1
|
Cheng JX, Yuan Y, Ni H, Ao J, Xia Q, Bolarinho R, Ge X. Advanced vibrational microscopes for life science. Nat Methods 2025; 22:912-927. [PMID: 40360912 DOI: 10.1038/s41592-025-02655-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/04/2025] [Indexed: 05/15/2025]
Abstract
Providing molecular fingerprint information, vibrational spectroscopic imaging opens a new window to decipher the function of biomolecules in living systems. While classic vibrational microscopes based on spontaneous Raman scattering or mid-infrared absorption offer rich insights into sample composition, they have very small cross sections or poor spatial resolution. Nonlinear vibrational microscopy, based on coherent Raman scattering or optical photothermal detection of vibrational absorption, overcomes these barriers and enables high-speed and high-sensitivity imaging of chemical bonds in live cells and tissues. Here, we introduce various modalities, including their principles, strengths, weaknesses and data mining methods to the life sciences community. We further provide a guide for prospective users and an outlook on future technological advances.
Collapse
Affiliation(s)
- Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
- Photonics Center, Boston University, Boston, MA, USA.
| | - Yuhao Yuan
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Jianpeng Ao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | | | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
Li S, Li H, Li Y, Zhang Q, Wang S, Lv X, Yan S, Huang Z, Liu X, Zhou Q, Zhang B, Xiao L, Chen Y, Wang Z, Lu W, Shen A, Liu J, Wang P. Photon-counting Raman spectroscopy at a MHz spectral rate for biochemical imaging of an entire organism. Nat Commun 2025; 16:3808. [PMID: 40268912 PMCID: PMC12019549 DOI: 10.1038/s41467-025-59030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Raman spectroscopy, which probes fine molecular vibrations, is crucial for interpreting covalent bonds, chemical compositions, and other molecular dynamics in mixtures via their vibrational fingerprint signatures. However, over the past few decades, longstanding barriers have been encountered in both the sensitivity and speed of Raman spectroscopy, limiting its ability to be extended to broader biochemical applications. Here, we introduce a versatile analytical workhorse, the fiber-array Raman engine (termed FIRE). In FIRE, a distinctive fiber array bundle delays the Raman shifts at a scale of 3-960 ns, and a highly dynamic single-channel photon-counting detector achieves spectral measurements that outperform the best commercial confocal Raman microscope. Crucially, FIRE features a major advantage of nonrepetitive single-shot spectra measurement at a MHz repetition rate with a full Raman span (-300-4300 cm-1) covering the fingerprint, silent, C-H, and O-H regions and therefore represents a major step toward overall improving of sensitivity, speed, and spectral span. We demonstrate full Raman spectral imaging of the metabolic activity of intact Caenorhabditis elegans. FIRE exhibits superior performance to a Raman microscope in all aspects, including autofluorescence suppression, and will elucidate a variety of biochemical applications.
Collapse
Affiliation(s)
- Sicheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- Changping Laboratory, Beijing, China
| | | | - Yiran Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- Changping Laboratory, Beijing, China
| | - Qi Zhang
- Changping Laboratory, Beijing, China
| | - Shuai Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- Changping Laboratory, Beijing, China
| | - Xin Lv
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- Changping Laboratory, Beijing, China
| | - Shuai Yan
- Changping Laboratory, Beijing, China
| | - Zhiliang Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- Changping Laboratory, Beijing, China
| | - Xingbo Liu
- Earthome Technology Inc., Wuhan, Hubei, China
| | - Qipei Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bi Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Long Xiao
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Yage Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China
- Changping Laboratory, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Wanjun Lu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, China.
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan, Hubei, China.
| | - Jianfeng Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ping Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Changping Laboratory, Beijing, China.
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Huaiyin Institute of Technology, Huaian, Jiangsu, China.
| |
Collapse
|
3
|
Bi S, Li Y, Ao J, Liu Z, Weng M, Ji M. On-Chip Stimulated Raman Scattering Imaging and Quantification of Molecular Diffusion in Aqueous Microfluidics. Anal Chem 2025; 97:2052-2061. [PMID: 39838697 DOI: 10.1021/acs.analchem.4c04317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface. SRS imaging of a specific molecule allows us to obtain a high-resolution chemical profile of the diffusion region at varying inspection locations and flow rates, which enables the extraction of diffusion coefficients using the convection-diffusion model. As a proof of concept, we measured diffusion coefficients of molecules including water, protein, and multiple ions, with a sample volume of less than 1 mL and a time cost of less than 10 min. Moreover, we demonstrated a high-resolution three-dimensional (3D) reconstruction of the diffusion patterns in the microfluidic channel. The high-speed microfluidic SRS platform holds the potential for quantitative measurements of molecular diffusion, chemical reaction, and fluidic dynamics at the liquid-liquid interfaces.
Collapse
Affiliation(s)
- Simin Bi
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Yumo Li
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Zhijie Liu
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Meilin Weng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Kumari P, Keck S, Sohn E, Kern J, Raedle M. Advanced Imaging Integration: Multi-Modal Raman Light Sheet Microscopy Combined with Zero-Shot Learning for Denoising and Super-Resolution. SENSORS (BASEL, SWITZERLAND) 2024; 24:7083. [PMID: 39517982 PMCID: PMC11548172 DOI: 10.3390/s24217083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
This study presents an advanced integration of Multi-modal Raman Light Sheet Microscopy with zero-shot learning-based computational methods to significantly enhance the resolution and analysis of complex three-dimensional biological structures, such as 3D cell cultures and spheroids. The Multi-modal Raman Light Sheet Microscopy system incorporates Rayleigh scattering, Raman scattering, and fluorescence detection, enabling comprehensive, marker-free imaging of cellular architecture. These diverse modalities offer detailed spatial and molecular insights into cellular organization and interactions, critical for applications in biomedical research, drug discovery, and histological studies. To improve image quality without altering or introducing new biological information, we apply Zero-Shot Deconvolution Networks (ZS-DeconvNet), a deep-learning-based method that enhances resolution in an unsupervised manner. ZS-DeconvNet significantly refines image clarity and sharpness across multiple microscopy modalities without requiring large, labeled datasets, or introducing artifacts. By combining the strengths of multi-modal light sheet microscopy and ZS-DeconvNet, we achieve improved visualization of subcellular structures, offering clearer and more detailed representations of existing data. This approach holds significant potential for advancing high-resolution imaging in biomedical research and other related fields.
Collapse
Affiliation(s)
- Pooja Kumari
- CeMOS Research and Transfer Center, University of Applied Science, 68163 Mannheim, Germany; (S.K.); (M.R.)
| | - Shaun Keck
- CeMOS Research and Transfer Center, University of Applied Science, 68163 Mannheim, Germany; (S.K.); (M.R.)
| | - Emma Sohn
- Universitätsklinikum Mannheim, Universität Heidelberg, 68167 Mannheim, Germany; (E.S.); (J.K.)
| | - Johann Kern
- Universitätsklinikum Mannheim, Universität Heidelberg, 68167 Mannheim, Germany; (E.S.); (J.K.)
| | - Matthias Raedle
- CeMOS Research and Transfer Center, University of Applied Science, 68163 Mannheim, Germany; (S.K.); (M.R.)
| |
Collapse
|
5
|
Fernández-Galiana Á, Bibikova O, Vilms Pedersen S, Stevens MM. Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210807. [PMID: 37001970 DOI: 10.1002/adma.202210807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Raman spectroscopy is an analytical method based on light-matter interactions that can interrogate the vibrational modes of matter and provide representative molecular fingerprints. Mediated by its label-free, non-invasive nature, and high molecular specificity, Raman-based techniques have become ubiquitous tools for in situ characterization of materials. This review comprehensively describes the theoretical and practical background of Raman spectroscopy and its advanced variants. The numerous facets of material characterization that Raman scattering can reveal, including biomolecular identification, solid-to-solid phase transitions, and spatial mapping of biomolecular species in bioactive materials, are highlighted. The review illustrates the potential of these techniques in the context of active biomedical material design and development by highlighting representative studies from the literature. These studies cover the use of Raman spectroscopy for the characterization of both natural and synthetic biomaterials, including engineered tissue constructs, biopolymer systems, ceramics, and nanoparticle formulations, among others. To increase the accessibility and adoption of these techniques, the present review also provides the reader with practical recommendations on the integration of Raman techniques into the experimental laboratory toolbox. Finally, perspectives on how recent developments in plasmon- and coherently-enhanced Raman spectroscopy can propel Raman from underutilized to critical for biomaterial development are provided.
