1
|
Choi E, Jeong TI, Nguyen TM, Gliserin A, Lee J, Bak GH, Kim S, Kim S, Oh JW, Kim S. Identification of Gas Mixture Components with Multichannel Hierarchical Analysis of Time-Resolved Hyperspectral Data. ACS Sens 2025; 10:3003-3012. [PMID: 40127313 PMCID: PMC12038880 DOI: 10.1021/acssensors.5c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Chemical vapor sensors are essential for various fields, including medical diagnostics and environmental monitoring. Notably, the identification of components in unknown gas mixtures has great potential for noninvasive diagnosis of diseases such as lung cancer. However, current gas identification techniques, despite the development of electronic nose-based sensor platforms, still lack sufficient classification accuracy for mixed gases. In our previous study, we introduced multichannel hierarchical analysis using a time-resolved hyperspectral system to address the spectral ambiguity of conventional RGB sensor-based colorimetric e-noses. Here, we demonstrate the identification of mixed gas components through time-resolved line hyperspectral measurements with an eight-colorimetric sensor array that uses genetically engineered M13 bacteriophages as gas-selective colorimetric sensors. The time-dependent spectral variations induced by mixed gas in the different colorimetric sensors are converted into a hyperspectral three-dimensional (3D) data cube. For efficient machine learning classification, the data cube was converted into a multichannel spectrogram by applying a novel data processing method, including dimensionality reduction and a block average filter to reduce high-dimensional complexity and improve the signal-to-noise ratio. A convolution filter was then used for hierarchical analysis of the multichannel spectrogram, effectively capturing the complex gas-induced spectral patterns and temporal dynamics. Our study demonstrates a classification accuracy of 93.9% for pure and mixed gases of acetone, ethanol, and xylene at a low concentration of 2 ppm.
Collapse
Affiliation(s)
- Eunji Choi
- Department
of Cogno-Mechatronics Engineering, Pusan
National University, Busan 46241, Republic
of Korea
| | - Tae-In Jeong
- Department
of Cogno-Mechatronics Engineering, Pusan
National University, Busan 46241, Republic
of Korea
| | - Thanh Mien Nguyen
- BK21
FOUR Education and Research Division for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea
- Bio-IT
Fusion Technology Research Institute, Pusan
National University, Busan 46241, Republic
of Korea
| | - Alexander Gliserin
- Department
of Cogno-Mechatronics Engineering, Pusan
National University, Busan 46241, Republic
of Korea
- Department
of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic
of Korea
| | - Jimin Lee
- Department
of Cogno-Mechatronics Engineering, Pusan
National University, Busan 46241, Republic
of Korea
| | - Gyeong-Ha Bak
- BK21
FOUR Education and Research Division for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea
- Bio-IT
Fusion Technology Research Institute, Pusan
National University, Busan 46241, Republic
of Korea
| | - San Kim
- Department
of Cogno-Mechatronics Engineering, Pusan
National University, Busan 46241, Republic
of Korea
| | - Sehyeon Kim
- Department
of Cogno-Mechatronics Engineering, Pusan
National University, Busan 46241, Republic
of Korea
| | - Jin-Woo Oh
- BK21
FOUR Education and Research Division for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea
- Bio-IT
Fusion Technology Research Institute, Pusan
National University, Busan 46241, Republic
of Korea
- Department
of Nano Fusion Technology Institute, Pusan
National University, Busan 46241, Republic
of Korea
| | - Seungchul Kim
- Department
of Cogno-Mechatronics Engineering, Pusan
National University, Busan 46241, Republic
of Korea
- Department
of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic
of Korea
| |
Collapse
|
2
|
Lee SH, Lee SM, Chang SH, Shin DS, Cho WW, Kwak EA, Lee SM, Chung WJ. Fc-binding M13 phage-enhanced electrochemical biosensors for influenza virus detection. Biosens Bioelectron 2025; 273:117156. [PMID: 39823859 DOI: 10.1016/j.bios.2025.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
The importance of in vitro diagnostics (IVDs) has significantly increased, driving the demand for rapid and sensitive diagnostic platforms. Molecular probes play a pivotal role in improving the sensitivity and accuracy of IVDs because of their target-specific signal transduction capabilities. Antibodies, which are commonly used as detection probes, face several challenges, including limited stability, high production costs, and low signal output. In this study, we developed an engineered M13 bacteriophage-based detection system for influenza virus hemagglutinin (HA) using an Electrical ImmunoSorbent Assay (El-ISA). Our design featured Fc-binding motifs on pIII to enable conjugation with target-specific antibodies, along with signal-enhancing biotin modifications on pVIII. The resulting Fc-binding phage probes combined with anti-HA antibodies significantly improved the signal intensity by up to 6.0-fold. This approach enabled the detection of viral proteins in lysate samples at concentrations as low as 44.9 pfu/mL. These findings demonstrated the potential of Fc-binding phage probes as versatile platforms that synergize antibody specificity with enhanced signal transduction. This strategy not only enhances the sensitivity of antibody-based diagnostics but also expands their applicability in diverse research and diagnostic settings.
Collapse
Affiliation(s)
- Sang Hyun Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sang Min Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seo Hyeon Chang
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Dong-Sik Shin
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Won Woo Cho
- Cantis Inc., Ansan, Gyeonggi do, 15588, Republic of Korea
| | - Eun-A Kwak
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sang-Myung Lee
- Cantis Inc., Ansan, Gyeonggi do, 15588, Republic of Korea.
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
3
|
Chae I, Shivkumar A, Doyle FM, Lee SW. Virus-Based Separation of Rare Earth Elements. NANO LETTERS 2024; 24:9946-9952. [PMID: 39101944 DOI: 10.1021/acs.nanolett.4c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The utilization of biomaterials for the separation of rare earth elements (REEs) has attracted considerable interest due to their inherent advantages, including diverse molecular structures for selective binding and the use of eco-friendly materials for sustainable systems. We present a pioneering methodology for developing a safe virus to selectively bind REEs and facilitate their release through pH modulation. We engineered the major coat protein of M13 bacteriophage (phage) to incorporate a lanthanide-binding peptide. The engineered lanthanide-binding phage (LBPh), presenting ∼3300 copies of the peptide, serves as an effective biological template for REE separation. Our findings demonstrate the LBPh's preferential binding for heavy REEs over light REEs. Moreover, the LBPh exhibits remarkable robustness with excellent recyclability and stability across multiple cycles of separations. This study underscores the potential of genetically integrating virus templates with selective binding motifs for REE separation, offering a promising avenue for environmentally friendly and energy-efficient separation processes.
Collapse
Affiliation(s)
- Inseok Chae
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Arjun Shivkumar
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Fiona M Doyle
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Kwon H, Jin S, Ko J, Ryu J, Ryu JH, Lee DW. Specific interaction between the DSPHTELP peptide and various functional groups. Phys Chem Chem Phys 2024; 26:20760-20769. [PMID: 39046426 DOI: 10.1039/d4cp01739k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
M13 bacteriophages serve as a versatile foundation for nanobiotechnology due to their unique biological and chemical properties. The polypeptides that comprise their coat proteins, specifically pVIII, can be precisely tailored through genetic engineering. This enables the customized integration of various functional elements through specific interactions, leading to the development of innovative hybrid materials for applications such as energy storage, biosensing, and catalysis. Notably, a certain genetically engineered M13 bacteriophage variant, referred to as DSPH, features a pVIII with a repeating DSPHTELP peptide sequence. This sequence facilitates specific adhesion to single-walled carbon nanotubes (SWCNTs), primarily through π-π and hydrophobic interactions, though the exact mechanism remains unconfirmed. In this study, we synthesized the DSPHTELP peptide (an 8-mer peptide) and analyzed its interaction forces with different functional groups across various pH levels using surface forces apparatus (SFA). Our findings indicate that the 8-mer peptide binds most strongly to CH3 groups (Wad = 13.74 ± 1.04 mJ m-2 at pH 3.0), suggesting that hydrophobic interactions are indeed the predominant mechanism. These insights offer both quantitative and qualitative understanding of the molecular interaction mechanisms of the 8-mer peptide and clarify the basis of its specific interaction with SWCNTs through the DSPHTELP M13 bacteriophage.
Collapse
Affiliation(s)
- Haeun Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Seongeon Jin
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Jina Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Renewable Carbon, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Jin Z, Yim W, Retout M, Housel E, Zhong W, Zhou J, Strano MS, Jokerst JV. Colorimetric sensing for translational applications: from colorants to mechanisms. Chem Soc Rev 2024; 53:7681-7741. [PMID: 38835195 PMCID: PMC11585252 DOI: 10.1039/d4cs00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Colorimetric sensing offers instant reporting via visible signals. Versus labor-intensive and instrument-dependent detection methods, colorimetric sensors present advantages including short acquisition time, high throughput screening, low cost, portability, and a user-friendly approach. These advantages have driven substantial growth in colorimetric sensors, particularly in point-of-care (POC) diagnostics. Rapid progress in nanotechnology, materials science, microfluidics technology, biomarker discovery, digital technology, and signal pattern analysis has led to a variety of colorimetric reagents and detection mechanisms, which are fundamental to advance colorimetric sensing applications. This review first summarizes the basic components (e.g., color reagents, recognition interactions, and sampling procedures) in the design of a colorimetric sensing system. It then presents the rationale design and typical examples of POC devices, e.g., lateral flow devices, microfluidic paper-based analytical devices, and wearable sensing devices. Two highlighted colorimetric formats are discussed: combinational and activatable systems based on the sensor-array and lock-and-key mechanisms, respectively. Case discussions in colorimetric assays are organized by the analyte identities. Finally, the review presents challenges and perspectives for the design and development of colorimetric detection schemes as well as applications. The goal of this review is to provide a foundational resource for developing colorimetric systems and underscoring the colorants and mechanisms that facilitate the continuing evolution of POC sensors.
Collapse
Affiliation(s)
- Zhicheng Jin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurice Retout
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Emily Housel
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiajing Zhou
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse V Jokerst
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Nguyen TM, Kim SJ, Ryu DG, Chung JH, Lee SH, Hwang SH, Choi CW, Oh JW. Helical Hybrid Nanostructure Based on Chiral M13 Bacteriophage via Evaporation-Induced Three-Dimensional Process. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1208. [PMID: 39057884 PMCID: PMC11280118 DOI: 10.3390/nano14141208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The use of naturally sourced organic materials with chirality, such as the M13 bacteriophage, holds intriguing implications, especially in the field of nanotechnology. The chirality properties of bacteriophages have been demonstrated through numerous studies, particularly in the analysis of liquid crystal phase transitions, developing specific applications. However, exploring the utilization of the M13 bacteriophage as a template for creating chiral nanostructures for optics and sensor applications comes with significant challenges. In this study, the chirality of the M13 bacteriophage was leveraged as a valuable tool for generating helical hybrid structures by combining it with nanoparticles through an evaporation-induced three-dimensional (3D) printing process. Utilizing on the self-assembly property of the M13 bacteriophage, metal nanoparticles were organized into a helical chain under the influence of the M13 bacteriophage at the meniscus interface. External parameters, including nanoparticle shape, the ratio between the bacteriophage and nanoparticles, and pulling speed, were demonstrated as crucial factors affecting the fabrication of helical nanostructures. This study aimed to explore the potential of chiral nanostructure fabrication by utilizing the chirality of the M13 bacteriophage and manipulating external parameters to control the properties of the resulting hybrid structures.
