1
|
Bai X, Zhang L, Liang H, Huang D, Ren M, Mi H. Dietary γ-Aminobutyric Acid Promotes Growth and Immune System Performance and Improves Erythropoiesis and Angiogenesis in Gibel Carp ( Carassius auratus gibelio). Animals (Basel) 2025; 15:125. [PMID: 39858125 PMCID: PMC11758609 DOI: 10.3390/ani15020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
This experiment aimed to investigate the effect of dietary supplementation of γ-aminobutyric acid (GABA) on the growth performance, immune response, and oxygen-transport-related factors of Gibel carp (Carassius auratus gibelio). An eight-week culturing experiment was designed with five experimental diets, with the actual GABA content being 368 mg/kg (G1, control group), 449 mg/kg (G2), 527 mg/kg (G3), 602 mg/kg (G4), and 675 mg/kg (G5). The results showed that the level of 527 mg/kg (G3) of GABA significantly increased the specific growth rate (SGR), weight gain rate (WGR), and final body weight (FBW) of Gibel carp, while the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and glucose (GLU) were also increased significantly. In addition, 527 mg/kg (G3) and 602 mg/kg (G4) of GABA significantly increased the total antioxidant capacity (T-AOC). The mRNA expression of tnf-α, tgf-β, and il-10 was significantly increased at the level of 449 mg/kg (G2). In terms of oxygen-carrying capacity, the mRNA expression of epo, tf, tfr1, ho-1, and vegf was markedly increased at the level of 449 mg/kg (G2). In conclusion, dietary GABA supplementation can boost growth performance, enhance the immune system, and increase oxygen-carrying capacity in Gibel carp.
Collapse
Affiliation(s)
- Xinlan Bai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| |
Collapse
|
2
|
Boutom SM, Silva TP, Palecek SP, Shusta EV, Fernandes TG, Ashton RS. Central nervous system vascularization in human embryos and neural organoids. Cell Rep 2024; 43:115068. [PMID: 39693224 PMCID: PMC11975460 DOI: 10.1016/j.celrep.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
In recent years, neural organoids derived from human pluripotent stem cells (hPSCs) have offered a transformative pre-clinical platform for understanding central nervous system (CNS) development, disease, drug effects, and toxicology. CNS vasculature plays an important role in all these scenarios; however, most published studies describe CNS organoids that lack a functional vasculature or demonstrate rudimentary incorporation of endothelial cells or blood vessel networks. Here, we review the existing knowledge of vascularization during the development of different CNS regions, including the brain, spinal cord, and retina, and compare it to vascularized CNS organoid models. We highlight several areas of contrast where further bioengineering innovation is needed and discuss potential applications of vascularized neural organoids in modeling human CNS development, physiology, and disease.
Collapse
Affiliation(s)
- Sarah M Boutom
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Teresa P Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tiago G Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Randolph S Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Patil RP, Kumar N, Kaur A, Munian RK, Bhattacharya B, Ganesh S, Parihar R. Retinal vascular pathology in a mouse model of Lafora progressive myoclonus epilepsy. Neurosci Res 2024; 204:58-63. [PMID: 38458494 DOI: 10.1016/j.neures.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Neurodegenerative diseases (ND) affect distinct populations of neurons and manifest various clinical and pathological symptoms. A subset of ND prognoses has been linked to vascular risk factors. Consequently, the current study investigated retinal vascular abnormalities in a murine model of Lafora neurodegenerative disease (LD), a fatal and genetic form of progressive myoclonus epilepsy that affects children. Here, arterial rigidity was evaluated by measuring pulse wave velocity and vasculature deformations in the retina. Our findings in the LD mouse model indicate altered pulse wave velocity, retinal vascular thinning, and convoluted retinal arteries.
Collapse
Affiliation(s)
- Ruchira Pranay Patil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Nitin Kumar
- Central Experimental Animal Facility, Indian Institute of Technology, Kanpur, India
| | - Arveen Kaur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Rajendra Kumar Munian
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India; Department of Mechanical Engineering, Indian Institute of Technology Ropar, India
| | - Bishakh Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India; Central Experimental Animal Facility, Indian Institute of Technology, Kanpur, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, India.
| | - Rashmi Parihar
- Central Experimental Animal Facility, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
4
|
Morimoto K, Tabata H, Takahashi R, Nakajima K. Interactions between neural cells and blood vessels in central nervous system development. Bioessays 2024; 46:e2300091. [PMID: 38135890 DOI: 10.1002/bies.202300091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
The sophisticated function of the central nervous system (CNS) is largely supported by proper interactions between neural cells and blood vessels. Accumulating evidence has demonstrated that neurons and glial cells support the formation of blood vessels, which in turn, act as migratory scaffolds for these cell types. Neural progenitors are also involved in the regulation of blood vessel formation. This mutual interaction between neural cells and blood vessels is elegantly controlled by several chemokines, growth factors, extracellular matrix, and adhesion molecules such as integrins. Recent research has revealed that newly migrating cell types along blood vessels repel other preexisting migrating cell types, causing them to detach from the blood vessels. In this review, we discuss vascular formation and cell migration, particularly during development. Moreover, we discuss how the crosstalk between blood vessels and neurons and glial cells could be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keiko Morimoto
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tabata
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Rikuo Takahashi
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Chai YC, To SK, Simorgh S, Zaunz S, Zhu Y, Ahuja K, Lemaitre A, Ramezankhani R, van der Veer BK, Wierda K, Verhulst S, van Grunsven LA, Pasque V, Verfaillie C. Spatially Self-Organized Three-Dimensional Neural Concentroid as a Novel Reductionist Humanized Model to Study Neurovascular Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304421. [PMID: 38037510 PMCID: PMC10837345 DOI: 10.1002/advs.202304421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/15/2023] [Indexed: 12/02/2023]
Abstract
Although human pluripotent stem cell (PSC)-derived brain organoids have enabled researchers to gain insight into human brain development and disease, these organoids contain solely ectodermal cells and are not vascularized as occurs during brain development. Here it is created less complex and more homogenous large neural constructs starting from PSC-derived neuroprogenitor cells (NPC), by fusing small NPC spheroids into so-called concentroids. Such concentroids consisted of a pro-angiogenic core, containing neuronal and outer radial glia cells, surrounded by an astroglia-dense outer layer. Incorporating PSC-derived endothelial cells (EC) around and/or in the concentroids promoted vascularization, accompanied by differential outgrowth and differentiation of neuronal and astroglia cells, as well as the development of ectodermal-derived pericyte-like mural cells co-localizing with EC networks. Single nucleus transcriptomic analysis revealed an enhanced neural cell subtype maturation and diversity in EC-containing concentroids, which better resemble the fetal human brain compared to classical organoids or NPC-only concentroids. This PSC-derived "vascularized" concentroid brain model will facilitate the study of neurovascular/blood-brain barrier development, neural cell migration, and the development of effective in vitro vascularization strategies of brain mimics.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - San Kit To
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Susan Simorgh
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Samantha Zaunz
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - YingLi Zhu
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Karan Ahuja
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Alix Lemaitre
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Roya Ramezankhani
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Bernard K. van der Veer
- Laboratory for Stem Cell and Developmental EpigeneticsDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Keimpe Wierda
- Electrophysiology Expert UnitVIB‐KU Leuven Center for Brain & Disease ResearchLeuven3000Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Vincent Pasque
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Catherine Verfaillie
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| |
Collapse
|
6
|
Bernardino PN, Luo AS, Andrew PM, Unkel CM, Gonzalez MI, Gelli A, Lein PJ. Evidence Implicating Blood-Brain Barrier Impairment in the Pathogenesis of Acquired Epilepsy following Acute Organophosphate Intoxication. J Pharmacol Exp Ther 2024; 388:301-312. [PMID: 37827702 PMCID: PMC10801776 DOI: 10.1124/jpet.123.001836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Organophosphate (OP) poisoning can trigger cholinergic crisis, a life-threatening toxidrome that includes seizures and status epilepticus. These acute toxic responses are associated with persistent neuroinflammation and spontaneous recurrent seizures (SRS), also known as acquired epilepsy. Blood-brain barrier (BBB) impairment has recently been proposed as a pathogenic mechanism linking acute OP intoxication to chronic adverse neurologic outcomes. In this review, we briefly describe the cellular and molecular components of the BBB, review evidence of altered BBB integrity following acute OP intoxication, and discuss potential mechanisms by which acute OP intoxication may promote BBB dysfunction. We highlight the complex interplay between neuroinflammation and BBB dysfunction that suggests a positive feedforward interaction. Lastly, we examine research from diverse models and disease states that suggest mechanisms by which loss of BBB integrity may contribute to epileptogenic processes. Collectively, the literature identifies BBB impairment as a convergent mechanism of neurologic disease and justifies further mechanistic research into how acute OP intoxication causes BBB impairment and its role in the pathogenesis of SRS and potentially other long-term neurologic sequelae. Such research is critical for evaluating BBB stabilization as a neuroprotective strategy for mitigating OP-induced epilepsy and possibly seizure disorders of other etiologies. SIGNIFICANCE STATEMENT: Clinical and preclinical studies support a link between blood-brain barrier (BBB) dysfunction and epileptogenesis; however, a causal relationship has been difficult to prove. Mechanistic studies to delineate relationships between BBB dysfunction and epilepsy may provide novel insights into BBB stabilization as a neuroprotective strategy for mitigating epilepsy resulting from acute organophosphate (OP) intoxication and non-OP causes and potentially other adverse neurological conditions associated with acute OP intoxication, such as cognitive impairment.