Collapse
Affiliation(s)
- Álvaro Fernández-Galiana
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Olga Bibikova
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Simon Vilms Pedersen
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
6
|
Stepula E, Walther AR, Jensen M, Mehrotra DR, Yuan MH, Pedersen SV, Kumar V, Gentleman E, Albro MB, Hedegaard MAB, Bergholt MS. Label-free 3D molecular imaging of living tissues using Raman spectral projection tomography. Nat Commun 2024; 15:7717. [PMID: 39251593 PMCID: PMC11384735 DOI: 10.1038/s41467-024-51616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The ability to image tissues in three dimensions (3D) with label-free molecular contrast at the mesoscale would be a valuable capability in biology and biomedicine. Here, we introduce Raman spectral projection tomography (RSPT) for volumetric molecular imaging with optical sub-millimeter spatial resolution. We have developed a RSPT imaging instrument capable of providing 3D molecular contrast in transparent and semi-transparent samples. We also created a computational pipeline for multivariate reconstruction to extract label-free spatial molecular information from Raman projection data. Using these tools, we demonstrate imaging and visualization of phantoms of various complex shapes with label-free molecular contrast. Finally, we apply RSPT as a tool for imaging of molecular gradients and extracellular matrix heterogeneities in fixed and living tissue-engineered constructs and explanted native cartilage tissues. We show that there exists a favorable balance wherein employing Raman spectroscopy, with its advantages in live cell imaging and label-free molecular contrast, outweighs the reduction in imaging resolution and blurring caused by diffuse photon propagation. Thus, RSPT imaging opens new possibilities for label-free molecular monitoring of tissues.
Collapse
Affiliation(s)
- Elzbieta Stepula
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
| | - Anders R Walther
- SDU Chemical Engineering, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| | - Magnus Jensen
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
| | - Dev R Mehrotra
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Mu H Yuan
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
| | - Simon V Pedersen
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense, Denmark
| | - Vishal Kumar
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
| | - Eileen Gentleman
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Michael B Albro
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Martin A B Hedegaard
- SDU Chemical Engineering, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.
| | - Mads S Bergholt
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK.
| |
Collapse
|
7
|
Wang X, Yan T, Wang L, Wang N, Yang X, Wang X, Cai H, Yuan Z, Ma X, Chen X. Ultra-low-cost and high-fidelity NIR-II confocal laser scanning microscope with Bessel beam excitation and SiPM detection. BIOMEDICAL OPTICS EXPRESS 2024; 15:4786-4794. [PMID: 39346982 PMCID: PMC11427194 DOI: 10.1364/boe.531266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 10/01/2024]
Abstract
Confocal laser scanning microscopy (CLSM) is one of the most important imaging tools in the biomedical field, and near-infrared-II (NIR-II, 900-1700nm) fluorescence imaging technology has also made fruitful research progress in deep imaging in recent years. The NIR-II based CLSM has problems such as an expensive detector and reduced image resolution caused by long wavelength excitation. Here, by simultaneously using a low-cost silicon photomultiplier (SiPM) as a detector and a Bessel beam as an excitation, we developed an ultra-low-cost and high-fidelity NIR-II confocal laser scanning microscope. The use of SiPM reduces the cost of the NIR-II fluorescence detection module in CLSM, while enabling the detection of ultra-broadband fluorescence signals spanning visible to NIR-II regions. The introduction of the Bessel beam compensates to some extent for the weakening of spatial resolution caused by the increase in the wavelength of light in the NIR region. Experimental results show that the use of the Bessel beam can improve the resolution by 12% when observing thin samples. With the increase of sample thickness, the imaging resolution of the Bessel beam at NIR-II wavelengths is better than that of the Gaussian beam at NIR-I wavelengths at the penetrable depth of the NIR-I light. At deeper depths, the imaging resolution and imaging depth of Bessel beam CLSM is superior to Gaussian beam CLSM at the same excitation power.
Collapse
Affiliation(s)
- Xinyu Wang
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Tianyu Yan
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Lin Wang
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
| | - Nan Wang
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiaoli Yang
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 150061, China
| | - Xiaodong Wang
- Shaanxi Institute of Medical Device Quality Inspection, Xi’an, Shaanxi 712046, China
| | - Hu Cai
- Shaanxi Institute of Medical Device Quality Inspection, Xi’an, Shaanxi 712046, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, Shandong 150061, China
| | - Xueli Chen
- Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education & Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| |
Collapse
|
8
|
Lin S, Gong L, Huang Z. Time-of-flight resolved stimulated Raman scattering microscopy using counter-propagating ultraslow Bessel light bullets generation. LIGHT, SCIENCE & APPLICATIONS 2024; 13:148. [PMID: 38951517 PMCID: PMC11217417 DOI: 10.1038/s41377-024-01498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
We present a novel time-of-flight resolved Bessel light bullet-enabled stimulated Raman scattering (B2-SRS) microscopy for deeper tissue 3D chemical imaging with high resolution without a need for mechanical z-scanning. To accomplish the tasks, we conceive a unique method to enable optical sectioning by generating the counter-propagating pump and Stokes Bessel light bullets in the sample, in which the group velocities of the Bessel light bullets are made ultraslow (e.g., vg ≈ 0.1c) and tunable by introducing programmable angular dispersions with a spatial light modulator. We theoretically analyze the working principle of the collinear multicolor Bessel light bullet generations and velocity controls with the relative time-of-flight resolved detection for SRS 3D deep tissue imaging. We have also built the B2-SRS imaging system and present the first demonstration of B2-SRS microscopy with Bessel light bullets for 3D chemical imaging in a variety of samples (e.g., polymer bead phantoms, biological samples such as spring onion tissue and porcine brain) with high resolution. The B2-SRS technique provides a > 2-fold improvement in imaging depth in porcine brain tissue compared to conventional SRS microscopy. The method of optical sectioning in tissue using counter-propagating ultraslow Bessel light bullets developed in B2-SRS is generic and easy to perform and can be readily extended to other nonlinear optical imaging modalities to advance 3D microscopic imaging in biological and biomedical systems and beyond.
Collapse
Affiliation(s)
- Shulang Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Li Gong
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
9
|
Ma L, Luo K, Liu Z, Ji M. Stain-Free Histopathology with Stimulated Raman Scattering Microscopy. Anal Chem 2024; 96:7907-7925. [PMID: 38713830 DOI: 10.1021/acs.analchem.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Affiliation(s)
- Liyang Ma
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Kuan Luo
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Zhijie Liu
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Song K, Bian Y, Zeng F, Liu Z, Han S, Li J, Tian J, Li K, Shi X, Xiao L. Photon-level single-pixel 3D tomography with masked attention network. OPTICS EXPRESS 2024; 32:4387-4399. [PMID: 38297641 DOI: 10.1364/oe.510706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Tomography plays an important role in characterizing the three-dimensional structure of samples within specialized scenarios. In the paper, a masked attention network is presented to eliminate interference from different layers of the sample, substantially enhancing the resolution for photon-level single-pixel tomographic imaging. The simulation and experimental results have demonstrated that the axial resolution and lateral resolution of the imaging system can be improved by about 3 and 2 times respectively, with a sampling rate of 3.0 %. The scheme is expected to be seamlessly integrated into various tomography systems, which is conducive to promoting the tomographic imaging for biology, medicine, and materials science.