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- BK21 FOUR Education and Research Division for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea;
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea;
| | - Sung-Jo Kim
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea;
| | - Dae Gon Ryu
- Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Jae Hun Chung
- Department of Surgery, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.C.); (S.-H.L.); (S.-H.H.)
| | - Si-Hak Lee
- Department of Surgery, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.C.); (S.-H.L.); (S.-H.H.)
| | - Sun-Hwi Hwang
- Department of Surgery, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.C.); (S.-H.L.); (S.-H.H.)
| | - Cheol Woong Choi
- Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Jin-Woo Oh
- BK21 FOUR Education and Research Division for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea;
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea;
- Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Li HD, Chen YQ, Li Y, Wei X, Wang SY, Cao Y, Wang R, Wang C, Li JY, Li JY, Ding HM, Yang T, Wang JH, Mao C. Harnessing virus flexibility to selectively capture and profile rare circulating target cells for precise cancer subtyping. Nat Commun 2024; 15:5849. [PMID: 38992001 PMCID: PMC11239949 DOI: 10.1038/s41467-024-50064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
The effective isolation of rare target cells, such as circulating tumor cells, from whole blood is still challenging due to the lack of a capturing surface with strong target-binding affinity and non-target-cell resistance. Here we present a solution leveraging the flexibility of bacterial virus (phage) nanofibers with their sidewalls displaying target circulating tumor cell-specific aptamers and their ends tethered to magnetic beads. Such flexible phages, with low stiffness and Young's modulus, can twist and adapt to recognize the cell receptors, energetically enhancing target cell capturing and entropically discouraging non-target cells (white blood cells) adsorption. The magnetic beads with flexible phages can isolate and count target cells with significant increase in cell affinity and reduction in non-target cell absorption compared to magnetic beads having rigid phages. This differentiates breast cancer patients and healthy donors, with impressive area under the curve (0.991) at the optimal detection threshold (>4 target cells mL-1). Immunostaining of captured circulating tumor cells precisely determines breast cancer subtypes with a diagnostic accuracy of 91.07%. Our study reveals the power of viral mechanical attributes in designing surfaces with superior target binding and non-target anti-fouling.
Collapse
Affiliation(s)
- Hui-Da Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Yuan-Qiang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China
| | - Yan Li
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Si-Yi Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ying Cao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Rui Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Cong Wang
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China
| | - Jing-Yue Li
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China
| | - Jian-Yi Li
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China.
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China.
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
8
|
Jeong TI, Nguyen TM, Choi E, Gliserin A, Nguyen TMT, Kim S, Kim S, Kim H, Bak GH, Kim NY, Devaraj V, Choi E, Oh JW, Kim S. Multichannel Hierarchical Analysis of Time-Resolved Hyperspectral Data for Advanced Colorimetric E-Nose. ACS Sens 2024; 9:2869-2876. [PMID: 38548672 DOI: 10.1021/acssensors.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The colorimetric sensor-based electronic nose has been demonstrated to discriminate specific gaseous molecules for various applications, including health or environmental monitoring. However, conventional colorimetric sensor systems rely on RGB sensors, which cannot capture the complete spectral response of the system. This limitation can degrade the performance of machine learning analysis, leading to inaccurate identification of chemicals with similar functional groups. Here, we propose a novel time-resolved hyperspectral (TRH) data set from colorimetric array sensors consisting of 1D spatial, 1D spectral, and 1D temporal axes, which enables hierarchical analysis of multichannel 2D spectrograms via a convolution neural network (CNN). We assessed the outstanding classification performance of the TRH data set compared to an RGB data set by conducting a relative humidity (RH) concentration classification. The time-dependent spectral response of the colorimetric sensor was measured and trained as a CNN model using TRH and RGB sensor systems at different RH levels. While the TRH model shows a high classification accuracy of 97.5% for the RH concentration, the RGB model yields 72.5% under identical conditions. Furthermore, we demonstrated the detection of various functional volatile gases with the TRH system by using experimental and simulation approaches. The results reveal distinct spectral features from the TRH system, corresponding to changes in the concentration of each substance.
Collapse
Affiliation(s)
- Tae-In Jeong
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Thanh Mien Nguyen
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Eunji Choi
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Alexander Gliserin
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Thu M T Nguyen
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Republic of Korea
| | - San Kim
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sehyeon Kim
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunseo Kim
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Gyeong-Ha Bak
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Na-Yeong Kim
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Eunjung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Seungchul Kim
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Tian L, Jackson K, He L, Khan S, Thirugnanasampanthar M, Gomez M, Bayat F, Didar TF, Hosseinidoust Z. High-throughput fabrication of antimicrobial phage microgels and example applications in food decontamination. Nat Protoc 2024; 19:1591-1622. [PMID: 38413781 DOI: 10.1038/s41596-024-00964-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 02/29/2024]
Abstract
Engineered by nature, biological entities are exceptional building blocks for biomaterials. These entities can impart enhanced functionalities on the final material that are otherwise unattainable. However, preserving the bioactive functionalities of these building blocks during the material fabrication process remains a challenge. We describe a high-throughput protocol for the bottom-up self-assembly of highly concentrated phages into microgels while preserving and amplifying their inherent antimicrobial activity and biofunctionality. Each microgel is comprised of half a million cross-linked phages as the sole structural component, self-organized in aligned bundles. We discuss common pitfalls in the preparation procedure and describe optimization processes to ensure the preservation of the biofunctionality of the phage building blocks. This protocol enables the production of an antimicrobial spray containing the manufactured phage microgels, loaded with potent virulent phages that effectively reduced high loads of multidrug-resistant Escherichia coli O157:H7 on red meat and fresh produce. Compared with other microgel preparation methods, our protocol is particularly well suited to biological materials because it is free of organic solvents and heat. Bench-scale preparation of base materials, namely microporous films (the template for casting microgels) and pure concentrated phage suspension, requires 3.5 h and 5 d, respectively. A single production run, that yields over 1,750,000 microgels, ranges from 2 h to 2 d depending on the rate of cross-linking chemistry. We expect that this platform will address bottlenecks associated with shelf-stability, preservation and delivery of phage for antimicrobial applications, expanding the use of phage for prevention and control of bacterial infections and contaminants.
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Kyle Jackson
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Leon He
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Mellissa Gomez
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Sun J, Yang R, Li Q, Zhu R, Jiang Y, Zang L, Zhang Z, Tong W, Zhao H, Li T, Li H, Qi D, Li G, Chen X, Dai Z, Liu Z. Living Synthelectronics: A New Era for Bioelectronics Powered by Synthetic Biology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400110. [PMID: 38494761 DOI: 10.1002/adma.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Bioelectronics, which converges biology and electronics, has attracted great attention due to their vital applications in human-machine interfaces. While traditional bioelectronic devices utilize nonliving organic and/or inorganic materials to achieve flexibility and stretchability, a biological mismatch is often encountered because human tissues are characterized not only by softness and stretchability but also by biodynamic and adaptive properties. Recently, a notable paradigm shift has emerged in bioelectronics, where living cells, and even viruses, modified via gene editing within synthetic biology, are used as core components in a new hybrid electronics paradigm. These devices are defined as "living synthelectronics," and they offer enhanced potential for interfacing with human tissues at informational and substance exchange levels. In this Perspective, the recent advances in living synthelectronics are summarized. First, opportunities brought to electronics by synthetic biology are briefly introduced. Then, strategic approaches to designing and making electronic devices using living cells/viruses as the building blocks, sensing components, or power sources are reviewed. Finally, the challenges faced by living synthelectronics are raised. It is believed that this paradigm shift will significantly contribute to the real integration of bioelectronics with human tissues.
Collapse
Affiliation(s)
- Jing Sun
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruofan Yang
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qingsong Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Runtao Zhu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ying Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lei Zang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhibo Zhang
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Tong
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Zhao
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tengfei Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hanfei Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guanglin Li
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuojun Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Standard Robots Co.,Ltd,Room 405, Building D, Huafeng International Robot Fusen Industrial Park, Hangcheng Avenue, Guxing Community, Xixiang Street, Baoan District, Shenzhen, 518055, China
| |
Collapse
|
11
|
Peveler WJ. Food for Thought: Optical Sensor Arrays and Machine Learning for the Food and Beverage Industry. ACS Sens 2024; 9:1656-1665. [PMID: 38598846 PMCID: PMC11059098 DOI: 10.1021/acssensors.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Arrays of cross-reactive sensors, combined with statistical or machine learning analysis of their multivariate outputs, have enabled the holistic analysis of complex samples in biomedicine, environmental science, and consumer products. Comparisons are frequently made to the mammalian nose or tongue and this perspective examines the role of sensing arrays in analyzing food and beverages for quality, veracity, and safety. I focus on optical sensor arrays as low-cost, easy-to-measure tools for use in the field, on the factory floor, or even by the consumer. Novel materials and approaches are highlighted and challenges in the research field are discussed, including sample processing/handling and access to significant sample sets to train and test arrays to tackle real issues in the industry. Finally, I examine whether the comparison of sensing arrays to noses and tongues is helpful in an industry defined by human taste.
Collapse
Affiliation(s)
- William J Peveler
- School
of Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G128QQ U.K.
| |
Collapse
|
12
|
Park SM, Yoon DK. Evaporation-induced self-assembly of liquid crystal biopolymers. MATERIALS HORIZONS 2024; 11:1843-1866. [PMID: 38375871 DOI: 10.1039/d3mh01585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Evaporation-induced self-assembly (EISA) is a process that has gained significant attention in recent years due to its fundamental science and potential applications in materials science and nanotechnology. This technique involves controlled drying of a solution or dispersion of materials, forming structures with specific shapes and sizes. In particular, liquid crystal (LC) biopolymers have emerged as promising candidates for EISA due to their highly ordered structures and biocompatible properties after deposition. This review provides an overview of recent progress in the EISA of LC biopolymers, including DNA, nanocellulose, viruses, and other biopolymers. The underlying self-assembly mechanisms, the effects of different processing conditions, and the potential applications of the resulting structures are discussed.
Collapse
Affiliation(s)
- Soon Mo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
13
|
Nguyen TM, Jang WB, Lee Y, Kim YH, Lim HJ, Lee EJ, Nguyen TMT, Choi EJ, Kwon SM, Oh JW. Non-intrusive quality appraisal of differentiation-induced cardiovascular stem cells using E-Nose sensor technology. Biosens Bioelectron 2024; 246:115838. [PMID: 38042052 DOI: 10.1016/j.bios.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 12/04/2023]
Abstract
Stem cell technology holds immense potential for revolutionizing medicine, particularly in regenerative treatment for heart disease. The unique capacity of stem cells to differentiate into diverse cell types offers promise in repairing damaged tissues and implanting organs. Ensuring the quality of differentiated cells, essential for specific functions, demands in-depth analysis. However, this process consumes time and incurs substantial costs while invasive methods may alter stem cell features during differentiation and deplete cell numbers. To address these challenges, we propose a non-invasive strategy, using cellular respiration, to assess the quality of differentiation-induced stem cells, notably cardiovascular stem cells. This evaluation employs an electronic nose (E-Nose) and neural pattern separation (NPS). Our goal is to assess differentiation-induced cardiac stem cells (DICs) quality through E-Nose data analysis and compare it with standard commercial human cells (SCHCs). Sensitivity and specificity were evaluated by interacting SCHCs and DICs with the E-Nose, achieving over 90% classification accuracy. Employing selective combinations optimized by NPS, E-Nose successfully classified all six cell types. Consequently, the relative similarity among DICs like cardiomyocytes, endothelial cells with SCHCs was established relied on comparing response data from the E-Nose sensor without resorting to complex evaluations.
