1
|
Wutich A, Nelson R, DuBois LZ, Astorino CM, Knudson K, Reynolds AW, Riley EP, Smith RWA, VanSickle C, Carroll SR, Connors CK, Jankovic-Rankovic J, Mitchell C, Roque AD, Tsosie KS. "Rigorous and Systematic Qualitative Data Analysis in Biological Anthropology". AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 186 Suppl 78:e70008. [PMID: 40071812 DOI: 10.1002/ajpa.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 04/02/2025]
Abstract
Biological anthropologists have long engaged in qualitative data analysis (QDA), though such work is not always foregrounded. In this article, we discuss the role of rigorous and systematic QDA in biological anthropology and consider how it can be understood and advanced. We first establish what kinds of qualitative data and analysis are used in biological anthropology. We then review the ways QDA has been used in six subfields of biological anthropology: primatology, human biology, paleoanthropology, dental and skeletal biology, bioarchaeology, and anthropological genetics. We follow that with an overview of how to use QDA methods: three simple QDA methods (i.e., word-based analysis, theme analysis, and coding) and three QDA approaches for model-building and model-testing (i.e., content analysis, semantic network analysis, and grounded theory). With this foundation in place, we discuss how QDA can support transformative research in biological anthropology-emphasizing the valuable role of QDA in inductive and community-based research. We discuss how QDA supports transformative research using mixed-methods research designs, participatory action research, and abolition and Black feminist research. Finally, we consider how to close a QDA project, reflecting on the logistics, ethics, and limitations of qualitative data sharing, including how researchers can use the CARE Principles (Collective Benefit, Authority to Control, Responsibility, and Ethics) to support Indigenous data sovereignty.
Collapse
Affiliation(s)
| | | | | | - Claudia M Astorino
- The City University of New York Graduate Center, New York, New York, USA
| | | | | | - Erin P Riley
- San Diego State University, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Breton G, Barham L, Mudenda G, Soodyall H, Schlebusch CM, Jakobsson M. BaTwa populations from Zambia retain ancestry of past hunter-gatherer groups. Nat Commun 2024; 15:7307. [PMID: 39181874 PMCID: PMC11344834 DOI: 10.1038/s41467-024-50733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
Sub-equatorial Africa is today inhabited predominantly by Bantu-speaking groups of Western African descent who brought agriculture to the Luangwa valley in eastern Zambia ~2000 years ago. Before their arrival the area was inhabited by hunter-gatherers, who in many cases were subsequently replaced, displaced or assimilated. In Zambia, we know little about the genetic affinities of these hunter-gatherers. We examine ancestry of two isolated communities in Zambia, known as BaTwa and possible descendants of recent hunter-gatherers. We genotype over two million genome-wide SNPs from two BaTwa populations (total of 80 individuals) and from three comparative farming populations to: (i) determine if the BaTwa carry genetic links to past hunter-gatherer-groups, and (ii) characterise the genetic affinities of past Zambian hunter-gatherer-groups. The BaTwa populations do harbour a hunter-gatherer-like genetic ancestry and Western African ancestry. The hunter-gatherer component is a unique local signature, intermediate between current-day Khoe-San ancestry from southern Africa and central African rainforest hunter-gatherer ancestry.
Collapse
Affiliation(s)
- Gwenna Breton
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- Department of Clinical Genetics and Genomics, Centre for Medical Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lawrence Barham
- Department of Archaeology, Classics & Egyptology, University of Liverpool, Liverpool, UK
| | - George Mudenda
- Livingstone Museum, Livingstone, Zambia
- National Museums Board, Lusaka, Zambia
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
- Academy of Science of South Africa, Pretoria, South Africa
| | - Carina M Schlebusch
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
- SciLifeLab, Uppsala, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.
- SciLifeLab, Uppsala, Sweden.
| |
Collapse
|
3
|
Padilla-Iglesias C, Blanco-Portillo J, Pricop B, Ioannidis AG, Bickel B, Manica A, Vinicius L, Migliano AB. Deep history of cultural and linguistic evolution among Central African hunter-gatherers. Nat Hum Behav 2024; 8:1263-1275. [PMID: 38802540 PMCID: PMC11272592 DOI: 10.1038/s41562-024-01891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/18/2024] [Indexed: 05/29/2024]
Abstract
Human evolutionary history in Central Africa reflects a deep history of population connectivity. However, Central African hunter-gatherers (CAHGs) currently speak languages acquired from their neighbouring farmers. Hence it remains unclear which aspects of CAHG cultural diversity results from long-term evolution preceding agriculture and which reflect borrowing from farmers. On the basis of musical instruments, foraging tools, specialized vocabulary and genome-wide data from ten CAHG populations, we reveal evidence of large-scale cultural interconnectivity among CAHGs before and after the Bantu expansion. We also show that the distribution of hunter-gatherer musical instruments correlates with the oldest genomic segments in our sample predating farming. Music-related words are widely shared between western and eastern groups and likely precede the borrowing of Bantu languages. In contrast, subsistence tools are less frequently exchanged and may result from adaptation to local ecologies. We conclude that CAHG material culture and specialized lexicon reflect a long evolutionary history in Central Africa.
Collapse
Affiliation(s)
- Cecilia Padilla-Iglesias
- Human Evolutionary Ecology Group, Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland.
| | | | - Bogdan Pricop
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
| | | | - Balthasar Bickel
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Lucio Vinicius
- Human Evolutionary Ecology Group, Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Andrea Bamberg Migliano
- Human Evolutionary Ecology Group, Institute of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland.
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Cooke NP, Murray M, Cassidy LM, Mattiangeli V, Okazaki K, Kasai K, Gakuhari T, Bradley DG, Nakagome S. Genomic imputation of ancient Asian populations contrasts local adaptation in pre- and post-agricultural Japan. iScience 2024; 27:110050. [PMID: 38883821 PMCID: PMC11176660 DOI: 10.1016/j.isci.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Early modern humans lived as hunter-gatherers for millennia before agriculture, yet the genetic adaptations of these populations remain a mystery. Here, we investigate selection in the ancient hunter-gatherer-fisher Jomon and contrast pre- and post-agricultural adaptation in the Japanese archipelago. Building on the successful validation of imputation with ancient Asian genomes, we identify selection signatures in the Jomon, particularly robust signals from KITLG variants, which may have influenced dark pigmentation evolution. The Jomon lacks well-known adaptive variants (EDAR, ADH1B, and ALDH2), marking their emergence after the advent of farming in the archipelago. Notably, the EDAR and ADH1B variants were prevalent in the archipelago 1,300 years ago, whereas the ALDH2 variant could have emerged later due to its absence in other ancient genomes. Overall, our study underpins local adaptation unique to the Jomon population, which in turn sheds light on post-farming selection that continues to shape contemporary Asian populations.
Collapse
Affiliation(s)
- Niall P. Cooke
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Lara M. Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Kenji Okazaki
- Department of Anatomy, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kenji Kasai
- Toyama Prefectural Center for Archaeological Operations, Toyama, Japan
| | - Takashi Gakuhari
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Kanazawa, Japan
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Takken W, Charlwood D, Lindsay SW. The behaviour of adult Anopheles gambiae, sub-Saharan Africa's principal malaria vector, and its relevance to malaria control: a review. Malar J 2024; 23:161. [PMID: 38783348 PMCID: PMC11112813 DOI: 10.1186/s12936-024-04982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Mosquitoes of the Anopheles gambiae complex are one of the major vectors of malaria in sub-Saharan Africa. Their ability to transmit this disease of major public health importance is dependent on their abundance, biting behaviour, susceptibility and their ability to survive long enough to transmit malaria parasites. A deeper understanding of this behaviour can be exploited for improving vector surveillance and malaria control. FINDINGS Adult mosquitoes emerge from aquatic habitats at dusk. After a 24 h teneral period, in which the cuticle hardens and the adult matures, they may disperse at random and search upwind for a mate or to feed. Mating generally takes place at dusk in swarms that form over species-specific 'markers'. Well-nourished females may mate before blood-feeding, but the reverse is true for poorly-nourished insects. Females are monogamous and only mate once whilst males, that only feed on nectar, swarm nightly and can potentially mate up to four times. Females are able to locate hosts by following their carbon dioxide and odour gradients. When in close proximity to the host, visual cues, temperature and relative humidity are also used. Most blood-feeding occurs at night, indoors, with mosquitoes entering houses mainly through gaps between the roof and the walls. With the exception of the first feed, females are gonotrophically concordant and a blood meal gives rise to a complete egg batch. Egg development takes two or three days depending on temperature. Gravid females leave their resting sites at dusk. They are attracted by water gradients and volatile chemicals that provide a suitable aquatic habitat in which to lay their eggs. CONCLUSION Whilst traditional interventions, using insecticides, target mosquitoes indoors, additional protection can be achieved using spatial repellents outdoors, attractant traps or house modifications to prevent mosquito entry. Future research on the variability of species-specific behaviour, movement of mosquitoes across the landscape, the importance of light and vision, reproductive barriers to gene flow, male mosquito behaviour and evolutionary changes in mosquito behaviour could lead to an improvement in malaria surveillance and better methods of control reducing the current over-reliance on the indoor application of insecticides.