Collapse
Affiliation(s)
- Pedro N Bernardino
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Audrey S Luo
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Peter M Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Chelsea M Unkel
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Marco I Gonzalez
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Angie Gelli
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| |
Collapse
|
7
|
Sautreuil C, Lecointre M, Dalmasso J, Lebon A, Leuillier M, Janin F, Lecuyer M, Bekri S, Marret S, Laquerrière A, Brasse-Lagnel C, Gil S, Gonzalez BJ. Expression of placental CD146 is dysregulated by prenatal alcohol exposure and contributes in cortical vasculature development and positioning of vessel-associated oligodendrocytes. Front Cell Neurosci 2024; 17:1294746. [PMID: 38269113 PMCID: PMC10806802 DOI: 10.3389/fncel.2023.1294746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Recent data showed that prenatal alcohol exposure (PAE) impairs the "placenta-brain" axis controlling fetal brain angiogenesis in human and preclinical models. Placental growth factor (PlGF) has been identified as a proangiogenic messenger between these two organs. CD146, a partner of the VEGFR-1/2 signalosome, is involved in placental angiogenesis and exists as a soluble circulating form. The aim of the present study was to investigate whether placental CD146 may contribute to brain vascular defects described in fetal alcohol spectrum disorder. At a physiological level, quantitative reverse transcription polymerase chain reaction experiments performed in human placenta showed that CD146 is expressed in developing villi and that membrane and soluble forms of CD146 are differentially expressed from the first trimester to term. In the mouse placenta, a similar expression pattern of CD146 was found. CD146 immunoreactivity was detected in the labyrinth zone and colocalized with CD31-positive endothelial cells. Significant amounts of soluble CD146 were quantified by ELISA in fetal blood, and the levels decreased after birth. In the fetal brain, the membrane form of CD146 was the majority and colocalized with microvessels. At a pathophysiological level, PAE induced marked dysregulation of CD146 expression. The soluble form of CD146 decreased in both placenta and fetal blood, whereas it increased in the fetal brain. Similarly, the expression of several members of the CD146 signalosome, such as VEGFR2 and PSEN, was differentially impaired between the two organs by PAE. At a functional level, targeted repression of placental CD146 by in utero electroporation (IUE) of CRISPR/Cas9 lentiviral plasmids resulted in (i) a decrease in cortical vessel density, (ii) a loss of radial vascular organization, and (iii) a reduced density of oligodendrocytes. Statistical analysis showed that the more the vasculature was impaired, the more the cortical oligodendrocyte density was reduced. Altogether, these data support that placental CD146 contributes to the proangiogenic "placenta-brain" axis and that placental CD146 dysfunction contributes to the cortical oligo-vascular development. Soluble CD146 would represent a promising placental biomarker candidate representative of alcohol-induced neurovascular defects in neonates, as recently suggested by PlGF (patents WO2016207253 and WO2018100143).
Collapse
Affiliation(s)
- Camille Sautreuil
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Maryline Lecointre
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Alexis Lebon
- Rouen Université, US51 HeRacLeS, PRIMACEN Platform, Faculty of Biological Sciences, Normandie Université, Mont-Saint-Aignan, France
| | | | - François Janin
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Matthieu Lecuyer
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Soumeya Bekri
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Rouen Université, CHU Rouen, Department of Metabolic Biochemistry, Normandie University, Rouen, France
| | - Stéphane Marret
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Rouen Université, CHU Rouen, Department of Neonatal Pediatrics and Intensive Care, Rouen, France
| | - Annie Laquerrière
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Rouen Université, CHU Rouen, Department of Pathology, Rouen Normandy Hospital, Rouen, France
| | - Carole Brasse-Lagnel
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sophie Gil
- Université de Paris, INSERM, UMR-S 1139, 3PHM, Paris, France
| | - Bruno J. Gonzalez
- Rouen Université, Inserm U1245 – Team “Epigenetics and Pathophysiology of Neurodevelopmental Disorders”, Normandie Université, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
8
|
Collignon A, Dion-Albert L, Ménard C, Coelho-Santos V. Sex, hormones and cerebrovascular function: from development to disorder. Fluids Barriers CNS 2024; 21:2. [PMID: 38178239 PMCID: PMC10768274 DOI: 10.1186/s12987-023-00496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Proper cerebrovascular development and neurogliovascular unit assembly are essential for brain growth and function throughout life, ensuring the continuous supply of nutrients and oxygen. This involves crucial events during pre- and postnatal stages through key pathways, including vascular endothelial growth factor (VEGF) and Wnt signaling. These pathways are pivotal for brain vascular growth, expansion, and blood-brain barrier (BBB) maturation. Interestingly, during fetal and neonatal life, cerebrovascular formation coincides with the early peak activity of the hypothalamic-pituitary-gonadal axis, supporting the idea of sex hormonal influence on cerebrovascular development and barriergenesis.Sex hormonal dysregulation in early development has been implicated in neurodevelopmental disorders with highly sexually dimorphic features, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Both disorders show higher prevalence in men, with varying symptoms between sexes, with boys exhibiting more externalizing behaviors, such as aggressivity or hyperactivity, and girls displaying higher internalizing behaviors, including anxiety, depression, or attention disorders. Indeed, ASD and ADHD are linked to high prenatal testosterone exposure and reduced aromatase expression, potentially explaining sex differences in prevalence and symptomatology. In line with this, high estrogen levels seem to attenuate ADHD symptoms. At the cerebrovascular level, sex- and region-specific variations of cerebral blood flow perfusion have been reported in both conditions, indicating an impact of gonadal hormones on the brain vascular system, disrupting its ability to respond to neuronal demands.This review aims to provide an overview of the existing knowledge concerning the impact of sex hormones on cerebrovascular formation and maturation, as well as the onset of neurodevelopmental disorders. Here, we explore the concept of gonadal hormone interactions with brain vascular and BBB development to function, with a particular focus on the modulation of VEGF and Wnt signaling. We outline how these pathways may be involved in the underpinnings of ASD and ADHD. Outstanding questions and potential avenues for future research are highlighted, as uncovering sex-specific physiological and pathological aspects of brain vascular development might lead to innovative therapeutic approaches in the context of ASD, ADHD and beyond.
Collapse
Affiliation(s)
- Adeline Collignon
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Caroline Ménard
- Department of Psychiatry & Neuroscience and CERVO Brain Research Center, Universite Laval, Quebec City, Canada
| | - Vanessa Coelho-Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Institute of Physiology, Coimbra, Portugal.
| |
Collapse
|
9
|
Chen YC, Martins TA, Marchica V, Panula P. Angiopoietin 1 and integrin beta 1b are vital for zebrafish brain development. Front Cell Neurosci 2024; 17:1289794. [PMID: 38235293 PMCID: PMC10792015 DOI: 10.3389/fncel.2023.1289794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Angiopoietin 1 (angpt1) is essential for angiogenesis. However, its role in neurogenesis is largely undiscovered. This study aimed to identify the role of angpt1 in brain development, the mode of action of angpt1, and its prime targets in the zebrafish brain. Methods We investigated the effects of embryonic brain angiogenesis and neural development using qPCR, in situ hybridization, microangiography, retrograde labeling, and immunostaining in the angpt1sa14264, itgb1bmi371, tekhu1667 mutant fish and transgenic overexpression of angpt1 in the zebrafish larval brains. Results We showed the co-localization of angpt1 with notch, delta, and nestin in the proliferation zone in the larval brain. Additionally, lack of angpt1 was associated with downregulation of TEK tyrosine kinase, endothelial (tek), and several neurogenic factors despite upregulation of integrin beta 1b (itgb1b), angpt2a, vascular endothelial growth factor aa (vegfaa), and glial markers. We further demonstrated that the targeted angpt1sa14264 and itgb1bmi371 mutant fish showed severely irregular cerebrovascular development, aberrant hindbrain patterning, expansion of the radial glial progenitors, downregulation of cell proliferation, deficiencies of dopaminergic, histaminergic, and GABAergic populations in the caudal hypothalamus. In contrast to angpt1sa14264 and itgb1bmi371 mutants, the tekhu1667 mutant fish regularly grew with no apparent phenotypes. Notably, the neural-specific angpt1 overexpression driven by the elavl3 (HuC) promoter significantly increased cell proliferation and neuronal progenitor cells but decreased GABAergic neurons, and this neurogenic activity was independent of its typical receptor tek. Discussion Our results prove that angpt1 and itgb1b, besides regulating vascular development, act as a neurogenic factor via notch and wnt signaling pathways in the neural proliferation zone in the developing brain, indicating a novel role of dual regulation of angpt1 in embryonic neurogenesis that supports the concept of angiopoietin-based therapeutics in neurological disorders.
Collapse
Affiliation(s)
- Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Tomás A. Martins
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Valentina Marchica
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| |
Collapse
|
10
|
Sato Y, Asahi T, Kataoka K. Integrative single-cell RNA-seq analysis of vascularized cerebral organoids. BMC Biol 2023; 21:245. [PMID: 37940920 PMCID: PMC10634128 DOI: 10.1186/s12915-023-01711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Cerebral organoids are three-dimensional in vitro cultured brains that mimic the function and structure of the human brain. One of the major challenges for cerebral organoids is the lack of functional vasculature. Without perfusable vessels, oxygen and nutrient supplies may be insufficient for long-term culture, hindering the investigation of the neurovascular interactions. Recently, several strategies for the vascularization of human cerebral organoids have been reported. However, the generalizable trends and variability among different strategies are unclear due to the lack of a comprehensive characterization and comparison of these vascularization strategies. In this study, we aimed to explore the effect of different vascularization strategies on the nervous system and vasculature in human cerebral organoids. RESULTS We integrated single-cell RNA sequencing data of multiple vascularized and vascular organoids and fetal brains from publicly available datasets and assessed the protocol-dependent and culture-day-dependent effects on the cell composition and transcriptomic profiles in neuronal and vascular cells. We revealed the similarities and uniqueness of multiple vascularization strategies and demonstrated the transcriptomic effects of vascular induction on neuronal and mesodermal-like cell populations. Moreover, our data suggested that the interaction between neurons and mesodermal-like cell populations is important for the cerebrovascular-specific profile of endothelial-like cells. CONCLUSIONS This study highlights the current challenges to vascularization strategies in human cerebral organoids and offers a benchmark for the future fabrication of vascularized organoids.
Collapse
Affiliation(s)
- Yuya Sato
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan.
| | - Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
| |
Collapse
|
11
|
Toudji I, Toumi A, Chamberland É, Rossignol E. Interneuron odyssey: molecular mechanisms of tangential migration. Front Neural Circuits 2023; 17:1256455. [PMID: 37779671 PMCID: PMC10538647 DOI: 10.3389/fncir.2023.1256455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
- Ikram Toudji
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Asmaa Toumi
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Émile Chamberland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Elsa Rossignol
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Sautreuil C, Lecointre M, Derambure C, Brasse-Lagnel C, Leroux P, Laquerrière A, Nicolas G, Gil S, Savage DD, Marret S, Marguet F, Falluel-Morel A, Gonzalez BJ. Prenatal Alcohol Exposure Impairs the Placenta-Cortex Transcriptomic Signature, Leading to Dysregulation of Angiogenic Pathways. Int J Mol Sci 2023; 24:13484. [PMID: 37686296 PMCID: PMC10488081 DOI: 10.3390/ijms241713484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023] Open
Abstract
Although alcohol consumption during pregnancy is a major cause of behavioral and learning disabilities, most FASD infants are late- or even misdiagnosed due to clinician's difficulties achieving early detection of alcohol-induced neurodevelopmental impairments. Neuroplacentology has emerged as a new field of research focusing on the role of the placenta in fetal brain development. Several studies have reported that prenatal alcohol exposure (PAE) dysregulates a functional placenta-cortex axis, which is involved in the control of angiogenesis and leads to neurovascular-related defects. However, these studies were focused on PlGF, a pro-angiogenic factor. The aim of the present study is to provide the first transcriptomic "placenta-cortex" signature of the effects of PAE on fetal angiogenesis. Whole mouse genome microarrays of paired placentas and cortices were performed to establish the transcriptomic inter-organ "placenta-cortex" signature in control and PAE groups at gestational day 20. Genespring comparison of the control and PAE signatures revealed that 895 and 1501 genes were only detected in one of two placenta-cortex expression profiles, respectively. Gene ontology analysis indicated that 107 of these genes were associated with vascular development, and String protein-protein interaction analysis showed that they were associated with three functional clusters. PANTHER functional classification analysis indicated that "intercellular communication" was a significantly enriched biological process, and 27 genes were encoded for neuroactive ligand/receptors interactors. Protein validation experiments involving Western blot for one ligand-receptor couple (Agt/AGTR1/2) confirmed the transcriptomic data, and Pearson statistical analysis of paired placentas and fetal cortices revealed a negative correlation between placental Atg and cortical AGTR1, which was significantly impacted by PAE. In humans, a comparison of a 38WG control placenta with a 36WG alcohol-exposed placenta revealed low Agt immunolabeling in the syncytiotrophoblast layer of the alcohol case. In conclusion, this study establishes the first transcriptomic placenta-cortex signature of a developing mouse. The data show that PAE markedly unbalances this inter-organ signature; in particular, several ligands and/or receptors involved in the control of angiogenesis. These data support that PAE modifies the existing communication between the two organs and opens new research avenues regarding the impact of placental dysfunction on the neurovascular development of fetuses. Such a signature would present a clinical value for early diagnosis of brain defects in FASD.