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - You Hwan Kim
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - Hye Ji Lim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Thu M T Nguyen
- Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea
| | - Eun-Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Convergence Stem Cell Research Center, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea; Department of Nano Fusion Technology, Pusan National University, Busan, 46214, Republic of Korea.
| |
Collapse
|
14
|
Cheng YH, Kuo CT, Lian BY. Chameleon-Inspired Colorimetric Sensors for Real-Time Detections with Humidity. MICROMACHINES 2023; 14:2254. [PMID: 38138423 PMCID: PMC10745728 DOI: 10.3390/mi14122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
In recent decades, vapor sensors have gained substantial attention for their crucial roles in environmental monitoring and pharmaceutical applications. Herein, we introduce a chameleon-inspired colorimetric (CIC) sensor, detailing its design, fabrication, and versatile applications. The sensor seamlessly combines a PEDOT:PSS vapor sensor with a colorimetric display, using thermochromic liquid crystal (TLC). We further explore the electrical characteristics of the CIC sensor when doped with ethylene glycol (EG) and polyvinyl alcohol (PVA). Comparative analyses of resistance change rates for different weight ratios of EG and PVA provide insights into fine-tuning the sensor's responsiveness to varying humidity levels. The CIC sensor's proficiency in measuring ambient humidity is investigated under a voltage input as small as 2.6 V, capturing resistance change rates and colorimetric shifts at relative humidity (RH) levels ranging from 20% to 90%. Notably, the sensor exhibits distinct resistance sensitivities of 9.7 mΩ (0.02% ∆R/R0)/%RH, 0.5 Ω (0.86% ∆R/R0)/%RH, and 5.7 Ω (9.68% ∆R/R0)/%RH at RH 20% to 30%, RH 30% to 80%, and RH 80% to 90%, respectively. Additionally, a linear temperature change is observed with a sensitivity of -0.04 °C/%RH. The sensor also demonstrates a colorimetric temperature sensitivity of -82,036 K/%RH at RH 20% to 30% and -514 K/%RH at RH 30% to 90%, per captured image. Furthermore, real-time measurements of ethanol vapor with varying concentrations showcase the sensor's applicability in gas sensing applications. Overall, we present a comprehensive exploration of the CIC sensor, emphasizing its design flexibility, electrical characteristics, and diverse sensing capabilities. The sensor's potential applications extend to real-time environmental monitoring, highlighting its promising role in various gas sensing fields.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Ching-Te Kuo
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Bo-Yao Lian
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| |
Collapse
|
15
|
Lee Y, Kim SJ, Kim YJ, Kim YH, Yoon JY, Shin J, Ok SM, Kim EJ, Choi EJ, Oh JW. Sensor development for multiple simultaneous classifications using genetically engineered M13 bacteriophages. Biosens Bioelectron 2023; 241:115642. [PMID: 37703643 DOI: 10.1016/j.bios.2023.115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Sensors for detecting infinitesimal amounts of chemicals in air have been widely developed because they can identify the origin of chemicals. These sensing technologies are also used to determine the variety and freshness of fresh food and detect explosives, hazardous chemicals, environmental hormones, and diseases using exhaled gases. However, there is still a need to rapidly develop portable and highly sensitive sensors that respond to complex environments. Here, we show an efficient method for optimising an M13 bacteriophage-based multi-array colourimetric sensor for multiple simultaneous classifications. Apples, which are difficult to classify due to many varieties in distribution, were selected for classifying targets. M13 was adopted to fabricate a multi-array colourimetric sensor using the self-templating process since a chemical property of major coat protein p8 consisting of the M13 body can be manipulated by genetic engineering to respond to various target substances. The twenty sensor units, which consisted of different types of manipulated M13, exhibited colour changes because of the change of photonic crystal-like nanostructure when they were exposed to target substances associated with apples. The classification success rate of the optimal sensor combinations was achieved with high accuracy for the apple variety (100%), four standard fragrances (100%), and aging (84.5%) simultaneously. We expect that this optimisation technique can be used for rapid sensor development capable of multiple simultaneous classifications in various fields, such as medical diagnosis, hazardous environment monitoring, and the food industry, where sensors need to be developed in response to complex environments consisting of various targets.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, 46241, Busan, Republic of Korea.
| | - Sung-Jo Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, 46241, Busan, Republic of Korea
| | - Ye-Ji Kim
- Department of Nano Fusion Technology, Pusan National University, 46241, Busan, Republic of Korea
| | - You Hwan Kim
- Department of Nano Fusion Technology, Pusan National University, 46241, Busan, Republic of Korea
| | - Ji-Young Yoon
- Dental Research Institute, Dental and Life Science Institute, Pusan National University, 50612, Yangsan, Republic of Korea; Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Jonghyun Shin
- Dental Research Institute, Dental and Life Science Institute, Pusan National University, 50612, Yangsan, Republic of Korea; Department of Pediatric Dentistry, School of Dentistry, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Soo-Min Ok
- Dental Research Institute, Dental and Life Science Institute, Pusan National University, 50612, Yangsan, Republic of Korea; Department of Oral Medicine, School of Dentistry, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Eun-Jung Kim
- Dental Research Institute, Dental and Life Science Institute, Pusan National University, 50612, Yangsan, Republic of Korea; Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Eun Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, 46241, Busan, Republic of Korea; Korea Nanobiotechnology Center, Pusan National University, 46241, Busan, Republic of Korea
| | - Jin-Woo Oh
- Department of Nano Fusion Technology, Pusan National University, 46241, Busan, Republic of Korea; Bio-IT Fusion Technology Research Institute, Pusan National University, 46241, Busan, Republic of Korea; Korea Nanobiotechnology Center, Pusan National University, 46241, Busan, Republic of Korea; Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, 46241, Busan, Republic of Korea
| |
Collapse
|
16
|
Kim H, Okada K, Chae I, Lim B, Ji S, Kwon Y, Lee SW. Virus-Based Pyroelectricity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305503. [PMID: 37611920 DOI: 10.1002/adma.202305503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Indexed: 08/25/2023]
Abstract
The first observation of heat-induced electrical potential generation on a virus and its detection through pyroelectricity are presented. Specifically, the authors investigate the pyroelectric properties of the M13 phage, which possesses inherent dipole structures derived from the noncentrosymmetric arrangement of the major coat protein (pVIII) with an α-helical conformation. Unidirectional polarization of the phage is achieved through genetic engineering of the tail protein (pIII) and template-assisted self-assembly techniques. By modifying the pVIII proteins with varying numbers of glutamate residues, the structure-dependent tunable pyroelectric properties of the phage are explored. The most polarized phage exhibits a pyroelectric coefficient of 0.13 µC m-2 °C-1 . Computational modeling and circular dichroism (CD) spectroscopy analysis confirm that the unfolding of α-helices within the pVIII proteins leads to changes in phage polarization upon heating. Moreover, the phage is genetically modified to enable its pyroelectric function in diverse chemical environments. This phage-based approach not only provides valuable insights into bio-pyroelectricity but also opens up new opportunities for the detection of various viral particles. Furthermore, it holds great potential for the development of novel biomaterials for future applications in biosensors and bioelectric materials.
Collapse
Affiliation(s)
- Han Kim
- Department of Applied Science and Technology, University of California, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kento Okada
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Inseok Chae
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Butaek Lim
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Seungwook Ji
- Department of Applied Science and Technology, University of California, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yoonji Kwon
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Seung-Wuk Lee
- Department of Applied Science and Technology, University of California, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
17
|
Jang WB, Yi D, Nguyen TM, Lee Y, Lee EJ, Choi J, Kim YH, Choi E, Oh J, Kwon S. Artificial Neural Processing-Driven Bioelectronic Nose for the Diagnosis of Diabetes and Its Complications. Adv Healthc Mater 2023; 12:e2300845. [PMID: 37449876 PMCID: PMC11469111 DOI: 10.1002/adhm.202300845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Diabetes and its complications affect the younger population and are associated with a high mortality rate; however, early diagnosis can contribute to the selection of appropriate treatment regimens that can reduce mortality. Although diabetes diagnosis via exhaled breath has great potential for early diagnosis, research on such diagnosis is restricted to disease detection, requiring in-depth examination to diagnose and classify diseases and their complications. This study demonstrates the use of an artificial neural processing-based bioelectronic nose to accurately diagnose diabetes and classify diabetic types (type I and II) and their complications, such as heart disease. Specifically, an M13 phage-based electronic nose (e-nose) is used to explore the features of subjects with diabetes at various levels of cellular and organismal organization (cells, liver organoids, and mice). Exhaled breath samples are collected during culturing and exposed to the phage-based e-nose. Compared with cells, liver organoids cultured under conditions mimicking a diabetic environment display properties that closely resemble the characteristics of diabetic mice. Using neural pattern separation, the M13 phage-based e-nose achieves a classification success rate of over 86% for four conditions in mice, namely, type 1 diabetes, type 2 diabetes, diabetic cardiomyopathy, and cardiomyopathy.