Collapse
|
11
|
Wang N, Zhang C, Wei X, Yan T, Zhou W, Zhang J, Kang H, Yuan Z, Chen X. Harnessing the power of optical microscopy for visualization and analysis of histopathological images. BIOMEDICAL OPTICS EXPRESS 2023; 14:5451-5465. [PMID: 37854561 PMCID: PMC10581782 DOI: 10.1364/boe.501893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023]
Abstract
Histopathology is the foundation and gold standard for identifying diseases, and precise quantification of histopathological images can provide the pathologist with objective clues to make a more convincing diagnosis. Optical microscopy (OM), an important branch of optical imaging technology that provides high-resolution images of tissue cytology and structural morphology, has been used in the diagnosis of histopathology and evolved into a new disciplinary direction of optical microscopic histopathology (OMH). There are a number of ex-vivo studies providing applicability of different OMH approaches, and a transfer of these techniques toward in vivo diagnosis is currently in progress. Furthermore, combined with advanced artificial intelligence algorithms, OMH allows for improved diagnostic reliability and convenience due to the complementarity of retrieval information. In this review, we cover recent advances in OMH, including the exploration of new techniques in OMH as well as their applications, and look ahead to new challenges in OMH. These typical application examples well demonstrate the application potential and clinical value of OMH techniques in histopathological diagnosis.
Collapse
Affiliation(s)
- Nan Wang
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Chang Zhang
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
| | - Xinyu Wei
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
| | - Tianyu Yan
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Wangting Zhou
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Jiaojiao Zhang
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Huan Kang
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Xueli Chen
- Center for Biomedical-photonics and Molecular Imaging, Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
- Inovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| |
Collapse
|
12
|
Pang K, Dong S, Zhu Y, Zhu X, Zhou Q, Gu B, Jin W, Zhang R, Fu Y, Yu B, Sun D, Duanmu Z, Wei X. Advanced flow cytometry for biomedical applications. JOURNAL OF BIOPHOTONICS 2023; 16:e202300135. [PMID: 37263969 DOI: 10.1002/jbio.202300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Flow cytometry (FC) is a versatile tool with excellent capabilities to detect and measure multiple characteristics of a population of cells or particles. Notable advancements in in vivo photoacoustic FC, coherent Raman FC, microfluidic FC, and so on, have been achieved in the last two decades, which endows FC with new functions and expands its applications in basic research and clinical practice. Advanced FC broadens the tools available to researchers to conduct research involving cancer detection, microbiology (COVID-19, HIV, bacteria, etc.), and nucleic acid analysis. This review presents an overall picture of advanced flow cytometers and provides not only a clear understanding of their mechanisms but also new insights into their practical applications. We identify the latest trends in this area and aim to raise awareness of advanced techniques of FC. We hope this review expands the applications of FC and accelerates its clinical translation.
Collapse
Affiliation(s)
- Kai Pang
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Sihan Dong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuxi Zhu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xi Zhu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Quanyu Zhou
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Jin
- International Cancer Institute, Peking University, Beijing, China
| | - Rui Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuting Fu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Bingchen Yu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Da Sun
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Zheng Duanmu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xunbin Wei
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
13
|
Jia D, Zhang Y, Yang Q, Xue Y, Tan Y, Guo Z, Zhang M, Tian L, Cheng JX. 3D Chemical Imaging by Fluorescence-detected Mid-Infrared Photothermal Fourier Light Field Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:260-267. [PMID: 37388959 PMCID: PMC10302888 DOI: 10.1021/cbmi.3c00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 07/01/2023]
Abstract
Three-dimensional molecular imaging of living organisms and cells plays a significant role in modern biology. Yet, current volumetric imaging modalities are largely fluorescence-based and thus lack chemical content information. Mid-infrared photothermal microscopy as a chemical imaging technology provides infrared spectroscopic information at submicrometer spatial resolution. Here, by harnessing thermosensitive fluorescent dyes to sense the mid-infrared photothermal effect, we demonstrate 3D fluorescence-detected mid-infrared photothermal Fourier light field (FMIP-FLF) microscopy at the speed of 8 volumes per second and submicron spatial resolution. Protein contents in bacteria and lipid droplets in living pancreatic cancer cells are visualized. Altered lipid metabolism in drug-resistant pancreatic cancer cells is observed with the FMIP-FLF microscope.
Collapse
Affiliation(s)
- Danchen Jia
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yi Zhang
- Department
of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Qianwan Yang
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yujia Xue
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yuying Tan
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Zhongyue Guo
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Meng Zhang
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Lei Tian
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
14
|
Benito-Kaesbach A, Amigo JM, Izagirre U, Garcia-Velasco N, Arévalo L, Seifert A, Castro K. Misinterpretation in microplastic detection in biological tissues: When 2D imaging is not enough. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162810. [PMID: 36921855 DOI: 10.1016/j.scitotenv.2023.162810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The presence of microplastics in the food chain is a public concern worldwide, and its analysis is an analytical challenge. In our research, we apply Raman imaging to study the presence of 1 μm polystyrene microplastics in cryosections of Mytilus galloprovincialis due to its wide geographic distribution, widespread occurrence in the food web, and general high presence in the environment. Ingested microplastics are accumulated in the digestive tract, but a large number can also be rapidly eliminated. Some authors state that the translocation of microplastics to the epithelial cells is possible, increasing the risk of microplastics transmission along the food chain. However, as seen in our study, a surface imaging approach (2D) is probably not enough to confirm the internalization of particles and avoid misinterpretation. In fact, while some microplastic particles were detected in the epithelium by 2D Raman imaging, further 3D Raman imaging analysis demonstrated that those particles were dragged from the lumens to the epithelium during sample preparation due to the blade drag effect of the cryotome, and subsequently located on the surface of the analyzed cryosection, discarding the translocation to the epithelial cells. This effect can also happen when the samples are fortuitously contaminated during sample preparation. Several research articles that use similar analytical techniques have shown the presence of microplastics in different types of tissue. It is not our intention to put such results in doubt, but the present work points out the necessity of appropriate three-dimensional analytical methods including data interpretation and the need to go a step further than just surface imaging analysis.
Collapse
Affiliation(s)
- Alba Benito-Kaesbach
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Jose Manuel Amigo
- IKERBASQUE, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Spain; IBeA Research Group, Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Urtzi Izagirre
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Nerea Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Laura Arévalo
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastian, Spain
| | - Andreas Seifert
- IKERBASQUE, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Spain; CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastian, Spain
| | - Kepa Castro
- IBeA Research Group, Analytical Chemistry Department, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain.
| |
Collapse
|
15
|
Wang N, Wang X, Yan T, Xie H, Wang L, Ren F, Chen D, Zhang D, Zeng Q, Zhu S, Chen X. Label-free structural and functional volumetric imaging by dual-modality optical-Raman projection tomography. SCIENCE ADVANCES 2023; 9:eadf3504. [PMID: 36961894 PMCID: PMC10038343 DOI: 10.1126/sciadv.adf3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Mesoscale volumetric imaging is of great importance for the study of bio-organisms. Among others, optical projection tomography provides unprecedented structural details of specimens, but it requires fluorescence label for chemical targeting. Raman spectroscopic imaging is able to identify chemical components in a label-free manner but lacks microstructure. Here, we present a dual-modality optical-Raman projection tomography (ORPT) technology, which enables label-free three-dimensional imaging of microstructures and components of millimeter-sized samples with a micron-level spatial resolution on the same device. We validate the feasibility of our ORPT system using images of polystyrene beads in a volume, followed by detecting biomolecules of zebrafish and Arabidopsis, demonstrating that fused three-dimensional images of the microstructure and molecular components of bio-samples could be achieved. Last, we observe the fat body of Drosophila melanogaster at different developmental stages. Our proposed technology enables bimodal label-free volumetric imaging of the structure and function of biomolecules in a large sample.