Collapse
Affiliation(s)
- Willem Takken
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Derek Charlwood
- Global Health and Tropical Medicine, Instituto de Hygiene e Medicina Tropical, Lisbon, Portugal
| | | |
Collapse
|
6
|
Padilla-Iglesias C, Derkx I. Hunter-gatherer genetics research: Importance and avenues. EVOLUTIONARY HUMAN SCIENCES 2024; 6:e15. [PMID: 38516374 PMCID: PMC10955370 DOI: 10.1017/ehs.2024.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Major developments in the field of genetics in the past few decades have revolutionised notions of what it means to be human. Although currently only a few populations around the world practise a hunting and gathering lifestyle, this mode of subsistence has characterised members of our species since its very origins and allowed us to migrate across the planet. Therefore, the geographical distribution of hunter-gatherer populations, dependence on local ecosystems and connections to past populations and neighbouring groups have provided unique insights into our evolutionary origins. However, given the vulnerable status of hunter-gatherers worldwide, the development of the field of anthropological genetics requires that we reevaluate how we conduct research with these communities. Here, we review how the inclusion of hunter-gatherer populations in genetics studies has advanced our understanding of human origins, ancient population migrations and interactions as well as phenotypic adaptations and adaptability to different environments, and the important scientific and medical applications of these advancements. At the same time, we highlight the necessity to address yet unresolved questions and identify areas in which the field may benefit from improvements.
Collapse
Affiliation(s)
| | - Inez Derkx
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Sandoval-Velasco M, Jagadeesan A, Ramos-Madrigal J, Ávila-Arcos MC, Fortes-Lima CA, Watson J, Johannesdóttir E, Cruz-Dávalos DI, Gopalakrishnan S, Moreno-Mayar JV, Niemann J, Renaud G, Robson Brown KA, Bennett H, Pearson A, Helgason A, Gilbert MTP, Schroeder H. The ancestry and geographical origins of St Helena's liberated Africans. Am J Hum Genet 2023; 110:1590-1599. [PMID: 37683613 PMCID: PMC10502851 DOI: 10.1016/j.ajhg.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023] Open
Abstract
The island of St Helena played a crucial role in the suppression of the transatlantic slave trade. Strategically located in the middle of the South Atlantic, it served as a staging post for the Royal Navy and reception point for enslaved Africans who had been "liberated" from slave ships intercepted by the British. In total, St Helena received approximately 27,000 liberated Africans between 1840 and 1867. Written sources suggest that the majority of these individuals came from West Central Africa, but their precise origins are unknown. Here, we report the results of ancient DNA analyses that we conducted as part of a wider effort to commemorate St Helena's liberated Africans and to restore knowledge of their lives and experiences. We generated partial genomes (0.1-0.5×) for 20 individuals whose remains had been recovered during archaeological excavations on the island. We compared their genomes with genotype data for over 3,000 present-day individuals from 90 populations across sub-Saharan Africa and conclude that the individuals most likely originated from different source populations within the general area between northern Angola and Gabon. We also find that the majority (17/20) of the individuals were male, supporting a well-documented sex bias in the latter phase of the transatlantic slave trade. The study expands our understanding of St Helena's liberated African community and illustrates how ancient DNA analyses can be used to investigate the origins and identities of individuals whose lives were bound up in the story of slavery and its abolition.
Collapse
Affiliation(s)
- Marcela Sandoval-Velasco
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark; Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| | - Anuradha Jagadeesan
- deCODE Genetics/Amgen, 101 Reykjavik, Iceland; Department of Anthropology, University of Iceland, 101 Reykjavik, Iceland
| | - Jazmín Ramos-Madrigal
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, National Autonomous University of Mexico, Juriquilla, 76230 Santiago de Querétaro, México
| | - Cesar A Fortes-Lima
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Judy Watson
- Department of Anthropology and Archaeology, University of Bristol, BS8 1UU Bristol, UK
| | - Erna Johannesdóttir
- Department of Anthropology and Archaeology, University of Bristol, BS8 1UU Bristol, UK
| | - Diana I Cruz-Dávalos
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Shyam Gopalakrishnan
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Jonas Niemann
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Gabriel Renaud
- Department of Health Technology Bioinformatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Helena Bennett
- St Helena National Trust, Broadway House, Mainstreet, Jamestown, St Helena
| | - Andrew Pearson
- Environmental Dimension Partnership, Atlantic Wharf, CF10 4HF Cardiff, UK
| | - Agnar Helgason
- deCODE Genetics/Amgen, 101 Reykjavik, Iceland; Department of Anthropology, University of Iceland, 101 Reykjavik, Iceland
| | - M Thomas P Gilbert
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark; NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hannes Schroeder
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark.
| |
Collapse
|
8
|
Fleskes RE, Owsley DW, Bruwelheide KS, Barca KG, Griffith DR, Cabana GS, Schurr TG. Historical genomes elucidate European settlement and the African diaspora in Delaware. Curr Biol 2023; 33:2350-2358.e7. [PMID: 37207647 DOI: 10.1016/j.cub.2023.04.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
The 17th-century colonization of North America brought thousands of Europeans to Indigenous lands in the Delaware region, which comprises the eastern boundary of the Chesapeake Bay in what is now the Mid-Atlantic region of the United States.1 The demographic features of these initial colonial migrations are not uniformly characterized, with Europeans and European-Americans migrating to the Delaware area from other countries and neighboring colonies as single persons or in family units of free persons, indentured servants, or tenant farmers.2 European colonizers also instituted a system of racialized slavery through which they forcibly transported thousands of Africans to the Chesapeake region. Historical information about African-descended individuals in the Delaware region is limited, with a population estimate of less than 500 persons by 1700 CE.3,4 To shed light on the population histories of this period, we analyzed low-coverage genomes of 11 individuals from the Avery's Rest archaeological site (circa 1675-1725 CE), located in Delaware. Previous osteological and mitochondrial DNA (mtDNA) sequence analyses showed a southern group of eight individuals of European maternal descent, buried 15-20 feet from a northern group of three individuals of African maternal descent.5 Autosomal results further illuminate genomic similarities to Northwestern European reference populations or West and West-Central African reference populations, respectively. We also identify three generations of maternal kin of European ancestry and a paternal parent-offspring relationship between an adult and child of African ancestry. These findings expand our understanding of the origins and familial relationships in late 17th and early 18th century North America.