Collapse
Affiliation(s)
- Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell BiologyDepartment of PhysiologyMedical Research InstituteSchool of MedicinePusan National UniversityYangsan50612Republic of Korea
- Convergence Stem Cell Research CenterPusan National UniversityYangsan50612Republic of Korea
| | - Dongwon Yi
- Division of Endocrinology and MetabolismDepartment of Internal MedicinePusan National University Yangsan HospitalPusan National University School of MedicineYangsan50612Republic of Korea
| | - Thanh Mien Nguyen
- Bio‐IT Fusion Technology Research InstitutePusan National UniversityBusan46241Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion TechnologyPusan National UniversityBusan46214Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell BiologyDepartment of PhysiologyMedical Research InstituteSchool of MedicinePusan National UniversityYangsan50612Republic of Korea
- Convergence Stem Cell Research CenterPusan National UniversityYangsan50612Republic of Korea
| | - Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell BiologyDepartment of PhysiologyMedical Research InstituteSchool of MedicinePusan National UniversityYangsan50612Republic of Korea
- Convergence Stem Cell Research CenterPusan National UniversityYangsan50612Republic of Korea
| | - You Hwan Kim
- Department of Nano Fusion TechnologyPusan National UniversityBusan46214Republic of Korea
| | - Eun‐Jung Choi
- Department of Nano Fusion TechnologyPusan National UniversityBusan46214Republic of Korea
| | - Jin‐Woo Oh
- Bio‐IT Fusion Technology Research InstitutePusan National UniversityBusan46241Republic of Korea
- Department of Nano Fusion TechnologyPusan National UniversityBusan46214Republic of Korea
- Korea Nanobiotechnology CenterPusan National UniversityBusan46241Republic of Korea
| | - Sang‐Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell BiologyDepartment of PhysiologyMedical Research InstituteSchool of MedicinePusan National UniversityYangsan50612Republic of Korea
- Convergence Stem Cell Research CenterPusan National UniversityYangsan50612Republic of Korea
| |
Collapse
|
18
|
Fang H, Zhou Y, Ma Y, Chen Q, Tong W, Zhan S, Guo Q, Xiong Y, Tang BZ, Huang X. M13 Bacteriophage-Assisted Recognition and Signal Spatiotemporal Separation Enabling Ultrasensitive Light Scattering Immunoassay. ACS NANO 2023; 17:18596-18607. [PMID: 37698300 DOI: 10.1021/acsnano.3c07194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The demand for the ultrasensitive and rapid quantitative analysis of trace target analytes has become increasingly urgent. However, the sensitivity of traditional immunoassay-based detection methods is limited due to the contradiction between molecular recognition and signal amplification caused by the size effect of nanoprobes. To address this dilemma, we describe versatile M13 phage-assisted immunorecognition and signal transduction spatiotemporal separation that enable ultrasensitive light-scattering immunoassay systems for the quantitative detection of low-abundance target analytes. The newly developed immunoassay strategy combines the M13 phage-assisted light scattering signal fluctuations of gold nanoparticles (AuNPs) with gold in situ growth (GISG) technology. Given the synergy of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation, the practical detection capability of this strategy can achieve the ultrasensitive and rapid quantification of ochratoxin A and alpha-fetoprotein in real samples at the subfemtomolar level within 50 min, displaying about 4 orders of magnitude enhancement in sensitivity compared with traditional phage-based ELISA. To further improve the sensitivity of our immunoassay, the biotin-streptavidin amplification scheme is implemented to detect severe acute respiratory syndrome coronavirus 2 spike protein down to the attomolar range. Overall, this study offers a direction for ultrasensitive quantitative detection of target analytes by the synergistic combination of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation.
Collapse
Affiliation(s)
- Hao Fang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yanbing Ma
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Qi Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Weipeng Tong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Shengnan Zhan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Qian Guo
- Jiangxi Province Centre for Disease Control and Prevention, Nanchang 330029, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang 330006, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang 330006, P. R. China
| |
Collapse
|
19
|
Nguyen TM, Choi CW, Lee JE, Heo D, Lee YW, Gu SH, Choi EJ, Lee JM, Devaraj V, Oh JW. Understanding the Role of M13 Bacteriophage Thin Films on a Metallic Nanostructure through a Standard and Dynamic Model. SENSORS (BASEL, SWITZERLAND) 2023; 23:6011. [PMID: 37447860 DOI: 10.3390/s23136011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The dynamic and surface manipulation of the M13 bacteriophage via the meeting application demands the creation of a pathway to design efficient applications with high selectivity and responsivity rates. Here, we report the role of the M13 bacteriophage thin film layer that is deposited on an optical nanostructure involving gold nanoparticles/SiO2/Si, as well as its influence on optical and geometrical properties. The thickness of the M13 bacteriophage layer was controlled by varying either the concentration or humidity exposure levels, and optical studies were conducted. We designed a standard and dynamic model based upon three-dimensional finite-difference time-domain (3D FDTD) simulations that distinguished the respective necessity of each model under variable conditions. As seen in the experiments, the origin of respective peak wavelength positions was addressed in detail with the help of simulations. The importance of the dynamic model was noted when humidity-based experiments were conducted. Upon introducing varied humidity levels, the dynamic model predicted changes in plasmonic properties as a function of changes in NP positioning, gap size, and effective index (this approach agreed with the experiments and simulated results). We believe that this work will provide fundamental insight into understanding and interpreting the geometrical and optical properties of the nanostructures that involve the M13 bacteriophage. By combining such significant plasmonic properties with the numerous benefits of M13 bacteriophage (like low-cost fabrication, multi-wavelength optical characteristics devised from a single structure, reproducibility, reversible characteristics, and surface modification to suit application requirements), it is possible to develop highly efficient integrated plasmonic biomaterial-based sensor nanostructures.
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Cheol Woong Choi
- Department of Internal Medicine, Medical Research Institute and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan-si 50612, Republic of Korea
- School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji-Eun Lee
- School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Ophthalmology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Damun Heo
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ye-Won Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sun-Hwa Gu
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Eun Jeong Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
- Center of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
- Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, Busan 46214, Republic of Korea
| |
Collapse
|
20
|
Bae J, Yoo C, Kim S, Ahn J, Sim HH, Kim JH, Kim JH, Yoon SY, Kim JT, Seol SK, Pyo J. Three-Dimensional Printing of Structural Color Using a Femtoliter Meniscus. ACS NANO 2023. [PMID: 37294876 DOI: 10.1021/acsnano.3c02236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Structural colors are produced by the diffraction of light from microstructures. The collective arrangement of substructures is a simple and cost-effective approach for structural coloration represented by colloidal self-assembly. Nanofabrication methods enable precise and flexible coloration by processing individual nanostructures, but these methods are expensive or complex. Direct integration of desired structural coloration remains difficult because of the limited resolution, material-specificity, or complexity. Here, we demonstrate three-dimensional printing of structural colors by direct writing of nanowire gratings using a femtoliter meniscus of polymer ink. This method combines a simple process, desired coloration, and direct integration at a low cost. Precise and flexible coloration is demonstrated by printing the desired structural colors and shapes. In addition, alignment-resolved selective reflection is shown for displayed image control and color synthesis. The direct integration facilitates structural coloration on various substrates, including quartz, silicon, platinum, gold, and flexible polymer films. We expect that our contribution can expand the utility of diffraction gratings across various disciplines such as surface-integrated strain sensors, transparent reflective displays, fiber-integrated spectrometers, anticounterfeiting, biological assays, and environmental sensors.
Collapse
Affiliation(s)
- Jongcheon Bae
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Chanbin Yoo
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electrical Functionality Material Engineering, University of Science and Technology (UST), Changwon 51543, Korea
| | - Seonghyeon Kim
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Jinhyuck Ahn
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electrical Functionality Material Engineering, University of Science and Technology (UST), Changwon 51543, Korea
| | - Ho Hyung Sim
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electrical Functionality Material Engineering, University of Science and Technology (UST), Changwon 51543, Korea
| | - Je Hyeong Kim
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electrical Functionality Material Engineering, University of Science and Technology (UST), Changwon 51543, Korea
| | - Jung Hyun Kim
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electrical Functionality Material Engineering, University of Science and Technology (UST), Changwon 51543, Korea
| | - Seog-Young Yoon
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Seung Kwon Seol
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electrical Functionality Material Engineering, University of Science and Technology (UST), Changwon 51543, Korea
| | - Jaeyeon Pyo
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electrical Functionality Material Engineering, University of Science and Technology (UST), Changwon 51543, Korea
| |
Collapse
|
21
|
Wang R, Li HD, Cao Y, Wang ZY, Yang T, Wang JH. M13 phage: a versatile building block for a highly specific analysis platform. Anal Bioanal Chem 2023:10.1007/s00216-023-04606-w. [PMID: 36867197 PMCID: PMC9982796 DOI: 10.1007/s00216-023-04606-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Viruses are changing the biosensing and biomedicine landscape due to their multivalency, orthogonal reactivities, and responsiveness to genetic modifications. As the most extensively studied phage model for constructing a phage display library, M13 phage has received much research attention as building blocks or viral scaffolds for various applications including isolation/separation, sensing/probing, and in vivo imaging. Through genetic engineering and chemical modification, M13 phages can be functionalized into a multifunctional analysis platform with various functional regions conducting their functionality without mutual disturbance. Its unique filamentous morphology and flexibility also promoted the analytical performance in terms of target affinity and signal amplification. In this review, we mainly focused on the application of M13 phage in the analytical field and the benefit it brings. We also introduced several genetic engineering and chemical modification approaches for endowing M13 with various functionalities, and summarized some representative applications using M13 phages to construct isolation sorbents, biosensors, cell imaging probes, and immunoassays. Finally, current issues and challenges remaining in this field were discussed and future perspectives were also proposed.
Collapse
Affiliation(s)
- Rui Wang
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Hui-Da Li
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Ying Cao
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Zi-Yi Wang
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- grid.412252.20000 0004 0368 6968Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819 China
| |
Collapse
|
22
|
Kim SJ, Lee Y, Choi EJ, Lee JM, Kim KH, Oh JW. The development progress of multi-array colourimetric sensors based on the M13 bacteriophage. NANO CONVERGENCE 2023; 10:1. [PMID: 36595116 PMCID: PMC9808696 DOI: 10.1186/s40580-022-00351-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Techniques for detecting chemicals dispersed at low concentrations in air continue to evolve. These techniques can be applied not only to manage the quality of agricultural products using a post-ripening process but also to establish a safety prevention system by detecting harmful gases and diagnosing diseases. Recently, techniques for rapid response to various chemicals and detection in complex and noisy environments have been developed using M13 bacteriophage-based sensors. In this review, M13 bacteriophage-based multi-array colourimetric sensors for the development of an electronic nose is discussed. The self-templating process was adapted to fabricate a colour band structure consisting of an M13 bacteriophage. To detect diverse target chemicals, the colour band was utilised with wild and genetically engineered M13 bacteriophages to enhance their sensing abilities. Multi-array colourimetric sensors were optimised for application in complex and noisy environments based on simulation and deep learning analysis. The development of a multi-array colourimetric sensor platform based on the M13 bacteriophage is likely to result in significant advances in the detection of various harmful gases and the diagnosis of various diseases based on exhaled gas in the future.
Collapse
Affiliation(s)
- Sung-Jo Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, Busan, Republic of Korea
| | - Eun Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon, Republic of Korea
- Korea and Nano Convergence Technology Center, Hallym University, Chuncheon, Republic of Korea
| | - Kwang Ho Kim
- School of Materials Science and Engineering, Pusan National University, Busan, Republic of Korea
- Global Frontier Research and Development Center for Hybrid Interface Materials, Pusan National University, Busan, Republic of Korea
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busan, Republic of Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
- Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
23
|
Nguyen T, Chung JH, Bak GH, Kim YH, Kim M, Kim YJ, Kwon RJ, Choi EJ, Kim KH, Kim YS, Oh JW. Multiarray Biosensor for Diagnosing Lung Cancer Based on Gap Plasmonic Color Films. ACS Sens 2022; 8:167-175. [PMID: 36584356 PMCID: PMC9887647 DOI: 10.1021/acssensors.2c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adaptable and sensitive materials are essential for the development of advanced sensor systems such as bio and chemical sensors. Biomaterials can be used to develop multifunctional biosensor applications using genetic engineering. In particular, a plasmonic sensor system using a coupled film nanostructure with tunable gap sizes is a potential candidate in optical sensors because of its simple fabrication, stability, extensive tuning range, and sensitivity to small changes. Although this system has shown a good ability to eliminate humidity as an interferant, its performance in real-world environments is limited by low selectivity. To overcome these issues, we demonstrated the rapid response of gap plasmonic color sensors by utilizing metal nanostructures combined with genetically engineered M13 bacteriophages to detect volatile organic compounds (VOCs) and diagnose lung cancer from breath samples. The M13 bacteriophage was chosen as a recognition element because the structural protein capsid can readily be modified to target the desired analyte. Consequently, the VOCs from various functional groups were distinguished by using a multiarray biosensor based on a gap plasmonic color film observed by hierarchical cluster analysis. Furthermore, the lung cancer breath samples collected from 70 healthy participants and 50 lung cancer patients were successfully classified with a high rate of over 89% through supporting machine learning analysis.
