1
|
Zimmerlin L, Angarita A, Park TS, Evans-Moses R, Thomas J, Yan S, Uribe I, Vegas I, Kochendoerfer C, Buys W, Leung AKL, Zambidis ET. Proteogenomic reprogramming to a functional human blastomere-like stem cell state via a PARP-DUX4 regulatory axis. Cell Rep 2025; 44:115671. [PMID: 40338744 DOI: 10.1016/j.celrep.2025.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 02/17/2025] [Accepted: 04/16/2025] [Indexed: 05/10/2025] Open
Abstract
Here, we show that conventional human pluripotent stem cells cultured with non-specific tankyrase-PARP1-inhibited conditions underwent proteogenomic reprogramming to functional blastomere-like tankyrase/PARP inhibitor-regulated naive stem cells (TIRN-SC). TIRN-SCs concurrently expressed hundreds of pioneer factors in hybrid 2C-8C-morula-ICM programs that were augmented by induced expression of DUX4. Injection of TIRN-SCs into 8C-staged murine embryos equipotently differentiated human cells to the extra-embryonic and embryonic compartments of chimeric blastocysts and fetuses. Ectopic expression of murine-E-Cadherin in TIRN-SCs further enhanced interspecific chimeric tissue targeting. TIRN-SC-derived trophoblast stem cells efficiently generated placental chimeras. Proteome-ubiquitinome analyses revealed increased TNKS and reduced PARP1 levels and an ADP-ribosylation-deficient, hyper-ubiquitinated proteome that impacted expression of both tankyrase and PARP1 substrates. ChIP-seq of NANOG-SOX2-OCT4 and PARP1 (NSOP) revealed genome-wide NSOP co-binding at DUX4-accessible enhancers of embryonic lineage factors; suggesting a DUX4-NSOP axis regulated TIRN-SC lineage plasticity. TIRN-SCs may serve as valuable models for studying the proteogenomic regulation of pre-lineage human embryogenesis. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ariana Angarita
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tea Soon Park
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebecca Evans-Moses
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Justin Thomas
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sirui Yan
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Isabel Uribe
- Departments of Biochemistry and Molecular Biology, The Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Isabella Vegas
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Clara Kochendoerfer
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Willem Buys
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anthony K L Leung
- Departments of Biochemistry and Molecular Biology, The Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Elias T Zambidis
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Wang H, Zhong L, Wang Z, Xiang J, Pei D. Wnt Inhibition Safeguards Porcine Embryonic Stem Cells From the Acquisition of Extraembryonic Endoderm Cell Fates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416802. [PMID: 40063421 PMCID: PMC12061302 DOI: 10.1002/advs.202416802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/25/2025] [Indexed: 05/10/2025]
Abstract
Porcine embryonic stem cells (ESCs) are excellent models for exploring embryogenesis, producing genetically enhanced farm animals, and improving breeding. Various chemicals have been applied to generate porcine ESCs from embryos, which differ from mouse and human ESC derivation. Wnt inhibitors XAV939 or IWR1 are required to isolate and maintain porcine ESCs. How Wnt inhibitors specify porcine ESC fate decisions remains poorly understood. Additionally, whether porcine ESCs can be converted to extraembryonic endoderm (XEN) cells without genetic interventions has not been reported. Here, it is reported that Wnt inhibitors (i.e., XAV939 and IWR1) safeguard porcine ESCs from acquiring the XEN lineage. Porcine ESCs rely on Wnt inhibitors to maintain pluripotency. Without them, porcine ESCs exit from pluripotency and convert to XEN cells. An efficient strategy and culture conditions are further developed to directly derive porcine XEN cells from ESCs without gene editing. The resulting XEN cells from ESCs exhibit similar transcriptome and chromatin accessibility features to XEN cells from embryos and contribute to mouse extraembryonic tissues. This study will deepen the understanding of porcine pluripotency, lay the foundation for deriving high-quality porcine ESCs with germline chimerism and transmission, and provide valuable materials to study extraembryonic development and lineage segregation in livestock.
Collapse
Affiliation(s)
- Hanning Wang
- Laboratory of Cell Fate ControlSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Liang Zhong
- Hebei Provincial Key Laboratory of Basic Medicine for DiabetesThe Shijiazhuang Second HospitalShijiazhuang050051China
| | - Zhuangfei Wang
- Laboratory of Cell Fate ControlSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Jinzhu Xiang
- Laboratory of Cell Fate ControlSchool of Life SciencesWestlake UniversityHangzhou310030China
| | - Duanqing Pei
- Laboratory of Cell Fate ControlSchool of Life SciencesWestlake UniversityHangzhou310030China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhou310030China
| |
Collapse
|
3
|
Ren H, Jia X, Yu L. The building blocks of embryo models: embryonic and extraembryonic stem cells. Cell Discov 2025; 11:40. [PMID: 40258839 PMCID: PMC12012135 DOI: 10.1038/s41421-025-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/10/2025] [Indexed: 04/23/2025] Open
Abstract
The process of a single-celled zygote developing into a complex multicellular organism is precisely regulated at spatial and temporal levels in vivo. However, understanding the mechanisms underlying development, particularly in humans, has been constrained by technical and ethical limitations associated with studying natural embryos. Harnessing the intrinsic ability of embryonic stem cells (ESCs) to self-organize when induced and assembled, researchers have established several embryo models as alternative approaches to studying early development in vitro. Recent studies have revealed the critical role of extraembryonic cells in early development; and many groups have created more sophisticated and precise ESC-derived embryo models by incorporating extraembryonic stem cell lines, such as trophoblast stem cells (TSCs), extraembryonic mesoderm cells (EXMCs), extraembryonic endoderm cells (XENs, in rodents), and hypoblast stem cells (in primates). Here, we summarize the characteristics of existing mouse and human embryonic and extraembryonic stem cells and review recent advancements in developing mouse and human embryo models.
Collapse
Affiliation(s)
- Hongan Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojie Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Leqian Yu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Liu S, Meng Y, Lan X, Li R, Kanchanawong P. Ground-state pluripotent stem cells are characterized by Rac1-dependent cadherin-enriched F-actin complexes. J Cell Sci 2025; 138:JCS263811. [PMID: 39886806 DOI: 10.1242/jcs.263811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Pluripotent stem cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, although different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here, we investigated how the actin cytoskeleton is regulated in different pluripotency states. We observed a drastic reorganization during the transition from ground-state naïve mouse embryonic stem cells (mESCs) into converted prime epiblast stem cells (EpiSCs). mESCs are characterized by prominent actin-enriched cortical structures that contain cadherin-based cell-cell junctional components, despite not locating at cell-cell junctions. We term these structures 'non-junctional cadherin complexes' (NJCCs) and show that they are under low mechanical tension, depend on the ectodomain but not the cytoplasmic domain of E-cadherin, and exhibit minimal Ca2+ dependence. Active Rac1 was identified as a negative regulator that promotes β-catenin dissociation and NJCC fragmentation. Our data suggests that NJCCs might arise from the cis-association of E-cadherin ectodomain, with potential roles in ground-state pluripotency, and could serve as structural markers to distinguish heterogeneous population of pluripotent stem cells.
Collapse
Affiliation(s)
- Shiying Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Yue Meng
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Xi Lan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
5
|
Guo J, Lin R, Liu J, Liu R, Chen S, Zhang Z, Yang Y, Wang H, Wang L, Yu S, Zhou C, Xiao L, Luo R, Yu J, Zeng L, Zhang X, Li Y, Wu H, Wang T, Li Y, Kumar M, Zhu P, Liu J. Capture primed pluripotency in guinea pig. Stem Cell Reports 2025; 20:102388. [PMID: 39793577 PMCID: PMC11864139 DOI: 10.1016/j.stemcr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025] Open
Abstract
Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency. Wingless/Integrated (WNT) signaling inhibition is also essential for their maintenance. GpEpiSCs express key pluripotency markers (OCT4, SOX2, NANOG) and share transcriptional similarities with human and mouse primed stem cells. While many genes are conserved between guinea pig and human primed stem cells, transcriptional analysis also reveals species-specific differences in pluripotency-related pathways. Epigenetic analysis highlights bivalent gene regulation, underscoring their developmental potential. This work demonstrates both the evolutionary conservation and divergence of primed pluripotent stem cells, providing a new tool for biomedical research and enhancing guinea pigs' utility in studying human diseases.
Collapse
Affiliation(s)
- Jing Guo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Runxia Lin
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jinpeng Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongrong Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuyan Chen
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhen Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongzheng Yang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haiyun Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Luqin Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shengyong Yu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Chunhua Zhou
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Lizhan Xiao
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongping Luo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinjin Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Pediatric Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lihua Zeng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoli Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yusha Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haokaifeng Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Tao Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yi Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Manish Kumar
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| | - Jing Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| |
Collapse
|
6
|
Xiao Y, Wang Y, Zhang M, Zhang Y, Ju Z, Wang J, Zhang Y, Yang C, Wang X, Jiang Q, Gao Y, Wei X, Liu W, Gao Y, Hu P, Huang J. Tankyrase inhibitor IWR-1 modulates HIPPO and Transforming Growth Factor β signaling in primed bovine embryonic stem cells cultured on mouse embryonic fibroblasts. Theriogenology 2025; 233:100-111. [PMID: 39613494 DOI: 10.1016/j.theriogenology.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
The use of tankyrase inhibitors is essential for capturing livestock embryonic stem cells (ESC), yet their mechanisms of action remain largely uncharacterized. Previous studies indicate that their roles extend beyond the suppression of canonical WNT signaling. This study investigates the effects of the tankyrase inhibitor IWR-1 on maintaining the pluripotency of bovine embryonic stem cells (bESC) cultured on mitotically inactivated mouse embryonic fibroblasts (MEF). Notably, bESC exhibited significant differentiation after one month of IWR-1 withdrawal, without a clear bias toward any specific germ layer. IWR-1 effectively inhibited TNKS2 activity in bESC, whereas it suppressed TNKS1 protein level in growth-arrested MEF. Early differentiation upon IWR-1 removal induced more substantial transcriptomic changes in MEF than in bESC. Furthermore, cell communication analysis predicted that IWR-1 influenced several paracrine and autocrine signals within the culture system. We also observed that IWR-1 repressed protein abundance of the HIPPO pathway components including TEAD4 and YAP1 in bESC and decreased transcription of HIPPO targeted genes CYR61. Protein analysis in growth-arrested MEF suggested that IWR-1 modulated MEF function by impeding TGF-β1 activation and activin A secretion which mitigated nuclear localization of SMAD2/3 in the bESC. This study underscores the role of tankyrase inhibitors in ESC self-renewal by modulating key signaling pathways and orchestrating cell-cell interactions, which may be meaningful in understanding the delicate signaling control of pluripotency in livestock and improving the culture system.