Collapse
Affiliation(s)
- Raquel E Fleskes
- Department of Anthropology, University of Connecticut, Storrs, CT 06269, USA; Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Douglas W Owsley
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| | - Karin S Bruwelheide
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Kathryn G Barca
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | | | - Graciela S Cabana
- Department of Anthropology, University of Tennessee, Knoxville, TN 37996, USA; Molecular Anthropology Laboratories, University of Tennessee, Knoxville, TN 37996, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Pfennig A, Petersen LN, Kachambwa P, Lachance J. Evolutionary Genetics and Admixture in African Populations. Genome Biol Evol 2023; 15:evad054. [PMID: 36987563 PMCID: PMC10118306 DOI: 10.1093/gbe/evad054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
As the ancestral homeland of our species, Africa contains elevated levels of genetic diversity and substantial population structure. Importantly, African genomes are heterogeneous: They contain mixtures of multiple ancestries, each of which have experienced different evolutionary histories. In this review, we view population genetics through the lens of admixture, highlighting how multiple demographic events have shaped African genomes. Each of these historical vignettes paints a recurring picture of population divergence followed by secondary contact. First, we give a brief overview of genetic variation in Africa and examine deep population structure within Africa, including the evidence of ancient introgression from archaic "ghost" populations. Second, we describe the genetic legacies of admixture events that have occurred during the past 10,000 years. This includes gene flow between different click-speaking Khoe-San populations, the stepwise spread of pastoralism from eastern to southern Africa, multiple migrations of Bantu speakers across the continent, as well as admixture from the Middle East and Europe into the Sahel region and North Africa. Furthermore, the genomic signatures of more recent admixture can be found in the Cape Peninsula and throughout the African diaspora. Third, we highlight how natural selection has shaped patterns of genetic variation across the continent, noting that gene flow provides a potent source of adaptive variation and that selective pressures vary across Africa. Finally, we explore the biomedical implications of population structure in Africa on health and disease and call for more ethically conducted studies of genetic variation in Africa.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | | | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
10
|
Bird N, Ormond L, Awah P, Caldwell EF, Connell B, Elamin M, Fadlelmola FM, Matthew Fomine FL, López S, MacEachern S, Moñino Y, Morris S, Näsänen-Gilmore P, Nketsia V NK, Veeramah K, Weale ME, Zeitlyn D, Thomas MG, Bradman N, Hellenthal G. Dense sampling of ethnic groups within African countries reveals fine-scale genetic structure and extensive historical admixture. SCIENCE ADVANCES 2023; 9:eabq2616. [PMID: 36989356 PMCID: PMC10058250 DOI: 10.1126/sciadv.abq2616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Previous studies have highlighted how African genomes have been shaped by a complex series of historical events. Despite this, genome-wide data have only been obtained from a small proportion of present-day ethnolinguistic groups. By analyzing new autosomal genetic variation data of 1333 individuals from over 150 ethnic groups from Cameroon, Republic of the Congo, Ghana, Nigeria, and Sudan, we demonstrate a previously underappreciated fine-scale level of genetic structure within these countries, for example, correlating with historical polities in western Cameroon. By comparing genetic variation patterns among populations, we infer that many northern Cameroonian and Sudanese groups share genetic links with multiple geographically disparate populations, likely resulting from long-distance migrations. In Ghana and Nigeria, we infer signatures of intermixing dated to over 2000 years ago, corresponding to reports of environmental transformations possibly related to climate change. We also infer recent intermixing signals in multiple African populations, including Congolese, that likely relate to the expansions of Bantu language-speaking peoples.
Collapse
Affiliation(s)
- Nancy Bird
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), University College London, London, UK
| | - Louise Ormond
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), University College London, London, UK
| | - Paschal Awah
- Faculty of Arts, Letters and Social Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Bruce Connell
- Linguistics and Language Studies Program, York University, Toronto, Ontario, Canada
| | | | - Faisal M. Fadlelmola
- Kush Centre for Genomics and Biomedical Informatics, Biotechnology Perspectives Organisation, Khartoum, Sudan
| | | | | | - Scott MacEachern
- Division of Social Science, Duke Kunshan University, Kunshan, China
| | | | - Sam Morris
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pieta Näsänen-Gilmore
- Tampere Centre for Child, Adolescent and Maternal Health Research: Global Health Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department for Health Promotion, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Krishna Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | | | - David Zeitlyn
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - Mark G. Thomas
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), University College London, London, UK
| | | | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), University College London, London, UK
| |
Collapse
|
11
|
Alva O, Leroy A, Heiske M, Pereda-Loth V, Tisseyre L, Boland A, Deleuze JF, Rocha J, Schlebusch C, Fortes-Lima C, Stoneking M, Radimilahy C, Rakotoarisoa JA, Letellier T, Pierron D. The loss of biodiversity in Madagascar is contemporaneous with major demographic events. Curr Biol 2022; 32:4997-5007.e5. [PMID: 36334586 DOI: 10.1016/j.cub.2022.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Only 400 km off the coast of East Africa, the island of Madagascar is one of the last large land masses to have been colonized by humans. While many questions surround the human occupation of Madagascar, recent studies raise the question of human impact on endemic biodiversity and landscape transformation. Previous genetic and linguistic analyses have shown that the Malagasy population has emerged from an admixture that happened during the last millennium, between Bantu-speaking African populations and Austronesian-speaking Asian populations. By studying the sharing of chromosome segments between individuals (IBD determination), local ancestry information, and simulated genetic data, we inferred that the Malagasy ancestral Asian population was isolated for more than 1,000 years with an effective size of just a few hundred individuals. This isolation ended around 1,000 years before present (BP) by admixture with a small African population. Around the admixture time, there was a rapid demographic expansion due to intrinsic population growth of the newly admixed population, which coincides with extensive changes in Madagascar's landscape and the extinction of all endemic large-bodied vertebrates. Therefore, our approach can provide new insights into past human demography and associated impacts on ecosystems.
Collapse
Affiliation(s)
- Omar Alva
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Anaïs Leroy
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Margit Heiske
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Veronica Pereda-Loth
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Lenka Tisseyre
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Anne Boland
- Commissariat à l'Energie Atomique, Institut Génomique, Centre National de Génotypage, 91000 Evry, France
| | - Jean-François Deleuze
- Commissariat à l'Energie Atomique, Institut Génomique, Centre National de Génotypage, 91000 Evry, France
| | - Jorge Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Carina Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Cesar Fortes-Lima
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany; Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Chantal Radimilahy
- Musée d'Art et d'Archéologie, University of Antananarivo, Antananarivo, Madagascar
| | | | - Thierry Letellier
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Denis Pierron
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France.
| |
Collapse
|
12
|
Population interconnectivity over the past 120,000 years explains distribution and diversity of Central African hunter-gatherers. Proc Natl Acad Sci U S A 2022; 119:e2113936119. [PMID: 35580185 PMCID: PMC9173804 DOI: 10.1073/pnas.2113936119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We combined ethnographic, archaeological, genetic, and paleoclimatic data to model the dynamics of Central African hunter-gatherer populations over the past 120,000 years. We show, against common assumptions, that their distribution and density are explained by changing environments rather than by a displacement following recent farming expansions, and that they have maintained large population sizes and genetic diversity, despite fluctuations in niche availability. Our results provide insights into the evolution of genetic and cultural diversity in Homo sapiens. The evolutionary history of African hunter-gatherers holds key insights into modern human diversity. Here, we combine ethnographic and genetic data on Central African hunter-gatherers (CAHG) to show that their current distribution and density are explained by ecology rather than by a displacement to marginal habitats due to recent farming expansions, as commonly assumed. We also estimate the range of hunter-gatherer presence across Central Africa over the past 120,000 years using paleoclimatic reconstructions, which were statistically validated by our newly compiled dataset of dated archaeological sites. Finally, we show that genomic estimates of divergence times between CAHG groups match our ecological estimates of periods favoring population splits, and that recoveries of connectivity would have facilitated subsequent gene flow. Our results reveal that CAHG stem from a deep history of partially connected populations. This form of sociality allowed the coexistence of relatively large effective population sizes and local differentiation, with important implications for the evolution of genetic and cultural diversity in Homo sapiens.
Collapse
|
13
|
Gopalan S, Berl REW, Myrick JW, Garfield ZH, Reynolds AW, Bafens BK, Belbin G, Mastoras M, Williams C, Daya M, Negash AN, Feldman MW, Hewlett BS, Henn BM. Hunter-gatherer genomes reveal diverse demographic trajectories during the rise of farming in Eastern Africa. Curr Biol 2022; 32:1852-1860.e5. [PMID: 35271793 PMCID: PMC9050894 DOI: 10.1016/j.cub.2022.02.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/12/2021] [Accepted: 02/16/2022] [Indexed: 12/31/2022]
Abstract
The fate of hunting and gathering populations following the rise of agriculture and pastoralism remains a topic of debate in the study of human prehistory. Studies of ancient and modern genomes have found that autochthonous groups were largely replaced by expanding farmer populations with varying levels of gene flow, a characterization that is influenced by the almost universal focus on the European Neolithic.1-5 We sought to understand the demographic impact of an ongoing cultural transition to farming in Southwest Ethiopia, one of the last regions in Africa to experience such shifts.6 Importantly, Southwest Ethiopia is home to several of the world's remaining hunter-gatherer groups, including the Chabu people, who are currently transitioning away from their traditional mode of subsistence.7 We generated genome-wide data from the Chabu and four neighboring populations, the Majang, Shekkacho, Bench, and Sheko, to characterize their genetic ancestry and estimate their effective population sizes over the last 60 generations. We show that the Chabu are a distinct population closely related to ancient people who occupied Southwest Ethiopia >4,500 years ago. Furthermore, the Chabu are undergoing a severe population bottleneck, which began approximately 1,400 years ago. By analyzing eleven Eastern African populations, we find evidence for divergent demographic trajectories among hunter-gatherer-descendant groups. Our results illustrate that although foragers respond to encroaching agriculture and pastoralism with multiple strategies, including cultural adoption of agropastoralism, gene flow, and economic specialization, they often face population decline.