Collapse
Affiliation(s)
- Camille Sautreuil
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| | - Maryline Lecointre
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| | - Céline Derambure
- University Rouen Normandie, INSERM U1245, Team Genetic Predisposition to Cancer, 76000 Rouen, France;
- Joint Genomics Facilities, Rouen University, 76183 Rouen, France
| | - Carole Brasse-Lagnel
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| | - Philippe Leroux
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| | - Annie Laquerrière
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
- Department of Pathology, Rouen University Hospital, 76183 Rouen, France
| | - Gaël Nicolas
- University Rouen Normandie, INSERM U1245, Team Genomics for Brain Disorders, 76183 Rouen, France;
| | - Sophie Gil
- INSERM UMR-S1144, Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France;
| | - Daniel D. Savage
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Stéphane Marret
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
- Department of Neonatal Paediatrics and Intensive Care, Rouen University Hospital, University Rouen Normandie and CHU Rouen, 76183 Rouen, France
| | - Florent Marguet
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
- Department of Pathology, Rouen University Hospital, 76183 Rouen, France
| | - Anthony Falluel-Morel
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| | - Bruno J. Gonzalez
- University Rouen Normandie, INSERM U1245, Team Epigenetics and Pathophysiology of Neurodevelopmental Disorders, 76183 Rouen, France; (C.S.); (M.L.); (C.B.-L.); (P.L.); (A.L.); (S.M.); (F.M.); (A.F.-M.)
| |
Collapse
|
13
|
Karakatsani A, Álvarez-Vergara MI, de Almodóvar CR. The vasculature of neurogenic niches: Properties and function. Cells Dev 2023; 174:203841. [PMID: 37060947 DOI: 10.1016/j.cdev.2023.203841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
In the adult rodent brain, neural stem cells (NSCs) reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. In these areas, NSCs and their progeny integrate intrinsic signals and extrinsic cues provided by their microenvironment that control their behavior. The vasculature in the SVZ and SGZ, and the choroid plexus (ChP) in the SVZ, have emerged as critical compartments of the neurogenic niches as they provide a rich repertoire of cues to regulate NSC quiescence, proliferation, self-renewal and differentiation. Physical contact between NSCs and blood vessels is also a feature within the niches and supports different processes such as quiescence, migration and vesicle transport. In this review, we provide a description of the brain and choroid plexus vasculature in both stem cell niches, highlighting the main properties and role of the vasculature in each niche. We also summarize the current understanding of how blood vessel- and ChP-derived signals influence the behavior of NSCs in physiological adulthood, as well as upon aging.
Collapse
Affiliation(s)
- Andromachi Karakatsani
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - María I Álvarez-Vergara
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany; Schlegel Chair for Neurovascular Cell Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
14
|
Li M, Gao L, Zhao L, Zou T, Xu H. Toward the next generation of vascularized human neural organoids. Med Res Rev 2023; 43:31-54. [PMID: 35993813 DOI: 10.1002/med.21922] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/22/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Thanks to progress in the development of three-dimensional (3D) culture technologies, human central nervous system (CNS) development and diseases have been gradually deciphered by using organoids derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs). Selforganized neural organoids (NOs) have been used to mimic morphogenesis and functions of specific organs in vitro. Many NOs have been reproduced in vitro, such as those mimicking the human brain, retina, and spinal cord. However, NOs fail to capitulate to the maturation and complexity of in vivo neural tissues. The persistent issues with current NO cultivation protocols are inadequate oxygen supply and nutrient diffusion due to the absence of vascular networks. In vivo, the developing CNS is interpenetrated by vasculature that not only supplies oxygen and nutrients but also provides a structural template for neuronal growth. To address these deficiencies, recent studies have begun to couple NO culture with bioengineering techniques and methodologies, including genetic engineering, coculture, multidifferentiation, microfluidics and 3D bioprinting, and transplantation, which might promote NO maturation and create more functional NOs. These cutting-edge methods could generate an ever more reliable NO model in vitro for deciphering the codes of human CNS development, disease progression, and translational application. In this review, we will summarize recent technological advances in culture strategies to generate vascularized NOs (vNOs), with a special focus on cerebral- and retinal-organoid models.
Collapse
Affiliation(s)
- Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lixiong Gao
- Department of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
15
|
GABA A and GABA B Receptors Mediate GABA-Induced Intracellular Ca 2+ Signals in Human Brain Microvascular Endothelial Cells. Cells 2022; 11:cells11233860. [PMID: 36497118 PMCID: PMC9739010 DOI: 10.3390/cells11233860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous studies recently showed that the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), can stimulate cerebral angiogenesis and promote neurovascular coupling by activating the ionotropic GABAA receptors on cerebrovascular endothelial cells, whereas the endothelial role of the metabotropic GABAB receptors is still unknown. Preliminary evidence showed that GABAA receptor stimulation can induce an increase in endothelial Ca2+ levels, but the underlying signaling pathway remains to be fully unraveled. In the present investigation, we found that GABA evoked a biphasic elevation in [Ca2+]i that was initiated by inositol-1,4,5-trisphosphate- and nicotinic acid adenine dinucleotide phosphate-dependent Ca2+ release from neutral and acidic Ca2+ stores, respectively, and sustained by store-operated Ca2+ entry. GABAA and GABAB receptors were both required to trigger the endothelial Ca2+ response. Unexpectedly, we found that the GABAA receptors signal in a flux-independent manner via the metabotropic GABAB receptors. Likewise, the full Ca2+ response to GABAB receptors requires functional GABAA receptors. This study, therefore, sheds novel light on the molecular mechanisms by which GABA controls endothelial signaling at the neurovascular unit.
Collapse
|
16
|
Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay MÈ. The implication of a diversity of non-neuronal cells in disorders affecting brain networks. Front Cell Neurosci 2022; 16:1015556. [PMID: 36439206 PMCID: PMC9693782 DOI: 10.3389/fncel.2022.1015556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system (CNS) neurons are classically considered the functional unit of the brain. Analysis of the physical connections and co-activation of neurons, referred to as structural and functional connectivity, respectively, is a metric used to understand their interplay at a higher level. A myriad of glial cell types throughout the brain composed of microglia, astrocytes and oligodendrocytes are key players in the maintenance and regulation of neuronal network dynamics. Microglia are the central immune cells of the CNS, able to affect neuronal populations in number and connectivity, allowing for maturation and plasticity of the CNS. Microglia and astrocytes are part of the neurovascular unit, and together they are essential to protect and supply nutrients to the CNS. Oligodendrocytes are known for their canonical role in axonal myelination, but also contribute, with microglia and astrocytes, to CNS energy metabolism. Glial cells can achieve this variety of roles because of their heterogeneous populations comprised of different states. The neuroglial relationship can be compromised in various manners in case of pathologies affecting development and plasticity of the CNS, but also consciousness and mood. This review covers structural and functional connectivity alterations in schizophrenia, major depressive disorder, and disorder of consciousness, as well as their correlation with vascular connectivity. These networks are further explored at the cellular scale by integrating the role of glial cell diversity across the CNS to explain how these networks are affected in pathology.
Collapse
Affiliation(s)
- Micaël Carrier
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada
- Oncology Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
17
|
Jagadapillai R, Qiu X, Ojha K, Li Z, El-Baz A, Zou S, Gozal E, Barnes GN. Potential Cross Talk between Autism Risk Genes and Neurovascular Molecules: A Pilot Study on Impact of Blood Brain Barrier Integrity. Cells 2022; 11:2211. [PMID: 35883654 PMCID: PMC9315816 DOI: 10.3390/cells11142211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a common pediatric neurobiological disorder with up to 80% of genetic etiologies. Systems biology approaches may make it possible to test novel therapeutic strategies targeting molecular pathways to alleviate ASD symptoms. A clinical database of autism subjects was queried for individuals with a copy number variation (CNV) on microarray, Vineland, and Parent Concern Questionnaire scores. Pathway analyses of genes from pathogenic CNVs yielded 659 genes whose protein-protein interactions and mRNA expression mapped 121 genes with maximal antenatal expression in 12 brain regions. A Research Domain Criteria (RDoC)-derived neural circuits map revealed significant differences in anxiety, motor, and activities of daily living skills scores between altered CNV genes and normal microarrays subjects, involving Positive Valence (reward), Cognition (IQ), and Social Processes. Vascular signaling was identified as a biological process that may influence these neural circuits. Neuroinflammation, microglial activation, iNOS and 3-nitrotyrosine increase in the brain of Semaphorin 3F- Neuropilin 2 (Sema 3F-NRP2) KO, an ASD mouse model, agree with previous reports in the brain of ASD individuals. Signs of platelet deposition, activation, release of serotonin, and albumin leakage in ASD-relevant brain regions suggest possible blood brain barrier (BBB) deficits. Disruption of neurovascular signaling and BBB with neuroinflammation may mediate causative pathophysiology in some ASD subgroups. Although preliminary, these data demonstrate the potential for developing novel therapeutic strategies based on clinically derived data, genomics, cognitive neuroscience, and basic neuroscience methods.