Collapse
Affiliation(s)
- Nan Wang
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Xinyu Wang
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Tianyu Yan
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Hui Xie
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Lin Wang
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
| | - Feng Ren
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
| | - Dongjie Zhang
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Qi Zeng
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
| | - Shouping Zhu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
| | - Xueli Chen
- Biomedical Photonics and Molecular Imaging Laboratory, School of Life Science and Technology, Xidian University, and Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 51055, China
| |
Collapse
|
16
|
Li R, Lan R, Dong D, Yang H, Shi K. Bessel Beam Coherent Anti-Stokes Raman Scattering Spectroscopy for Turbulent Flow Diagnosis. APPLIED SPECTROSCOPY 2023; 77:303-307. [PMID: 36241612 DOI: 10.1177/00037028221136124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Coherent anti-Stokes Raman scattering (CARS) spectroscopy plays an important role in chemical analysis for transient flow dynamics. Due to the turbulent ambient conditions, the CARS spectrum often suffers from a poor signal-to-noise ratio (SNR) and cannot provide a convincing measurement. Here, we report on a CARS spectroscopic method using a Bessel beam to enhance the spectral fidelity and SNR in a quasi-turbulent environment. Compared with traditional CARS, the measurement accuracy is significantly improved by taking advantage of the anti-scattering and self-healing characteristics of the Bessel beam. Our preliminary results indicate that Bessel beam CARS could be a promising method for high precision turbulent flow measurement fields.
Collapse
Affiliation(s)
- Runfeng Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, 12465Peking University, Beijing, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
| | - Ruijun Lan
- School of Physics and Electronic Information, 12682Yantai University, Yantai, China
| | - Dashan Dong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, 12465Peking University, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, 12465Peking University, Beijing, China
- 12465Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| | - Kebin Shi
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, 12465Peking University, Beijing, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
- 12465Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| |
Collapse
|
17
|
Hsu FC, Lin CY, Hu YY, Hwu YK, Chiang AS, Chen SJ. Light-field microscopy with temporal focusing multiphoton illumination for scanless volumetric bioimaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:6610-6620. [PMID: 36589593 PMCID: PMC9774856 DOI: 10.1364/boe.473807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
A temporal focusing multiphoton illumination (TFMI) method is proposed for achieving selective volume illumination (SVI) (i.e., illuminating only the volume of interest) in light-field microscopy (LFM). The proposed method minimizes the background noise of the LFM images and enhances the contrast, and thus improves the imaging quality. Three-dimensional (3D) volumetric imaging is achieved by reconstructing the LFM images using a phase-space deconvolution algorithm. The experimental results obtained using 100-nm fluorescent beads show that the proposed TFMI-LFM system achieves lateral and axial resolutions of 1.2 µm and 1.1 µm, respectively, at the focal plane. Furthermore, the TFMI-LFM system enables 3D images of the single lobe of the drosophila mushroom body with GFP biomarker (OK-107) to be reconstructed in a one-snapshot record.
Collapse
Affiliation(s)
- Feng-Chun Hsu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 112, Taiwan
| | - Chun-Yu Lin
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 112, Taiwan
| | - Yvonne Yuling Hu
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan
| | - Yeu-kuang Hwu
- Institute of Physics, Academia Sinica, Taipei 115, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 112, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300, Taiwan
| |
Collapse
|
18
|
Yan T, Wang X, Liu S, Fan D, Xu X, Zeng Q, Xie H, Yang X, Zhu S, Ma X, Yuan Z, Chen X. Confocal Laser Scanning Microscopy Based on a Silicon Photomultiplier for Multicolor In Vivo Imaging in Near-Infrared Regions I and II. SMALL METHODS 2022; 6:e2201105. [PMID: 36351753 DOI: 10.1002/smtd.202201105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Confocal laser scanning microscopy (CLSM) is expected to exhibit a better imaging performance in the second near-infrared (NIR-II) windows with weak tissue scattering and autofluorescence. However, the indium gallium arsenide (InGaAs) detectors currently used for imaging in the NIR-II region are prohibitively expensive, hampering its extensive biomedical applications. In this study, a novel NIR-II CLSM system is developed by using the inexpensive silicon photomultiplier (SiPM) that can perform the multicolor biological imaging in vivo. Using IR-780 iodide as the contrast agent, the NIR-II imaging capability of constructed CLSM is inspected, demonstrating a spatial resolution of 1.68 µm (close to the diffraction limit) and a fluorophore detection sensitivity as low as 100 nm. In particular, it is discovered that the multicolor imaging performance in both NIR-I and NIR-II windows is comparable to those from multialkali and InGaAs photomultiplier tubes. In addition, 3D NIR-II CLSM is also conducted for in vivo imaging of the vascular structure in mouse ear and subcutaneous tumors. To the best of authors' knowledge, this is the first time that a low-cost detector based on a SiPM has been used for microscopic imaging of trailing fluorescence signals in the NIR-II region of an NIR fluorescent probe.
Collapse
Affiliation(s)
- Tianyu Yan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xinyu Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Siting Liu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Dawei Fan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xinyi Xu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Qi Zeng
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Hui Xie
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xiaoli Yang
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Shouping Zhu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 51055, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Xueli Chen
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 51055, China
| |
Collapse
|
19
|
Lin P, Li C, Flores-Valle A, Wang Z, Zhang M, Cheng R, Cheng JX. Tilt-angle stimulated Raman projection tomography. OPTICS EXPRESS 2022; 30:37112-37123. [PMID: 36258628 PMCID: PMC9662602 DOI: 10.1364/oe.470527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/02/2023]
Abstract
Stimulated Raman projection tomography is a label-free volumetric chemical imaging technology allowing three-dimensional (3D) reconstruction of chemical distribution in a biological sample from the angle-dependent stimulated Raman scattering projection images. However, the projection image acquisition process requires rotating the sample contained in a capillary glass held by a complicated sample rotation stage, limiting the volumetric imaging speed, and inhibiting the study of living samples. Here, we report a tilt-angle stimulated Raman projection tomography (TSPRT) system which acquires angle-dependent projection images by utilizing tilt-angle beams to image the sample from different azimuth angles sequentially. The TSRPT system, which is free of sample rotation, enables rapid scanning of different views by a tailor-designed four-galvo-mirror scanning system. We present the design of the optical system, the theory, and calibration procedure for chemical tomographic reconstruction. 3D vibrational images of polystyrene beads and C. elegans are demonstrated in the C-H vibrational region.
Collapse
Affiliation(s)
- Peng Lin
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
| | - Chuan Li
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
| | - Andres Flores-Valle
- Max Planck Institute for Neurobiology of Behavior–caesar (MPINB), Bonn, Germany, Bonn 53175, Germany
| | - Zian Wang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston University, MA 02215, USA
| | - Meng Zhang
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
| | - Ran Cheng
- Department of Chemistry,
Boston University, 590 Commonwealth Ave, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston University, MA 02215, USA
- Department of Chemistry,
Boston University, 590 Commonwealth Ave, Boston University, Boston, MA 02215, USA
- Photonics Center,
Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
| |
Collapse
|
20
|
Shi L, Jiang Y, Zheng N, Cheng JX, Yang C. High-precision neural stimulation through optoacoustic emitters. NEUROPHOTONICS 2022; 9:032207. [PMID: 35355658 PMCID: PMC8941197 DOI: 10.1117/1.nph.9.3.032207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/25/2022] [Indexed: 05/03/2023]
Abstract
Neuromodulation poses an invaluable role in deciphering neural circuits and exploring clinical treatment of neurological diseases. Optoacoustic neuromodulation is an emerging modality benefiting from the merits of ultrasound with high penetration depth as well as the merits of photons with high spatial precision. We summarize recent development in a variety of optoacoustic platforms for neural modulation, including fiber, film, and nanotransducer-based devices, highlighting the key advantages of each platform. The possible mechanisms and main barriers for optoacoustics as a viable neuromodulation tool are discussed. Future directions in fundamental and translational research are proposed.