Collapse
Affiliation(s)
- Shyamalika Gopalan
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA; Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Richard E W Berl
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; Department of Human Dimensions of Natural Resources, Colorado State University, Fort Collins, CO 80523, USA
| | - Justin W Myrick
- Department of Anthropology, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Zachary H Garfield
- Department of Anthropology, Washington State University, Vancouver, WA 98686, USA; Institute for Advanced Study in Toulouse, Université Toulouse, Toulouse 31080, France
| | - Austin W Reynolds
- Department of Anthropology, University of California, Davis, Davis, CA 95616, USA; Department of Anthropology, Baylor University, Waco, TX 76798, USA
| | - Barnabas K Bafens
- Diaspora and Protocol Affairs Office, Bench Sheko Zone Administration, Mizan, Ethiopia
| | - Gillian Belbin
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mira Mastoras
- UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Cole Williams
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michelle Daya
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Akmel N Negash
- Department of Anthropology, Hawassa University, Hawassa, SNNPR, Ethiopia
| | - Marcus W Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Barry S Hewlett
- Department of Anthropology, Washington State University, Vancouver, WA 98686, USA.
| | - Brenna M Henn
- Department of Anthropology, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
14
|
Human evolution: The unsealed fates of foragers and farmers. Curr Biol 2022; 32:R362-R365. [DOI: 10.1016/j.cub.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Deng L, Pan Y, Wang Y, Chen H, Yuan K, Chen S, Lu D, Lu Y, Mokhtar SS, Rahman TA, Hoh BP, Xu S. Genetic Connections and Convergent Evolution of Tropical Indigenous Peoples in Asia. Mol Biol Evol 2022; 39:msab361. [PMID: 34940850 PMCID: PMC8826522 DOI: 10.1093/molbev/msab361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tropical indigenous peoples in Asia (TIA) attract much attention for their unique appearance, whereas their genetic history and adaptive evolution remain mysteries. We conducted a comprehensive study to characterize the genetic distinction and connection of broad geographical TIAs. Despite the diverse genetic makeup and large interarea genetic differentiation between the TIA groups, we identified a basal Asian ancestry (bASN) specifically shared by these populations. The bASN ancestry was relatively enriched in ancient Asian human genomes dated as early as ∼50,000 years before the present and diminished in more recent history. Notably, the bASN ancestry is unlikely to be derived from archaic hominins. Instead, we suggest it may be better modeled as a survived lineage of the initial peopling of Asia. Shared adaptations inherited from the ancient Asian ancestry were detected among the TIA groups (e.g., LIMS1 for hair morphology, and COL24A1 for bone formation), and they are enriched in neurological functions either at an identical locus (e.g., NKAIN3), or different loci in an identical gene (e.g., TENM4). The bASN ancestry could also have formed the substrate of the genetic architecture of the dark pigmentation observed in the TIA peoples. We hypothesize that phenotypic convergence of the dark pigmentation in TIAs could have resulted from parallel (e.g., DDB1/DAK) or genetic convergence driven by admixture (e.g., MTHFD1 and RAD18), new mutations (e.g., STK11), or notably purifying selection (e.g., MC1R). Our results provide new insights into the initial peopling of Asia and an advanced understanding of the phenotypic convergence of the TIA peoples.
Collapse
Affiliation(s)
- Lian Deng
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yinan Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sihan Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Dongsheng Lu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Siti Shuhada Mokhtar
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Thuhairah Abdul Rahman
- Clinical Pathology Diagnostic Centre Research Laboratory, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Boon-Peng Hoh
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Faculty of Medicine and Health Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Ogada S, Otecko NO, Moraa Kennedy G, Musina J, Agwanda B, Obanda V, Lichoti J, Peng M, Ommeh S. Demographic history and genetic diversity of wild African harlequin quail ( Coturnix delegorguei delegorguei) populations of Kenya. Ecol Evol 2021; 11:18562-18574. [PMID: 35003693 PMCID: PMC8717324 DOI: 10.1002/ece3.8458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Hunting wild African harlequin quails (Coturnix delegorguei delegorguei) using traditional methods in Western Kenya has been ongoing for generations, yet their genetic diversity and evolutionary history are largely unknown. In this study, the genetic variation and demographic history of wild African harlequin quails were assessed using a 347bp mitochondrial DNA (mtDNA) control region fragment and 119,339 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing (GBS) data. Genetic diversity analyses revealed that the genetic variation in wild African harlequin quails was predominantly among individuals than populations. Demographic analyses indicated a signal of rapid demographic expansion, and the estimated time since population expansion was found to be 150,000-350,000 years ago, corresponding to around the Pliocene-Pleistocene boundary. A gradual decline in their effective population size was also observed, which raised concerns about their conservation status. These results provide the first account of the genetic diversity of wild African harlequin quails of Siaya, thereby creating a helpful foundation in their biodiversity conservation.
Collapse
Affiliation(s)
- Stephen Ogada
- Institute For Biotechnology ResearchJomo Kenyatta University of Agriculture and TechnologyNairobiKenya
| | - Newton O. Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic AnimalsKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
- Sino‐Africa Joint Research CenterChinese Academy of SciencesNairobiKenya
| | - Grace Moraa Kennedy
- Institute For Biotechnology ResearchJomo Kenyatta University of Agriculture and TechnologyNairobiKenya
| | - John Musina
- Department of ZoologyNational Museums of KenyaNairobiKenya
| | | | - Vincent Obanda
- Department of Veterinary ServicesKenya Wildlife ServiceNairobiKenya
| | - Jacqueline Lichoti
- Central Veterinary Laboratories KabeteState Department of LivestockMinistry of Agriculture, Livestock and FisheriesNairobiKenya
| | - Min‐Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic AnimalsKunming Institute of ZoologyChinese Academy of SciencesKunmingChina
- Sino‐Africa Joint Research CenterChinese Academy of SciencesNairobiKenya
| | - Sheila Ommeh
- Institute For Biotechnology ResearchJomo Kenyatta University of Agriculture and TechnologyNairobiKenya
- Department of ZoologyNational Museums of KenyaNairobiKenya
| |
Collapse
|
17
|
Hollfelder N, Breton G, Sjödin P, Jakobsson M. The deep population history in Africa. Hum Mol Genet 2021; 30:R2-R10. [PMID: 33438014 PMCID: PMC8117439 DOI: 10.1093/hmg/ddab005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
Africa is the continent with the greatest genetic diversity among humans and the level of diversity is further enhanced by incorporating non-majority groups, which are often understudied. Many of today's minority populations historically practiced foraging lifestyles, which were the only subsistence strategies prior to the rise of agriculture and pastoralism, but only a few groups practicing these strategies remain today. Genomic investigations of Holocene human remains excavated across the African continent show that the genetic landscape was vastly different compared to today's genetic landscape and that many groups that today are population isolate inhabited larger regions in the past. It is becoming clear that there are periods of isolation among groups and geographic areas, but also genetic contact over large distances throughout human history in Africa. Genomic information from minority populations and from prehistoric remains provide an invaluable source of information on the human past, in particular deep human population history, as Holocene large-scale population movements obscure past patterns of population structure. Here we revisit questions on the nature and time of the radiation of early humans in Africa, the extent of gene-flow among human populations as well as introgression from archaic and extinct lineages on the continent.
Collapse
Affiliation(s)
- Nina Hollfelder
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Gwenna Breton
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Per Sjödin
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Physical, Cnr Kingsway & University Roads, Auckland Park, Johannesburg 2092, South Africa
- SciLifeLab, Stockholm and Uppsala, Entrance C11, BMC, Husargatan 3, 752 37 Uppsala, Sweden
| |
Collapse
|
18
|
Choudhury A, Aron S, Botigué LR, Sengupta D, Botha G, Bensellak T, Wells G, Kumuthini J, Shriner D, Fakim YJ, Ghoorah AW, Dareng E, Odia T, Falola O, Adebiyi E, Hazelhurst S, Mazandu G, Nyangiri OA, Mbiyavanga M, Benkahla A, Kassim SK, Mulder N, Adebamowo SN, Chimusa ER, Muzny D, Metcalf G, Gibbs RA, Rotimi C, Ramsay M, Adeyemo AA, Lombard Z, Hanchard NA. High-depth African genomes inform human migration and health. Nature 2020; 586:741-748. [PMID: 33116287 PMCID: PMC7759466 DOI: 10.1038/s41586-020-2859-7] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2020] [Indexed: 01/05/2023]
Abstract
The African continent is regarded as the cradle of modern humans and African genomes contain more genetic variation than those from any other continent, yet only a fraction of the genetic diversity among African individuals has been surveyed1. Here we performed whole-genome sequencing analyses of 426 individuals-comprising 50 ethnolinguistic groups, including previously unsampled populations-to explore the breadth of genomic diversity across Africa. We uncovered more than 3 million previously undescribed variants, most of which were found among individuals from newly sampled ethnolinguistic groups, as well as 62 previously unreported loci that are under strong selection, which were predominantly found in genes that are involved in viral immunity, DNA repair and metabolism. We observed complex patterns of ancestral admixture and putative-damaging and novel variation, both within and between populations, alongside evidence that Zambia was a likely intermediate site along the routes of expansion of Bantu-speaking populations. Pathogenic variants in genes that are currently characterized as medically relevant were uncommon-but in other genes, variants denoted as 'likely pathogenic' in the ClinVar database were commonly observed. Collectively, these findings refine our current understanding of continental migration, identify gene flow and the response to human disease as strong drivers of genome-level population variation, and underscore the scientific imperative for a broader characterization of the genomic diversity of African individuals to understand human ancestry and improve health.