Collapse
Affiliation(s)
- Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yujie Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Minghao Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan Zhang
- Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenhao Liu
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
7
|
Jiang N, Hu Z, Wang Q, Hao J, Yang R, Jiang J, Wang H. Fibroblast growth factor 2 enhances BMSC stemness through ITGA2-dependent PI3K/AKT pathway activation. J Cell Physiol 2024; 239:e31423. [PMID: 39188080 DOI: 10.1002/jcp.31423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSC) are promising cellular reservoirs for treating degenerative diseases, tissue injuries, and immune system disorders. However, the stemness of BMSCs tends to decrease during in vitro cultivation, thereby restricting their efficacy in clinical applications. Consequently, investigating strategies that bolster the preservation of BMSC stemness and maximize therapeutic potential is necessary. Transcriptomic and single-cell sequencing methodologies were used to perform a comprehensive examination of BMSCs with the objective of substantiating the pivotal involvement of fibroblast growth factor 2 (FGF2) and integrin alpha 2 (ITGA2) in stemness regulation. To investigate the impact of these genes on the BMSC stemness in vitro, experimental approaches involving loss and gain of function were implemented. These approaches encompassed the modulation of FGF2 and ITGA2 expression levels via small interfering RNA and overexpression plasmids. Furthermore, we examined their influence on the proliferation and differentiation capacities of BMSCs, along with the expression of stemness markers, including octamer-binding transcription factor 4, Nanog homeobox, and sex determining region Y-box 2. Transcriptomic analyzes successfully identified FGF2 and ITGA2 as pivotal genes responsible for regulating the stemness of BMSCs. Subsequent single-cell sequencing revealed that elevated FGF2 and ITGA2 expression levels within specific stem cell subpopulations are closely associated with stemness maintenance. Moreover, additional in vitro experiments have convincingly demonstrated that FGF2 effectively enhances the BMSC stemness by upregulating ITGA2 expression, a process mediated by the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. This conclusion was supported by the observed upregulation of stemness markers following the induction of FGF2 and ITGA2. Moreover, administration of the BEZ235 pathway inhibitor resulted in the repression of stemness transcription factors, suggesting the substantial involvement of the PI3K/AKT pathway in stemness preservation facilitated by FGF2 and ITGA2. This study elucidates the involvement of FGF2 in augmenting BMSC stemness by modulating ITGA2 and activating the PI3K/AKT pathway. These findings offer valuable contributions to stem cell biology and emphasize the potential of manipulating FGF2 and ITGA2 to optimize BMSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Nizhou Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Spine Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Quanxiang Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Yang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Jian Jiang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Hong Wang
- Department of Spine Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Phiboonchaiyanan PP, Harikarnpakdee S, Songsak T, Chowjarean V. In Vitro Evaluation of Wound Healing, Stemness Potentiation, Antioxidant Activity, and Phytochemical Profile of Cucurbita moschata Duchesne Fruit Pulp Ethanolic Extract. Adv Pharmacol Pharm Sci 2024; 2024:9288481. [PMID: 39502575 PMCID: PMC11535185 DOI: 10.1155/2024/9288481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/03/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Wound healing comprises an intricate process to repair damaged tissue. Research on plant extracts with properties to expedite wound healing has been of interest, particularly their ability to enhance the stemness of keratinocyte stem cells. Hence, the present study aims to determine the wound healing and stemness potentiation properties of an ethanolic extract derived from Cucurbita moschata fruit pulp (PKE). Human keratinocytes (HaCaT) and primary skin fibroblast cells were used in this study. The migration of the cells was examined by using a scratch wound healing assay, and spheroid behavior was determined by using a spheroid formation assay. The proteins related to migration and stemness were further measured by using Western blotting to explore the mechanism of action of PKE. The methods used to evaluate PKE's antioxidant properties were 2,2-diphenyl-2-picrylhydrazyl (DPPH) scavenging, ABTS radical scavenging activity, and superoxide anion radical scavenging (SOSA) assays. The phytochemistry of the PKE was investigated using phytochemical screening and high-performance liquid chromatography (HPLC) analysis. The results of this study indicate that nontoxic concentrations of PKE increase the rate of migration and spheroid formation. Mechanistically, PKE increased the expression of the migratory-related protein active FAK (phosphorylated FAK), and the subsequence increased the level of p-AKT. The expression of stem cell marker CD133, upstream protein signaling β-catenin, and self-renewal transcription factor Nanog was increased. The PKE also possessed scavenging properties against DPPH, ABTS, and SOSA. The phytochemistry analyses exhibited the presence of alkaloids, glycosides, xanthones, triterpenes, and steroids. Additionally, bioactive compounds such as ɑ-tocopherol, riboflavin, protocatechuic acid, β-carotene, and luteolin were detected. The presence of these chemicals in PKE may contribute to its antioxidant, stem cell potentiation, and wound-healing effects. The findings could be beneficial in the identification of valuable natural resources that possess the capacity to be used in the process of wound healing through the potentiation of stemness via a readily detectable molecular mechanism.
Collapse
Affiliation(s)
| | - Saraporn Harikarnpakdee
- Department of Industrial Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Thanapat Songsak
- Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Verisa Chowjarean
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| |
Collapse
|
9
|
Zhi M, Gao D, Yao Y, Zhao Z, Wang Y, He P, Feng Z, Zhang J, Huang Z, Gu W, Zhao J, Zhang H, Wang S, Li X, Zhang Q, Zhao Z, Chen X, Zhang X, Qin L, Liu J, Liu C, Cao S, Gao S, Yu W, Ma Z, Han J. Elucidation of the pluripotent potential of bovine embryonic lineages facilitates the establishment of formative stem cell lines. Cell Mol Life Sci 2024; 81:427. [PMID: 39377807 PMCID: PMC11461730 DOI: 10.1007/s00018-024-05457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
The establishment of epiblast-derived pluripotent stem cells (PSCs) from cattle, which are important domestic animals that provide humans with milk and meat while also serving as bioreactors for producing valuable proteins, poses a challenge due to the unclear molecular signaling required for embryonic epiblast development and maintenance of PSC self-renewal. Here, we selected six key stages of bovine embryo development (E5, E6, E7, E10, E12, and E14) to track changes in pluripotency and the dependence on signaling pathways via modified single-cell transcription sequencing technology. The remarkable similarity of the gene expression patterns between cattle and pigs during embryonic lineage development contributed to the successful establishment of bovine epiblast stem cells (bEpiSCs) using 3i/LAF (WNTi, GSK3βi, SRCi, LIF, Activin A, and FGF2) culture system. The generated bEpiSCs exhibited consistent expression patterns of formative epiblast pluripotency genes and maintained clonal morphology, normal karyotypes, and proliferative capacity for more than 112 passages. Moreover, these cells exhibited high-efficiency teratoma formation as well as the ability to differentiate into various cell lineages. The potential of bEpiSCs for myogenic differentiation, primordial germ cell like cells (PGCLCs) induction, and as donor cells for cell nuclear transfer was also assessed, indicating their promise in advancing cell-cultured meat production, gene editing, and animal breeding.
Collapse
Affiliation(s)
- Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Dengfeng Gao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zimo Zhao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Pengcheng He
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhiqiang Feng
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ziqi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Wenyuan Gu
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - He Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shunxin Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Li
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Qiang Zhang
- Key Laboratory of Animal Genetics, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zengyuan Zhao
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Xinze Chen
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lun Qin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chengjun Liu
- Beijing Dairy Cattle Center, Beijing, 100192, People's Republic of China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wenli Yu
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China.
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing, 100192, People's Republic of China.
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
10
|
Liu Y, Zhang S, Zou G, An J, Li Y, Lin D, Wang D, Li Y, Chen J, Feng T, Li H, Chen Y, Zhang M, Kumar M, Wang L, Hou R, Liu J. Generation and characterization of giant panda induced pluripotent stem cells. SCIENCE ADVANCES 2024; 10:eadn7724. [PMID: 39303041 DOI: 10.1126/sciadv.adn7724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
The giant panda (Ailuropoda melanoleuca) stands as a flagship and umbrella species, symbolizing global biodiversity. While traditional assisted reproductive technology faces constraints in safeguarding the genetic diversity of giant pandas, induced pluripotent stem cells (iPSCs) known for their capacity to differentiate into diverse cells types, including germ cells, present a transformative potential for conservation of endangered animals. In this study, primary fibroblast cells were isolated from the giant panda, and giant panda iPSCs (GPiPSCs) were generated using a non-integrating episomal vector reprogramming method. Characterization of these GPiPSCs revealed their state of primed pluripotency and demonstrated their potential for differentiation. Furthermore, we innovatively formulated a species-specific chemically defined FACL medium and unraveled the intricate signaling pathway networks responsible for maintaining the pluripotency and fostering cell proliferation of GPiPSCs. This study provides key insights into rare species iPSCs, offering materials for panda characteristics research and laying the groundwork for in vitro giant panda gamete generation, potentially aiding endangered species conservation.
Collapse
Affiliation(s)
- Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Shihao Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoyang Zou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory at GIBH, Guangzhou 510530, China
| | - Junhui An
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Yuan Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Danni Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Donghui Wang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Yan Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Jiasong Chen
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Tongying Feng
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Hongyan Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Yijiao Chen
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Mingyue Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Manish Kumar
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Luqin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Province, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Province, Chengdu 610081, China
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory at GIBH, Guangzhou 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R.China
| |
Collapse
|
11
|
Güler C, Yilmaz AM, Kuru L, Ozen B, Agrali OB. The Effect of Tideglusib Application on Type 1 and Type 3 Collagen Expressions by Human Dental-Pulp Derived Stem Cells: A Preliminary Study. Niger J Clin Pract 2024; 27:1065-1072. [PMID: 39348326 DOI: 10.4103/njcp.njcp_866_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/29/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Although Tideglusib cytotoxicity studies and its effects on human dental pulp-derived stem cells (DPSCs) have been examined in previous studies, there is no study investigating the expression of type 1 collagen and type 3 collagen by Tideglusib. AIM The purpose of this study is to examine the effect of Wnt signaling activation using Tideglusib execution on human DPSC to determine its potential efficacy in collagen expression. METHODS Stem cell isolation was performed from five human third molar wisdom tooth pulps. DPSCs identified in only one sample were treated with 50 nM Tideglusib for 24 h and 1 week. Axin-2, type 1 and type 3 collagen expressions were evaluated by Western blot analysis. DPSCs without treatment served as a negative control. The Mann-Whitney U test was used for statistical analysis. RESULTS The levels of type 1 collagen and Axin-2 in the test group were significantly higher than those in the control group at 24 h (P = 0.000, P = 0.001, respectively). Compared to the control group, a slight increase in type 3 collagen expression was observed in the test group at 24 h (P value = 0.063). Application of 50 nM Tideglusib for 1 week revealed marked decreases in type 1 and type 3 collagen expressions (P = 0.029, P = 0.038, respectively). In contrast, there was a significant increase in the level of Axin-2 (P = 0.000) compared to the control group. CONCLUSION The fact that Wnt signaling pathway activation obtained by Tideglusib application on DPSCs confirmed by the finding in the increase of Axin-2 at short and long-term evaluation periods which is resulted in the increase in the type 1 collagen expression at 24 h and decrease at 1 week together with the decrease in type 3 collagen expression at 1 week warrants further studies to evaluate the effect of Tideglusib on extracellular matrix expression.