Collapse
Affiliation(s)
- Thanh
Mien Nguyen
- Bio-IT
Fusion Technology Research Institute, Pusan
National University, Busan 46241, Republic of Korea
| | - Jae Heun Chung
- Department
of Internal Medicine, College of Medicine, Pusan National University, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Gyeong-Ha Bak
- Department
of Nano Fusion Technology, Pusan National
University, Busan 46241, Republic of Korea
| | - You Hwan Kim
- Department
of Nano Fusion Technology, Pusan National
University, Busan 46241, Republic of Korea
| | - Minjun Kim
- Department
of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ye-Ji Kim
- Department
of Nano Fusion Technology, Pusan National
University, Busan 46241, Republic of Korea
| | - Ryuk Jun Kwon
- Family
Medicine Clinic and Research Institute of Convergence of Biomedical
Science and Technology, Pusan National University
Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Eun-Jung Choi
- Bio-IT
Fusion Technology Research Institute, Pusan
National University, Busan 46241, Republic of Korea,Korea
Nanobiotechnology Center, Pusan National
University, Busan 46241, Republic of Korea
| | - Kwang Ho Kim
- School
of Materials Science and Engineering, Pusan
National University, Busan 46241, Republic of Korea,Global
Frontier Research and Development Center for Hybrid Interface Materials, Pusan National University, Busan 46241, Republic
of Korea,
| | - Yun Seong Kim
- Department
of Internal Medicine, College of Medicine, Pusan National University, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea,Research
Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea,
| | - Jin-Woo Oh
- Bio-IT
Fusion Technology Research Institute, Pusan
National University, Busan 46241, Republic of Korea,Department
of Nano Fusion Technology, Pusan National
University, Busan 46241, Republic of Korea,Department
of Nanoenergy Engineering and Research Center for Energy Convergence
Technology, Pusan National University, Busan 46241, Republic of Korea,Korea
Nanobiotechnology Center, Pusan National
University, Busan 46241, Republic of Korea,
| |
Collapse
|
24
|
Quintela IA, Vasse T, Lin CS, Wu VCH. Advances, applications, and limitations of portable and rapid detection technologies for routinely encountered foodborne pathogens. Front Microbiol 2022; 13:1054782. [PMID: 36545205 PMCID: PMC9760820 DOI: 10.3389/fmicb.2022.1054782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 12/08/2022] Open
Abstract
Traditional foodborne pathogen detection methods are highly dependent on pre-treatment of samples and selective microbiological plating to reliably screen target microorganisms. Inherent limitations of conventional methods include longer turnaround time and high costs, use of bulky equipment, and the need for trained staff in centralized laboratory settings. Researchers have developed stable, reliable, sensitive, and selective, rapid foodborne pathogens detection assays to work around these limitations. Recent advances in rapid diagnostic technologies have shifted to on-site testing, which offers flexibility and ease-of-use, a significant improvement from traditional methods' rigid and cumbersome steps. This comprehensive review aims to thoroughly discuss the recent advances, applications, and limitations of portable and rapid biosensors for routinely encountered foodborne pathogens. It discusses the major differences between biosensing systems based on the molecular interactions of target analytes and biorecognition agents. Though detection limits and costs still need further improvement, reviewed technologies have high potential to assist the food industry in the on-site detection of biological hazards such as foodborne pathogens and toxins to maintain safe and healthy foods. Finally, this review offers targeted recommendations for future development and commercialization of diagnostic technologies specifically for emerging and re-emerging foodborne pathogens.
Collapse
Affiliation(s)
- Irwin A. Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Tyler Vasse
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States,*Correspondence: Vivian C. H. Wu,
| |
Collapse
|
25
|
Tian L, He L, Jackson K, Saif A, Khan S, Wan Z, Didar TF, Hosseinidoust Z. Self-assembling nanofibrous bacteriophage microgels as sprayable antimicrobials targeting multidrug-resistant bacteria. Nat Commun 2022; 13:7158. [PMID: 36470891 PMCID: PMC9723106 DOI: 10.1038/s41467-022-34803-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Nanofilamentous bacteriophages (bacterial viruses) are biofunctional, self-propagating, and monodisperse natural building blocks for virus-built materials. Minifying phage-built materials to microscale offers the promise of expanding the range function for these biomaterials to sprays and colloidal bioassays/biosensors. Here, we crosslink half a million self-organized phages as the sole structural component to construct each soft microgel. Through an in-house developed, biologics-friendly, high-throughput template method, over 35,000 phage-built microgels are produced from every square centimetre of a peelable microporous film template, constituting a 13-billion phage community. The phage-exclusive microgels exhibit a self-organized, highly-aligned nanofibrous texture and tunable auto-fluorescence. Further preservation of antimicrobial activity was achieved by making hybrid protein-phage microgels. When loaded with potent virulent phages, these microgels effectively reduce heavy loads of multidrug-resistant Escherichia coli O157:H7 on food products, leading to up to 6 logs reduction in 9 hours and rendering food contaminant free.
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Leon He
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Kyle Jackson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Ahmed Saif
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Zeqi Wan
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
26
|
Tian L, Jackson K, Chan M, Saif A, He L, Didar TF, Hosseinidoust Z. Phage display for the detection, analysis, disinfection, and prevention of Staphylococcus aureus. SMART MEDICINE 2022; 1:e20220015. [PMID: 39188734 PMCID: PMC11235639 DOI: 10.1002/smmd.20220015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 08/28/2024]
Abstract
The World Health Organization has designated Staphylococcus aureus as a global health concern. This designation stems from the emergence of multiple drug-resistant strains that already account for hundreds of thousands of deaths globally. The development of novel treatment strategies to eradicate S. aureus or mitigate its pathogenic potential is desperately needed. In the effort to develop emerging strategies to combat S. aureus, phage display is uniquely positioned to assist in this endeavor. Leveraging bacteriophages, phage display enables researchers to better understand interactions between proteins and their antagonists. In doing so, researchers have the capacity to design novel inhibitors, biosensors, disinfectants, and immune modulators that can target specific S. aureus strains. In this review, we highlight how phage display can be leveraged to design novel solutions to combat S. aureus. We further discuss existing uses of phage display as a detection, intervention, and prevention platform against S. aureus and provide outlooks on how this technology can be optimized for future applications.
Collapse
Affiliation(s)
- Lei Tian
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Kyle Jackson
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Michael Chan
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Ahmed Saif
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Leon He
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Tohid F. Didar
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
- Department of Mechanical EngineeringMcMaster UniversityHamiltonOntarioCanada
| | - Zeinab Hosseinidoust
- Department of Chemical EngineeringMcMaster UniversityHamiltonOntarioCanada
- School of Biomedical EngineeringMcMaster UniversityHamiltonOntarioCanada
- Michael DeGroote Institute for Infectious Disease ResearchMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
27
|
Cao Y, Wu N, Li HD, Xue JW, Wang R, Yang T, Wang JH. Efficient Pathogen Capture and Sensing Promoted by Dynamic Deformable Nanointerfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203962. [PMID: 36328708 DOI: 10.1002/smll.202203962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The M13 bacteriophage (M13 phage) has emerged as an attractive bionanomaterial due to its chemistry/gene modifiable feature and unique structures. Herein, a dynamic deformable nanointerface is fabricated taking advantage of the unique feature of the M13 phage for ultrasensitive detection of pathogens. PIII proteins at the tip of the M13 phage are genetically modified to display 6His peptide for site-specific anchoring onto Ni-NTA microbeads, whereas pVIII proteins along the side of the M13 phage are orderly arranged with thousands of aptamers and their complementary strands (c-apt). The flexible M13 nanofibers with rich recognition sites act as octopus tentacles, resulting in a 19-fold improvement in the capture affinity toward the target. The competitive binding of the target pathogen releases c-apts and initiates rolling circle amplification (RCA). The sway motion of M13 nanofibers accelerates the diffusion of c-apts, thus promoting RCA efficiency. Benefiting from the strengthened capture ability toward the target and the accelerated RCA process, three-orders of magnitude improvement in the sensitivity is achieved, with a detection limit of 8 cfu mL-1 for Staphylococcus aureus. The promoted capture ability and assay performance highlights the essential role of the deformable feature of the engineered interface. This may provide inspiration for the construction of more efficient reaction interfaces.
Collapse
Affiliation(s)
- Ying Cao
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Na Wu
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Hui-Da Li
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Jing-Wen Xue
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Rui Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ting Yang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| |
Collapse
|
28
|
M13 Bacteriophage-Based Bio-nano Systems for Bioapplication. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
29
|
Kim WG, Lee JM, Yang Y, Kim H, Devaraj V, Kim M, Jeong H, Choi EJ, Yang J, Jang Y, Badloe T, Lee D, Rho J, Kim JT, Oh JW. Three-Dimensional Plasmonic Nanocluster-Driven Light-Matter Interaction for Photoluminescence Enhancement and Picomolar-Level Biosensing. NANO LETTERS 2022; 22:4702-4711. [PMID: 35622690 DOI: 10.1021/acs.nanolett.2c00790] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmonic nanoparticle clusters promise to support unique engineered electromagnetic responses at optical frequencies, realizing a new concept of devices for nanophotonic applications. However, the technological challenges associated with the fabrication of three-dimensional nanoparticle clusters with programmed compositions remain unresolved. Here, we present a novel strategy for realizing heterogeneous structures that enable efficient near-field coupling between the plasmonic modes of gold nanoparticles and various other nanomaterials via a simple three-dimensional coassembly process. Quantum dots embedded in the plasmonic structures display ∼56 meV of a blue shift in the emission spectrum. The decay enhancement factor increases as the total contribution of radiative and nonradiative plasmonic modes increases. Furthermore, we demonstrate an ultracompact diagnostic platform to detect M13 viruses and their mutations from femtoliter volume, sub-100 pM analytes. This platform could pave the way toward an effective diagnosis of diverse pathogens, which is in high demand for handling pandemic situations.
Collapse
Affiliation(s)
- Won-Geun Kim
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jong-Min Lee
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
- Center of Nano Convergence Technology and School of Nanoconvergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Vasanthan Devaraj
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
| | - Minjun Kim
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyuk Jeong
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
| | - Eun-Jung Choi
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
| | - Jihyuk Yang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yudong Jang
- Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Donghan Lee
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jin-Woo Oh
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
30
|
Wang J, Sakai K, Kiwa T. Rational Design of Peptides Derived from Odorant-Binding Proteins for SARS-CoV-2-Related Volatile Organic Compounds Recognition. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123917. [PMID: 35745038 PMCID: PMC9229983 DOI: 10.3390/molecules27123917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Peptides are promising molecular-binding elements and have attracted great interest in novel biosensor development. In this study, a series of peptides derived from odorant-binding proteins (OBPs) were rationally designed for recognition of SARS-CoV-2-related volatile organic compounds (VOCs). Ethanol, nonanal, benzaldehyde, acetic acid, and acetone were selected as representative VOCs in the exhaled breath during the COVID-19 infection. Computational docking and prediction tools were utilized for OBPs peptide characterization and analysis. Multiple parameters, including the docking model, binding affinity, sequence specification, and structural folding, were investigated. The results demonstrated a rational, rapid, and efficient approach for designing breath-borne VOC-recognition peptides, which could further improve the biosensor performance for pioneering COVID-19 screening and many other applications.