Collapse
Affiliation(s)
- Rekha Jagadapillai
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Xiaolu Qiu
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Kshama Ojha
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Zhu Li
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville Speed School, Louisville, KY 40292, USA;
| | - Shipu Zou
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Gregory N. Barnes
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
18
|
Brosolo M, Lecointre M, Laquerrière A, Janin F, Genty D, Lebon A, Lesueur C, Vivien D, Marret S, Marguet F, Gonzalez BJ. In utero alcohol exposure impairs vessel-associated positioning and differentiation of oligodendrocytes in the developing neocortex. Neurobiol Dis 2022; 171:105791. [PMID: 35760273 DOI: 10.1016/j.nbd.2022.105791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Prenatal alcohol exposure (PAE) is a major cause of nongenetic mental retardation and can lead to fetal alcohol syndrome (FAS), the most severe manifestation of fetal alcohol spectrum disorder (FASD). FASD infants present behavioral disabilities resulting from neurodevelopmental defects. Both grey and white matter lesions have been characterized and are associated with apoptotic death and/or ectopic migration profiles. In the last decade, it was shown that PAE impairs brain angiogenesis, and the radial organization of cortical microvessels is lost. Concurrently, several studies have reported that tangential migration of oligodendrocyte precursors (OPCs) originating from ganglionic eminences is vascular associated. Because numerous migrating oligodendrocytes enter the developing neocortex, the present study aimed to determine whether migrating OPCs interacted with radial cortical microvessels and whether alcohol-induced vascular impairments were associated with altered positioning and differentiation of cortical oligodendrocytes. Using a 3D morphometric analysis, the results revealed that in both human and mouse cortices, 15 to 40% of Olig2-positive cells were in close association with radial cortical microvessels, respectively. Despite perinatal vascular disorganization, PAE did not modify the vessel association of Olig2-positive cells but impaired their positioning between deep and superficial cortical layers. At the molecular level, PAE markedly but transiently reduced the expression of CNPase and MBP, two differentiation markers of immature and mature oligodendrocytes. In particular, PAE inverted their distribution profiles in cortical layers V and VI and reduced the thickness of the myelin sheath of efferent axons. These perinatal oligo-vascular defects were associated with motor disabilities that persisted in adults. Altogether, the present study provides the first evidence that Olig2-positive cells entering the neocortex are associated with radial microvessels. PAE disorganized the cortical microvasculature and delayed the positioning and differentiation of oligodendrocytes. Although most of these oligovascular defects occurred in perinatal life, the offspring developed long-term motor troubles. Altogether, these data suggest that alcohol-induced oligo-vascular impairments contribute to the neurodevelopmental issues described in FASD.
Collapse
Affiliation(s)
- M Brosolo
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - M Lecointre
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - A Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - F Janin
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - D Genty
- Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - A Lebon
- Normandie Univ, UNIROUEN, INSERM US 51, CNRS UAR 2026, HeRacLeS-PRIMACEN, 76000 Rouen, France
| | - C Lesueur
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - D Vivien
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de la côte de Nacre, Caen, France
| | - S Marret
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, 76000 Rouen, France
| | - F Marguet
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - B J Gonzalez
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France.
| |
Collapse
|
19
|
Chapman AD, Selhorst S, LaComb J, LeDantec-Boswell A, Wohl TR, Adhicary S, Nielsen CM. Endothelial Rbpj Is Required for Cerebellar Morphogenesis and Motor Control in the Early Postnatal Mouse Brain. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01429-w. [PMID: 35716334 DOI: 10.1007/s12311-022-01429-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Intercellular influences are necessary for coordinated development and function of vascular and neural components in the brain. In the early postnatal period after birth, the mammalian cerebellum undergoes extensive morphogenesis - developing its characteristic lobules, organizing its diverse cell types into defined cellular layers, and establishing neural circuits that support cerebellar function, such as coordinated movement. In parallel, the cerebellar vasculature undergoes extensive postnatal growth and maturation, keeping pace with the expanding neural compartment. Endothelial deletion of Rbpj leads to neurovascular abnormalities in mice, including arteriovenous (AV) shunts that supplant capillaries and instead direct high-pressure/high-flow arterial blood directly to veins. Gross and histopathological cerebellar abnormalities, associated with these Rbpj-mediated brain AV malformations (AVMs), led to our hypothesis that early postnatal morphogenesis and lamination of cerebellum was perturbed in mice harboring endothelial Rbpj deficiency from birth. Here, we show that endothelial Rbpj-mutant mice developed enlarged vascular malformations on the cerebellar surface, by 2-week post-Rbpj deletion. In addition, outgrowth of cerebellar lobules was impaired through decreased cell proliferation, but not increased apoptosis, in the external granule layer. Molecular layer thickness was reduced, and the Purkinje layer was affected, by decreased Purkinje cell number, primary dendrite length, and dendritic arbor density. Endothelial deletion of Rbpj also led to impaired motor behaviors, consistent with abnormal cerebellar morphogenesis and lamination. Thus, our data suggest that Rbpj is required, in early postnatal vascular endothelium, to ensure proper cerebellar outgrowth, morphogenesis, and function in mice.
Collapse
Affiliation(s)
- Amelia D Chapman
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
- Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Samantha Selhorst
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
- Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Julia LaComb
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
| | - Alexis LeDantec-Boswell
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
| | - Timothy R Wohl
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
- Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Subhodip Adhicary
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH, 45701, USA
| | - Corinne M Nielsen
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine Hall 107, Athens, OH, 45701, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
- Neuroscience Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
20
|
Vogenstahl J, Parrilla M, Acker-Palmer A, Segarra M. Vascular Regulation of Developmental Neurogenesis. Front Cell Dev Biol 2022; 10:890852. [PMID: 35573692 PMCID: PMC9099230 DOI: 10.3389/fcell.2022.890852] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Evolutionary studies indicate that the nervous system evolved prior to the vascular system, but the increasing complexity of organisms prompted the vascular system to emerge in order to meet the growing demand for oxygen and nutrient supply. In recent years, it has become apparent that the symbiotic communication between the nervous and the vascular systems goes beyond the exclusive covering of the demands on nutrients and oxygen carried by blood vessels. Indeed, this active interplay between both systems is crucial during the development of the central nervous system (CNS). Several neural-derived signals that initiate and regulate the vascularization of the CNS have been described, however less is known about the vascular signals that orchestrate the development of the CNS cytoarchitecture. Here, we focus on reviewing the effects of blood vessels in the process of neurogenesis during CNS development in vertebrates. In mammals, we describe the spatiotemporal features of vascular-driven neurogenesis in two brain regions that exhibit different neurogenic complexity in their germinal zone, the hindbrain and the forebrain.
Collapse
Affiliation(s)
- Johanna Vogenstahl
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Marta Parrilla
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
- *Correspondence: Amparo Acker-Palmer, ; Marta Segarra,
| | - Marta Segarra
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
- *Correspondence: Amparo Acker-Palmer, ; Marta Segarra,
| |
Collapse
|
21
|
Agrud A, Subburaju S, Goel P, Ren J, Kumar AS, Caldarone BJ, Dai W, Chavez J, Fukumura D, Jain RK, Kloner RA, Vasudevan A. Gabrb3 endothelial cell-specific knockout mice display abnormal blood flow, hypertension, and behavioral dysfunction. Sci Rep 2022; 12:4922. [PMID: 35318369 PMCID: PMC8941104 DOI: 10.1038/s41598-022-08806-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Our recent studies uncovered a novel GABA signaling pathway in embryonic forebrain endothelial cells that works independently from neuronal GABA signaling and revealed that disruptions in endothelial GABAA receptor-GABA signaling from early embryonic stages can directly contribute to the origin of psychiatric disorders. In the GABAA receptor β3 subunit endothelial cell conditional knockout (Gabrb3ECKO) mice, the β3 subunit is deleted selectively from endothelial cells, therefore endothelial GABAA receptors become inactivated and dysfunctional. There is a reduction in vessel densities and increased vessel morphology in the Gabrb3ECKO telencephalon that persists in the adult neocortex. Gabrb3ECKO mice show behavioral deficits such as impaired reciprocal social interactions, communication deficits, heightened anxiety, and depression. Here, we characterize the functional changes in Gabrb3ECKO mice by evaluating cortical blood flow, examine the consequences of loss of endothelial Gabrb3 on cardiac tissue, and define more in-depth altered behaviors. Red blood cell velocity and blood flow were increased in the cortical microcirculation of the Gabrb3ECKO mice. The Gabrb3ECKO mice had a reduction in vessel densities in the heart, similar to the brain; exhibited wavy, myocardial fibers, with elongated 'worm-like' nuclei in their cardiac histology, and developed hypertension. Additional alterations in behavioral function were observed in the Gabrb3ECKO mice such as increased spontaneous exploratory activity and rearing in an open field, reduced short term memory, decreased ambulatory activity in CLAMS testing, and altered prepulse inhibition to startle, an important biomarker of psychiatric diseases such as schizophrenia. Our results imply that vascular Gabrb3 is a key player in the brain as well as the heart, and its loss in both organs can lead to concurrent development of psychiatric and cardiac dysfunction.
Collapse
Affiliation(s)
- Anass Agrud
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA
| | - Sivan Subburaju
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA 02215 USA ,grid.240206.20000 0000 8795 072XDivision of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Pranay Goel
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA
| | - Jun Ren
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Ashwin Srinivasan Kumar
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA ,grid.116068.80000 0001 2341 2786Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Barbara J. Caldarone
- grid.38142.3c000000041936754XMouse Behavior Core, Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Wangde Dai
- grid.280933.30000 0004 0452 8371Huntington Medical Research Institutes, Pasadena, CA USA ,grid.42505.360000 0001 2156 6853Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA USA
| | - Jesus Chavez
- grid.280933.30000 0004 0452 8371Huntington Medical Research Institutes, Pasadena, CA USA ,grid.42505.360000 0001 2156 6853Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA USA
| | - Dai Fukumura
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Rakesh K. Jain
- grid.32224.350000 0004 0386 9924Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Robert A. Kloner
- grid.280933.30000 0004 0452 8371Huntington Medical Research Institutes, Pasadena, CA USA ,grid.42505.360000 0001 2156 6853Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA USA
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA, 91105, USA.
| |
Collapse
|
22
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
23
|
Mizutani KI. [Spatiotemporally Dependent Vascularization Regulates Neural Stem and Progenitor Cells]. YAKUGAKU ZASSHI 2021; 141:335-341. [PMID: 33642501 DOI: 10.1248/yakushi.20-00198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood vessels including arteries, veins, and capillaries, are densely spread throughout the body. One round of systemic blood circulation through these blood vessels occurs approximately every minute, and blood sent by the heart transports oxygen, nutrients, and fluid to cells throughout the body. This nourishes cells, tissues, and organs and maintains homeostasis. The relatively simple structure of blood vessels consists of endothelial cells surrounded by a basal lamina and pericytes covering the outer layer. However, blood vessels patterning markedly varies among tissues. The diversity and plasticity of vascular networks are considered vital for this system to facilitate distinct functions for each tissue. Recent studies revealed that blood vessels create a tissue-specific niche, thus attracting attention as biologically active sites for tissue development. This vascular niche establishes specialized microenvironments through both direct physical contact and secreted-soluble factors. Here, we review advances in our understanding of how the vascular niche is utilized by neural stem and progenitor cells during neocortical development, and describe future perspectives regarding new treatment strategies for neural diseases utilizing this vascular niche.