Collapse
Affiliation(s)
- Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shaun Aron
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Laura R Botigué
- Center for Research in Agricultural Genomics (CRAG), Plant and Animal Genomics Program, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gerrit Botha
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Taoufik Bensellak
- System and Data Engineering Team, Abdelmalek Essaadi University, ENSA, Tangier, Morocco
| | - Gordon Wells
- Centre for Proteomic and Genomic Research (CPGR), Cape Town, South Africa.,South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa.,Africa Health Research Institute, Durban, South Africa
| | - Judit Kumuthini
- Centre for Proteomic and Genomic Research (CPGR), Cape Town, South Africa.,South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yasmina J Fakim
- Department of Agriculture and Food Science, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius.,Department of Digital Technologies,Faculty of Information, Communication & Digital Technologies, University of Mauritius, Reduit, Mauritius
| | - Anisah W Ghoorah
- Department of Digital Technologies,Faculty of Information, Communication & Digital Technologies, University of Mauritius, Reduit, Mauritius
| | - Eileen Dareng
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Trust Odia
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
| | - Oluwadamilare Falola
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria.,Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaston Mazandu
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Oscar A Nyangiri
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Mamana Mbiyavanga
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institute Pasteur of Tunis, Tunis, Tunisia
| | - Samar K Kassim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbaseya, Cairo, Egypt
| | - Nicola Mulder
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, IDM, University of Cape Town, Cape Town, South Africa
| | - Sally N Adebamowo
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA.,University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious, Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ginger Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
19
|
Sjöstrand AE, Sjödin P, Hegay T, Nikolaeva A, Shayimkulov F, Blum MGB, Heyer E, Jakobsson M. Taste perception and lifestyle: insights from phenotype and genome data among Africans and Asians. Eur J Hum Genet 2020; 29:325-337. [PMID: 33005019 DOI: 10.1038/s41431-020-00736-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
Taste is essential for the interaction of animals with their food and has co-evolved with diet. Humans have peopled a large range of environments and present a wide range of diets, but little is known about the diversity and evolution of human taste perception. We measured taste recognition thresholds across populations differing in lifestyles (hunter gatherers and farmers from Central Africa, nomad herders, and farmers from Central Asia). We also generated genome-wide genotype data and performed association studies and selection scans in order to link the phenotypic variation in taste sensitivity with genetic variation. We found that hunter gatherers have lower overall sensitivity as well as lower sensitivity to quinine and fructose than their farming neighbors. In parallel, there is strong population divergence in genes associated with tongue morphogenesis and genes involved in the transduction pathway of taste signals in the African populations. We find signals of recent selection in bitter taste-receptor genes for all four populations. Enrichment analysis on association scans for the various tastes confirmed already documented associations and revealed novel GO terms that are good candidates for being involved in taste perception. Our framework permitted us to gain insight into the genetic basis of taste sensitivity variation across populations and lifestyles.
Collapse
Affiliation(s)
- Agnès E Sjöstrand
- Department Organismal Biology, EBC, Uppsala University, Uppsala, Sweden.,Université Grenoble Alpes, TIMC-IMAG UMR 5525, F-38000, Grenoble, France.,CNRS, TIMC-IMAG, F-38000, Grenoble, France.,Laboratoire d'Eco-Anthropologie UMR7206, CNRS, MNHN, Université de Paris, Paris, France
| | - Per Sjödin
- Department Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Tatyana Hegay
- Academy of Sciences, Institute of Immunology, Tashkent, Uzbekistan
| | - Anna Nikolaeva
- Academy of Sciences, Institute of Immunology, Tashkent, Uzbekistan
| | | | - Michael G B Blum
- Université Grenoble Alpes, TIMC-IMAG UMR 5525, F-38000, Grenoble, France. .,CNRS, TIMC-IMAG, F-38000, Grenoble, France.
| | - Evelyne Heyer
- Laboratoire d'Eco-Anthropologie UMR7206, CNRS, MNHN, Université de Paris, Paris, France.
| | - Mattias Jakobsson
- Department Organismal Biology, EBC, Uppsala University, Uppsala, Sweden. .,Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Kerdoncuff E, Lambert A, Achaz G. Testing for population decline using maximal linkage disequilibrium blocks. Theor Popul Biol 2020; 134:171-181. [DOI: 10.1016/j.tpb.2020.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/02/2023]
|
21
|
Zoccolillo M, Moia C, Comincini S, Cittaro D, Lazarevic D, Pisani KA, Wit JM, Bozzola M. Identification of novel genetic variants associated with short stature in a Baka Pygmies population. Hum Genet 2020; 139:1471-1483. [PMID: 32583022 PMCID: PMC7519921 DOI: 10.1007/s00439-020-02191-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022]
Abstract
Human growth is a complex trait determined by genetic factors in combination with external stimuli, including environment, nutrition and hormonal status. In the past, several genome-wide association studies (GWAS) have collectively identified hundreds of genetic variants having a putative effect on determining adult height in different worldwide populations. Theoretically, a valuable approach to better understand the mechanisms of complex traits as adult height is to study a population exhibiting extreme stature phenotypes, such as African Baka Pygmies. After phenotypic characterization, we sequenced the whole exomes of a cohort of Baka Pygmies and their non-Pygmies Bantu neighbors to highlight genetic variants associated with the reduced stature. Whole exome data analysis revealed 29 single nucleotide polymorphisms (SNPs) significantly associated with the reduced height in the Baka group. Among these variants, we focused on SNP rs7629425, located in the 5′-UTR of the Hyaluronidase-2 (HYAL2) gene. The frequency of the alternative allele was significantly increased compared to African and non-African populations. In vitro luciferase assay showed significant differences in transcription modulation by rs7629425 C/T alleles. In conclusion, our results suggested that the HYAL2 gene variants may play a role in the etiology of short stature in Baka Pygmies population.
Collapse
Affiliation(s)
- Matteo Zoccolillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Moia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Università Degli Studi Di Pavia, Pavia, Italy
| | - Sergio Comincini
- Department of Biology and Biotechnology "Lazzaro Spallanzani", Università Degli Studi Di Pavia, Pavia, Italy
| | - Davide Cittaro
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Karen A Pisani
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jan M Wit
- Pediatrics, Leiden University Medical Center, 2300 RC, Leiden, Netherlands
| | - Mauro Bozzola
- University of Pavia, and Onlus Il Bambino E Il Suo Pediatra, Via XX Settembre 28, Galliate, 28066, Novara, Italy.
| |
Collapse
|
22
|
Jay F, Boitard S, Austerlitz F. An ABC Method for Whole-Genome Sequence Data: Inferring Paleolithic and Neolithic Human Expansions. Mol Biol Evol 2020; 36:1565-1579. [PMID: 30785202 DOI: 10.1093/molbev/msz038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Species generally undergo a complex demographic history consisting, in particular, of multiple changes in population size. Genome-wide sequencing data are potentially highly informative for reconstructing this demographic history. A crucial point is to extract the relevant information from these very large data sets. Here, we design an approach for inferring past demographic events from a moderate number of fully sequenced genomes. Our new approach uses Approximate Bayesian Computation, a simulation-based statistical framework that allows 1) identifying the best demographic scenario among several competing scenarios and 2) estimating the best-fitting parameters under the chosen scenario. Approximate Bayesian Computation relies on the computation of summary statistics. Using a cross-validation approach, we show that statistics such as the lengths of haplotypes shared between individuals, or the decay of linkage disequilibrium with distance, can be combined with classical statistics (e.g., heterozygosity and Tajima's D) to accurately infer complex demographic scenarios including bottlenecks and expansion periods. We also demonstrate the importance of simultaneously estimating the genotyping error rate. Applying our method on genome-wide human-sequence databases, we finally show that a model consisting in a bottleneck followed by a Paleolithic and a Neolithic expansion is the most relevant for Eurasian populations.