Collapse
Affiliation(s)
- Linli Shi
- Boston University, Department of Chemistry, Boston, Massachusetts, United States
| | - Ying Jiang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Nan Zheng
- Boston University, Division of Materials Science and Engineering, Boston, Massachusetts, United States
| | - Ji-Xin Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Address all correspondence to Chen Yang, ; Ji-Xin Cheng,
| | - Chen Yang
- Boston University, Department of Chemistry, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Address all correspondence to Chen Yang, ; Ji-Xin Cheng,
| |
Collapse
|
21
|
Wang N, Ren F, Li L, Wang H, Wang L, Zeng Q, Song Y, Zeng T, Zhu S, Chen X. Quantitative chemical sensing of drugs in scattering media with Bessel beam Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:2488-2502. [PMID: 35519250 PMCID: PMC9045933 DOI: 10.1364/boe.455666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 06/01/2023]
Abstract
Scattering can seriously affect the highly sensitive detection and quantitative analysis of chemical substances in scattering media and becomes a significant challenge for in vivo application of Raman spectroscopy. In this study, we demonstrated a proof of concept for using the self-reconstructing Bessel beam for Raman spectroscopic sensing of the chemicals in the handmade scattering media and biological tissue slices. The homebuilt Bessel beam Raman spectroscopy (BRS) was capable of accurately detecting the Raman spectra of the chemicals buried in the scattering media, and had a superiority in quantitative analysis. The feasibility of the developed technique was verified by detecting the Raman spectra of pure samples in air. Compared with the spectra acquired by the Gaussian beam Raman spectroscope, the performance of the BRS system in terms of Raman spectrum detection and Raman peak recognition was confirmed. Subsequently, by employing the technique for the detection of acetaminophen buried in the scattering media, the application of the new technology in detecting and quantitating the chemicals in the scattering media were underlined, offering greater detection depth and better linear quantification capability than the conventional Gaussian beam Raman spectroscopy. Finally, we explored the potential of the BRS system for chemical sensing of acetaminophen in biological tissue slices, indicating a significant development towards the evaluation of drug in vivo.
Collapse
Affiliation(s)
- Nan Wang
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
- Equal contributors
| | - Feng Ren
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
- Equal contributors
| | - Li Li
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
| | - Haoyu Wang
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
| | - Lin Wang
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
| | - Qi Zeng
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shouping Zhu
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
| | - Xueli Chen
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, Xidian University, Xi’an, Shaanxi 710126, China
| |
Collapse
|
22
|
Wang H, Wang N, Xie H, Wang L, Zhou W, Yang D, Cao X, Zhu S, Liang J, Chen X. Two-stage deep learning network-based few-view image reconstruction for parallel-beam projection tomography. Quant Imaging Med Surg 2022; 12:2535-2551. [PMID: 35371942 PMCID: PMC8923870 DOI: 10.21037/qims-21-778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/20/2021] [Indexed: 08/30/2023]
Abstract
BACKGROUND Projection tomography (PT) is a very important and valuable method for fast volumetric imaging with isotropic spatial resolution. Sparse-view or limited-angle reconstruction-based PT can greatly reduce data acquisition time, lower radiation doses, and simplify sample fixation modes. However, few techniques can currently achieve image reconstruction based on few-view projection data, which is especially important for in vivo PT in living organisms. METHODS A 2-stage deep learning network (TSDLN)-based framework was proposed for parallel-beam PT reconstructions using few-view projections. The framework is composed of a reconstruction network (R-net) and a correction network (C-net). The R-net is a generative adversarial network (GAN) used to complete image information with direct back-projection (BP) of a sparse signal, bringing the reconstructed image close to reconstruction results obtained from fully projected data. The C-net is a U-net array that denoises the compensation result to obtain a high-quality reconstructed image. RESULTS The accuracy and feasibility of the proposed TSDLN-based framework in few-view projection-based reconstruction were first evaluated with simulations, using images from the DeepLesion public dataset. The framework exhibited better reconstruction performance than traditional analytic reconstruction algorithms and iterative algorithms, especially in cases using sparse-view projection images. For example, with as few as two projections, the TSDLN-based framework reconstructed high-quality images very close to the original image, with structural similarities greater than 0.8. By using previously acquired optical PT (OPT) data in the TSDLN-based framework trained on computed tomography (CT) data, we further exemplified the migration capabilities of the TSDLN-based framework. The results showed that when the number of projections was reduced to 5, the contours and distribution information of the samples in question could still be seen in the reconstructed images. CONCLUSIONS The simulations and experimental results showed that the TSDLN-based framework has strong reconstruction abilities using few-view projection images, and has great potential in the application of in vivo PT.
Collapse
Affiliation(s)
- Huiyuan Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-scale Life Information, Xi’an, China
| | - Nan Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-scale Life Information, Xi’an, China
| | - Hui Xie
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-scale Life Information, Xi’an, China
| | - Lin Wang
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China
| | - Wangting Zhou
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-scale Life Information, Xi’an, China
| | - Defu Yang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Xu Cao
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-scale Life Information, Xi’an, China
| | - Shouping Zhu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-scale Life Information, Xi’an, China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Xi’an, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-scale Life Information, Xi’an, China
| |
Collapse
|
23
|
Zeng Q, Cao X, Feng J, Shan H, Chen X. Editorial: Imaging Technology in Oncology Pharmacological Research. Front Pharmacol 2021; 12:711387. [PMID: 34366866 PMCID: PMC8342990 DOI: 10.3389/fphar.2021.711387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Jinchao Feng
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Hong Shan
- Department of Interventional Medicine, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
24
|
Zhang C, Aldana-Mendoza JA. Coherent Raman scattering microscopy for chemical imaging of biological systems. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/abfd09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Coherent Raman scattering (CRS) processes, including both the coherent anti-Stokes Raman scattering and stimulated Raman scattering, have been utilized in state-of-the-art microscopy platforms for chemical imaging of biological samples. The key advantage of CRS microscopy over fluorescence microscopy is label-free, which is an attractive characteristic for modern biological and medical sciences. Besides, CRS has other advantages such as higher selectivity to metabolites, no photobleaching, and narrow peak width. These features have brought fast-growing attention to CRS microscopy in biological research. In this review article, we will first briefly introduce the history of CRS microscopy, and then explain the theoretical background of the CRS processes in detail using the classical approach. Next, we will cover major instrumentation techniques of CRS microscopy. Finally, we will enumerate examples of recent applications of CRS imaging in biological and medical sciences.