Collapse
Affiliation(s)
- Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
24
|
Kalailingam P, Wang KQ, Toh XR, Nguyen TQ, Chandrakanthan M, Hasan Z, Habib C, Schif A, Radio FC, Dallapiccola B, Weiss K, Nguyen LN. Deficiency of MFSD7c results in microcephaly-associated vasculopathy in Fowler syndrome. J Clin Invest 2021; 130:4081-4093. [PMID: 32369449 DOI: 10.1172/jci136727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Several missense mutations in the orphan transporter FLVCR2 have been reported in Fowler syndrome. Affected subjects exhibit signs of severe neurological defects. We identified the mouse ortholog Mfsd7c as a gene expressed in the blood-brain barrier. Here, we report the characterizations of Mfsd7c-KO mice and compare these characterizations to phenotypic findings in humans with biallelic FLVCR2 mutations. Global KO of Mfsd7c in mice resulted in late-gestation lethality, likely due to CNS phenotypes. We found that the angiogenic growth of CNS blood vessels in the brain of Mfsd7c-KO embryos was inhibited in cortical ventricular zones and ganglionic eminences. Vascular tips were dilated and fused, resulting in glomeruloid vessels. Nonetheless, CNS blood vessels were intact, without hemorrhage. Both embryos and humans with biallelic FLVCR2 mutations exhibited reduced cerebral cortical layers, enlargement of the cerebral ventricles, and microcephaly. Transcriptomic analysis of Mfsd7cK-KO embryonic brains revealed upregulation of genes involved in glycolysis and angiogenesis. The Mfsd7c-KO brain exhibited hypoxia and neuronal cell death. Our results indicate that MFSD7c is required for the normal growth of CNS blood vessels and that ablation of this gene results in microcephaly-associated vasculopathy in mice and humans.
Collapse
Affiliation(s)
- Pazhanichamy Kalailingam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai Qi Wang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xiu Ru Toh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Toan Q Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Madhuvanthi Chandrakanthan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zafrul Hasan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Clair Habib
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Aharon Schif
- Pediatric Neurology Unit, Rambam Health Care Center, Ruth Children's Hospital, Haifa, Israel
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Karin Weiss
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel.,Genetics Institute, Rambam Health Care Center, Haifa, Israel
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,SLING and Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore.,Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
25
|
Datta D, Subburaju S, Kaye S, Baruah J, Choi YK, Nian Y, Khalili JS, Chung S, Elkhal A, Vasudevan A. Human forebrain endothelial cell therapy for psychiatric disorders. Mol Psychiatry 2021; 26:4864-4883. [PMID: 32661257 PMCID: PMC8162704 DOI: 10.1038/s41380-020-0839-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022]
Abstract
Abnormalities of or reductions in GABAergic interneurons are implicated in the pathology of severe neuropsychiatric disorders, for which effective treatments are still elusive. Transplantation of human stem cell-derived interneurons is a promising cell-based therapy for treatment of these disorders. In mouse xenograft studies, human stem cell-derived-interneuron precursors could differentiate in vivo, but required a prolonged time of four to seven months to migrate from the graft site and integrate with the host tissue. This poses a serious roadblock for clinical translation of this approach. For transplantation to be effective, grafted neurons should migrate to affected areas at a faster rate. We have previously shown that endothelial cells of the periventricular vascular network are the natural substrates for GABAergic interneurons in the developing mouse forebrain, and provide valuable guidance cues for their long-distance migration. In addition, periventricular endothelial cells house a GABA signaling pathway with direct implications for psychiatric disease origin. In this study we translated this discovery into human, with significant therapeutic implications. We generated human periventricular endothelial cells, using human pluripotent stem cell technology, and extensively characterized its molecular, cellular, and functional properties. Co-culture of human periventricular endothelial cells with human interneurons significantly accelerated interneuron migration in vitro and led to faster migration and wider distribution of grafted interneurons in vivo, compared to neuron-only transplants. Furthermore, the co-transplantation strategy was able to rescue abnormal behavioral symptoms in a pre-clinical model of psychiatric disorder, within 1 month after transplantation. We anticipate this strategy to open new doors and facilitate exciting advances in angiogenesis-mediated treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Debkanya Datta
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA 02215 USA ,grid.240206.20000 0000 8795 072XDivision of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Sivan Subburaju
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA 02215 USA ,grid.240206.20000 0000 8795 072XDivision of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Sarah Kaye
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA ,grid.240206.20000 0000 8795 072XDivision of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Jugajyoti Baruah
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA 02215 USA ,grid.240206.20000 0000 8795 072XDivision of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Yong Kee Choi
- grid.280933.30000 0004 0452 8371Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA 02215 USA ,grid.240206.20000 0000 8795 072XDivision of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Yeqi Nian
- grid.38142.3c000000041936754XDepartment of Surgery, Harvard Medical School, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Transplantation, Brigham and Women’s Hospital, 221 Longwood Avenue, EBRC 309, Boston, MA 02115 USA
| | | | - Sangmi Chung
- grid.260917.b0000 0001 0728 151XDepartment of Cell biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA
| | - Abdallah Elkhal
- grid.38142.3c000000041936754XDepartment of Surgery, Harvard Medical School, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Division of Transplantation, Brigham and Women’s Hospital, 221 Longwood Avenue, EBRC 309, Boston, MA 02115 USA
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA, 91105, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA. .,Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA.
| |
Collapse
|
26
|
Matsui TK, Tsuru Y, Kuwako KI. Challenges in Modeling Human Neural Circuit Formation via Brain Organoid Technology. Front Cell Neurosci 2020; 14:607399. [PMID: 33362473 PMCID: PMC7756199 DOI: 10.3389/fncel.2020.607399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 01/12/2023] Open
Abstract
Human brain organoids are three-dimensional self-organizing tissues induced from pluripotent cells that recapitulate some aspects of early development and some of the early structure of the human brain in vitro. Brain organoids consist of neural lineage cells, such as neural stem/precursor cells, neurons, astrocytes and oligodendrocytes. Additionally, brain organoids contain fluid-filled ventricle-like structures surrounded by a ventricular/subventricular (VZ/SVZ) zone-like layer of neural stem cells (NSCs). These NSCs give rise to neurons, which form multiple outer layers. Since these structures resemble some aspects of structural arrangements in the developing human brain, organoid technology has attracted great interest in the research fields of human brain development and disease modeling. Developmental brain disorders have been intensely studied through the use of human brain organoids. Relatively early steps in human brain development, such as differentiation and migration, have also been studied. However, research on neural circuit formation with brain organoids has just recently began. In this review, we summarize the current challenges in studying neural circuit formation with organoids and discuss future perspectives.
Collapse
Affiliation(s)
- Takeshi K Matsui
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| | - Yuichiro Tsuru
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| | - Ken-Ichiro Kuwako
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
27
|
Marguet F, Friocourt G, Brosolo M, Sauvestre F, Marcorelles P, Lesueur C, Marret S, Gonzalez BJ, Laquerrière A. Prenatal alcohol exposure is a leading cause of interneuronopathy in humans. Acta Neuropathol Commun 2020; 8:208. [PMID: 33256853 PMCID: PMC7706035 DOI: 10.1186/s40478-020-01089-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Alcohol affects multiple neurotransmitter systems, notably the GABAergic system and has been recognised for a long time as particularly damaging during critical stages of brain development. Nevertheless, data from the literature are most often derived from animal or in vitro models. In order to study the production, migration and cortical density disturbances of GABAergic interneurons upon prenatal alcohol exposure, we performed immunohistochemical studies by means of the proliferation marker Ki67, GABA and calretinin antibodies in the frontal cortical plate of 17 foetal and infant brains antenatally exposed to alcohol, aged 15 weeks’ gestation to 22 postnatal months and in the ganglionic eminences and the subventricular zone of the dorsal telencephalon until their regression, i.e., 34 weeks’ gestation. Results were compared with those obtained in 17 control brains aged 14 weeks of gestation to 35 postnatal months. We also focused on interneuron vascular migration along the cortical microvessels by confocal microscopy with double immunolabellings using Glut1, GABA and calretinin. Semi-quantitative and quantitative analyses of GABAergic and calretininergic interneuron density allowed us to identify an insufficient and delayed production of GABAergic interneurons in the ganglionic eminences during the two first trimesters of the pregnancy and a delayed incorporation into the laminar structures of the frontal cortex. Moreover, a mispositioning of GABAergic and calretininergic interneurons persisted throughout the foetal life, these cells being located in the deep layers instead of the superficial layers II and III. Moreover, vascular migration of calretininergic interneurons within the cortical plate was impaired, as reflected by low numbers of interneurons observed close to the cortical perforating vessel walls that may in part explain their abnormal intracortical distribution. Our results are globally concordant with those previously obtained in mouse models, in which alcohol has been shown to induce an interneuronopathy by affecting interneuron density and positioning within the cortical plate, and which could account for the neurological disabilities observed in children with foetal alcohol disorder spectrum.
Collapse
|
28
|
Subburaju S, Kaye S, Choi YK, Baruah J, Datta D, Ren J, Kumar AS, Szabo G, Fukumura D, Jain RK, Elkhal A, Vasudevan A. NAD +-mediated rescue of prenatal forebrain angiogenesis restores postnatal behavior. SCIENCE ADVANCES 2020; 6:6/41/eabb9766. [PMID: 33036972 PMCID: PMC7546698 DOI: 10.1126/sciadv.abb9766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Intrinsic defects within blood vessels from the earliest developmental time points can directly contribute to psychiatric disease origin. Here, we show that nicotinamide adenine dinucleotide (NAD+), administered during a critical window of prenatal development, in a mouse model with dysfunctional endothelial γ-aminobutyric acid type A (GABAA) receptors (Gabrb3 endothelial cell knockout mice), results in a synergistic repair of impaired angiogenesis and normalization of brain development, thus preventing the acquisition of abnormal behavioral symptoms. The prenatal NAD+ treatment stimulated extensive cellular and molecular changes in endothelial cells and restored blood vessel formation, GABAergic neuronal development, and forebrain morphology by recruiting an alternate pathway for cellular repair, via previously unknown transcriptional mechanisms and purinergic receptor signaling. Our findings illustrate a novel and powerful role for NAD+ in sculpting prenatal brain development that has profound implications for rescuing brain blood flow in a permanent and irreversible manner, with long-lasting consequences for mental health outcome.