Collapse
Affiliation(s)
- Flora Jay
- Laboratoire EcoAnthropologie et Ethnobiologie, CNRS/MNHN/Université Paris Diderot, Paris, France.,Laboratoire de Recherche en Informatique, CNRS/Université Paris-Sud/Université Paris-Saclay, Orsay, France
| | - Simon Boitard
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| | - Frédéric Austerlitz
- Laboratoire EcoAnthropologie et Ethnobiologie, CNRS/MNHN/Université Paris Diderot, Paris, France
| |
Collapse
|
23
|
Ongaro L, Scliar MO, Flores R, Raveane A, Marnetto D, Sarno S, Gnecchi-Ruscone GA, Alarcón-Riquelme ME, Patin E, Wangkumhang P, Hellenthal G, Gonzalez-Santos M, King RJ, Kouvatsi A, Balanovsky O, Balanovska E, Atramentova L, Turdikulova S, Mastana S, Marjanovic D, Mulahasanovic L, Leskovac A, Lima-Costa MF, Pereira AC, Barreto ML, Horta BL, Mabunda N, May CA, Moreno-Estrada A, Achilli A, Olivieri A, Semino O, Tambets K, Kivisild T, Luiselli D, Torroni A, Capelli C, Tarazona-Santos E, Metspalu M, Pagani L, Montinaro F. The Genomic Impact of European Colonization of the Americas. Curr Biol 2019; 29:3974-3986.e4. [PMID: 31735679 DOI: 10.1016/j.cub.2019.09.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
The human genetic diversity of the Americas has been affected by several events of gene flow that have continued since the colonial era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored. Here, we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected (1) the genetic structure, (2) the admixture profile, (3) the demographic history, and (4) sex-biased gene-flow dynamics of the Americas. We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East, and to specific regions of Africa.
Collapse
Affiliation(s)
- Linda Ongaro
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, Tartu 51010, Estonia.
| | - Marilia O Scliar
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, SP 05508-090, Brazil; Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Davide Marnetto
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40100, Italy
| | - Guido A Gnecchi-Ruscone
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40100, Italy; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Marta E Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Pasteur Institute, UMR2000, CNRS, Paris 75015, France
| | - Pongsakorn Wangkumhang
- Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | | | - Roy J King
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Anastasia Kouvatsi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Oleg Balanovsky
- Vavilov Institute of General Genetics, Ulitsa Gubkina, 3, Moscow 117971, Russia; Research Centre for Medical Genetics, Moskvorech'ye Ulitsa, 1, Moscow 115478, Russia; Biobank of North Eurasia, Kotlyakovskaya Ulitsa, 3 строение 12, Moscow 115201, Russia
| | - Elena Balanovska
- Vavilov Institute of General Genetics, Ulitsa Gubkina, 3, Moscow 117971, Russia; Research Centre for Medical Genetics, Moskvorech'ye Ulitsa, 1, Moscow 115478, Russia; Biobank of North Eurasia, Kotlyakovskaya Ulitsa, 3 строение 12, Moscow 115201, Russia
| | - Lubov Atramentova
- Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Shahlo Turdikulova
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Academy of Sciences Republic of Uzbekistan, Tashkent 100047, Uzbekistan
| | - Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Damir Marjanovic
- Department of Genetics and Bioengineering, Faculty of Engineering and Information Technologies, International Burch University, Sarajevo 71000, Bosnia and Herzegovina; Institute for Anthropological Researches, Zagreb, Croatia
| | | | - Andreja Leskovac
- Vinca Institute of Nuclear Sciences, University of Belgrade, M. Petrovica Alasa 12-14, Belgrade 11001, Serbia
| | - Maria F Lima-Costa
- Instituto de Pesquisa Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG 30190-002, Brazil
| | - Alexandre C Pereira
- Instituto do Coração, Universidade de São Paulo, São Paulo, SP 05403-900, Brazil
| | - Mauricio L Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA 0110-040, Brazil; Center of Data and Knowledge Integration for Health (CIDACS), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA 41745-715, Brazil
| | - Bernardo L Horta
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, 464, Pelotas, RS 96001-970, Brazil
| | - Nédio Mabunda
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N 1, Província de Maputo, Maputo 1120, Mozambique
| | - Celia A May
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, Mexico
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Herestraat 49 - box 602, Leuven 3000, Belgium
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna Campus, Ravenna 48100, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | | | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Biology, University of Padua, Via Ugo Bassi 58B, Padua 35100, Italy
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK.
| |
Collapse
|
24
|
Gurdasani D, Carstensen T, Fatumo S, Chen G, Franklin CS, Prado-Martinez J, Bouman H, Abascal F, Haber M, Tachmazidou I, Mathieson I, Ekoru K, DeGorter MK, Nsubuga RN, Finan C, Wheeler E, Chen L, Cooper DN, Schiffels S, Chen Y, Ritchie GRS, Pollard MO, Fortune MD, Mentzer AJ, Garrison E, Bergström A, Hatzikotoulas K, Adeyemo A, Doumatey A, Elding H, Wain LV, Ehret G, Auer PL, Kooperberg CL, Reiner AP, Franceschini N, Maher D, Montgomery SB, Kadie C, Widmer C, Xue Y, Seeley J, Asiki G, Kamali A, Young EH, Pomilla C, Soranzo N, Zeggini E, Pirie F, Morris AP, Heckerman D, Tyler-Smith C, Motala AA, Rotimi C, Kaleebu P, Barroso I, Sandhu MS. Uganda Genome Resource Enables Insights into Population History and Genomic Discovery in Africa. Cell 2019; 179:984-1002.e36. [PMID: 31675503 PMCID: PMC7202134 DOI: 10.1016/j.cell.2019.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/03/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
Abstract
Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.
Collapse
Affiliation(s)
- Deepti Gurdasani
- William Harvey Research Institute, Queen Mary's University of London, London, UK
| | | | - Segun Fatumo
- London School of Hygiene and Tropical Medicine, London, UK; Uganda Medical Informatics Centre (UMIC), MRC/UVRI and LSHTM (Uganda Research Unit), Entebbe, Uganda; H3Africa Bioinformatics Network (H3ABioNet) Node, Center for Genomics Research and Innovation (CGRI)/National Biotechnology Development Agency CGRI/NABDA, Abuja, Nigeria
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Institute of Health, Bethesda, MD, USA
| | | | | | | | | | - Marc Haber
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Ioanna Tachmazidou
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage Hertfordshire SG1 2NY, UK
| | - Iain Mathieson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth Ekoru
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marianne K DeGorter
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rebecca N Nsubuga
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Chris Finan
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Eleanor Wheeler
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Li Chen
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Yuan Chen
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Alex J Mentzer
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Konstantinos Hatzikotoulas
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Institute of Health, Bethesda, MD, USA
| | - Ayo Doumatey
- Center for Research on Genomics and Global Health, National Institute of Health, Bethesda, MD, USA
| | | | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Georg Ehret
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Charles L Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Dermot Maher
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Stephen B Montgomery
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Yali Xue
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Janet Seeley
- London School of Hygiene and Tropical Medicine, London, UK; Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Gershim Asiki
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Anatoli Kamali
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Elizabeth H Young
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cristina Pomilla
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nicole Soranzo
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fraser Pirie
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew P Morris
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Department of Biostatistics, University of Liverpool, Liverpool, UK
| | | | | | - Ayesha A Motala
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, Durban, South Africa.
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Institute of Health, Bethesda, MD, USA.
| | - Pontiano Kaleebu
- London School of Hygiene and Tropical Medicine, London, UK; Uganda Medical Informatics Centre (UMIC), MRC/UVRI and LSHTM (Uganda Research Unit), Entebbe, Uganda; Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Hygiene & Tropical Medicine Uganda Research Unit on AIDS, Entebbe, Uganda.
| | - Inês Barroso
- Wellcome Sanger Institute, Hinxton, Cambridge, UK; MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| | - Manj S Sandhu
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Genomic Evidence for Local Adaptation of Hunter-Gatherers to the African Rainforest. Curr Biol 2019; 29:2926-2935.e4. [DOI: 10.1016/j.cub.2019.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022]
|
26
|
Harrison GF, Sanz J, Boulais J, Mina MJ, Grenier JC, Leng Y, Dumaine A, Yotova V, Bergey CM, Nsobya SL, Elledge SJ, Schurr E, Quintana-Murci L, Perry GH, Barreiro LB. Natural selection contributed to immunological differences between hunter-gatherers and agriculturalists. Nat Ecol Evol 2019; 3:1253-1264. [PMID: 31358949 PMCID: PMC6684323 DOI: 10.1038/s41559-019-0947-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/17/2019] [Indexed: 11/30/2022]
Abstract
The shift from a hunter-gatherer to an agricultural mode of subsistence is believed to have been associated with profound changes in the burden and diversity of pathogens across human populations. Yet, the extent to which the advent of agriculture affected the evolution of the human immune system remains unknown. Here we present a comparative study of variation in the transcriptional responses of peripheral blood mononuclear cells to bacterial and viral stimuli between Batwa rainforest hunter-gatherers and Bakiga agriculturalists from Uganda. We observed increased divergence between hunter-gatherers and agriculturalists in the early transcriptional response to viruses compared with that for bacterial stimuli. We demonstrate that a significant fraction of these transcriptional differences are under genetic control and we show that positive natural selection has helped to shape population differences in immune regulation. Across the set of genetic variants underlying inter-population immune-response differences, however, the signatures of positive selection were disproportionately observed in the rainforest hunter-gatherers. This result is counter to expectations on the basis of the popularized notion that shifts in pathogen exposure due to the advent of agriculture imposed radically heightened selective pressures in agriculturalist populations.