Collapse
Affiliation(s)
- C Güler
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - A M Yilmaz
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - L Kuru
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - B Ozen
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - O B Agrali
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
12
|
Choi H, Oh D, Kim M, Jawad A, Zheng H, Cai L, Lee J, Kim E, Lee G, Jang H, Moon C, Hyun SH. Establishment of porcine embryonic stem cells in simplified serum free media and feeder free expansion. Stem Cell Res Ther 2024; 15:245. [PMID: 39113095 PMCID: PMC11304784 DOI: 10.1186/s13287-024-03858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The establishment of stable porcine embryonic stem cells (pESCs) can contribute to basic and biomedical research, including comparative developmental biology, as well as assessing the safety of stem cell-based therapies. Despite these advantages, most pESCs obtained from in vitro blastocysts require complex media and feeder layers, making routine use, genetic modification, and differentiation into specific cell types difficult. We aimed to establish pESCs with a single cell-passage ability, high proliferative potency, and stable in long-term culture from in vitro-derived blastocysts using a simplified serum-free medium. METHODS We evaluated the establishment efficiency of pESCs from in vitro blastocysts using various basal media (DMEM/F10 (1:1), DMEM/F12, and a-MEM) and factors (FGF2, IWR-1, CHIR99021, and WH-4-023). The pluripotency and self-renewal capacity of the established pESCs were analyzed under feeder or feeder-free conditions. Ultimately, we developed a simplified culture medium (FIW) composed of FGF2, IWR-1, and WH-4-023 under serum-free conditions. RESULTS The pESC-FIW lines were capable of single-cell passaging with short cell doubling times and expressed the pluripotency markers POU5F1, SOX2, and NANOG, as well as cell surface markers SSEA1, SSEA4, and TRA-1-60. pESC-FIW showed a stable proliferation rate and normal karyotype, even after 50 passages. Transcriptome analysis revealed that pESC-FIW were similar to reported pESC maintained in complex media and showed gastrulating epiblast cell characteristics. pESC-FIW were maintained for multiple passages under feeder-free conditions on fibronectin-coated plates using mTeSR™, a commercial medium used for feeder-free culture, exhibiting characteristics similar to those observed under feeder conditions. CONCLUSIONS These results indicated that inhibition of WNT and SRC was sufficient to establish pESCs capable of single-cell passaging and feeder-free expansion under serum-free conditions. The easy maintenance of pESCs facilitates their application in gene editing technology for agriculture and biomedicine, as well as lineage commitment studies.
Collapse
Affiliation(s)
- Hyerin Choi
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Haomiao Zheng
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Department of Companion Animal Industry, Semyung University, Jecheon, 27136, Republic of Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins Medicine, Baltimore, ML, USA
| | - Hyewon Jang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea.
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea.
- Vet-ICT Convergence Education and Research Center (VICERC), Chungbuk National University, Cheongju, Republic of Korea.
- Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
13
|
Li S, Yang M, Shen H, Ding L, Lyu X, Lin K, Ong J, Du P. Capturing totipotency in human cells through spliceosomal repression. Cell 2024; 187:3284-3302.e23. [PMID: 38843832 DOI: 10.1016/j.cell.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/01/2023] [Accepted: 05/03/2024] [Indexed: 06/23/2024]
Abstract
The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.
Collapse
Affiliation(s)
- Shiyu Li
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Li Ding
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuehui Lyu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kexin Lin
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Kurlovich J, Rodriguez Polo I, Dovgusha O, Tereshchenko Y, Cruz CRV, Behr R, Günesdogan U. Generation of marmoset primordial germ cell-like cells under chemically defined conditions. Life Sci Alliance 2024; 7:e202302371. [PMID: 38499329 PMCID: PMC10948935 DOI: 10.26508/lsa.202302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of sperm and oocytes, which transmit genetic/epigenetic information across generations. Mouse PGC and subsequent gamete development can be fully reconstituted in vitro, opening up new avenues for germ cell studies in biomedical research. However, PGCs show molecular differences between rodents and humans. Therefore, to establish an in vitro system that is closely related to humans, we studied PGC development in vivo and in vitro in the common marmoset monkey Callithrix jacchus (cj). Gonadal cjPGCs at embryonic day 74 express SOX17, AP2Ɣ, BLIMP1, NANOG, and OCT4A, which is reminiscent of human PGCs. We established transgene-free induced pluripotent stem cell (cjiPSC) lines from foetal and postnatal fibroblasts. These cjiPSCs, cultured in defined and feeder-free conditions, can be differentiated into precursors of mesendoderm and subsequently into cjPGC-like cells (cjPGCLCs) with a transcriptome similar to human PGCs/PGCLCs. Our results not only pave the way for studying PGC development in a non-human primate in vitro under experimentally controlled conditions, but also provide the opportunity to derive functional marmoset gametes in future studies.
Collapse
Affiliation(s)
- Julia Kurlovich
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Ignacio Rodriguez Polo
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- Stem Cell and Human Development Laboratory, The Francis Crick Institute, London, UK
| | - Oleksandr Dovgusha
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Yuliia Tereshchenko
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Carmela Rieline V Cruz
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ufuk Günesdogan
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Department for Molecular Developmental Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
15
|
Yu Y, Liu L, Cao J, Huang R, Duan Q, Ye SD. Tbl1 promotes Wnt-β-catenin signaling-induced degradation of the Tcf7l1 protein in mouse embryonic stem cells. J Cell Sci 2024; 137:jcs261241. [PMID: 38639717 DOI: 10.1242/jcs.261241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Activation of the Wnt-β-catenin signaling pathway by CHIR99021, a specific inhibitor of GSK3β, induces Tcf7l1 protein degradation, which facilitates the maintenance of an undifferentiated state in mouse embryonic stem cells (mESCs); however, the precise mechanism is still unclear. Here, we showed that the overexpression of transducin-β-like protein 1 (Tbl1, also known as Tbl1x) or its family member Tblr1 (also known as Tbl1xr1) can decrease Tcf7l1 protein levels, whereas knockdown of each gene increases Tcf7l1 levels without affecting Tcf7l1 transcription. Interestingly, only Tbl1, and not Tblr1, interacts with Tcf7l1. Mechanistically, Tbl1 translocates from the cytoplasm into the nucleus in association with β-catenin (CTNNB1) after the addition of CHIR99021 and functions as an adaptor to promote ubiquitylation of the Tcf7l1 protein. Functional assays further revealed that enforced expression of Tbl1 is capable of delaying mESC differentiation. In contrast, knockdown of Tbl1 attenuates the effect of CHIR99021 on Tcf7l1 protein stability and mESC self-renewal. Our results provide insight into the regulatory network of the Wnt-β-catenin signaling pathway involved in promoting the maintenance of naïve pluripotency.
Collapse
Affiliation(s)
- Yang Yu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Liwei Liu
- College of Medical Technology, Anhui Medical College, Hefei, Anhui, 230601, China
| | - Jianjian Cao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Ru Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Quanchao Duan
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
16
|
Fan S, Popli S, Chakravarty S, Chakravarti R, Chattopadhyay S. Non-transcriptional IRF7 interacts with NF-κB to inhibit viral inflammation. J Biol Chem 2024; 300:107200. [PMID: 38508315 PMCID: PMC11040127 DOI: 10.1016/j.jbc.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.
Collapse
Affiliation(s)
- Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Sonam Popli
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
17
|
Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 2024; 31:312-333. [PMID: 38382531 PMCID: PMC10939785 DOI: 10.1016/j.stem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Though totipotency and pluripotency are transient during early embryogenesis, they establish the foundation for the development of all mammals. Studying these in vivo has been challenging due to limited access and ethical constraints, particularly in humans. Recent progress has led to diverse culture adaptations of epiblast cells in vitro in the form of totipotent and pluripotent stem cells, which not only deepen our understanding of embryonic development but also serve as invaluable resources for animal reproduction and regenerative medicine. This review delves into the hallmarks of totipotent and pluripotent stem cells, shedding light on their key molecular and functional features.
Collapse
Affiliation(s)
- Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Xu T, Su P, Wu L, Li D, Qin W, Li Q, Zhou J, Miao YL. OCT4 regulates WNT/β-catenin signaling and prevents mesoendoderm differentiation by repressing EOMES in porcine pluripotent stem cells. J Cell Physiol 2023; 238:2855-2866. [PMID: 37942811 DOI: 10.1002/jcp.31135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
The regulatory network between signaling pathways and transcription factors (TFs) is crucial for the maintenance of pluripotent stem cells. However, little is known about how the key TF OCT4 coordinates signaling pathways to regulate self-renewal and lineage differentiation of porcine pluripotent stem cells (pPSCs). Here, we explored the function of OCT4 in pPSCs by transcriptome and chromatin accessibility analysis. The TFs motif enrichment analysis revealed that, following OCT4 knockdown, the regions of increased chromatin accessibility were enriched with EOMES, GATA6, and FOXA1, indicating that pPSCs differentiated toward the mesoendoderm (ME) lineage. Besides, pPSCs rapidly differentiated into ME when the WNT/β-catenin inhibitor XAV939 was removed. However, the ME differentiation of pPSCs caused by OCT4 knockdown did not rely on the activation of WNT/β-catenin signaling because the target gene of WNT/β-catenin signaling, AXIN2 was not upregulated after OCT4 knockdown, despite significant upregulation of WLS and some WNT ligands. Importantly, OCT4 is directly bound to the promoter and enhancers of EOMES and repressed its transcription. Overexpression of EOMES was sufficient to induce ME differentiation in the presence of XAV939. These results demonstrate that OCT4 can regulate WNT/β-catenin signaling and prevent ME differentiation of pPSCs by repressing EOMES transcription.