Collapse
Affiliation(s)
- Sivan Subburaju
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Sarah Kaye
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Yong Kee Choi
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Jugajyoti Baruah
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Debkanya Datta
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Jun Ren
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ashwin Srinivasan Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gabor Szabo
- Institute of Experimental Medicine, Medical Gene Technology Unit, 1083 Budapest, Hungary
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Abdallah Elkhal
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Division of Transplantation, Brigham and Women's Hospital, 221 Longwood Avenue, EBRC 309, Boston, MA 02115, USA
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
29
|
Watanabe C, Imaizumi T, Kawai H, Suda K, Honma Y, Ichihashi M, Ema M, Mizutani KI. Aging of the Vascular System and Neural Diseases. Front Aging Neurosci 2020; 12:557384. [PMID: 33132896 PMCID: PMC7550630 DOI: 10.3389/fnagi.2020.557384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Vertebrates have acquired complex high-order functions facilitated by the dispersion of vascular and neural networks to every corner of the body. Blood vessels deliver oxygen and nutrients to all cells and provide essential transport systems for removing waste products. For these functions, tissue vascularization must be spatiotemporally appropriate. Recent studies revealed that blood vessels create a tissue-specific niche, thus attracting attention as biologically active sites for tissue development. Each capillary network is critical for maintaining proper brain function because age-related and disease-related impairment of cognitive function is associated with the loss or diminishment of brain capillaries. This review article highlights how structural and functional alterations in the brain vessels may change with age and neurogenerative diseases. Capillaries are also responsible for filtering toxic byproducts, providing an appropriate vascular environment for neuronal function. Accumulation of amyloid β is a key event in Alzheimer’s disease pathogenesis. Recent studies have focused on associations reported between Alzheimer’s disease and vascular aging. Furthermore, the glymphatic system and meningeal lymphatic systems contribute to a functional unit for clearance of amyloid β from the brain from the central nervous system into the cervical lymph nodes. This review article will also focus on recent advances in stem cell therapies that aim at repopulation or regeneration of a degenerating vascular system for neural diseases.
Collapse
Affiliation(s)
- Chisato Watanabe
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan.,Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Tsutomu Imaizumi
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Hiromi Kawai
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kazuma Suda
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Yoichi Honma
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Masamitsu Ichihashi
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto, Japan
| | - Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
30
|
Mizutani KI. [Neuro-vascular Interactions during Neocortical Development-Systematic and Accurate Regulatory Mechanisms of VEGF Signaling]. YAKUGAKU ZASSHI 2020; 140:521-527. [PMID: 32238635 DOI: 10.1248/yakushi.19-00221-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood vessels supply oxygen and nutrients to all the cells in a living body, and provide essential transport routes for collecting waste products. For these functions, blood vessel networks should be appropriately formed in each tissue. Therefore, blood vessels are one of the earliest organs formed during the developmental process. Development of the blood vessel system promotes tissue differentiation and organ morphogenesis, allowing each organ to maintain its unique functions under changing metabolic conditions. Blood vessels have a relatively simple structure, consisting of endothelial cells covering the inner layer, and pericytes or smooth muscle cells surrounding the outside. The structure of the vascular network is extremely diverse, with blood vessels uniquely organized depending on the tissues they serve, to create tissue-specific microenvironments. How are such tissue-specific vascular environments generated? Over the years, anatomical findings have accumulated to confirm this vascular diversity. However, the molecular basis for this diversity has remained unclear. In the present article, we review the mechanisms of coordinated developmental control of the vascular and neural systems in the cerebral cortex from the viewpoint of the accurate expression control of vascular endothelial growth factor (VEGF) signaling, and describe future perspectives.
Collapse
Affiliation(s)
- Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
31
|
Léger C, Dupré N, Laquerrière A, Lecointre M, Dumanoir M, Janin F, Hauchecorne M, Fabre M, Jégou S, Frébourg T, Cleren C, Leroux P, Marcorelles P, Brasse-Lagnel C, Marret S, Marguet F, Gonzalez BJ. In utero alcohol exposure exacerbates endothelial protease activity from pial microvessels and impairs GABA interneuron positioning. Neurobiol Dis 2020; 145:105074. [PMID: 32890773 DOI: 10.1016/j.nbd.2020.105074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
In utero alcohol exposure can induce severe neurodevelopmental disabilities leading to long-term behavioral deficits. Because alcohol induces brain defects, many studies have focused on nervous cells. However, recent reports have shown that alcohol markedly affects cortical angiogenesis in both animal models and infants with fetal alcohol spectrum disorder (FASD). In addition, the vascular system is known to contribute to controlling gamma-aminobutyric acid (GABA)ergic interneuron migration in the developing neocortex. Thus, alcohol-induced vascular dysfunction may contribute to the neurodevelopmental defects in FASD. The present study aimed at investigating the effects of alcohol on endothelial activity of pial microvessels. Ex vivo experiments on cortical slices from mouse neonates revealed that in endothelial cells from pial microvessels acute alcohol exposure inhibits both glutamate-induced calcium mobilization and activities of matrix metalloproteinase-9 (MMP-9) and tissue plasminogen activator (tPA). The inhibitory effect of alcohol on glutamate-induced MMP-9 activity was abrogated in tPA-knockout and Grin1flox/VeCadcre mice suggesting that alcohol interacts through the endothelial NMDAR/tPA/MMP-9 vascular pathway. Contrasting with the effects from acute alcohol exposure, in mouse neonates exposed to alcohol in utero during the last gestational week, glutamate exacerbated both calcium mobilization and endothelial protease activities from pial microvessels. This alcohol-induced vascular dysfunction was associated with strong overexpression of the N-methyl-d-aspartate receptor subunit GluN1 and mispositioning of the Gad67-GFP interneurons that normally populate the superficial cortical layers. By comparing several human control fetuses with a fetus chronically exposed to alcohol revealed that alcohol exposure led to mispositioning of the calretinin-positive interneurons, whose density was decreased in the superficial cortical layers II-III and increased in deepest layers. This study provides the first mechanistic and functional evidence that alcohol impairs glutamate-regulated activity of pial microvessels. Endothelial dysfunction is characterized by altered metalloproteinase activity and interneuron mispositioning, which was also observed in a fetus with fetal alcohol syndrome. These data suggest that alcohol-induced endothelial dysfunction may contribute in ectopic cortical GABAergic interneurons, that has previously been described in infants with FASD.
Collapse
Affiliation(s)
- Cécile Léger
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Nicolas Dupré
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Annie Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Maryline Lecointre
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Marion Dumanoir
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - François Janin
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Michelle Hauchecorne
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Maëlle Fabre
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sylvie Jégou
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Thierry Frébourg
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Carine Cleren
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Philippe Leroux
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Carole Brasse-Lagnel
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Florent Marguet
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Bruno J Gonzalez
- Normandie Univ, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
32
|
Segarra M, Aburto MR, Hefendehl J, Acker-Palmer A. Neurovascular Interactions in the Nervous System. Annu Rev Cell Dev Biol 2020; 35:615-635. [PMID: 31590587 DOI: 10.1146/annurev-cellbio-100818-125142] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular cross talk between the nervous and vascular systems is necessary to maintain the correct coupling of organ structure and function. Molecular pathways shared by both systems are emerging as major players in the communication of the neuronal compartment with the endothelium. Here we review different aspects of this cross talk and how vessels influence the development and homeostasis of the nervous system. Beyond the classical role of the vasculature as a conduit to deliver oxygen and metabolites needed for the energy-demanding neuronal compartment, vessels emerge as powerful signaling systems that control and instruct a variety of cellular processes during the development of neurons and glia, such as migration, differentiation, and structural connectivity. Moreover, a broad spectrum of mild to severe vascular dysfunctions occur in various pathologies of the nervous system, suggesting that mild structural and functional changes at the neurovascular interface may underlie cognitive decline in many of these pathological conditions.
Collapse
Affiliation(s)
- Marta Segarra
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Maria R Aburto
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Jasmin Hefendehl
- Neurovascular Disorders, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Max Planck Institute for Brain Research, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
33
|
Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat Rev Neurosci 2020; 21:416-432. [PMID: 32636528 DOI: 10.1038/s41583-020-0322-2] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
To continuously process neural activity underlying sensation, movement and cognition, the CNS requires a homeostatic microenvironment that is not only enriched in nutrients to meet its high metabolic demands but that is also devoid of toxins that might harm the sensitive neural tissues. This highly regulated microenvironment is made possible by two unique features of CNS vasculature absent in the peripheral organs. First, the blood-blood barrier, which partitions the circulating blood from the CNS, acts as a gatekeeper to facilitate the selective trafficking of substances between the blood and the parenchyma. Second, neurovascular coupling ensures that, following local neural activation, regional blood flow is increased to quickly supply more nutrients and remove metabolic waste. Here, we review how neural and vascular activity act on one another with regard to these two properties.
Collapse
|
34
|
Boschen KE, Ptacek TS, Simon JM, Parnell SE. Transcriptome-Wide Regulation of Key Developmental Pathways in the Mouse Neural Tube by Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2020; 44:1540-1550. [PMID: 32557641 DOI: 10.1111/acer.14389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/02/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Early gestational alcohol exposure is associated with severe craniofacial and CNS dysmorphologies and behavioral abnormalities during adolescence and adulthood. Alcohol exposure during the formation of the neural tube (gestational day [GD] 8 to 10 in mice; equivalent to4th week of human pregnancy) disrupts development of ventral midline brain structures such as the pituitary, septum, and ventricles. This study identifies transcriptomic changes in the rostroventral neural tube (RVNT), the region of the neural tube that gives rise to the midline structures sensitive to alcohol exposure during neurulation. METHODS Female C57BL/6J mice were administered 2 doses of alcohol (2.9 g/kg) or vehicle 4 hours apart on GD 9.0. The RVNTs of embryos were collected 6 or 24 hours after the first dose and processed for RNA-seq. RESULTS Six hours following GD 9.0 alcohol exposure (GD 9.25), over 2,300 genes in the RVNT were determined to be differentially regulated by alcohol. Enrichment analysis determined that PAE affected pathways related to cell proliferation, p53 signaling, ribosome biogenesis, and immune activation. In addition, over 100 genes involved in primary cilia formation and function and regulation of morphogenic pathways were altered 6 hours after alcohol exposure. The changes to gene expression were largely transient, as only 91 genes identified as differentially regulated by prenatal alcohol at GD 10 (24 hours postexposure). Functionally, the differentially regulated genes at GD 10 were related to organogenesis and cell migration. CONCLUSIONS These data give a comprehensive view of the changing landscape of the embryonic transcriptome networks in regions of the neural tube that give rise to brain structures impacted by a neurulation-stage alcohol exposure. Identification of gene networks dysregulated by alcohol will help elucidate the pathogenic mechanisms of alcohol's actions.