Collapse
Affiliation(s)
- Genelle F Harrison
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Joaquin Sanz
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Jonathan Boulais
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Michael J Mina
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Yumei Leng
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Anne Dumaine
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Vania Yotova
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Christina M Bergey
- Departments of Anthropology and Biology, Pennsylvania State University, University Park, PA, USA
| | - Samuel L Nsobya
- Department of Pathology, School Biomedical, Makerere University, Kampala, Uganda
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Erwin Schurr
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lluis Quintana-Murci
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada.
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
27
|
Runs of homozygosity in sub-Saharan African populations provide insights into complex demographic histories. Hum Genet 2019; 138:1123-1142. [DOI: 10.1007/s00439-019-02045-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022]
|
28
|
Nemat-Gorgani N, Guethlein LA, Henn BM, Norberg SJ, Chiaroni J, Sikora M, Quintana-Murci L, Mountain JL, Norman PJ, Parham P. Diversity of KIR, HLA Class I, and Their Interactions in Seven Populations of Sub-Saharan Africans. THE JOURNAL OF IMMUNOLOGY 2019; 202:2636-2647. [PMID: 30918042 DOI: 10.4049/jimmunol.1801586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
HLA class I and KIR sequences were determined for Dogon, Fulani, and Baka populations of western Africa, Mbuti of central Africa, and Datooga, Iraqw, and Hadza of eastern Africa. Study of 162 individuals identified 134 HLA class I alleles (41 HLA-A, 60 HLA-B, and 33 HLA-C). Common to all populations are three HLA-C alleles (C1+C*07:01, C1+C*07:02, and C2+C*06:02) but no HLA-A or -B Unexpectedly, no novel HLA class I was identified in these previously unstudied and anthropologically distinctive populations. In contrast, of 227 KIR detected, 22 are present in all seven populations and 28 are novel. A high diversity of HLA A-C-B haplotypes was observed. In six populations, most haplotypes are represented just once. But in the Hadza, a majority of haplotypes occur more than once, with 2 having high frequencies and 10 having intermediate frequencies. The centromeric (cen) part of the KIR locus exhibits an even balance between cenA and cenB in all seven populations. The telomeric (tel) part has an even balance of telA to telB in East Africa, but this changes across the continent to where telB is vestigial in West Africa. All four KIR ligands (A3/11, Bw4, C1, and C2) are present in six of the populations. HLA haplotypes of the Iraqw and Hadza encode two KIR ligands, whereas the other populations have an even balance between haplotypes encoding one and two KIR ligands. Individuals in these African populations have a mean of 6.8-8.4 different interactions between KIR and HLA class I, compared with 2.9-6.5 for non-Africans.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, NY 11794
| | | | - Jacques Chiaroni
- UMR 7268-Anthropologie Bio-Culturelle, Droit, Éthique et Santé, Aix-Marseille Université, l'Etablissement Français du Sang, Centre National de la Recherche Scientifique, 13344 Marseille, France
| | - Martin Sikora
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
| | | | | | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO 80045; and.,Department of Immunology, University of Colorado, Denver, CO 80045
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
29
|
Laval G, Peyrégne S, Zidane N, Harmant C, Renaud F, Patin E, Prugnolle F, Quintana-Murci L. Recent Adaptive Acquisition by African Rainforest Hunter-Gatherers of the Late Pleistocene Sickle-Cell Mutation Suggests Past Differences in Malaria Exposure. Am J Hum Genet 2019; 104:553-561. [PMID: 30827499 PMCID: PMC6407493 DOI: 10.1016/j.ajhg.2019.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
The hemoglobin βS sickle mutation is a textbook case in which natural selection maintains a deleterious mutation at high frequency in the human population. Homozygous individuals for this mutation develop sickle-cell disease, whereas heterozygotes benefit from higher protection against severe malaria. Because the overdominant βS allele should be purged almost immediately from the population in the absence of malaria, the study of the evolutionary history of this iconic mutation can provide important information about the history of human exposure to malaria. Here, we sought to increase our understanding of the origins and time depth of the βS mutation in populations with different lifestyles and ecologies, and we analyzed the diversity of HBB in 479 individuals from 13 populations of African farmers and rainforest hunter-gatherers. Using an approximate Bayesian computation method, we estimated the age of the βS allele while explicitly accounting for population subdivision, past demography, and balancing selection. When the effects of balancing selection are taken into account, our analyses indicate a single emergence of βS in the ancestors of present-day agriculturalist populations ∼22,000 years ago. Furthermore, we show that rainforest hunter-gatherers have more recently acquired the βS mutation from the ancestors of agriculturalists through adaptive gene flow during the last ∼6,000 years. Together, our results provide evidence for a more ancient exposure to malarial pressures among the ancestors of agriculturalists than previously appreciated, and they suggest that rainforest hunter-gatherers have been increasingly exposed to malaria during the last millennia.
Collapse
Affiliation(s)
- Guillaume Laval
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France.
| | - Stéphane Peyrégne
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Nora Zidane
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France
| | - Christine Harmant
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France
| | - François Renaud
- Laboratory MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), UMR 5290 Centre National de la Recherche Scientifique, Institut de Rechereche pour le Développement, Montpellier 34394, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France
| | - Franck Prugnolle
- Laboratory MIVEGEC (Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle), UMR 5290 Centre National de la Recherche Scientifique, Institut de Rechereche pour le Développement, Montpellier 34394, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000 Centre National de la Recherche Scientifique, Paris 75015, France; Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris 75015, France.
| |
Collapse
|
30
|
Gelabert P, Ferrando-Bernal M, de-Dios T, Mattorre B, Campoy E, Gorostiza A, Patin E, González-Martín A, Lalueza-Fox C. Genome-wide data from the Bubi of Bioko Island clarifies the Atlantic fringe of the Bantu dispersal. BMC Genomics 2019; 20:179. [PMID: 30841922 PMCID: PMC6404284 DOI: 10.1186/s12864-019-5529-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bioko is one of the few islands that exist around Africa, the most genetically diverse continent on the planet. The native Bantu-speaking inhabitants of Bioko, the Bubi, are believed to have colonized the island about 2000 years ago. Here, we sequenced the genome of thirteen Bubi individuals at high coverage and analysed their sequences in comparison to mainland populations from the Gulf of Guinea. RESULTS We found that, genetically, the closest mainland population to the Bubi are Bantu-speaking groups from Angola instead the geographically closer groups from Cameroon. The Bubi possess a lower proportion of rainforest hunter-gatherer (RHG) ancestry than most other Bantu-speaking groups. However, their RHG component most likely came from the same source and could have reached them by gene flow from the mainland after island settlement. By studying identity by descent (IBD) genomic blocks and runs of homozygosity (ROHs), we found evidence for a significant level of genetic isolation among the Bubi, isolation that can be attributed to the island effect. Additionally, as this population is known to have one of the highest malaria incidence rates in the world we analysed their genome for malaria-resistant alleles. However, we were unable to detect any specific selective sweeps related to this disease. CONCLUSIONS By describing their dispersal to the Atlantic islands, the genomic characterization of the Bubi contributes to the understanding of the margins of the massive Bantu migration that shaped all Sub-Saharan African populations.
