Nonalcoholic fatty liver disease promotes hepatocellular carcinoma through direct and indirect effects on hepatocytes. FEBS J 2017; 285:752-762. [DOI: 10.1111/febs.14209] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Chi Ma
- GI-Malignancy Section; Thoracic and GI Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | - Qianfei Zhang
- GI-Malignancy Section; Thoracic and GI Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | - Tim F. Greten
- GI-Malignancy Section; Thoracic and GI Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| |
Collapse
|