Collapse
Affiliation(s)
- Karen E Boschen
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Travis S Ptacek
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- From the Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
35
|
Savage DD, Rosenberg MJ, Coquet L, Porch MW, Allen NA, Roux C, Aligny C, Jouenne T, Gonzalez BJ. Ethanol-Induced Alterations in Placental and Fetal Cerebrocortical Annexin-A4 and Cerebral Cavernous Malformation Protein 3 Are Associated With Reductions in Fetal Cortical VEGF Receptor Binding and Microvascular Density. Front Neurosci 2020; 14:519. [PMID: 32655346 PMCID: PMC7325964 DOI: 10.3389/fnins.2020.00519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Jegou et al. (2012) have reported prenatal alcohol exposure (PAE)-induced reductions of angiogenesis-related proteins in mouse placenta. These effects were associated with striking alterations in microvascular development in neonatal cerebral cortex. Here, we employed a rat model of moderate PAE to search for additional proteins whose placental and fetal cortical expression is altered by PAE, along with a subsequent examination of fetal cerebral cortical alterations associated with altered protein expression. Long-Evans rat dams voluntarily consumed either a 0 or 5% ethanol solution 4 h each day throughout gestation. Daily ethanol consumption, which resulted in a mean peak maternal serum ethanol concentration of 60.8 mg/dL, did not affect maternal weight gain, litter size, or placental or fetal body weight. On gestational day 20, rat placental: fetal units were removed by Caesarian section. Placental protein expression, analyzed by 2D-PAGE – tandem mass spectroscopy, identified a total of 1,117 protein spots, 20 of which were significantly altered by PAE. To date, 14 of these PAE-altered proteins have been identified. Western blotting confirmed the alterations of two of these placental proteins, namely, annexin-A4 (ANX-A4) and cerebral cavernous malformation protein 3 (CCM-3). Specifically, PAE elevated ANX-A4 and decreased CCM-3 in placenta. Subsequently, these two proteins were measured in fetal cerebral cortex, along with radiohistochemical studies of VEGF binding and histofluorescence studies of microvascular density in fetal cerebral cortex. PAE elevated ANX-A4 and decreased CCM-3 in fetal cerebral cortex, in a pattern similar to the alterations observed in placenta. Further, both VEGF receptor binding and microvascular density and orientation, measures that are sensitive to reduced CCM-3 expression in developing brain, were significantly reduced in the ventricular zone of fetal cerebral cortex. These results suggest that the expression angiogenesis-related proteins in placenta might serve as a biomarker of ethanol-induced alterations in microvascular development in fetal brain.
Collapse
Affiliation(s)
- Daniel D Savage
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Martina J Rosenberg
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Laurent Coquet
- UMR 6270, CNRS, Normandie University, UNIROUEN, Proteomic Facility PISSARO, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Morgan W Porch
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Nyika A Allen
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Christian Roux
- Normandie University, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Caroline Aligny
- Normandie University, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Thierry Jouenne
- UMR 6270, CNRS, Normandie University, UNIROUEN, Proteomic Facility PISSARO, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Bruno J Gonzalez
- Normandie University, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
36
|
The fornix acts as a permissive corridor for septal neuron migration beyond the diencephalic-telencephalic boundary. Sci Rep 2020; 10:8315. [PMID: 32433594 PMCID: PMC7239880 DOI: 10.1038/s41598-020-65284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/28/2020] [Indexed: 11/08/2022] Open
Abstract
Neuronal migration is essential for constructing functional neural networks. Two posterior septal (PS) nuclei, the triangular septal nucleus and bed nuclei of the anterior commissure, are involved in fear and anxiety. During development, glutamatergic PS neurons undergo long-distance rostrodorsal migration from the thalamic eminence (TE) of the diencephalon, then settle in the caudalmost telencephalon. However, the developmental behavior of PS neurons and the guidance structures facilitating their migration remain unknown. We previously demonstrated the migration of PS neurons along the fornix, a major efferent pathway from the hippocampal formation. Here, we show that the postcommissural fornix is essential for PS neuron migration which is largely confined to its axonal tract, which grows in the opposite direction as PS neuron migration. Fornical axons reach the TE prior to initiation of PS neuron rostrodorsal migration. Ectopic expression of Semaphorin 3 A in the dorsomedial cortex resulted in defective fornix formation. Furthermore, loss of the postcommissural fornix stalled PS neuron migration resulting in abnormal accumulation near their origin. This suggests that PS neurons utilize the postcommissural fornix as a permissive corridor during migration beyond the diencephalic-telencephalic boundary. This axonal support is essential for the functional organization of the heterogeneous septal nuclear complex.
Collapse
|
37
|
Léger C, Dupré N, Aligny C, Bénard M, Lebon A, Henry V, Hauchecorne M, Galas L, Frebourg T, Leroux P, Vivien D, Lecointre M, Marret S, Gonzalez BJ. Glutamate controls vessel-associated migration of GABA interneurons from the pial migratory route via NMDA receptors and endothelial protease activation. Cell Mol Life Sci 2020; 77:1959-1986. [PMID: 31392351 PMCID: PMC7229000 DOI: 10.1007/s00018-019-03248-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022]
Abstract
During cortex development, fine interactions between pyramidal cells and migrating GABA neurons are required to orchestrate correct positioning of interneurons, but cellular and molecular mechanisms are not yet clearly understood. Functional and age-specific expression of NMDA receptors by neonate endothelial cells suggests a vascular contribution to the trophic role of glutamate during cortical development. Associating functional and loss-of-function approaches, we found that glutamate stimulates activity of the endothelial proteases MMP-9 and t-PA along the pial migratory route (PMR) and radial cortical microvessels. Activation of MMP-9 was NMDAR-dependent and abrogated in t-PA-/- mice. Time-lapse recordings revealed that glutamate stimulated migration of GABA interneurons along vessels through an NMDAR-dependent mechanism. In Gad67-GFP mice, t-PA invalidation and in vivo administration of an MMP inhibitor impaired positioning of GABA interneurons in superficial cortical layers, whereas Grin1 endothelial invalidation resulted in a strong reduction of the thickness of the pial migratory route, a marked decrease of the glutamate-induced MMP-9-like activity along the PMR and a depopulation of interneurons in superficial cortical layers. This study supports that glutamate controls the vessel-associated migration of GABA interneurons by regulating the activity of endothelial proteases. This effect requires endothelial NMDAR and is t-PA-dependent. These neurodevelopmental data reinforce the debate regarding safety of molecules with NMDA-antagonist properties administered to preterm and term neonates.
Collapse
Affiliation(s)
- Cécile Léger
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Nicolas Dupré
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Caroline Aligny
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Magalie Bénard
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Alexis Lebon
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Vincent Henry
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Michelle Hauchecorne
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Ludovic Galas
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Thierry Frebourg
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Philippe Leroux
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Denis Vivien
- Inserm, Université Caen-Normandie, Inserm, UMR-S U1237 "Physiopathology and Imaging of Neurological Disorders" (PhIND), GIP Cyceron, Caen, France
- Department of Clinical Research, Caen University Hospital, CHU Caen, Caen, France
| | - Maryline Lecointre
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Stéphane Marret
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Bruno J Gonzalez
- Normandie University, UNIROUEN, INSERM U1245 and Rouen University Hospital, Department of Neonatal Paediatrics and Intensive Care, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
38
|
Datta D, Vasudevan A. Migration, Chemo-Attraction, and Co-Culture Assays for Human Stem Cell-Derived Endothelial Cells and GABAergic Neurons. J Vis Exp 2020. [PMID: 32065131 DOI: 10.3791/60295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Role of brain vasculature in nervous system development and etiology of brain disorders is increasingly gaining attention. Our recent studies have identified a special population of vascular cells, the periventricular endothelial cells, that play a critical role in the migration and distribution of forebrain GABAergic interneurons during embryonic development. This, coupled with their cell-autonomous functions, alludes to novel roles of periventricular endothelial cells in the pathology of neuropsychiatric disorders like schizophrenia, epilepsy, and autism. Here, we have described three different in vitro assays that collectively evaluate the functions of periventricular endothelial cells and their interaction with GABAergic interneurons. Use of these assays, particularly in a human context, will allow us to identify the link between periventricular endothelial cells and brain disorders. These assays are simple, low cost, and reproducible, and can be easily adapted to any adherent cell type.
Collapse
Affiliation(s)
- Debkanya Datta
- Department of Psychiatry, Harvard Medical School; Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital;
| | - Anju Vasudevan
- Department of Psychiatry, Harvard Medical School; Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital;
| |
Collapse
|
39
|
Baruah J, Vasudevan A, Köhling R. Vascular Integrity and Signaling Determining Brain Development, Network Excitability, and Epileptogenesis. Front Physiol 2020; 10:1583. [PMID: 32038280 PMCID: PMC6987412 DOI: 10.3389/fphys.2019.01583] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/17/2019] [Indexed: 01/27/2023] Open
Abstract
Our understanding of the etiological mechanisms leading up to epilepsy has undergone radical changes over time due to more insights into the complexity of the disease. The traditional hypothesis emphasized network hyperexcitability and an imbalance of inhibition and excitation, eventually leading to seizures. In this context, the contribution of the vascular system, and particularly the interactions between blood vessels and neuronal tissue, came into focus only recently. Thus, one highly exciting causative or contributing factor of epileptogenesis is the disruption of the blood-brain barrier (BBB) in the context of not only posttraumatic epilepsy, but also other etiologies. This hypothesis is now recognized as a synergistic mechanism that can give rise to epilepsy, and BBB repair for restoration of cerebrovascular integrity is considered a therapeutic alternative. Endothelial cells lining the inner surface of blood vessels are an integral component of the BBB system. Sealed by tight junctions, they are crucial in maintaining homeostatic activities of the brain, as well as acting as an interface in the neurovascular unit. Additional potential vascular mechanisms such as inflammation, altered neurovascular coupling, or changes in blood flow that can modulate neuronal circuit activity have been implicated in epilepsy. Our own work has shown how intrinsic defects within endothelial cells from the earliest developmental time points, which preclude neuronal changes, can lead to vascular abnormalities and autonomously support the development of hyperexcitability and epileptiform activity. In this article, we review the importance of vascular integrity and signaling for network excitability and epilepsy by highlighting complementary basic and clinical research studies and by outlining possible novel therapeutic strategies.
Collapse
Affiliation(s)
- Jugajyoti Baruah
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
| | - Anju Vasudevan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
40
|
Schaffenrath J, Keller A. New Insights in the Complexity and Functionality of the Neurovascular Unit. Handb Exp Pharmacol 2020; 273:33-57. [PMID: 33582883 DOI: 10.1007/164_2020_424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The neurovascular unit (NVU) encompasses all brain cells and underlines that neurons, glia and brain vasculature are in intimate physical and functional association. Brain function is dependent on blood flow and local increases in blood flow in response to neural activity - functional hyperaemia takes place at the NVU. Although this is a vital function of the NVU, many studies have demonstrated that the NVU also performs other tasks. Blood vessels in the brain, which are composed of multiple cell types, are essential for correct brain development. They constitute the niche for brain stem cells, sense the environment and communicate changes to neural tissue, and control the immune quiescence of the CNS. In this brief chapter we will discuss new insights into the biology of NVU, which have further revealed the heterogeneity and complexity of the vascular tree and its neurovascular associations.