Collapse
Affiliation(s)
- Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Peng Su
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Linhui Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Delong Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Wei Qin
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Qiao Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
19
|
Zhu Q, Wang F, Gao D, Gao J, Li G, Jiao D, Zhu G, Xu K, Guo J, Chen T, Cao S, Zhi M, Zhang J, Wang Y, Zhang X, Zhang D, Yao Y, Song J, Wei H, Han J. Generation of stable integration-free pig induced pluripotent stem cells under chemically defined culture condition. Cell Prolif 2023; 56:e13487. [PMID: 37190930 PMCID: PMC10623960 DOI: 10.1111/cpr.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Genome integration-free pig induced pluripotent stem cells (iPSCs) bring tremendous value in pre-clinical testing of regenerative medicine, as well as conservation and exploitation of endangered or rare local pig idioplasmatic resources. However, due to a lack of appropriate culture medium, efficient induction and stable maintenance of pig iPSCs with practical value remains challenging. Here, we established an efficient induction system for exogenous gene-independent iPSCs under chemically defined culture condition previously used for generation of stable pig pre-gastrulation epiblast stem cells (pgEpiSCs). WNT suppression was found to play an essential role in establishment of exogenous gene-independent iPSCs. Strikingly, stable integration-free pig iPSCs could be established from pig somatic cells using episomal vectors in this culture condition. The iPSCs had pluripotency features and transcriptome characteristics approximating pgEpiSCs. More importantly, this induction system may be used to generate integration-free iPSCs from elderly disabled rare local pig somatic cells and the iPSCs could be gene-edited and used as donor cells for nuclear transfer. Our results provide novel insights into potential applications for genetic breeding of livestock species and pre-clinical evaluation of regenerative medicine.
Collapse
Affiliation(s)
- Qianqian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Fengchong Wang
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jie Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Guilin Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Deling Jiao
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Gaoxiang Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Jianxiong Guo
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Tianzhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Suying Cao
- Animal Science and Technology CollegeBeijing University of AgricultureBeijingChina
| | - Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Danru Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jian Song
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Hong‐Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingYunnanChina
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
20
|
Bugacov H, Der B, Kim S, Lindström NO, McMahon AP. Canonical Wnt transcriptional complexes are essential for induction of nephrogenesis but not maintenance or proliferation of nephron progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554044. [PMID: 37662369 PMCID: PMC10473675 DOI: 10.1101/2023.08.20.554044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Wnt regulated transcriptional programs are associated with both the maintenance of mammalian nephron progenitor cells (NPC) and their induction, initiating the process of nephrogenesis. How opposing transcriptional roles are regulated remain unclear. Using an in vitro model replicating in vivo events, we examined the requirement for canonical Wnt transcriptional complexes in NPC regulation. In canonical transcription, Lef/Tcf DNA binding proteins associate the transcriptional co-activator β-catenin. Wnt signaling is readily substituted by CHIR99021, a small molecule antagonist of glycogen synthase kinase-3β (GSK3β). GSK3β inhibition blocks Gskβ-dependent turnover of β-catenin, enabling formation of Lef/Tcf/β-catenin transcriptional complexes, and enhancer-mediated transcriptional activation. Removal of β-catenin activity from NPCs under cell expansion conditions (low CHIR) demonstrated a non-transcriptional role for β-catenin in the CHIR-dependent proliferation of NPCs. In contrast, CHIR-mediated induction of nephrogenesis, on switching from low to high CHIR, was dependent on Lef/Tcf and β-catenin transcriptional activity. These studies point to a non-transcriptional mechanism for β-catenin in regulation of NPCs, and potentially other stem progenitor cell types. Further, analysis of the β-catenin-directed transcriptional response provides new insight into induction of nephrogenesis. Summary Statement The study provides a mechanistic understanding of Wnt/ β-catenin activity in self-renewal and differentiation of mammalian nephron progenitors.
Collapse
|
21
|
Robertson FL, O'Duibhir E, Gangoso E, Bressan RB, Bulstrode H, Marqués-Torrejón MÁ, Ferguson KM, Blin C, Grant V, Alfazema N, Morrison GM, Pollard SM. Elevated FOXG1 in glioblastoma stem cells cooperates with Wnt/β-catenin to induce exit from quiescence. Cell Rep 2023; 42:112561. [PMID: 37243590 DOI: 10.1016/j.celrep.2023.112561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/30/2022] [Accepted: 05/08/2023] [Indexed: 05/29/2023] Open
Abstract
Glioblastoma (GBM) stem cells (GSCs) display phenotypic and molecular features reminiscent of normal neural stem cells and exhibit a spectrum of cell cycle states (dormant, quiescent, proliferative). However, mechanisms controlling the transition from quiescence to proliferation in both neural stem cells (NSCs) and GSCs are poorly understood. Elevated expression of the forebrain transcription factor FOXG1 is often observed in GBMs. Here, using small-molecule modulators and genetic perturbations, we identify a synergistic interaction between FOXG1 and Wnt/β-catenin signaling. Increased FOXG1 enhances Wnt-driven transcriptional targets, enabling highly efficient cell cycle re-entry from quiescence; however, neither FOXG1 nor Wnt is essential in rapidly proliferating cells. We demonstrate that FOXG1 overexpression supports gliomagenesis in vivo and that additional β-catenin induction drives accelerated tumor growth. These data indicate that elevated FOXG1 cooperates with Wnt signaling to support the transition from quiescence to proliferation in GSCs.
Collapse
Affiliation(s)
- Faye L Robertson
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Eoghan O'Duibhir
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Ester Gangoso
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Raul Bardini Bressan
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Harry Bulstrode
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Maria-Ángeles Marqués-Torrejón
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kirsty M Ferguson
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Carla Blin
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Vivien Grant
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neza Alfazema
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gillian M Morrison
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
22
|
Wang T, Yu T, Tsai CY, Hong ZY, Chao WH, Su YS, Subbiah SK, Renuka RR, Hsu ST, Wu GJ, Higuchi A. Xeno-free culture and proliferation of hPSCs on 2D biomaterials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:63-107. [PMID: 37678982 DOI: 10.1016/bs.pmbts.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Human pluripotent stem cells (human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs)) have unlimited proliferative potential, whereas adult stem cells such as bone marrow-derived stem cells and adipose-derived stem cells have problems with aging. When hPSCs are intended to be cultured on feeder-free or xeno-free conditions without utilizing mouse embryonic fibroblasts or human fibroblasts, they cannot be cultured on conventional tissue culture polystyrene dishes, as adult stem cells can be cultured but should be cultivated on material surfaces grafted or coated with (a) natural or recombinant extracellular matrix (ECM) proteins, (b) ECM protein-derived peptides and specific synthetic polymer surfaces in xeno-free and/or chemically defined conditions. This review describes current developing cell culture biomaterials for the proliferation of hPSCs while maintaining the pluripotency and differentiation potential of the cells into 3 germ layers. Biomaterials for the cultivation of hPSCs without utilizing a feeder layer are essential to decrease the risk of xenogenic molecules, which contributes to the potential clinical usage of hPSCs. ECM proteins such as human recombinant vitronectin, laminin-511 and laminin-521 have been utilized instead of Matrigel for the feeder-free cultivation of hPSCs. The following biomaterials are also discussed for hPSC cultivation: (a) decellularized ECM, (b) peptide-grafted biomaterials derived from ECM proteins, (c) recombinant E-cadherin-coated surface, (d) polysaccharide-immobilized surface, (e) synthetic polymer surfaces with and without bioactive sites, (f) thermoresponsive polymer surfaces with and without bioactive sites, and (g) synthetic microfibrous scaffolds.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chang-Yen Tsai
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Zhao-Yu Hong
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Wen-Hui Chao
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Yi-Shuo Su
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Landseed International Hospital, Pingjen City, Taoyuan, Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
23
|
Seita Y, Cheng K, McCarrey JR, Yadu N, Cheeseman IH, Bagwell A, Ross CN, Santana Toro I, Yen LH, Vargas S, Navara CS, Hermann BP, Sasaki K. Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells. eLife 2023; 12:e82263. [PMID: 36719274 PMCID: PMC9937652 DOI: 10.7554/elife.82263] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/31/2023] [Indexed: 02/01/2023] Open
Abstract
Reconstitution of germ cell fate from pluripotent stem cells provides an opportunity to understand the molecular underpinnings of germ cell development. Here, we established robust methods for induced pluripotent stem cell (iPSC) culture in the common marmoset (Callithrix jacchus [cj]), allowing stable propagation in an undifferentiated state. Notably, iPSCs cultured on a feeder layer in the presence of a WNT signaling inhibitor upregulated genes related to ubiquitin-dependent protein catabolic processes and enter a permissive state that enables differentiation into primordial germ cell-like cells (PGCLCs) bearing immunophenotypic and transcriptomic similarities to pre-migratory cjPGCs in vivo. Induction of cjPGCLCs is accompanied by transient upregulation of mesodermal genes, culminating in the establishment of a primate-specific germline transcriptional network. Moreover, cjPGCLCs can be expanded in monolayer while retaining the germline state. Upon co-culture with mouse testicular somatic cells, these cells acquire an early prospermatogonia-like phenotype. Our findings provide a framework for understanding and reconstituting marmoset germ cell development in vitro, thus providing a comparative tool and foundation for a preclinical modeling of human in vitro gametogenesis.