Collapse
Affiliation(s)
- Jin Wang
- Correspondence: ; Tel.: +81-86-251-8129
| | | | | |
Collapse
|
31
|
Kulpakko J, Juusti V, Rannikko A, Hänninen PE. Detecting disease associated biomarkers by luminescence modulating phages. Sci Rep 2022; 12:2433. [PMID: 35165329 PMCID: PMC8844222 DOI: 10.1038/s41598-022-06433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
Assessment of risk for a given disease and the diagnosis of diseases is often based on assays detecting biomarkers. Antibody-based biomarker-assays for diseases such as prostate cancer are often ambiguous and biomarker proteins are frequently also elevated for reasons that are unspecific. We have opted to use luminescence modulating phages for the analysis of known acute inflammatory response biomarker CRP (C-reactive protein) and biomarkers of prostate cancer in urine samples. Firstly, CRP was used to simulate the detection process in a controlled chemical environment. Secondly, we tried to classify more challenging lethal prostate cancer samples from control samples. Our unique method utilizes a special biopanning process in order to create special phages capable of capturing a dye necessary for detection and potential biomarkers. As the biomarker-molecules interfere with the phages, dye is repelled from the phage network resulting in an altered reporter luminescence. These changes can be observed with an absorbance reader and even with the naked eye. The simple method could present an alternative for screening of disease biomarkers. For prostate cancer urine samples, we achieved a sensitivity of 80% and specificity of 75% to detect Grade Group (GG) 4 and 5 prostate cancer.
Collapse
Affiliation(s)
- Janne Kulpakko
- Aqsens Health Ltd., Itäinen Pitkäkatu 4B, 20520, Turku, Finland. .,Laboratory of Biophysics and Medicity Research Laboratories, Institute of Biomedicine, Faculty of Medicine, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| | | | - Antti Rannikko
- Department of Urology, Helsinki University, Helsinki University Hospital, Helsinki, Finland
| | - Pekka E Hänninen
- Aqsens Health Ltd., Itäinen Pitkäkatu 4B, 20520, Turku, Finland.,Laboratory of Biophysics and Medicity Research Laboratories, Institute of Biomedicine, Faculty of Medicine, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
32
|
Park W, Lee J, Han MJ, Wolska J, Pociecha D, Gorecka E, Seo MK, Choi YS, Yoon DK. Light-Driven Fabrication of a Chiral Photonic Lattice of the Helical Nanofilament Liquid Crystal Phase. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4409-4416. [PMID: 35029362 DOI: 10.1021/acsami.1c19382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A photonic lattice is an efficient platform for optically exploring quantum phenomena. However, its fabrication requires high costs and complex procedures when conventional materials, such as silicon or metals, are used. Here, we demonstrate a simple and cost-effective fabrication method for a reconfigurable chiral photonic lattice of the helical nanofilament (HNF) liquid crystal (LC) phase and diffraction grating showing wavelength-dependent diffraction with a rotated polarization state. Furthermore, the UV-exposed areas of the HNF film having chiral characteristics act as optical building blocks that induce resonant intensity modulation in the reflectance and transmittance modes and the optical rotation of the linear polarization. Our photonic lattice of the HNF can be an efficient platform for a chirality-embedded photonic lattice at a low cost.
Collapse
Affiliation(s)
- Wongi Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jongmin Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Moon Jong Han
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Joanna Wolska
- Faculty of Chemistry, University of Warsaw, Warsaw 02-089, Poland
| | - Damian Pociecha
- Faculty of Chemistry, University of Warsaw, Warsaw 02-089, Poland
| | - Ewa Gorecka
- Faculty of Chemistry, University of Warsaw, Warsaw 02-089, Poland
| | - Min-Kyo Seo
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yun-Seok Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
33
|
Han MJ, Yun HS, Cho Y, Kim M, Yang C, Tsukruk VV, Yoon DK. Chiral Optoelectronic Functionalities via DNA-Organic Semiconductor Complex. ACS NANO 2021; 15:20353-20363. [PMID: 34874717 DOI: 10.1021/acsnano.1c08641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We fabricate the bio-organic field-effect transistor (BOFET) with the DNA-perylene diimide (PDI) complex, which shows unusual chiroptical and electrical functionalities. DNA is used as the chirality-inducing scaffold and the charge-injection layer. The shear-oriented film of the DNA-PDI complex shows how the large-area periodic molecular orientation and the charge transport are related, generating drastically different optoelectronic properties at each DNA/PDI concentration. The resultant BOFET reveals chiral structures with a high charge carrier mobility, photoresponsivity, and photosensitivity, reaching 3.97 cm2 V-1 s-1, 1.18 A W-1, and 7.76 × 103, respectively. Interestingly, the BOFET enables the definitive response under the handedness of circularly polarized light with a high dissymmetry factor of approximately +0.14. This work highlights the natural chirality and anisotropy of DNA material and the electron conductivity of organic semiconducting molecules to be mutually used in significant chiro-optoelectronic functions as an added ability to the traditional OFET.
Collapse
Affiliation(s)
- Moon Jong Han
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hee Seong Yun
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Yongjoon Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, UNIST, Ulsan 44919, Republic of Korea
- UNIST Central Research Facilities & School of Natural Science, UNIST, Ulsan 44919, Republic of Korea
| | - Minkyu Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, UNIST, Ulsan 44919, Republic of Korea
- UNIST Central Research Facilities & School of Natural Science, UNIST, Ulsan 44919, Republic of Korea
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dong Ki Yoon
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology and KINC, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
34
|
Polarization Angle Dependence of Optical Gain in a Hybrid Structure of Alexa-Flour 488/M13 Bacteriophage. NANOMATERIALS 2021; 11:nano11123309. [PMID: 34947657 PMCID: PMC8707841 DOI: 10.3390/nano11123309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
We measured optical modal gain of a dye–virus hybrid structure using a variable stripe length method, where Alexa-fluor-488 dye was coated on a virus assembly of M13 bacteriophage. Inspired by the structural periodicity of the wrinkle-like virus assembly, the edge emission of amplified spontaneous emission was measured for increasing excited optical stripe length, which was aligned to be either parallel or perpendicular to the wrinkle alignment. We found that the edge emission showed a strong optical anisotropy, and a spectral etalon also appeared in the gain spectrum. These results can be attributed to the corrugated structure, which causes a similar effect to a DFB laser, and we also estimated effective cavity lengths.
Collapse
|
35
|
Qi W, Yu H. Virus-templated magnetic composite hydrogels for surface immobilization of mimic-free-lipase. NANOSCALE 2021; 13:17871-17880. [PMID: 34673862 DOI: 10.1039/d1nr03571a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface immobilization of enzymes on magnetic-recoverable carriers is of great interest and importance for the biocatalysis of relatively large molecules. In this work, the nanosized amino-rich filamentous M13 virus, a versatile biological scaffold, was applied as the unique soft backbone for lipase immobilization. Based on the structure and capsid proteins of M13 phages, the magnetic-recoverable mimic-free-lipases (MFLs) composed of the M13 hydrogels and magnetic particles were developed in two designs. In the first design, nanosized wild M13 phages were crosslinked into a phage hydrogel through the N-terminals of pVIII peptides while NH2-Fe3O4 magnetic nanoparticles (MNPs) were attached to the M13 virus through glutaraldehyde, forming the M13-(NH2-Fe3O4) magnetic phage hydrogel. In the second design, special M13 with Fe3O4 affinity pIII-peptide (FAP-M13) was biopanned for strongly binding towards bare Fe3O4 with the "hook"-like pIII-peptide (N-LPLSTQH-C). TEM observation confirmed the direct grasp of FAP-M13 on bare Fe3O4, forming the magnetic (FAP-M13)-Fe3O4 virus hydrogel. Lipases were uniformly anchored on the phage surface of nanoscale by crosslinking with the N-terminals of pVIII peptides, and then lipase@M13-(NH2-Fe3O4) and lipase@(FAP-M13)-Fe3O4 MFLs were constructed. For both MFLs, high activity recovery yield (>95%) and efficient magnetic separation were characterized. Significantly reduced MNP-usage-amount and enhanced lipase-loading-amount both by about 40 folds were obtained, compared with the conventional NH2-Fe3O4 carriers. The quantified Km and Vmax/Km values were almost equal to those of the free lipases, verifying free-enzyme-mimicking features of the MFLs. High pH-tolerance, wide temperature adaptability, enhanced thermal stability and stable magnetic separation capability of both MFLs were also observed. In particular, the (FAP-M13)-Fe3O4 magnetic virus hydrogel simply using bare Fe3O4 MNPs would be more convenient and economical in the scaled-up biocatalysis.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
36
|
Lee JM, Devaraj V, Jeong NN, Lee Y, Kim YJ, Kim T, Yi SH, Kim WG, Choi EJ, Kim HM, Chang CL, Mao C, Oh JW. Neural mechanism mimetic selective electronic nose based on programmed M13 bacteriophage. Biosens Bioelectron 2021; 196:113693. [PMID: 34700263 DOI: 10.1016/j.bios.2021.113693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 01/03/2023]
Abstract
The electronic nose is a reliable practical sensor device that mimics olfactory organs. Although numerous studies have demonstrated excellence in detecting various target substances with the help of ideal models, biomimetic approaches still suffer in practical realization because of the inability to mimic the signal processing performed by olfactory neural systems. Herein, we propose an electronic nose based on the programable surface chemistry of M13 bacteriophage, inspired by the neural mechanism of the mammalian olfactory system. The neural pattern separation (NPS) was devised to apply the pattern separation that operates in the memory and learning process of the brain to the electronic nose. We demonstrate an electronic nose in a portable device form, distinguishing polycyclic aromatic compounds (harmful in living environment) in an atomic-level resolution (97.5% selectivity rate) for the first time. Our results provide practical methodology and inspiration for the second-generation electronic nose development toward the performance of detection dogs (K9).
Collapse
Affiliation(s)
- Jong-Min Lee
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, South Korea; School of Nano Convergence Technology, Hallym University, Chuncheon, Gangwon-do, 24252, South Korea
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, South Korea
| | - Na-Na Jeong
- Department of Public Health Science, Graduate School of Korea University, Seoul, 02841, South Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, Busan, 46241, South Korea
| | - Ye-Ji Kim
- Department of Nano Fusion Technology, Pusan National University, Busan, 46241, South Korea
| | - Taehyeong Kim
- Finance·Fishery·Manufacture Industrial Mathematics Center on Big Data and Department of Mathematics, Pusan National University, Busan, 46241, South Korea
| | - Seung Heon Yi
- Finance·Fishery·Manufacture Industrial Mathematics Center on Big Data and Department of Mathematics, Pusan National University, Busan, 46241, South Korea
| | - Won-Geun Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, South Korea
| | - Eun Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, South Korea
| | - Hyun-Min Kim
- Finance·Fishery·Manufacture Industrial Mathematics Center on Big Data and Department of Mathematics, Pusan National University, Busan, 46241, South Korea.
| | - Chulhun L Chang
- Department of Laboratory Medicine, College of Medicine, Pusan National University, Yangsan, 50612, South Korea.