Collapse
Affiliation(s)
- Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.
| |
Collapse
|
41
|
Sautreuil C, Laquerrière A, Lecuyer M, Brasse-Lagnel C, Jégou S, Bekri S, Marcorelles P, Gil S, Marret S, Gonzalez BJ. [Fetal alcohol exposure: when placenta would help to the early diagnosis of child brain impairments]. Med Sci (Paris) 2019; 35:859-865. [PMID: 31845877 DOI: 10.1051/medsci/2019167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alcohol consumption during pregnancy constitutes a major cause of neurodevelopmental and behavioral disabilities. Whereas it is possible for clinicians to establish a perinatal diagnosis of fetal alcohol syndrome, the more severe expression of fetal alcohol spectrum disorder (FASD), most FASD children are late or mis-diagnosed due to a lack of clear morphological and neurodevelopmental abnormalities. Several precious years of care are consequently lost. Recent data revealed a functional placenta-brain axis involved in the control of the fetal brain angiogenesis which is impaired by in utero alcohol exposure. Because in the developing fetal brain a correct angiogenesis is required for a correct neurodevelopment, these preclinical and clinical advances pave the way for a new generation of placental biomarkers for early diagnosis of FASD.
Collapse
Affiliation(s)
- Camille Sautreuil
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France
| | - Annie Laquerrière
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France - Service de Pathologie, Hôpital Charles-Nicolle, CHU de Rouen, France
| | - Matthieu Lecuyer
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France
| | | | - Sylvie Jégou
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France
| | - Soumeya Bekri
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France - Service de Biochimie métabolique, Hôpital Charles-Nicolle, CHU de Rouen, France
| | | | - Sophie Gil
- Inserm UMR-S1139, Université Paris Descartes, Sorbonne Paris Cité, Fondation PremUp, Paris, France
| | - Stéphane Marret
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France - Service de Pédiatrie Néonatale et Réanimation, Neuropédiatrie, Camsp, Hôpital Charles-Nicolle, CHU de Rouen, 37 boulevard Gambetta, 76000 Rouen, France
| | - Bruno J Gonzalez
- Inserm U1245, Équipe 4, Rouen Université, Normandie Université, Rouen, France
| |
Collapse
|
42
|
Mechanistic insights into autocrine and paracrine roles of endothelial GABA signaling in the embryonic forebrain. Sci Rep 2019; 9:16256. [PMID: 31700116 PMCID: PMC6838150 DOI: 10.1038/s41598-019-52729-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
The developing cerebral cortex uses a complex developmental plan involving angiogenesis, neurogenesis and neuronal migration. Our recent studies have highlighted the importance of endothelial cell secreted GABA signaling in the embryonic forebrain and established novel autonomous links between blood vessels and the origin of neuropsychiatric diseases. A GABA pathway operates in both endothelial cells and GABAergic neurons of the embryonic telencephalon; however, while the neuronal GABA pathway has been extensively studied, little is known about the endothelial GABA pathway. Our recently generated Vgat endothelial cell knockout mouse model that blocks GABA release from endothelial cells, serves as a new tool to study how endothelial GABA signaling shapes angiogenesis and neurovascular interactions during prenatal development. Quantitative gene expression profiling reveals that the endothelial GABA signaling pathway influences genes connected to specific processes like endothelial cell proliferation, differentiation, migration, tight junction formation, vascular sprouting and integrity. It also shows how components of the neuronal GABA pathway, for instance receptor mediated signaling, cell cycle related components and transcription factors are affected in the absence of endothelial GABA release. Taken together, our findings delineate the close relationship between vascular and nervous systems that begin early in embryogenesis establishing their future interactions and interdependence.
Collapse
|
43
|
Barber M, Andrews WD, Memi F, Gardener P, Ciantar D, Tata M, Ruhrberg C, Parnavelas JG. Vascular-Derived Vegfa Promotes Cortical Interneuron Migration and Proximity to the Vasculature in the Developing Forebrain. Cereb Cortex 2019; 28:2577-2593. [PMID: 29901792 PMCID: PMC5998991 DOI: 10.1093/cercor/bhy082] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 12/29/2022] Open
Abstract
Vascular endothelial growth factor (Vegfa) is essential for promoting the vascularization of the embryonic murine forebrain. In addition, it directly influences neural development, although its role in the forming forebrain is less well elucidated. It was recently suggested that Vegfa may influence the development of GABAergic interneurons, inhibitory cells with crucial signaling roles in cortical neuronal circuits. However, the mechanism by which it affects interneuron development remains unknown. Here we investigated the developmental processes by which Vegfa may influence cortical interneuron development by analyzing transgenic mice that ubiquitously express the Vegfa120 isoform to perturb its signaling gradient. We found that interneurons reach the dorsal cortex at mid phases of corticogenesis despite an aberrant vascular network. Instead, endothelial ablation of Vegfa alters cortical interneuron numbers, their intracortical distribution and spatial proximity to blood vessels. We show for the first time that vascular-secreted guidance factors promote early-migrating interneurons in the intact forebrain in vivo and identify a novel role for vascular-Vegfa in this process.
Collapse
Affiliation(s)
- Melissa Barber
- Department of Cell and Developmental Biology, University College London, London, UK
| | - William D Andrews
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Fani Memi
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Phillip Gardener
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Daniel Ciantar
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mathew Tata
- Institute of Ophthalmology, University College London, London, UK
| | | | - John G Parnavelas
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
44
|
Takashima S, Watanabe C, Ema M, Mizutani KI. Interaction of the nervous system and vascular system is required for the proper assembly of the neocortex. Neurochem Int 2019; 129:104481. [DOI: 10.1016/j.neuint.2019.104481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
45
|
Fujioka T, Kaneko N, Sawamoto K. Blood vessels as a scaffold for neuronal migration. Neurochem Int 2019; 126:69-73. [PMID: 30851365 DOI: 10.1016/j.neuint.2019.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/19/2022]
Abstract
Neurogenesis and angiogenesis share regulatory factors that contribute to the formation of vascular networks and neuronal circuits in the brain. While crosstalk mechanisms between neural stem cells (NSCs) and the vasculature have been extensively investigated, recent studies have provided evidence that blood vessels also play an essential role in neuronal migration in the brain during development and regeneration. The mechanisms of the neuronal migration along blood vessels, referred to as "vascular-guided migration," are now being elucidated. The vascular endothelial cells secrete soluble factors that attract and promote neuronal migration in collaboration with astrocytes that enwrap the blood vessels. In addition, especially in the adult brain, the blood vessels serve as a migration scaffold for adult-born immature neurons generated in the ventricular-subventricular zone (V-SVZ), a germinal zone surrounding the lateral ventricles. The V-SVZ-derived immature neurons use the vascular scaffold to assist their migration toward an injured area after ischemic stroke, and contribute to neuronal regeneration. Here we review the current knowledge about the role of vasculature in neuronal migration and the molecular mechanisms controlling this process. While most of this research has been done in rodents, a comprehensive understanding of vasculature-guided neuronal migration could contribute to new therapeutic approaches for increasing new neurons in the brain after injury.
Collapse
Affiliation(s)
- Teppei Fujioka
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
46
|
Abstract
The mammalian brain receives the lion’s share of the body’s blood supply and is a highly vascularized organ. The vascular and nervous systems arise at two distinct time points of embryogenesis; however, their functions tend to overlap or complement each other in the growth promoting milieu of the embryonic Central Nervous System (CNS). The pre-existing idea that mental disorders are a direct result from defects solely in neuronal populations and networks is gradually changing. Several studies have implicated blood vessel pathologies and blood flow changes in mental health disorders. Our own studies provide new perspectives as to how intrinsic defects in periventricular endothelial cells, from the earliest developmental time points can lead to the origin of mental health disorders such as schizophrenia, autism spectrum disorders (ASD), anxiety, and depression, thereby establishing direct links. In this article, we provide an overview of how the endothelial cell compartment in the brain is now gaining attention in the context of mental health disorders.
Collapse
Affiliation(s)
- Jugajyoti Baruah
- Department of Psychiatry, Harvard Medical School, Boston, MA-02215, USA.,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA-02478, USA
| | - Anju Vasudevan
- Department of Psychiatry, Harvard Medical School, Boston, MA-02215, USA.,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA-02478, USA
| |
Collapse
|
47
|
Segarra M, Aburto MR, Cop F, Llaó-Cid C, Härtl R, Damm M, Bethani I, Parrilla M, Husainie D, Schänzer A, Schlierbach H, Acker T, Mohr L, Torres-Masjoan L, Ritter M, Acker-Palmer A. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science 2018; 361:361/6404/eaao2861. [PMID: 30139844 DOI: 10.1126/science.aao2861] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/05/2018] [Indexed: 12/17/2022]
Abstract
The architecture of the neurovascular unit (NVU) is controlled by the communication of neurons, glia, and vascular cells. We found that the neuronal guidance cue reelin possesses proangiogenic activities that ensure the communication of endothelial cells (ECs) with the glia to control neuronal migration and the establishment of the blood-brain barrier in the mouse brain. Apolipoprotein E receptor 2 (ApoER2) and Disabled1 (Dab1) expressed in ECs are required for vascularization of the retina and the cerebral cortex. Deletion of Dab1 in ECs leads to a reduced secretion of laminin-α4 and decreased activation of integrin-β1 in glial cells, which in turn control neuronal migration and barrier properties of the NVU. Thus, reelin signaling in the endothelium is an instructive and integrative cue essential for neuro-glia-vascular communication.
Collapse
Affiliation(s)
- Marta Segarra
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Maria R Aburto
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Focus Program Translational Neurosciences, University of Mainz, D-55131 Mainz, Germany
| | - Florian Cop
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Cecília Llaó-Cid
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Ricarda Härtl
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Miriam Damm
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Focus Program Translational Neurosciences, University of Mainz, D-55131 Mainz, Germany
| | - Ioanna Bethani
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Marta Parrilla
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Max Planck Institute for Brain Research, D-60438 Frankfurt am Main, Germany
| | - Dewi Husainie
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Max Planck Institute for Brain Research, D-60438 Frankfurt am Main, Germany
| | - Anne Schänzer
- Institute of Neuropathology, University of Giessen, D-35392 Giessen, Germany
| | - Hannah Schlierbach
- Institute of Neuropathology, University of Giessen, D-35392 Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, University of Giessen, D-35392 Giessen, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Laia Torres-Masjoan
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Mathias Ritter
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany. .,Focus Program Translational Neurosciences, University of Mainz, D-55131 Mainz, Germany.,Max Planck Institute for Brain Research, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
48
|
Affiliation(s)
- Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA. .,Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Institut du Cerveau et de la Moelle Epinière, Paris, France
| |
Collapse
|
49
|
Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Mol Neurobiol 2018; 56:1992-2006. [DOI: 10.1007/s12035-018-1213-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
|
50
|
Tanabe S, Yamashita T. The role of immune cells in brain development and neurodevelopmental diseases. Int Immunol 2018; 30:437-444. [DOI: 10.1093/intimm/dxy041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shogo Tanabe
- Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, World Premier International Immunology Frontier Research Center, Osaka University, Suita-shi, Osaka, Japan
- Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita-shi, Osaka, Japan
| |
Collapse
|