Collapse
|
25
|
Gala de Pablo J, Lindley M, Hiramatsu K, Goda K. High-Throughput Raman Flow Cytometry and Beyond. Acc Chem Res 2021; 54:2132-2143. [PMID: 33788539 DOI: 10.1021/acs.accounts.1c00001] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flow cytometry is a powerful tool with applications in diverse fields such as microbiology, immunology, virology, cancer biology, stem cell biology, and metabolic engineering. It rapidly counts and characterizes large heterogeneous populations of cells in suspension (e.g., blood cells, stem cells, cancer cells, and microorganisms) and dissociated solid tissues (e.g., lymph nodes, spleen, and solid tumors) with typical throughputs of 1,000-100,000 events per second (eps). By measuring cell size, cell granularity, and the expression of cell surface and intracellular molecules, it provides systematic insights into biological processes. Flow cytometers may also include cell sorting capabilities to enable subsequent additional analysis of the sorted sample (e.g., electron microscopy and DNA/RNA sequencing), cloning, and directed evolution. Unfortunately, traditional flow cytometry has several critical limitations as it mainly relies on fluorescent labeling for cellular phenotyping, which is an indirect measure of intracellular molecules and surface antigens. Furthermore, it often requires time-consuming preparation protocols and is incompatible with cell therapy. To overcome these difficulties, a different type of flow cytometry based on direct measurements of intracellular molecules by Raman spectroscopy, or "Raman flow cytometry" for short, has emerged. Raman flow cytometry obtains a chemical fingerprint of the cell in a nondestructive manner, allowing for single-cell metabolic phenotyping. However, its slow signal acquisition due to the weak light-molecule interaction of spontaneous Raman scattering prevents the throughput necessary to interrogate large cell populations in reasonable time frames, resulting in throughputs of about 1 eps. The remedy to this throughput limit lies in coherent Raman scattering methods such as stimulated Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS), which offer a significantly enhanced light-sample interaction and hence enable high-throughput Raman flow cytometry, Raman imaging flow cytometry, and even Raman image-activated cell sorting (RIACS). In this Account, we outline recent advances, technical challenges, and emerging opportunities of coherent Raman flow cytometry. First, we review the principles of various types of SRS and CARS and introduce several techniques of coherent Raman flow cytometry such as CARS, multiplex CARS, Fourier-transform CARS, SRS, SRS imaging flow cytometry, and RIACS. Next, we discuss a unique set of applications enabled by coherent Raman flow cytometry, from microbiology and lipid biology to cancer detection and cell therapy. Finally, we describe future opportunities and challenges of coherent Raman flow cytometry including increasing sensitivity and throughput, integration with droplet microfluidics, utilizing machine learning techniques, or achieving in vivo flow cytometry. This Account summarizes the growing field of high-throughput Raman flow cytometry and the bright future it can bring.
Collapse
Affiliation(s)
- Julia Gala de Pablo
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Matthew Lindley
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
- Research Center for Spectrochemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Department of Bioengineering, University of California, 410 Westwood Plaza, Los Angeles, California 90095 United States
- Institute of Technological Sciences, Wuhan University, Wuchang District, Wuhan 430072, Hubei, China
| |
Collapse
|
26
|
Li C, Ding C, Li M, Rong J, Florian H, Simpson G. Depth-of-field extension in optical imaging for rapid crystal screening. Acta Crystallogr D Struct Biol 2021; 77:463-470. [PMID: 33825707 PMCID: PMC8025887 DOI: 10.1107/s2059798321000097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
The depth of field (DoF) was extended 2.8-fold to achieve rapid crystal screening by retrofitting a custom-designed micro-retarder array (µRA) in the optical beam path of a nonlinear optical microscope. The merits of the proposed strategy for DoF enhancement were assessed in applications of second-harmonic generation imaging of protein crystals. It was found that DoF extension increased the number of crystals detected while simultaneously reducing the number of `z-slices' required for screening. Experimental measurements of the wavelength-dependence of the extended DoF were in excellent agreement with theoretical predictions. These results provide a simple and broadly applicable approach to increase the throughput of existing nonlinear optical imaging methods for protein crystal screening.
Collapse
Affiliation(s)
- Chen Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Changqin Ding
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Minghe Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Jiayue Rong
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Hilary Florian
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Garth Simpson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
27
|
Huang L, Chen H, Luo Y, Rivenson Y, Ozcan A. Recurrent neural network-based volumetric fluorescence microscopy. LIGHT, SCIENCE & APPLICATIONS 2021; 10:62. [PMID: 33753716 PMCID: PMC7985192 DOI: 10.1038/s41377-021-00506-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 05/12/2023]
Abstract
Volumetric imaging of samples using fluorescence microscopy plays an important role in various fields including physical, medical and life sciences. Here we report a deep learning-based volumetric image inference framework that uses 2D images that are sparsely captured by a standard wide-field fluorescence microscope at arbitrary axial positions within the sample volume. Through a recurrent convolutional neural network, which we term as Recurrent-MZ, 2D fluorescence information from a few axial planes within the sample is explicitly incorporated to digitally reconstruct the sample volume over an extended depth-of-field. Using experiments on C. elegans and nanobead samples, Recurrent-MZ is demonstrated to significantly increase the depth-of-field of a 63×/1.4NA objective lens, also providing a 30-fold reduction in the number of axial scans required to image the same sample volume. We further illustrated the generalization of this recurrent network for 3D imaging by showing its resilience to varying imaging conditions, including e.g., different sequences of input images, covering various axial permutations and unknown axial positioning errors. We also demonstrated wide-field to confocal cross-modality image transformations using Recurrent-MZ framework and performed 3D image reconstruction of a sample using a few wide-field 2D fluorescence images as input, matching confocal microscopy images of the same sample volume. Recurrent-MZ demonstrates the first application of recurrent neural networks in microscopic image reconstruction and provides a flexible and rapid volumetric imaging framework, overcoming the limitations of current 3D scanning microscopy tools.
Collapse
Affiliation(s)
- Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Hanlong Chen
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Yilin Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Yair Rivenson
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
- Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
- California Nano Systems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
- David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
28
|
Zong C, Xie Y, Zhang M, Huang Y, Yang C, Cheng JX. Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor. J Chem Phys 2021; 154:034201. [PMID: 33499625 PMCID: PMC7816769 DOI: 10.1063/5.0035163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Plasmon-enhanced coherent Raman scattering microscopy has reached single-molecule detection sensitivity. Due to the different driven fields, there are significant differences between a coherent Raman scattering process and its plasmon-enhanced derivative. The commonly accepted line shapes for coherent anti-Stokes Raman scattering and stimulated Raman scattering do not hold for the plasmon-enhanced condition. Here, we present a theoretical model that describes the spectral line shapes in plasmon-enhanced coherent anti-Stokes Raman scattering (PECARS). Experimentally, we measured PECARS and plasmon-enhanced stimulated Raman scattering (PESRS) spectra of 4-mercaptopyridine adsorbed on the self-assembled Au nanoparticle (NP) substrate and aggregated Au NP colloids. The PECARS spectra show a nondispersive line shape, while the PESRS spectra exhibit a dispersive line shape. PECARS shows a higher signal to noise ratio and a larger enhancement factor than PESRS from the same specimen. It is verified that the nonresonant background in PECARS originates from the photoluminescence of nanostructures. The decoupling of background and the vibrational resonance component results in the nondispersive line shape in PECARS. More local electric field enhancements are involved in the PECARS process than in PESRS, which results in a higher enhancement factor in PECARS. The current work provides new insight into the mechanism of plasmon-enhanced coherent Raman scattering and helps to optimize the experimental design for ultrasensitive chemical imaging.