Collapse
Affiliation(s)
- Yasunari Seita
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary MedicinePhiladelphiaUnited States
- Institute for Regenerative Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Bell Research Center for Reproductive Health and CancerNagoyaJapan
| | - Keren Cheng
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary MedicinePhiladelphiaUnited States
- Institute for Regenerative Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
| | - Nomesh Yadu
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
| | - Ian H Cheeseman
- Texas Biomedical Research InstituteSan AntonioUnited States
- Southwest National Primate Research CenterSan AntonioUnited States
| | - Alec Bagwell
- Texas Biomedical Research InstituteSan AntonioUnited States
- Southwest National Primate Research CenterSan AntonioUnited States
| | - Corinna N Ross
- Texas Biomedical Research InstituteSan AntonioUnited States
- Southwest National Primate Research CenterSan AntonioUnited States
| | - Isamar Santana Toro
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
| | - Li-hua Yen
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
| | - Sean Vargas
- Genomics Core, The University of Texas at San AntonioSan AntonioUnited States
| | - Christopher S Navara
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
| | - Brian P Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
- Genomics Core, The University of Texas at San AntonioSan AntonioUnited States
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary MedicinePhiladelphiaUnited States
- Institute for Regenerative Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Pathology and Laboratory Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
24
|
Retention of ERK in the cytoplasm mediates the pluripotency of embryonic stem cells. Stem Cell Reports 2022; 18:305-318. [PMID: 36563690 PMCID: PMC9860118 DOI: 10.1016/j.stemcr.2022.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
The dynamic subcellular localization of ERK1/2 plays an important role in regulating cell fate. Differentiation of mouse embryonic stem cells (mESCs) involves inductive stimulation of ERK1/2, and therefore, inhibitors of the ERK cascade are used to maintain pluripotency. Interestingly, we found that in pluripotent mESCs, ERK1/2 do not translocate to the nucleus either before or after stimulation. This inhibition of nuclear translocation may be dependent on a lack of stimulated ERK1/2 interaction with importin7 rather than a lack of ERK1/2 phosphorylation activating translocation. At late stages of naive-to-primed transition, the action of the translocating machinery is restored, leading to elevation in ERK1/2-importin7 interaction and their nuclear translocation. Importantly, forcing ERK2 into the naive cells' nuclei accelerates their early differentiation, while prevention of the translocation restores stem cells' pluripotency. These results indicate that prevention of nuclear ERK1/2 translocation serves as a safety mechanism for keeping pluripotency of mESCs.
Collapse
|
25
|
Dattani A, Huang T, Liddle C, Smith A, Guo G. Suppression of YAP safeguards human naïve pluripotency. Development 2022; 149:dev200988. [PMID: 36398796 PMCID: PMC9845734 DOI: 10.1242/dev.200988] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Propagation of human naïve pluripotent stem cells (nPSCs) relies on the inhibition of MEK/ERK signalling. However, MEK/ERK inhibition also promotes differentiation into trophectoderm (TE). Therefore, robust self-renewal requires suppression of TE fate. Tankyrase inhibition using XAV939 has been shown to stabilise human nPSCs and is implicated in TE suppression. Here, we dissect the mechanism of this effect. Tankyrase inhibition is known to block canonical Wnt/β-catenin signalling. However, we show that nPSCs depleted of β-catenin remain dependent on XAV939. Rather than inhibiting Wnt, we found that XAV939 prevents TE induction by reducing activation of YAP, a co-factor of TE-inducing TEAD transcription factors. Tankyrase inhibition stabilises angiomotin, which limits nuclear accumulation of YAP. Upon deletion of angiomotin-family members AMOT and AMOTL2, nuclear YAP increases and XAV939 fails to prevent TE induction. Expression of constitutively active YAP similarly precipitates TE differentiation. Conversely, nPSCs lacking YAP1 or its paralog TAZ (WWTR1) resist TE differentiation and self-renewal efficiently without XAV939. These findings explain the distinct requirement for tankyrase inhibition in human but not in mouse nPSCs and highlight the pivotal role of YAP activity in human naïve pluripotency and TE differentiation. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Anish Dattani
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Tao Huang
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Corin Liddle
- Bioimaging Centre, Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ge Guo
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
26
|
Park J, Choi H, Shim K. Inhibition of GSK3β Promotes Proliferation and Suppresses Apoptosis of Porcine Muscle Satellite Cells. Animals (Basel) 2022; 12:ani12233328. [PMID: 36496849 PMCID: PMC9738253 DOI: 10.3390/ani12233328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
As the global population increases, interest in cultured meat (a new research field) is gradually increasing. The main raw material for the production of cultured meat is muscle stem cells called satellite cells isolated from livestock. However, how to mass proliferate and maintain satellite cells in vitro without genetic manipulation remains unclear. In the present study, we isolated and purified porcine muscle satellite cells (PMSCs) from the femur of a 1-day-old piglet and cultured PMSCs by treating them with an inhibitor (XAV939, Tankyrase (TNKS) inhibitor) or an activator (CHIR99021, glycogen synthase kinase 3 beta (GSK3β) inhibitor) of Wnt signaling. The CHIR group treated with 3 μM CHIR99021 showed a significantly increased proliferation rate of PMSCs compared to the SC group (control), whereas the XAV group treated with 1 μM XAV939 showed a significantly decreased proliferation rate of PMSCs. CHIR99021 also inhibited the differentiation of PMSCs by reducing the expression of MyoD while maintaining the expression of Pax7 and suppressed apoptosis by regulating the expression of apoptosis-related proteins and genes. RNA sequencing was performed to obtain gene expression profiles following inhibition or activation of the Wnt signaling pathway and various signaling mechanisms related to the maintenance of satellite cells were identified. Our results suggest that inhibition of GSK3β could dramatically improve the maintenance and mass proliferation ability of PMSCs in vitro by regulating the expression of myogenic markers and the cell cycle.
Collapse
Affiliation(s)
- Jinryong Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyunwoo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kwanseob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Correspondence: ; Tel.: +82-063-270-2609
| |
Collapse
|
27
|
Wang X, Wu Q. The Divergent Pluripotent States in Mouse and Human Cells. Genes (Basel) 2022; 13:genes13081459. [PMID: 36011370 PMCID: PMC9408542 DOI: 10.3390/genes13081459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs), which can self-renew and give rise to all cell types in all three germ layers, have great potential in regenerative medicine. Recent studies have shown that PSCs can have three distinct but interrelated pluripotent states: naive, formative, and primed. The PSCs of each state are derived from different stages of the early developing embryo and can be maintained in culture by different molecular mechanisms. In this review, we summarize the current understanding on features of the three pluripotent states and review the underlying molecular mechanisms of maintaining their identities. Lastly, we discuss the interrelation and transition among these pluripotency states. We believe that comprehending the divergence of pluripotent states is essential to fully harness the great potential of stem cells in regenerative medicine.
Collapse
Affiliation(s)
| | - Qiang Wu
- Correspondence: ; Tel.: +853-8897-2708
| |
Collapse
|
28
|
Zhang J, Zhi M, Gao D, Zhu Q, Gao J, Zhu G, Cao S, Han J. Research progress and application prospects of stable porcine pluripotent stem cells. Biol Reprod 2022; 107:226-236. [PMID: 35678320 DOI: 10.1093/biolre/ioac119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pluripotent stem cells (PSCs) harbor the capacity of unlimited self-renewal and multi-lineage differentiation potential which are crucial for basic research and biomedical science. Establishment of PSCs with defined features were previously reported from mice and humans, while generation of stable large animal PSCs has experienced a relatively long trial stage and only recently has made breakthroughs. Pigs are regarded as ideal animal models for their similarities in physiology and anatomy to humans. Generation of porcine PSCs would provide cell resources for basic research, genetic engineering, animal breeding and cultured meat. In this review, we summarize the progress on the derivation of porcine PSCs and reprogrammed cells and elucidate the mechanisms of pluripotency changes during pig embryo development. This will be beneficial for understanding the divergence and conservation between different species involved in embryo development and the pluripotent regulated signaling pathways. Finally, we also discuss the promising future applications of stable porcine PSCs.
Collapse
Affiliation(s)
- Jinying Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaoxiang Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Varga BV, Faiz M, Pivonkova H, Khelifi G, Yang H, Gao S, Linderoth E, Zhen M, Karadottir RT, Hussein SM, Nagy A. Signal requirement for cortical potential of transplantable human neuroepithelial stem cells. Nat Commun 2022; 13:2844. [PMID: 35606347 PMCID: PMC9126949 DOI: 10.1038/s41467-022-29839-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/21/2022] [Indexed: 01/26/2023] Open
Abstract
The cerebral cortex develops from dorsal forebrain neuroepithelial progenitor cells. Following the initial expansion of the progenitor cell pool, these cells generate neurons of all the cortical layers and then astrocytes and oligodendrocytes. Yet, the regulatory pathways that control the expansion and maintenance of the progenitor cell pool are currently unknown. Here we define six basic pathway components that regulate proliferation of cortically specified human neuroepithelial stem cells (cNESCs) in vitro without the loss of cerebral cortex developmental potential. We show that activation of FGF and inhibition of BMP and ACTIVIN A signalling are required for long-term cNESC proliferation. We also demonstrate that cNESCs preserve dorsal telencephalon-specific potential when GSK3, AKT and nuclear CATENIN-β1 activity are low. Remarkably, regulation of these six pathway components supports the clonal expansion of cNESCs. Moreover, cNESCs differentiate into lower- and upper-layer cortical neurons in vitro and in vivo. The identification of mechanisms that drive the neuroepithelial stem cell self-renewal and differentiation and preserve this potential in vitro is key to developing regenerative and cell-based therapeutic approaches to treat neurological conditions.
Collapse
Affiliation(s)
- Balazs V Varga
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.
| | - Maryam Faiz
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Surgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Helena Pivonkova
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Gabriel Khelifi
- Cancer Research Center, Université Laval, Quebec City, QC, Canada.,CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Huijuan Yang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shangbang Gao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Emma Linderoth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ragnhildur Thora Karadottir
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Samer M Hussein
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Cancer Research Center, Université Laval, Quebec City, QC, Canada.,CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Obstetrics and Gynaecology, and Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
30
|
Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Res 2022; 32:383-400. [PMID: 34848870 PMCID: PMC8976023 DOI: 10.1038/s41422-021-00592-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Pig epiblast-derived pluripotent stem cells are considered to have great potential and broad prospects for human therapeutic model development and livestock breeding. Despite ongoing attempts since the 1990s, no stably defined pig epiblast-derived stem cell line has been established. Here, guided by insights from a large-scale single-cell transcriptome analysis of pig embryos from embryonic day (E) 0 to E14, specifically, the tracing of pluripotency changes during epiblast development, we developed an in vitro culture medium for establishing and maintaining stable pluripotent stem cell lines from pig E10 pregastrulation epiblasts (pgEpiSCs). Enabled by chemical inhibition of WNT-related signaling in combination with growth factors in the FGF/ERK, JAK/STAT3, and Activin/Nodal pathways, pgEpiSCs maintain their pluripotency transcriptome features, similar to those of E10 epiblast cells, and normal karyotypes after more than 240 passages and have the potential to differentiate into three germ layers. Strikingly, ultradeep in situ Hi-C analysis revealed functional impacts of chromatin 3D-spatial associations on the transcriptional regulation of pluripotency marker genes in pgEpiSCs. In practice, we confirmed that pgEpiSCs readily tolerate at least three rounds of successive gene editing and generated cloned gene-edited live piglets. Our findings deliver on the long-anticipated promise of pig pluripotent stem cells and open new avenues for biological research, animal husbandry, and regenerative biomedicine.