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, United States.
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, South Korea; Department of Nano Fusion Technology, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
37
|
Nguyen TM, Kim WG, Ahn HJ, Kim M, Kim YD, Devaraj V, Kim YJ, Lee Y, Lee JM, Choi EJ, Oh JW. Programmable self-assembly of M13 bacteriophage for micro-color pattern with a tunable colorization. RSC Adv 2021; 11:32305-32311. [PMID: 35495545 PMCID: PMC9042013 DOI: 10.1039/d1ra04302a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Over the last decade, the M13 bacteriophage has been used widely in various applications, such as sensors, bio-templating, and solar cells. The M13 colorimetric sensor was developed to detect toxic gases to protect the environment, human health, and national security. Recent developments in phage-based colorimetric sensor technologies have focused on improving the sensing characteristics, such as the sensitivity and selectivity on a large scale. On the other hand, few studies have examined precisely controllable micro-patterning techniques in phage-based self-assembly. This paper developed a color patterning technique through self-assembly of the M13 bacteriophages. The phage was self-assembled into a nanostructure through precise temperature control at the meniscus interface. Furthermore, barcode color patterns could be fabricated using self-assembled M13 bacteriophage on micrometer scale areas by manipulating the grooves on the SiO2 surface. The color patterns exhibited color tunability based on the phage nano-bundles reactivity. Overall, the proposed color patterning technique is expected to be useful for preparing new color sensors and security patterns. Experiment designs have been developed for tunable colorization film by temperature control during self-assembly processing based on the M13 bacteriophage. The micro-color pattern was fabricated and demonstrated for humidity detection.![]()
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- Department of Nano Fusion Technology, BK21 Plus Nano Convergence Division, Pusan National University Busan 46214 Republic of Korea
| | - Won-Geun Kim
- Department of Nano Fusion Technology, BK21 Plus Nano Convergence Division, Pusan National University Busan 46214 Republic of Korea
| | - Hyun-Ju Ahn
- Department of Physics, Chungnam National University Daejeon 34134 Republic of Korea
| | - Minjun Kim
- Department of Physics, Chungnam National University Daejeon 34134 Republic of Korea
| | - Young Do Kim
- Samsung Display Co., Ltd. Yongin 17113 Republic of Korea
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University Busan 46241 Republic of Korea
| | - Ye-Ji Kim
- Department of Nano Fusion Technology, BK21 Plus Nano Convergence Division, Pusan National University Busan 46214 Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, BK21 Plus Nano Convergence Division, Pusan National University Busan 46214 Republic of Korea
| | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University Chuncheon Gangwon-do 24252 Republic of Korea
| | - Eun Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University Busan 46241 Republic of Korea
| | - Jin-Woo Oh
- Department of Nano Fusion Technology, BK21 Plus Nano Convergence Division, Pusan National University Busan 46214 Republic of Korea .,Bio-IT Fusion Technology Research Institute, Pusan National University Busan 46241 Republic of Korea
| |
Collapse
|
38
|
Kim C, Raja IS, Lee JM, Lee JH, Kang MS, Lee SH, Oh JW, Han DW. Recent Trends in Exhaled Breath Diagnosis Using an Artificial Olfactory System. BIOSENSORS 2021; 11:337. [PMID: 34562928 PMCID: PMC8467588 DOI: 10.3390/bios11090337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Artificial olfactory systems are needed in various fields that require real-time monitoring, such as healthcare. This review introduces cases of detection of specific volatile organic compounds (VOCs) in a patient's exhaled breath and discusses trends in disease diagnosis technology development using artificial olfactory technology that analyzes exhaled human breath. We briefly introduce algorithms that classify patterns of odors (VOC profiles) and describe artificial olfactory systems based on nanosensors. On the basis of recently published research results, we describe the development trend of artificial olfactory systems based on the pattern-recognition gas sensor array technology and the prospects of application of this technology to disease diagnostic devices. Medical technologies that enable early monitoring of health conditions and early diagnosis of diseases are crucial in modern healthcare. By regularly monitoring health status, diseases can be prevented or treated at an early stage, thus increasing the human survival rate and reducing the overall treatment costs. This review introduces several promising technical fields with the aim of developing technologies that can monitor health conditions and diagnose diseases early by analyzing exhaled human breath in real time.
Collapse
Affiliation(s)
- Chuntae Kim
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea
| | | | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Korea
| | | | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Jin-Woo Oh
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Korea
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
39
|
Kim H, Lee JH, Lee JH, Lee BY, Lee BD, Okada K, Ji S, Yoon J, Lee JH, Lee SW. M13 Virus Triboelectricity and Energy Harvesting. NANO LETTERS 2021; 21:6851-6858. [PMID: 34383494 DOI: 10.1021/acs.nanolett.1c01881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triboelectrification is a phenomenon that generates electric potential upon contact. Here, we report a viral particle capable of generating triboelectric potential. M13 bacteriophage is exploited to fabricate precisely defined chemical and physical structures. By genetically engineering the charged structures, we observe that more negatively charged phages can generate higher triboelectric potentials and can diffuse the electric charges faster than less negatively charged phages can. The computational results show that the glutamate-engineered phages lower the LUMO energy level so that they can easily accept electrons from other materials upon contact. A phage-based triboelectric nanogenerator is fabricated and it could produce ∼76 V and ∼5.1 μA, enough to power 30 light-emitting diodes upon a mechanical force application. Our biotechnological approach will be useful to understand the electrical behavior of biomaterials, harvest mechanical energy, and provide a novel modality to detect desired viruses in the future.
Collapse
Affiliation(s)
- Han Kim
- Department of Applied Science and Technology, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ju-Hyuck Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Ju Hun Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Byung Yang Lee
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Byoung Duk Lee
- Large Display Development Center, Samsung Display Co Ltd, Yongin-si 17113, Republic of Korea
| | - Kento Okada
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Seungwook Ji
- Department of Applied Science and Technology, University of California, Berkeley, California 94720, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jihwan Yoon
- Large Display Development Center, Samsung Display Co Ltd, Yongin-si 17113, Republic of Korea
| | - Jong Hyuk Lee
- Large Display Development Center, Samsung Display Co Ltd, Yongin-si 17113, Republic of Korea
| | - Seung-Wuk Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Tsinghua-Berkeley Shenzhen Institute, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Wang J, Guo J, Zhao K, Ruan W, Li L, Ling J, Peng R, Zhang H, Yang C, Zhu Z. Auto-Panning: a highly integrated and automated biopanning platform for peptide screening. LAB ON A CHIP 2021; 21:2702-2710. [PMID: 34105587 DOI: 10.1039/d1lc00129a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biopanning, a common affinity selection approach in phage display, has evolved numerous ligands for diagnosis, imaging, delivery, and therapy applications. However, traditional biopanning has suffered from time-consuming processes, highly-repetitive procedures and labor-intensive manual operation. Herein, a highly integrated and automated biopanning platform (Auto-Panning) is proposed. Based on digital microfluidics (DMF), biopanning processes are integrated on a chip with highly reproducible, precise, automated liquid manipulation. Therefore, 3 rounds of Auto-Panning can be accomplished within 16 h, instead of nearly a week of complicated manual operations. Auto-Panning has been used to evolve a specific peptide against cancer biomarker EphA2 with excellent cellular penetrating ability and significant invasion suppression biofunction, successfully demonstrating the practicality of the platform. Overall, as an automated programmable molecular screening platform, Auto-Panning will further promote the discovery and applications of novel ligands.
Collapse
Affiliation(s)
- Junxia Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jingjing Guo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Kaifeng Zhao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. and Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Weidong Ruan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Liang Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jiajun Ling
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ruixiao Peng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. and Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
41
|
Park SM, Kim WG, Kim J, Choi EJ, Kim H, Oh JW, Yoon DK. Fabrication of Chiral M13 Bacteriophage Film by Evaporation-Induced Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008097. [PMID: 34081393 DOI: 10.1002/smll.202008097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Biomacromolecules are likely to undergo self-assembly and show specific collective behavior concentrated in the medium. Although the assembly procedures have been studied for unraveling their mysteries, there are few cases to directly demonstrate the collective behavior and phase transition process in dynamic systems. In the contribution, the drying process of M13 droplet is investigated, and can be successfully simulated by a doctor blade coating method. The morphologies in the deposited film are measured by atomic force microscopy and the liquid crystal phase development is captured in real time using polarized optical microscope. Collective behaviors near the contact line are characterized by the shape of meniscus curve and particle movement velocity. With considering rheological properties and flow, the resultant chiral film is used to align gold nanorods, and this approach can suggest a way to use M13 bacteriophage as a scaffold for the multi-functional chiral structures.
Collapse
Affiliation(s)
- Soon Mo Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Won-Geun Kim
- BIT Fusion Technology Center, Pusan National University, Busan, 46241, Republic of Korea
| | - Junkyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun-Jung Choi
- BIT Fusion Technology Center, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyoungsoo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Woo Oh
- BIT Fusion Technology Center, Pusan National University, Busan, 46241, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busan, 46241, Republic of Korea
- Department of Nano Energy Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
42
|
Yur D, Lieser RM, Sullivan MO, Chen W. Engineering bionanoparticles for improved biosensing and bioimaging. Curr Opin Biotechnol 2021; 71:41-48. [PMID: 34157601 DOI: 10.1016/j.copbio.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
The importance of bioimaging and biosensing has been clear with the onset of the COVID-19 pandemic. In addition to viral detection, detection of tumors, glucose levels, and microbes is necessary for improved disease treatment and prevention. Bionanoparticles, such as extracellular vesicles and protein nanoparticles, are ideal platforms for biosensing and bioimaging applications because of their propensity for high density surface functionalization and large loading capacity. Scaffolding large numbers of sensing modules and detection modules onto bionanoparticles allows for enhanced analyte affinity and specificity as well as signal amplification for highly sensitive detection even at low analyte concentrations. Here we demonstrate the potential of bionanoparticles for bioimaging and biosensing by highlighting recent examples in literature that utilize protein nanoparticles and extracellular vesicles to generate highly sensitive detection devices with impressive signal amplification.
Collapse
Affiliation(s)
- Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| |
Collapse
|
43
|
O'Connell L, Marcoux PR, Roupioz Y. Strategies for Surface Immobilization of Whole Bacteriophages: A Review. ACS Biomater Sci Eng 2021; 7:1987-2014. [PMID: 34038088 DOI: 10.1021/acsbiomaterials.1c00013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteriophage immobilization is a key unit operation in emerging biotechnologies, enabling new possibilities for biodetection of pathogenic microbes at low concentration, production of materials with novel antimicrobial properties, and fundamental research on bacteriophages themselves. Wild type bacteriophages exhibit extreme binding specificity for a single species, and often for a particular subspecies, of bacteria. Since their specificity originates in epitope recognition by capsid proteins, which can be altered by chemical or genetic modification, their binding specificity may also be redirected toward arbitrary substrates and/or a variety of analytes in addition to bacteria. The immobilization of bacteriophages on planar and particulate substrates is thus an area of active and increasing scientific interest. This review assembles the knowledge gained so far in the immobilization of whole phage particles, summarizing the main chemistries, and presenting the current state-of-the-art both for an audience well-versed in bioconjugation methods as well as for those who are new to the field.