Collapse
Affiliation(s)
- Cheng Zong
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Yurun Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Meng Zhang
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Yimin Huang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | | | - Ji-Xin Cheng
- Author to whom correspondence should be addressed:
| |
Collapse
|
29
|
Li Y, Shen B, Li S, Zhao Y, Qu J, Liu L. Review of Stimulated Raman Scattering Microscopy Techniques and Applications in the Biosciences. Adv Biol (Weinh) 2020; 5:e2000184. [PMID: 33724734 DOI: 10.1002/adbi.202000184] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Indexed: 01/10/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds. Featuring high speed, high resolution, high sensitivity, high accuracy, and 3D sectioning, SRS microscopy has made tremendous progress toward biochemical information acquisition, cellular function investigation, and label-free medical diagnosis in the biosciences. In this review, the principle of SRS, system design, and data analysis are introduced, and the current innovations of the SRS system are reviewed. In particular, combined with various bio-orthogonal Raman tags, the applications of SRS microscopy in cell metabolism, tumor diagnosis, neuroscience, drug tracking, and microbial detection are briefly examined. The future prospects for SRS microscopy are also shared.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Binglin Shen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Shaowei Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Yihua Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| |
Collapse
|
30
|
Lin P, Ni H, Li H, Vickers NA, Tan Y, Gong R, Bifano T, Cheng JX. Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope. OPTICS EXPRESS 2020; 28:30210-30221. [PMID: 33114904 PMCID: PMC7679187 DOI: 10.1364/oe.404869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Operable under ambient light and providing chemical selectivity, stimulated Raman scattering (SRS) microscopy opens a new window for imaging molecular events on a human subject, such as filtration of topical drugs through the skin. A typical approach for volumetric SRS imaging is through piezo scanning of an objective lens, which often disturbs the sample and offers a low axial scan rate. To address these challenges, we have developed a deformable mirror-based remote-focusing SRS microscope, which not only enables high-quality volumetric chemical imaging without mechanical scanning of the objective but also corrects the system aberrations simultaneously. Using the remote-focusing SRS microscope, we performed volumetric chemical imaging of living cells and captured in real time the dynamic diffusion of topical chemicals into human sweat pores.
Collapse
Affiliation(s)
- Peng Lin
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- These authors contributed equally
| | - Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- These authors contributed equally
| | - Huate Li
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - Nicholas A. Vickers
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston Boston, MA 02215, USA
| | - Ruyi Gong
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Thomas Bifano
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 St. Mary’s St, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston Boston, MA 02215, USA
- Photonics Center, Boston University, 8 St. Mary’s St, Boston, MA 02215, USA
| |
Collapse
|
31
|
Chen X, Zhu S, Wang H, Bao C, Yang D, Zhang C, Lin P, Cheng JX, Zhan Y, Liang J, Tian J. Accelerated Stimulated Raman Projection Tomography by Sparse Reconstruction From Sparse-View Data. IEEE Trans Biomed Eng 2020; 67:1293-1302. [PMID: 31425010 PMCID: PMC7329365 DOI: 10.1109/tbme.2019.2935301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Stimulated Raman projection tomography (SRPT), a recently developed label-free volumetric chemical imaging technology, has been reported to quantitatively reconstruct the distribution of chemicals in a three-dimensional (3D) complex system. The current image reconstruction scheme used in SRPT is based on a filtered back projection (FBP) algorithm that requires at least 180 angular-dependent projections to rebuild a reasonable SRPT image, resulting in a long total acquisition time. This is a big limitation for longitudinal studies on live systems. METHODS We present a sparse-view data-based sparse reconstruction scheme, in which sparsely sampled projections at 180 degrees were used to reconstruct the volumetric information. In the scheme, the simultaneous algebra reconstruction technique (SART), combined with total variation regularization, was used for iterative reconstruction. To better describe the projection process, a pixel vertex driven model (PVDM) was developed to act as projectors, whose performance was compared with those of the distance driven model (DDM). RESULTS We evaluated our scheme with numerical simulations and validated it for SRPT by mapping lipid contents in adipose cells. Simulation results showed that the PVDM performed better than the DDM in the case of using sparse-view data. Our scheme could maintain the quality of the reconstructed images even when the projection number was reduced to 15. The cell-based experimental results demonstrated that the proposed scheme can improve the imaging speed of the current FBP-based SRPT scheme by a factor of 9-12 without sacrificing discernible imaging details. CONCLUSION Our proposed scheme significantly reduces the total acquisition time required for SRPT at a speed of one order of magnitude faster than the currently used scheme. This significant improvement in imaging speed would potentially promote the applicability of SRPT for imaging living organisms.
Collapse
|
32
|
Hu F, Shi L, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat Methods 2019; 16:830-842. [PMID: 31471618 DOI: 10.1038/s41592-019-0538-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022]
Abstract
All molecules consist of chemical bonds, and much can be learned from mapping the spatiotemporal dynamics of these bonds. Since its invention a decade ago, stimulated Raman scattering (SRS) microscopy has become a powerful modality for imaging chemical bonds with high sensitivity, resolution, speed and specificity. We introduce the fundamentals of SRS microscopy and review innovations in SRS microscopes and imaging probes. We highlight examples of exciting biological applications, and share our vision for potential future breakthroughs for this technology.
Collapse
Affiliation(s)
- Fanghao Hu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Lixue Shi
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA. .,Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
33
|
Li J, Lin P, Tan Y, Cheng JX. Volumetric stimulated Raman scattering imaging of cleared tissues towards three-dimensional chemical histopathology. BIOMEDICAL OPTICS EXPRESS 2019; 10:4329-4339. [PMID: 31453014 PMCID: PMC6701556 DOI: 10.1364/boe.10.004329] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 05/18/2023]
Abstract
Thin tissue slice based histology has been used as a gold standard for disease diagnosis since over a hundred years ago. However, histopathological evaluation on two-dimensional slides suffers from large variations due to limited sampling. To improve the diagnostic accuracy, three-dimensional (3D) histology is performed through serial sectioning, staining, imaging and reconstruction of individual slices, which is highly time-consuming and labor intensive. We developed a volumetric stimulated Raman scattering (SRS) imaging method, which provides histology-like information in 3D context without the need for staining with dyes. Using a small molecule clearing agent, formamide, we performed tissue clearing within 30 min and achieved an imaging depth up to 500 µm in highly scattered tissues, including brain, kidney, liver and lung. Through a two-color SRS imaging scheme, we obtained histology-like images in cleared brain tissue slices. Our method has the potential for 3D tissue histopathology to improve the accuracy of histopathological examination.
Collapse
Affiliation(s)
- Junjie Li
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St, Boston, MA 02215, USA
| | - Peng Lin
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St, Boston, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 St. Mary’s St, Boston, MA 02215, USA
| |
Collapse
|
34
|
Ferrara MA, Filograna A, Ranjan R, Corda D, Valente C, Sirleto L. Three-dimensional label-free imaging throughout adipocyte differentiation by stimulated Raman microscopy. PLoS One 2019; 14:e0216811. [PMID: 31112567 PMCID: PMC6528968 DOI: 10.1371/journal.pone.0216811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/29/2019] [Indexed: 11/18/2022] Open
Abstract
Lipid droplets are lipid-storage organelles with a key role in lipid accumulation pathologies such as diabetes, obesity and atherosclerosis. Despite their important functions many aspects of lipid droplets biology are still unknown. This is partially due to the current use of exogenous labels to monitor their formation and remodelling by invasive imaging methods. Here, we apply stimulated Raman scattering microscopy to acquire images with high spatial resolution along with resolving capabilities of lipids and proteins and three-dimensional sectioning. Our images and data analysis demonstrate an increase in the number of large (>15μm2) lipid droplets in human adipocyte cells during differentiation process. In addition, spatially-resolved maps of lipids and proteins inside cells and three dimensional reconstructions of lipids at the initial and final steps of adipocyte differentiation are reported, too.