Collapse
|
31
|
Luijkx D, Shankar V, van Blitterswijk C, Giselbrecht S, Vrij E. From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Front Cell Dev Biol 2022; 10:838356. [PMID: 35359453 PMCID: PMC8963787 DOI: 10.3389/fcell.2022.838356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
Advances in the field of stem cell-based models have in recent years lead to the development of blastocyst-like structures termed blastoids. Blastoids can be used to study key events in mammalian pre-implantation development, as they mimic the blastocyst morphologically and transcriptionally, can progress to the post-implantation stage and can be generated in large numbers. Blastoids were originally developed using mouse pluripotent stem cells, and since several groups have successfully generated blastocyst models of the human system. Here we provide a comparison of the mouse and human protocols with the aim of deriving the core requirements for blastoid formation, discuss the models’ current ability to mimic blastocysts and give an outlook on potential future applications.
Collapse
Affiliation(s)
| | | | | | | | - Erik Vrij
- *Correspondence: Erik Vrij, ; Stefan Giselbrecht,
| |
Collapse
|
32
|
Pedone E, Failli M, Gambardella G, De Cegli R, La Regina A, di Bernardo D, Marucci L. β-catenin perturbations control differentiation programs in mouse embryonic stem cells. iScience 2022; 25:103756. [PMID: 35128356 PMCID: PMC8804270 DOI: 10.1016/j.isci.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022] Open
Abstract
The Wnt/β-catenin pathway is involved in development, cancer, and embryonic stem cell (ESC) maintenance; its dual role in stem cell self-renewal and differentiation is still controversial. Here, by applying an in vitro system enabling inducible gene expression control, we report that moderate induction of transcriptionally active exogenous β-catenin in β-catenin null mouse ESCs promotes epiblast-like cell (EpiLC) derivation in vitro. Instead, in wild-type cells, moderate chemical pre-activation of the Wnt/β-catenin pathway promotes EpiLC in vitro derivation. Finally, we suggest that moderate β-catenin levels in β-catenin null mouse ESCs favor early stem cell commitment toward mesoderm if the exogenous protein is induced only in the “ground state” of pluripotency condition, or endoderm if the induction is maintained during the differentiation. Overall, our results confirm previous findings about the role of β-catenin in pluripotency and differentiation, while indicating a role for its doses in promoting specific differentiation programs. Moderate β-catenin levels promote EpiLCs derivation in vitro Chemical pre-activation of the Wnt pathway enhances ESC-EpiLC transition β-catenin overexpression tips the balance between mesoderm and endoderm Cell fate is influenced by the extent of β-catenin induction
Collapse
|
33
|
β-catenin links cell seeding density to global gene expression during mouse embryonic stem cell differentiation. iScience 2022; 25:103541. [PMID: 34977504 PMCID: PMC8689156 DOI: 10.1016/j.isci.2021.103541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Although cell density is known to affect numerous biological processes including gene expression and cell fate specification, mechanistic understanding of what factors link cell density to global gene regulation is lacking. Here, we reveal that the expression of thousands of genes in mouse embryonic stem cells (mESCs) is affected by cell seeding density and that low cell density enhances the efficiency of differentiation. Mechanistically, β-catenin is localized primarily to adherens junctions during both self-renewal and differentiation at high density. However, when mESCs differentiate at low density, β-catenin translocates to the nucleus and associates with Tcf7l1, inducing co-occupied lineage markers. Meanwhile, Esrrb sustains the expression of pluripotency-associated genes while repressing lineage markers at high density, and its association with DNA decreases at low density. Our results provide new insights into the previously neglected but pervasive phenomenon of density-dependent gene regulation.
Collapse
|
34
|
Abuhashem A, Garg V, Hadjantonakis AK. RNA polymerase II pausing in development: orchestrating transcription. Open Biol 2022; 12:210220. [PMID: 34982944 PMCID: PMC8727152 DOI: 10.1098/rsob.210220] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The coordinated regulation of transcriptional networks underpins cellular identity and developmental progression. RNA polymerase II promoter-proximal pausing (Pol II pausing) is a prevalent mechanism by which cells can control and synchronize transcription. Pol II pausing regulates the productive elongation step of transcription at key genes downstream of a variety of signalling pathways, such as FGF and Nodal. Recent advances in our understanding of the Pol II pausing machinery and its role in transcription call for an assessment of these findings within the context of development. In this review, we discuss our current understanding of the molecular basis of Pol II pausing and its function during organismal development. By critically assessing the tools used to study this process we conclude that combining recently developed genomics approaches with refined perturbation systems has the potential to expand our understanding of Pol II pausing mechanistically and functionally in the context of development and beyond.
Collapse
Affiliation(s)
- Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medical College, New York, NY 10021, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
35
|
Inhibition of ubiquitin-specific protease 13-mediated degradation of Raf1 kinase by Spautin-1 has opposing effects in naïve and primed pluripotent stem cells. J Biol Chem 2021; 297:101332. [PMID: 34688658 PMCID: PMC8577099 DOI: 10.1016/j.jbc.2021.101332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Embryonic stem cells (ESCs) are progenitor cells that retain the ability to differentiate into various cell types and are necessary for tissue repair. Improving cell culture conditions to maintain the pluripotency of ESCs in vitro is an urgent problem in the field of regenerative medicine. Here, we reveal that Spautin-1, a specific small-molecule inhibitor of ubiquitin-specific protease (USP) family members USP10 and USP13, promotes the maintenance of self-renewal and pluripotency of mouse ESCs in vitro. Functional studies reveal that only knockdown of USP13, but not USP10, is capable of mimicking the function of Spautin-1. Mechanistically, we demonstrate that USP13 physically interacts with, deubiquitinates, and stabilizes serine/threonine kinase Raf1 and thereby sustains Raf1 protein at the posttranslational level to activate the FGF/MEK/ERK prodifferentiation signaling pathway in naïve mouse ESCs. In contrast, in primed mouse epiblast stem cells and human induced pluripotent stem cells, the addition of Spautin-1 had an inhibitory effect on Raf1 levels, but USP13 overexpression promoted self-renewal. The addition of an MEK inhibitor impaired the effect of USP13 upregulation in these cells. These findings provide new insights into the regulatory network of naïve and primed pluripotency.
Collapse
|
36
|
Świerczek-Lasek B, Dudka D, Bauer D, Czajkowski T, Ilach K, Streminska W, Kominek A, Piwocka K, Ciemerych MA, Archacka K. Comparison of Differentiation Pattern and WNT/SHH Signaling in Pluripotent Stem Cells Cultured under Different Conditions. Cells 2021; 10:cells10102743. [PMID: 34685722 PMCID: PMC8534321 DOI: 10.3390/cells10102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Pluripotent stem cells (PSCs) are characterized by the ability to self-renew as well as undergo multidirectional differentiation. Culture conditions have a pivotal influence on differentiation pattern. In the current study, we compared the fate of mouse PSCs using two culture media: (1) chemically defined, free of animal reagents, and (2) standard one relying on the serum supplementation. Moreover, we assessed the influence of selected regulators (WNTs, SHH) on PSC differentiation. We showed that the differentiation pattern of PSCs cultured in both systems differed significantly: cells cultured in chemically defined medium preferentially underwent ectodermal conversion while their endo- and mesodermal differentiation was limited, contrary to cells cultured in serum-supplemented medium. More efficient ectodermal differentiation of PSCs cultured in chemically defined medium correlated with higher activity of SHH pathway while endodermal and mesodermal conversion of cells cultured in serum-supplemented medium with higher activity of WNT/JNK pathway. However, inhibition of either canonical or noncanonical WNT pathway resulted in the limitation of endo- and mesodermal conversion of PSCs. In addition, blocking WNT secretion led to the inhibition of PSC mesodermal differentiation, confirming the pivotal role of WNT signaling in this process. In contrast, SHH turned out to be an inducer of PSC ectodermal, not mesodermal differentiation.
Collapse
Affiliation(s)
- Barbara Świerczek-Lasek
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Damian Dudka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Damian Bauer
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Tomasz Czajkowski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Katarzyna Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Władysława Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.P.)
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.P.)
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
- Correspondence: ; Tel.: +48-22-55-42-203
| |
Collapse
|
37
|
Wei M, Chen Y, Zhao C, Zheng L, Wu B, Chen C, Li X, Bao S. Establishment of Mouse Primed Stem Cells by Combination of Activin and LIF Signaling. Front Cell Dev Biol 2021; 9:713503. [PMID: 34422831 PMCID: PMC8375391 DOI: 10.3389/fcell.2021.713503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/09/2021] [Indexed: 01/09/2023] Open
Abstract
In mice, embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are established from pre- and post-implantation embryos and represent the naive and primed state, respectively. Herein we used mouse leukemia inhibitory factor (LIF), which supports ESCs self-renewal and Activin A (Act A), which is the main factor in maintaining EpiSCs in post-implantation epiblast cultures, to derive a primed stem cell line named ALSCs. Like EpiSCs, ALSCs express key pluripotent genes Oct4, Sox2, and Nanog; one X chromosome was inactivated; and the cells failed to contribute to chimera formation in vivo. Notably, compared to EpiSCs, ALSCs efficiently reversed to ESCs (rESCs) on activation of Wnt signaling. Moreover, we also discovered that culturing EpiSCs in AL medium for several passages favored Wnt signaling-driven naive pluripotency. Our results show that ALSCs is a primed state stem cell and represents a simple model to study the control of pluripotency fate and conversion from the primed to the naive state.