Collapse
Affiliation(s)
- Larry O'Connell
- Université Grenoble Alpes, CEA, LETI, F38054 Grenoble, France.,Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Yoann Roupioz
- Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| |
Collapse
|
44
|
Lee JM, Lee Y, Devaraj V, Nguyen TM, Kim YJ, Kim YH, Kim C, Choi EJ, Han DW, Oh JW. Investigation of colorimetric biosensor array based on programable surface chemistry of M13 bacteriophage towards artificial nose for volatile organic compound detection: From basic properties of the biosensor to practical application. Biosens Bioelectron 2021; 188:113339. [PMID: 34030096 DOI: 10.1016/j.bios.2021.113339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022]
Abstract
Various threats such as explosives, drugs, environmental hormones, and spoiled food manifest themselves with the presence of volatile organic compounds (VOCs) in our environment. In order to recognize and respond to these threats early, the demand for highly sensitive and selective electronic noses is increasing. The M13 bacteriophage-based optoelectronic nose is an excellent candidate to meet all these requirements. However, the phage-based electronic nose is still in its infancy, and strategies that include a systematic approach and development are still essential. Here, we have integrated theoretical and experimental approaches to analyze the correlation between the surface chemistry of genetically engineered phage and the phage-based optoelectronic nose properties. The reactivity of the genetically engineered phage color film to some VOCs were quantitatively analyzed, and the correlation with the binding affinity value calculated by Density-functional theory (DFT) was compared. This demonstrates that phage color films have controllable reactivity through a genetic engineering. We have selected phages that are advantageous in distinguishing each VOCs in this work through hierarchical cluster analysis (HCA). The reason for this difference was verified through the optimized geometry calculated by DFT. Through this, it was confirmed that the tryptophan-based and the Histidine-based of genetically engineered phage film are important in distinguishing the VOCs (Y-hexanolactone, 2-isopropyl-4-methylthiazole, ethanol, acetone, ethyl acetate, and acetaldehyde) used in this work to evaluate the peach freshness quality. This was applied to the design of a field-applied phage-based optoelectronic nose and verified by measuring the freshness of the actual fruit.
Collapse
Affiliation(s)
- Jong-Min Lee
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Thanh Mien Nguyen
- Department of Nano Fusion Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye-Ji Kim
- Department of Nano Fusion Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - You Hwan Kim
- Department of Nanoenergy Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Chuntae Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Dong-Wook Han
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea; Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 46241, Republic of Korea; Department of Nano Fusion Technology, Pusan National University, Busan, 46241, Republic of Korea; Department of Nanoenergy Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
45
|
Kim H, Choi SK, Ahn J, Yu H, Min K, Hong C, Shin IS, Lee S, Lee H, Im H, Ko J, Kim E. Kaleidoscopic fluorescent arrays for machine-learning-based point-of-care chemical sensing. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 329:129248. [PMID: 33446959 PMCID: PMC7802756 DOI: 10.1016/j.snb.2020.129248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiplexed analysis allows simultaneous measurements of multiple targets, improving the detection sensitivity and accuracy. However, highly multiplexed analysis has been challenging for point-of-care (POC) sensing, which requires a simple, portable, robust, and affordable detection system. In this work, we developed paper-based POC sensing arrays consisting of kaleidoscopic fluorescent compounds. Using an indolizine structure as a fluorescent core skeleton, named Kaleidolizine (KIz), a library of 75 different fluorescent KIz derivatives were designed and synthesized. These KIz derivatives are simultaneously excited by a single ultraviolet (UV) light source and emit diverse fluorescence colors and intensities. For multiplexed POC sensing system, fluorescent compounds array on cellulose paper was prepared and the pattern of fluorescence changes of KIz on array were specific to target chemicals adsorbed on that paper. Furthermore, we developed a machine-learning algorithm for automated, rapid analysis of color and intensity changes of individual sensing arrays. We showed that the paper sensor arrays could differentiate 35 different volatile organic compounds using a smartphone-based handheld detection system. Powered by the custom-developed machine-learning algorithm, we achieved the detection accuracy of 97% in the VOC detection. The highly multiplexed paper sensor could have favorable applications for monitoring a broad-range of environmental toxins, heavy metals, explosives, pathogens.
Collapse
Affiliation(s)
- Hyungi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Sang-Kee Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Jungmo Ahn
- Department of Computer Engineering, Ajou University, Suwon, 16499, Korea
| | - Hojeong Yu
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kyoungha Min
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Changgi Hong
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, 16499, Korea
| | - Ik-Soo Shin
- Department of Chemistry, Soongsil University, Seoul, 07027, Korea
| | - Sanghee Lee
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - JeongGil Ko
- School of Integrated Technology, Yonsei University, Incheon, 21983, Korean
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, 16499, Korea
| |
Collapse
|
46
|
Seol D, Jang D, Cha K, Oh JW, Chung H. Use of Multiple Bacteriophage-Based Structural Color Sensors to Improve Accuracy for Discrimination of Geographical Origins of Agricultural Products. SENSORS 2021; 21:s21030986. [PMID: 33540631 PMCID: PMC7867267 DOI: 10.3390/s21030986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/03/2022]
Abstract
A single M13 bacteriophage color sensor was previously utilized for discriminating the geographical origins of agricultural products (garlic, onion, and perilla). The resulting discrimination accuracy was acceptable, ranging from 88.6% to 94.0%. To improve the accuracy further, the use of three separate M13 bacteriophage color sensors containing different amino acid residues providing unique individual color changes (Wild sensor: glutamic acid (E)-glycine (G)-aspartic acid (D), WHW sensor: tryptophan (W)-histidine (H)-tryptophan (W), 4E sensor: four repeating glutamic acids (E)) was proposed. This study was driven by the possibility of enhancing sample discrimination by combining mutually characteristic and complimentary RGB signals obtained from each color sensor, which resulted from dissimilar interactions of sample odors with the employed color sensors. When each color sensor was used individually, the discrimination accuracy based on support vector machine (SVM) ranged from 91.8–94.0%, 88.6–90.3%, and 89.8–92.1% for garlic, onion, and perilla samples, respectively. Accuracy improved to 98.0%, 97.5%, and 97.1%, respectively, by integrating all of the RGB signals acquired from the three color sensors. Therefore, the proposed strategy was effective for improving sample discriminability. To further examine the dissimilar responses of each color sensor to odor molecules, typical odor components in the samples (allyl disulfide, allyl methyl disulfide, and perillaldehyde) were measured using each color sensor, and differences in RGB signals were analyzed.
Collapse
Affiliation(s)
- Daun Seol
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| | - Daeil Jang
- Department of Mathematics and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| | - Kyungjoon Cha
- Department of Mathematics and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| | - Jin-Woo Oh
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Korea
| | - Hoeil Chung
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
47
|
Lai JY, Inoue N, Oo CW, Kawasaki H, Lim TS. One-step synthesis of M13 phage-based nanoparticles and their fluorescence properties. RSC Adv 2021; 11:1367-1375. [PMID: 35424103 PMCID: PMC8693608 DOI: 10.1039/d0ra02835e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Fluorescent carbon nanoparticles have been gaining more attention in recent years for their excellent fluorescence properties and simple synthesis routes. Different carbon sources have been reported for fluorescent carbon nanoparticle synthesis but the use of virus particles as a carbon source is scarce. Herein, we report the utilization of M13 bacteriophage particles as the carbon source to synthesize phage-based nanoparticles through facile, one-step microwave heating. M13 bacteriophage is a nanosized filamentous virus particle with a single-stranded DNA genome encapsulated by a large number of coat proteins. These amino acid rich building blocks provide a substantial amount of carbon source for the synthesis of fluorescent nanoparticles. The resulting nanoparticles from M13 bacteriophage showed good water solubility and exhibited bright blue luminescence. The selectivity and sensitivity of the phage-based nanoparticles towards Fe(iii) ions showed a quenching effect with a linear correlation and a detection limit of 8.0 μM. This process highlights the potential application of virus particles as a source for the synthesis of fluorescent carbon nanoparticles and the sensing application.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
| | - Naoya Inoue
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University 3-3-35 Yamate-cho Suita-shi Osaka 564-8680 Japan +60-6-6368-0979
| | - Chuan Wei Oo
- School of Chemical Sciences, Universiti Sains Malaysia 11800 Minden Penang Malaysia
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University 3-3-35 Yamate-cho Suita-shi Osaka 564-8680 Japan +60-6-6368-0979
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia 11800 Penang Malaysia +60-4-653-4803 +60-4-653-4852
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia 11800 Penang Malaysia
| |
Collapse
|
48
|
Lin M, Wan H, Zhang J, Huang F, Li S, Xia F. Bioinspired Programmable Engineering of a Color-Change Biointerface based on Dual-Stimulation Regulation. ACS APPLIED BIO MATERIALS 2020; 3:8970-8977. [DOI: 10.1021/acsabm.0c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hao Wan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jian Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
49
|
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim HW, Mozafari M. Quantum Dots: A Review from Concept to Clinic. Biotechnol J 2020; 15:e2000117. [PMID: 32845071 DOI: 10.1002/biot.202000117] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Indexed: 01/30/2023]
Abstract
Quantum dots (QDs) are semiconductor materials that have gained great interest due to their unique characteristics like optical properties. They are extensively being used in different areas, including solar cells, light-emitting diodes, laser technology, as well as biological and biomedical applications. In this review, comprehensive information about different aspects of QDs is provided, including their types and classifications, synthesis approaches, in vitro and in vivo toxicity, biological applications, and potentials in clinical applications. With a focus on the biological aspects, the respective in vitro and in vivo studies are collected and presented. Various surface modifications on QDs are discussed as directly influencing their properties like toxicity and optical abilities. Given the promising results, these materials are clinically used for targeted molecular therapy and imaging. However, there are a large number of questions that should be addressed before the wide application of QDs in a clinical setting. Regarding the existing barriers to QDs, suggestions are given and discussed to present an appropriate route for the clinical use of these materials.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Park W, Ha T, Jung TS, Sim KI, Kim JH, Wolska JM, Pociecha D, Gorecka E, Kim TT, Yoon DK. Security use of the chiral photonic film made of helical liquid crystal structures. NANOSCALE 2020; 12:21629-21634. [PMID: 32716441 DOI: 10.1039/d0nr03743e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The color change of photonic crystals (PCs) has been widely studied due to their beauty and anti-counterfeiting applications. Herein, we demonstrated security codes based on chiral PCs that cannot be easily mimicked and are quite different from the conventional technology used currently. The chiral PCs can be made by self-assembly and the structural colors change based on the polarization of the light in the transmission mode. These color changes are easily detected in real-time and are useful in the fabrication of anti-counterfeiting patterns that show beautiful and diverse color changes with rotating polarizers. We believe this can provide a new platform in various security and color-based applications.
Collapse
Affiliation(s)
- Wongi Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|