Collapse
Affiliation(s)
| | - Angela Filograna
- National Research Council (CNR), Institute of Protein Biochemistry, Naples, Italy
| | - Rajeev Ranjan
- National Research Council (CNR), Institute for Microelectronics and Microsystems, Naples, Italy
| | - Daniela Corda
- National Research Council (CNR), Institute of Protein Biochemistry, Naples, Italy
| | - Carmen Valente
- National Research Council (CNR), Institute of Protein Biochemistry, Naples, Italy
- * E-mail: (LS); (CV)
| | - Luigi Sirleto
- National Research Council (CNR), Institute for Microelectronics and Microsystems, Naples, Italy
- * E-mail: (LS); (CV)
| |
Collapse
|
35
|
Abstract
Optical microscopy has served biomedical research for decades due to its high temporal and spatial resolutions. Among various optical imaging techniques, fluorescence imaging offers superb sensitivity down to single molecule level but its multiplexing capacity is limited by intrinsically broad bandwidth. To simultaneously capture a vast number of targets, the newly emerging vibrational microscopy technique draws increasing attention as vibration spectroscopy features narrow transition linewidth. Nonetheless, unlike fluorophores that have been studied for centuries, a systematic investigation on vibrational probes is underemphasized. Herein, we reviewed some of the recent developments of vibrational probes for multiplex imaging applications, particularly those serving stimulated Raman scattering (SRS) microscopy, which is one of the most promising vibrational imaging techniques. We wish to summarize the general guidelines for developing bioorthogonal vibrational probes with high sensitivity, chemical specificity and most importantly, tunability to fulfill super-multiplexed optical imaging. Future directions to significantly improve the performance are also discussed.
Collapse
Affiliation(s)
- Yupeng Miao
- Department of Chemistry, Columbia University, New York, NY 10027, United States of America
| | | | | | | |
Collapse
|
36
|
Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proc Natl Acad Sci U S A 2019; 116:6608-6617. [PMID: 30872474 DOI: 10.1073/pnas.1813044116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Three-dimensional visualization of tissue structures using optical microscopy facilitates the understanding of biological functions. However, optical microscopy is limited in tissue penetration due to severe light scattering. Recently, a series of tissue-clearing techniques have emerged to allow significant depth-extension for fluorescence imaging. Inspired by these advances, we develop a volumetric chemical imaging technique that couples Raman-tailored tissue-clearing with stimulated Raman scattering (SRS) microscopy. Compared with the standard SRS, the clearing-enhanced SRS achieves greater than 10-times depth increase. Based on the extracted spatial distribution of proteins and lipids, our method reveals intricate 3D organizations of tumor spheroids, mouse brain tissues, and tumor xenografts. We further develop volumetric phasor analysis of multispectral SRS images for chemically specific clustering and segmentation in 3D. Moreover, going beyond the conventional label-free paradigm, we demonstrate metabolic volumetric chemical imaging, which allows us to simultaneously map out metabolic activities of protein and lipid synthesis in glioblastoma. Together, these results support volumetric chemical imaging as a valuable tool for elucidating comprehensive 3D structures, compositions, and functions in diverse biological contexts, complementing the prevailing volumetric fluorescence microscopy.
Collapse
|
37
|
Shi L, Zheng C, Shen Y, Chen Z, Silveira ES, Zhang L, Wei M, Liu C, de Sena-Tomas C, Targoff K, Min W. Optical imaging of metabolic dynamics in animals. Nat Commun 2018; 9:2995. [PMID: 30082908 PMCID: PMC6079036 DOI: 10.1038/s41467-018-05401-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Direct visualization of metabolic dynamics in living animals with high spatial and temporal resolution is essential to understanding many biological processes. Here we introduce a platform that combines deuterium oxide (D2O) probing with stimulated Raman scattering (DO-SRS) microscopy to image in situ metabolic activities. Enzymatic incorporation of D2O-derived deuterium into macromolecules generates carbon-deuterium (C-D) bonds, which track biosynthesis in tissues and can be imaged by SRS in situ. Within the broad vibrational spectra of C-D bonds, we discover lipid-, protein-, and DNA-specific Raman shifts and develop spectral unmixing methods to obtain C-D signals with macromolecular selectivity. DO-SRS microscopy enables us to probe de novo lipogenesis in animals, image protein biosynthesis without tissue bias, and simultaneously visualize lipid and protein metabolism and reveal their different dynamics. DO-SRS microscopy, being noninvasive, universally applicable, and cost-effective, can be adapted to a broad range of biological systems to study development, tissue homeostasis, aging, and tumor heterogeneity.
Collapse
Affiliation(s)
- Lingyan Shi
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Chaogu Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Yihui Shen
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Zhixing Chen
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | | | - Luyuan Zhang
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Chang Liu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | | | - Kimara Targoff
- Department of Pediatrics, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
38
|
Masia F, Pope I, Watson P, Langbein W, Borri P. Bessel-Beam Hyperspectral CARS Microscopy with Sparse Sampling: Enabling High-Content High-Throughput Label-Free Quantitative Chemical Imaging. Anal Chem 2018; 90:3775-3785. [PMID: 29505230 DOI: 10.1021/acs.analchem.7b04039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microscopy-based high-content and high-throughput analysis of cellular systems plays a central role in drug discovery. However, for contrast and specificity, the majority of assays require a fluorescent readout which always comes with the risk of alteration of the true biological conditions. In this work, we demonstrate a label-free imaging platform which combines chemically specific hyperspectral coherent anti-Stokes Raman scattering microscopy with sparse sampling and Bessel beam illumination. This enabled us to screen multiwell plates at high speed, while retaining the high-content chemical analysis of hyperspectral imaging. To demonstrate the practical applicability of the method we addressed a critical side effect in drug screens, namely, drug-induced lipid storage within hepatic tissue. We screened 15 combinations of drugs and neutral lipids added to human HepG2 liver cells and developed a high-content quantitative data analysis pipeline which extracted the spectra and spatial distributions of lipid and protein components. We then used their combination to train a support vector machine discriminative algorithm. Classification of the drug responses in terms of phospholipidosis versus steatosis was achieved in a completely label-free assay.
Collapse
Affiliation(s)
- Francesco Masia
- School of Physics and Astronomy , Cardiff University , The Parade , Cardiff CF24 3AA , U.K
| | - Iestyn Pope
- School of Biosciences , Cardiff University , Museum Avenue , Cardiff CF10 3AX , U.K
| | - Peter Watson
- School of Biosciences , Cardiff University , Museum Avenue , Cardiff CF10 3AX , U.K
| | - Wolfgang Langbein
- School of Physics and Astronomy , Cardiff University , The Parade , Cardiff CF24 3AA , U.K
| | - Paola Borri
- School of Biosciences , Cardiff University , Museum Avenue , Cardiff CF10 3AX , U.K
| |
Collapse
|
39
|
Chen AJ, Yuan X, Li J, Dong P, Hamza I, Cheng JX. Label-Free Imaging of Heme Dynamics in Living Organisms by Transient Absorption Microscopy. Anal Chem 2018; 90:3395-3401. [PMID: 29401392 PMCID: PMC5972037 DOI: 10.1021/acs.analchem.7b05046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heme, a hydrophobic and cytotoxic macrocycle, is an essential cofactor in a large number of proteins and is important for cell signaling. This must mean that heme is mobilized from its place of synthesis or entry into the cell to other parts of the cell where hemoproteins reside. However, the cellular dynamics of heme movement is not well understood, in large part due to the inability to image heme noninvasively in live biological systems. Here, using high-resolution transient absorption microscopy, we showed that heme storage and distribution is dynamic in Caenorhabditis elegans. Intracellular heme exists in concentrated granular puncta which localizes to lysosomal-related organelles. These granules are dynamic, and their breaking down into smaller granules provides a mechanism by which heme stores can be mobilized. Collectively, these direct and noninvasive dynamic imaging techniques provide new insights into heme storage and transport and open a new avenue for label-free investigation of heme function and regulation in living systems.
Collapse
Affiliation(s)
- Andy Jing Chen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaojing Yuan
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Junjie Li
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Puting Dong
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|