Collapse
Affiliation(s)
- Mengyi Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanglin Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoyue Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Li Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Baojiang Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chen Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Siqin Bao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
38
|
Ávila-González D, Portillo W, García-López G, Molina-Hernández A, Díaz-Martínez NE, Díaz NF. Unraveling the Spatiotemporal Human Pluripotency in Embryonic Development. Front Cell Dev Biol 2021; 9:676998. [PMID: 34249929 PMCID: PMC8262797 DOI: 10.3389/fcell.2021.676998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
There have been significant advances in understanding human embryogenesis using human pluripotent stem cells (hPSCs) in conventional monolayer and 3D self-organized cultures. Thus, in vitro models have contributed to elucidate the molecular mechanisms for specification and differentiation during development. However, the molecular and functional spectrum of human pluripotency (i.e., intermediate states, pluripotency subtypes and regionalization) is still not fully understood. This review describes the mechanisms that establish and maintain pluripotency in human embryos and their differences with mouse embryos. Further, it describes a new pluripotent state representing a transition between naïve and primed pluripotency. This review also presents the data that divide pluripotency into substates expressing epiblast regionalization and amnion specification as well as primordial germ cells in primates. Finally, this work analyzes the amnion's relevance as an "signaling center" for regionalization before the onset of gastrulation.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
- Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | | | - Néstor E. Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Néstor F. Díaz
- Instituto Nacional de Perinatología, Mexico City, Mexico
| |
Collapse
|
39
|
Bayerl J, Ayyash M, Shani T, Manor YS, Gafni O, Massarwa R, Kalma Y, Aguilera-Castrejon A, Zerbib M, Amir H, Sheban D, Geula S, Mor N, Weinberger L, Naveh Tassa S, Krupalnik V, Oldak B, Livnat N, Tarazi S, Tawil S, Wildschutz E, Ashouokhi S, Lasman L, Rotter V, Hanna S, Ben-Yosef D, Novershtern N, Viukov S, Hanna JH. Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell 2021; 28:1549-1565.e12. [PMID: 33915080 PMCID: PMC8423434 DOI: 10.1016/j.stem.2021.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022]
Abstract
Isolating human MEK/ERK signaling-independent pluripotent stem cells (PSCs) with naive pluripotency characteristics while maintaining differentiation competence and (epi)genetic integrity remains challenging. Here, we engineer reporter systems that allow the screening for defined conditions that induce molecular and functional features of human naive pluripotency. Synergistic inhibition of WNT/β-CATENIN, protein kinase C (PKC), and SRC signaling consolidates the induction of teratoma-competent naive human PSCs, with the capacity to differentiate into trophoblast stem cells (TSCs) and extraembryonic naive endodermal (nEND) cells in vitro. Divergent signaling and transcriptional requirements for boosting naive pluripotency were found between mouse and human. P53 depletion in naive hPSCs increased their contribution to mouse-human cross-species chimeric embryos upon priming and differentiation. Finally, MEK/ERK inhibition can be substituted with the inhibition of NOTCH/RBPj, which induces alternative naive-like hPSCs with a diminished risk for deleterious global DNA hypomethylation. Our findings set a framework for defining the signaling foundations of human naive pluripotency. Inhibition of SRC, PKC, and WNT consolidates human naive pluripotency induction Competitiveness of p53 depleted human PSCs in cross-species chimeric embryos Opposing net effect for ACTIVIN and WNT on mouse versus human naive pluripotency 2i and ERKi independent alternative human naive-like PSC conditions
Collapse
Affiliation(s)
- Jonathan Bayerl
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Muneef Ayyash
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tom Shani
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yair Shlomo Manor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ohad Gafni
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rada Massarwa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Kalma
- Wolfe PGD‑Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel‑Aviv, Israel
| | | | - Mirie Zerbib
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hadar Amir
- Wolfe PGD‑Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel‑Aviv, Israel
| | - Daoud Sheban
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shay Geula
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nofar Mor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Leehee Weinberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Segev Naveh Tassa
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vladislav Krupalnik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bernardo Oldak
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir Livnat
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shadi Tarazi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shadi Tawil
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emilie Wildschutz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shahd Ashouokhi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lior Lasman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Suhair Hanna
- Department of Pediatrics, Rambam Hospital, Haifa, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD‑Stem Cell Laboratory, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel‑Aviv, Israel.
| | - Noa Novershtern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Sergey Viukov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
40
|
Xiao Y, Amaral TF, Ross PJ, Soto DA, Diffenderfer KE, Pankonin AR, Jeensuk S, Tríbulo P, Hansen PJ. Importance of WNT-dependent signaling for derivation and maintenance of primed pluripotent bovine embryonic stem cells†. Biol Reprod 2021; 105:52-63. [PMID: 33899086 DOI: 10.1093/biolre/ioab075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
The WNT signaling system plays an important but paradoxical role in the regulation of pluripotency. In the cow, IWR-1, which inhibits canonical WNT activation and has WNT-independent actions, promotes the derivation of primed pluripotent embryonic stem cells from the blastocyst. Here, we describe a series of experiments to determine whether derivation of embryonic stem cells could be generated by replacing IWR-1 with other inhibitors of WNT signaling. Results confirm the importance of inhibition of canonical WNT signaling for the establishment of pluripotent embryonic stem cells in cattle and indicate that the actions of IWR-1 can be mimicked by the WNT secretion inhibitor IWP2 but not by the tankyrase inhibitor XAV939 or WNT inhibitory protein dickkopf 1. The role of Janus kinase-mediated signaling pathways for the maintenance of pluripotency of embryonic stem cells was also evaluated. Maintenance of pluripotency of embryonic stem cells lines was blocked by a broad inhibitor of Janus kinase, even though the cells did not express phosphorylated signal transducer and activator of transcription 3 (pSTAT3). Further studies with blastocysts indicated that IWR-1 blocks the activation of pSTAT3. A likely explanation is that IWR-1 blocks differentiation of embryonic stem cells into a pSTAT3+ lineage. In conclusion, results presented here indicate the importance of inhibition of WNT signaling for the derivation of pluripotent bovine embryonic stem cells, the role of Janus kinase signaling for maintenance of pluripotency, and the participation of IWR-1 in the inhibition of activation of STAT3.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Thiago F Amaral
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| | - Delia A Soto
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Aimee R Pankonin
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Surawich Jeensuk
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA.,Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani, Thailand
| | - Paula Tríbulo
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Peter J Hansen
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Gastruloids generated without exogenous Wnt activation develop anterior neural tissues. Stem Cell Reports 2021; 16:1143-1155. [PMID: 33891872 PMCID: PMC8185432 DOI: 10.1016/j.stemcr.2021.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022] Open
Abstract
When stimulated with a pulse from an exogenous WNT pathway activator, small aggregates of mouse embryonic stem cells (ESCs) can undergo embryo-like axial morphogenesis and patterning along the three major body axes. However, these structures, called gastruloids, currently lack the anterior embryonic regions, such as those belonging to the brain. Here, we describe an approach to generate gastruloids that have a more complete antero-posterior development. We used hydrogel microwell arrays to promote the robust derivation of mouse ESCs into post-implantation epiblast-like (EPI) aggregates in a reproducible and scalable manner. These EPI aggregates break symmetry and axially elongate without external chemical stimulation. Inhibition of WNT signaling in early stages of development leads to the formation of gastruloids with anterior neural tissues. Thus, we provide a new tool to study the development of the mouse after implantation in vitro, especially the formation of anterior neural regions. Mouse embryonic stem cells can be aggregated to form epiblast-like (EPI) aggregates EPI aggregates undergo axial morphogenesis in the absence of exogenous WNT activation Initial aggregate size is a major determinant for axial morphogenesis Early WNT inhibition is essential for the emergence of anterior neural progenitors
Collapse
|
42
|
Ito A, Ye K, Onda M, Morimoto N, Osakada F. Efficient and robust induction of retinal pigment epithelium cells by tankyrase inhibition regardless of the differentiation propensity of human induced pluripotent stem cells. Biochem Biophys Res Commun 2021; 552:66-72. [PMID: 33743349 DOI: 10.1016/j.bbrc.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Transplantation of retinal pigment epithelium (RPE) cells derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) hold great promise as a new therapeutic modality for age-related macular degeneration and Stargardt disease. The development of hESC/hiPSC-derived RPE cells as cell-based therapeutic products requires a robust, scalable production for every hiPSC line congruent for patients. However, individual hESC/hiPSC lines show bias in differentiation. Here we report an efficient, robust method that induces RPE cells regardless of the differentiation propensity of the hiPSC lines. Application of the tankyrase inhibitor IWR-1-endo, which potentially inhibits Wnt signaling, promoted retinal differentiation in dissociated hiPSCs under feeder-free, two-dimensional culture conditions. The other tankyrase inhibitor, XAV939, also promoted retinal differentiation. However, Wnt signaling inhibitors, IWP-2 and iCRT3, that target porcupine and β-catenin/TCF, respectively, did not. Further treatment with the GSK3β inhibitor CHIR99021 and FGF receptor inhibitor SU5402 induced hexagonal pigmented cells with phagocytotic ability. Notably, the IWR-1-endo-based differentiation method induced RPE cells even in an hiPSC line that expresses a lower level of the differentiation propensity marker SALL3, which is indicative of resistance to ectoderm differentiation. The present study demonstrated that tankyrase inhibitors cause efficient and robust RPE differentiation, irrespective of the SALL3 expression levels in hiPSC lines. This differentiation method will resolve line-to-line variations of hiPSCs in RPE production and facilitate clinical application and industrialization of RPE cell products for regenerative medicine.
Collapse
Affiliation(s)
- Arisa Ito
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Ke Ye
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Masanari Onda
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Nao Morimoto
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| |
Collapse
|
43
|
Human ES Cell Culture Conditions Fail to Preserve the Mouse Epiblast State. Stem Cells Int 2021; 2021:8818356. [PMID: 33828592 PMCID: PMC8004371 DOI: 10.1155/2021/8818356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/11/2020] [Accepted: 01/24/2021] [Indexed: 11/17/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) are the pluripotent stem cells (PSCs), derived from the inner cell mass (ICM) of preimplantation embryos at embryonic day 3.5 (E3.5) and postimplantation embryos at E5.5-E7.5, respectively. Depending on their environment, PSCs can exist in the so-called naïve (ESCs) or primed (EpiSCs) states. Exposure to EpiSC or human ESC (hESC) culture condition can convert mESCs towards an EpiSC-like state. Here, we show that the undifferentiated epiblast state is however not stabilized in a sustained manner when exposing mESCs to hESC or EpiSC culture condition. Rather, prolonged exposure to EpiSC condition promotes a transition to a primitive streak- (PS-) like state via an unbiased epiblast-like intermediate. We show that the Brachyury-positive PS-like state is likely promoted by endogenous WNT signaling, highlighting a possible species difference between mouse epiblast-like stem cells and human Embryonic Stem Cells.
Collapse
|
44
|
Guo Q, Kim A, Li B, Ransick A, Bugacov H, Chen X, Lindström N, Brown A, Oxburgh L, Ren B, McMahon AP. A β-catenin-driven switch in TCF/LEF transcription factor binding to DNA target sites promotes commitment of mammalian nephron progenitor cells. eLife 2021; 10:64444. [PMID: 33587034 PMCID: PMC7924951 DOI: 10.7554/elife.64444] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/14/2021] [Indexed: 12/30/2022] Open
Abstract
The canonical Wnt pathway transcriptional co-activator β-catenin regulates self-renewal and differentiation of mammalian nephron progenitor cells (NPCs). We modulated β-catenin levels in NPC cultures using the GSK3 inhibitor CHIR99021 (CHIR) to examine opposing developmental actions of β-catenin. Low CHIR-mediated maintenance and expansion of NPCs are independent of direct engagement of TCF/LEF/β-catenin transcriptional complexes at low CHIR-dependent cell-cycle targets. In contrast, in high CHIR, TCF7/LEF1/β-catenin complexes replaced TCF7L1/TCF7L2 binding on enhancers of differentiation-promoting target genes. Chromosome confirmation studies showed pre-established promoter–enhancer connections to these target genes in NPCs. High CHIR-associated de novo looping was observed in positive transcriptional feedback regulation to the canonical Wnt pathway. Thus, β-catenin’s direct transcriptional role is restricted to the induction of NPCs, where rising β-catenin levels switch inhibitory TCF7L1/TCF7L2 complexes to activating LEF1/TCF7 complexes at primed gene targets poised for rapid initiation of a nephrogenic program.
Collapse
Affiliation(s)
- Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, United States
| | - Albert Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, United States
| | - Bin Li
- The Rogosin Institute, New York, United States
| | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, United States
| | - Helena Bugacov
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, United States
| | - Xi Chen
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, United States
| | - Nils Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, United States
| | - Aaron Brown
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, United States
| | | | - Bing Ren
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, University of California San Diego, San Diego, United States
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, United States
| |
Collapse
|
45
|
Spada F, Schiffers S, Kirchner A, Zhang Y, Arista G, Kosmatchev O, Korytiakova E, Rahimoff R, Ebert C, Carell T. Active turnover of genomic methylcytosine in pluripotent cells. Nat Chem Biol 2020; 16:1411-1419. [PMID: 32778844 DOI: 10.1038/s41589-020-0621-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Epigenetic plasticity underpins cell potency, but the extent to which active turnover of DNA methylation contributes to such plasticity is not known, and the underlying pathways are poorly understood. Here we use metabolic labeling with stable isotopes and mass spectrometry to quantitatively address the global turnover of genomic 5-methyl-2'-deoxycytidine (mdC), 5-hydroxymethyl-2'-deoxycytidine (hmdC) and 5-formyl-2'-deoxycytidine (fdC) across mouse pluripotent cell states. High rates of mdC/hmdC oxidation and fdC turnover characterize a formative-like pluripotent state. In primed pluripotent cells, the global mdC turnover rate is about 3-6% faster than can be explained by passive dilution through DNA synthesis. While this active component is largely dependent on ten-eleven translocation (Tet)-mediated mdC oxidation, we unveil additional oxidation-independent mdC turnover, possibly through DNA repair. This process accelerates upon acquisition of primed pluripotency and returns to low levels in lineage-committed cells. Thus, in pluripotent cells, active mdC turnover involves both mdC oxidation-dependent and oxidation-independent processes.
Collapse
Affiliation(s)
- Fabio Spada
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany.
| | - Sarah Schiffers
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- National Cancer Institute, Center for Cancer Research, Bethesda, MD, USA
| | - Angie Kirchner
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Yingqian Zhang
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- State Key Laboratory of Elemento-organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, China
| | - Gautier Arista
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Olesea Kosmatchev
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Eva Korytiakova
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - René Rahimoff
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
- Department of Chemistry, University of California, Los Angeles, Berkeley, CA, USA
| | - Charlotte Ebert
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich (CIPSM), Munich, Germany.
| |
Collapse
|
46
|
Vila-Cejudo M, Alonso-Alonso S, Pujol A, Santaló J, Ibáñez E. Wnt pathway modulation generates blastomere-derived mouse embryonic stem cells with different pluripotency features. J Assist Reprod Genet 2020; 37:2967-2979. [PMID: 33047186 DOI: 10.1007/s10815-020-01964-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/04/2020] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This study aimed to determine the role of Wnt pathway in mouse embryonic stem cell (mESC) derivation from single blastomeres isolated from eight-cell embryos and in the pluripotency features of the mESC established. METHODS Wnt activator CHIR99021, Wnt inhibitor IWR-1-endo, and MEK inhibitor PD0325901 were used alone or in combination during ESC derivation and maintenance from single blastomeres biopsied from eight-cell embryos. Alkaline phosphatase activity, FGF5 levels, expression of key pluripotency genes, and chimera formation were assessed to determine the pluripotency state of the mESC lines. RESULTS Derivation efficiencies were highest when combining pairs of inhibitors (15-24.7%) than when using single inhibitors or none (1.4-10.1%). Full naïve pluripotency was only achieved in CHIR- and 2i-treated mESC lines, whereas IWR and PD treatments or the absence of treatment resulted in co-existence of naïve-like and primed-like pluripotency features. IWR + CHIR- and IWR + PD-treated mESC displayed features of primed pluripotency, but IWR + CHIR-treated lines were able to generate germline-competent chimeric mice, resembling the predicted properties of formative pluripotency. CONCLUSION Wnt and MAPK pathways have a key role in the successful derivation and pluripotency features of mESC from single precompaction blastomeres. Modulation of these pathways results in mESC lines with various degrees of naïve-like and primed-like pluripotency features.
Collapse
Affiliation(s)
- Marta Vila-Cejudo
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Tissue Engineering Unit, Centre for Genomic Regulation, Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Sandra Alonso-Alonso
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Anna Pujol
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine and Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Josep Santaló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Elena Ibáñez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
47
|
Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev 2020; 32:11-39. [PMID: 32188555 DOI: 10.1071/rd19272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and invitro breeding schemes.
Collapse
Affiliation(s)
- Micaela Navarro
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Delia A Soto
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Carlos A Pinzon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA; and Corresponding author.
| |
Collapse
|
48
|
Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells 2020; 9:cells9061349. [PMID: 32485910 PMCID: PMC7349583 DOI: 10.3390/cells9061349] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Non-human primates (NHP) are important surrogate models for late preclinical development of advanced therapy medicinal products (ATMPs), including induced pluripotent stem cell (iPSC)-based therapies, which are also under development for heart failure repair. For effective heart repair by remuscularization, large numbers of cardiomyocytes are required, which can be obtained by efficient differentiation of iPSCs. However, NHP-iPSC generation and long-term culture in an undifferentiated state under feeder cell-free conditions turned out to be problematic. Here we describe the reproducible development of rhesus macaque (Macaca mulatta) iPSC lines. Postnatal rhesus skin fibroblasts were reprogrammed under chemically defined conditions using non-integrating vectors. The robustness of the protocol was confirmed using another NHP species, the olive baboon (Papio anubis). Feeder-free maintenance of NHP-iPSCs was essentially dependent on concurrent Wnt-activation by GSK-inhibition (Gi) and Wnt-inhibition (Wi). Generated NHP-iPSCs were successfully differentiated into cardiomyocytes using a combined growth factor/GiWi protocol. The capacity of the iPSC-derived cardiomyocytes to self-organize into contractile engineered heart muscle (EHM) was demonstrated. Collectively, this study establishes a reproducible protocol for the robust generation and culture of NHP-iPSCs, which are useful for preclinical testing of strategies for cell replacement therapies in NHP.
Collapse
|
49
|
Mahato B, Kaya KD, Fan Y, Sumien N, Shetty RA, Zhang W, Davis D, Mock T, Batabyal S, Ni A, Mohanty S, Han Z, Farjo R, Forster MJ, Swaroop A, Chavala SH. Pharmacologic fibroblast reprogramming into photoreceptors restores vision. Nature 2020; 581:83-88. [PMID: 32376950 PMCID: PMC7469946 DOI: 10.1038/s41586-020-2201-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Photoreceptor loss is the final common endpoint in most retinopathies that lead to irreversible blindness, and there are no effective treatments to restore vision1,2. Chemical reprogramming of fibroblasts offers an opportunity to reverse vision loss; however, the generation of sensory neuronal subtypes such as photoreceptors remains a challenge. Here we report that the administration of a set of five small molecules can chemically induce the transformation of fibroblasts into rod photoreceptor-like cells. The transplantation of these chemically induced photoreceptor-like cells (CiPCs) into the subretinal space of rod degeneration mice (homozygous for rd1, also known as Pde6b) leads to partial restoration of the pupil reflex and visual function. We show that mitonuclear communication is a key determining factor for the reprogramming of fibroblasts into CiPCs. Specifically, treatment with these five compounds leads to the translocation of AXIN2 to the mitochondria, which results in the production of reactive oxygen species, the activation of NF-κB and the upregulation of Ascl1. We anticipate that CiPCs could have therapeutic potential for restoring vision.
Collapse
Affiliation(s)
- Biraj Mahato
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Koray Dogan Kaya
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yan Fan
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ritu A Shetty
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Wei Zhang
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Delaney Davis
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Thomas Mock
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Aiguo Ni
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Zongchao Han
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Michael J Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sai H Chavala
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
- CIRC Therapeutics, Inc., Dallas, TX, USA.
| |
Collapse
|
50
|
Zimmerlin L, Zambidis ET. Pleiotropic roles of tankyrase/PARP proteins in the establishment and maintenance of human naïve pluripotency. Exp Cell Res 2020; 390:111935. [PMID: 32151493 PMCID: PMC7171895 DOI: 10.1016/j.yexcr.2020.111935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/19/2022]
Abstract
Tankyrase 1 (TNKS1; PARP-5a) and Tankyrase 2 (TNKS2; PARP-5b) are poly-ADP-ribosyl-polymerase (PARP)-domain-containing proteins that regulate the activities of a wide repertoire of target proteins via post-translational addition of poly-ADP-ribose polymers (PARylation). Although tankyrases were first identified as regulators of human telomere elongation, important and expansive roles of tankyrase activity have recently emerged in the development and maintenance of stem cell states. Herein, we summarize the current state of knowledge of the various tankyrase-mediated activities that may promote human naïve and 'extended' pluripotency'. We review the putative role of tankyrase and PARP inhibition in trophectoderm specification, telomere elongation, DNA repair and chromosomal segregation, metabolism, and PTEN-mediated apoptosis. Importantly, tankyrases possess PARP-independent activities that include regulation of MDC1-associated DNA repair by homologous recombination (HR) and autophagy/pexophagy, which is an essential mechanism of protein synthesis in the preimplantation embryo. Additionally, tankyrases auto-regulate themselves via auto-PARylation which augments their cellular protein levels and potentiates their non-PARP tankyrase functions. We propose that these non-PARP-related activities of tankyrase proteins may further independently affect both naïve and extended pluripotency via mechanisms that remain undetermined. We broadly outline a hypothetical framework for how inclusion of a tankyrase/PARP inhibitor in small molecule cocktails may stabilize and potentiate naïve and extended pluripotency via pleiotropic routes and mechanisms.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| | - Elias T Zambidis
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| |
Collapse
|