Collapse
Affiliation(s)
- Pere Gelabert
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | | | - Toni de-Dios
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Benedetta Mattorre
- Laboratory of Anthropology, Department of Biology, University of Florence, Florence, Italy
| | - Elena Campoy
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Amaya Gorostiza
- Forensic Genetics Laboratory, GENOMICA S.A.U., Pharma Mar Group, Madrid, Spain
| | - Etienne Patin
- Unit of Human Evolutionary Genetics, Department of Genomics & Genetics, Institut Pasteur, Paris, France
- CNRS UMR 2000, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Antonio González-Martín
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
31
|
Human Immunology through the Lens of Evolutionary Genetics. Cell 2019; 177:184-199. [DOI: 10.1016/j.cell.2019.02.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/04/2023]
|
32
|
Polygenic adaptation and convergent evolution on growth and cardiac genetic pathways in African and Asian rainforest hunter-gatherers. Proc Natl Acad Sci U S A 2018; 115:E11256-E11263. [PMID: 30413626 DOI: 10.1073/pnas.1812135115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Different human populations facing similar environmental challenges have sometimes evolved convergent biological adaptations, for example, hypoxia resistance at high altitudes and depigmented skin in northern latitudes on separate continents. The "pygmy" phenotype (small adult body size), characteristic of hunter-gatherer populations inhabiting both African and Asian tropical rainforests, is often highlighted as another case of convergent adaptation in humans. However, the degree to which phenotypic convergence in this polygenic trait is due to convergent versus population-specific genetic changes is unknown. To address this question, we analyzed high-coverage sequence data from the protein-coding portion of the genomes of two pairs of populations: Batwa rainforest hunter-gatherers and neighboring Bakiga agriculturalists from Uganda and Andamanese rainforest hunter-gatherers and Brahmin agriculturalists from India. We observed signatures of convergent positive selection between the rainforest hunter-gatherers across the set of genes with "growth factor binding" functions ([Formula: see text]). Unexpectedly, for the rainforest groups, we also observed convergent and population-specific signatures of positive selection in pathways related to cardiac development (e.g., "cardiac muscle tissue development"; [Formula: see text]). We hypothesize that the growth hormone subresponsiveness likely underlying the adult small body-size phenotype may have led to compensatory changes in cardiac pathways, in which this hormone also plays an essential role. Importantly, in the agriculturalist populations, we did not observe similar patterns of positive selection on sets of genes associated with growth or cardiac development, indicating our results most likely reflect a history of convergent adaptation to the similar ecology of rainforests rather than a more general evolutionary pattern.
Collapse
|
33
|
Moodley Y, Russo IRM, Robovský J, Dalton DL, Kotzé A, Smith S, Stejskal J, Ryder OA, Hermes R, Walzer C, Bruford MW. Contrasting evolutionary history, anthropogenic declines and genetic contact in the northern and southern white rhinoceros ( Ceratotherium simum). Proc Biol Sci 2018; 285:rspb.2018.1567. [PMID: 30404873 DOI: 10.1098/rspb.2018.1567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/19/2018] [Indexed: 01/01/2023] Open
Abstract
The white rhinoceros (Ceratotherium simum) has a discontinuous African distribution, which is limited by the extent of sub-Saharan grasslands. The southern population (SWR) declined to its lowest number around the turn of the nineteenth century, but recovered to become the world's most numerous rhinoceros. In contrast, the northern population (NWR) was common during much of the twentieth century, declining rapidly since the 1970s, and now only two post-reproductive individuals remain. Despite this species's conservation status, it lacks a genetic assessment of its demographic history. We therefore sampled 232 individuals from extant and museum sources and analysed ten microsatellite loci and the mtDNA control region. Both marker types reliably partitioned the species into SWR and NWR, with moderate nuclear genetic diversity and only three mtDNA haplotypes for the species, including historical samples. We detected ancient interglacial demographic declines in both populations. Both populations may also have been affected by recent declines associated with the colonial expansion for the SWR, and with the much earlier Bantu migrations for the NWR. Finally, we detected post-divergence secondary contact between NWR and SWR, possibly occurring as recently as the last glacial maximum. These results suggest the species was subjected to regular periods of fragmentation and low genetic diversity, which may have been replenished upon secondary contact during glacial periods. The species's current situation thus reflects prehistoric declines that were exacerbated by anthropogenic pressure associated with the rise of late Holocene technological advancement in Africa. Importantly, secondary contact suggests a potentially positive outcome for a hybrid rescue conservation strategy, although further genome-wide data are desirable to corroborate these results.
Collapse
Affiliation(s)
- Yoshan Moodley
- Department of Zoology, University of Venda, University Road, Thohoyandou 0950, Republic of South Africa
| | - Isa-Rita M Russo
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Jan Robovský
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Desiré L Dalton
- Department of Zoology, University of Venda, University Road, Thohoyandou 0950, Republic of South Africa.,National Zoological Garden, South African National Biodiversity Institute, PO Box 754, Pretoria 0001, South Africa
| | - Antoinette Kotzé
- National Zoological Garden, South African National Biodiversity Institute, PO Box 754, Pretoria 0001, South Africa.,Department of Genetics, University of the Free State, 205 Nelson Mandela Drive, West Park, Bloemfontein, 9300, South Africa
| | - Steve Smith
- Konrad Lorenz Institute for Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, 1A Savoyen Street, 1160, Vienna, Austria
| | - Jan Stejskal
- Zoo Dvůr Králové, Štefánikova 1029, Dvůr Králové nad Labem 54401, Czech Republic
| | - Oliver A Ryder
- Genetics Division, San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - Robert Hermes
- Leibniz-Institut for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Chris Walzer
- Konrad Lorenz Institute for Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, 1A Savoyen Street, 1160, Vienna, Austria.,Wildlife Conservation Society, 2300 Southern Blvd., 10460 Bronx, USA
| | - Michael W Bruford
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK .,Sustainable Places Research Institute, Cardiff University, Cardiff CF10 3BA, UK
| |
Collapse
|
34
|
Dias-Alves T, Mairal J, Blum MGB. Loter: A Software Package to Infer Local Ancestry for a Wide Range of Species. Mol Biol Evol 2018; 35:2318-2326. [PMID: 29931083 PMCID: PMC6107063 DOI: 10.1093/molbev/msy126] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Admixture between populations provides opportunity to study biological adaptation and phenotypic variation. Admixture studies rely on local ancestry inference for admixed individuals, which consists of computing at each locus the number of copies that originate from ancestral source populations. Existing software packages for local ancestry inference are tuned to provide accurate results on human data and recent admixture events. Here, we introduce Loter, an open-source software package that does not require any biological parameter besides haplotype data in order to make local ancestry inference available for a wide range of species. Using simulations, we compare the performance of Loter to HAPMIX, LAMP-LD, and RFMix. HAPMIX is the only software severely impacted by imperfect haplotype reconstruction. Loter is the less impacted software by increasing admixture time when considering simulated and admixed human genotypes. For simulations of admixed Populus genotypes, Loter and LAMP-LD are robust to increasing admixture times by contrast to RFMix. When comparing length of reconstructed and true ancestry tracts, Loter and LAMP-LD provide results whose accuracy is again more robust than RFMix to increasing admixture times. We apply Loter to individuals resulting from admixture between Populus trichocarpa and Populus balsamifera and lengths of ancestry tracts indicate that admixture took place ∼100 generations ago. We expect that providing a rapid and parameter-free software for local ancestry inference will make more accessible genomic studies about admixture processes.
Collapse
Affiliation(s)
| | - Julien Mairal
- CNRS, Institute of Engineering Univ. Grenoble Alpes, LJK, Univ. Grenoble Alpes, Inria, Grenoble, France
| | - Michael G B Blum
- CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
35
|
Schlebusch CM, Jakobsson M. Tales of Human Migration, Admixture, and Selection in Africa. Annu Rev Genomics Hum Genet 2018; 19:405-428. [DOI: 10.1146/annurev-genom-083117-021759] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last three decades, genetic studies have played an increasingly important role in exploring human history. They have helped to conclusively establish that anatomically modern humans first appeared in Africa roughly 250,000–350,000 years before present and subsequently migrated to other parts of the world. The history of humans in Africa is complex and includes demographic events that influenced patterns of genetic variation across the continent. Through genetic studies, it has become evident that deep African population history is captured by relationships among African hunter–gatherers, as the world's deepest population divergences occur among these groups, and that the deepest population divergence dates to 300,000 years before present. However, the spread of pastoralism and agriculture in the last few thousand years has shaped the geographic distribution of present-day Africans and their genetic diversity. With today's sequencing technologies, we can obtain full genome sequences from diverse sets of extant and prehistoric Africans. The coming years will contribute exciting new insights toward deciphering human evolutionary history in Africa.
Collapse
Affiliation(s)
- Carina M. Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden;,
- Centre for Anthropological Research and Department of Anthropology and Development Studies, University of Johannesburg, 2006 Johannesburg, South Africa
- SciLifeLab, SE-751 23 Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden;,
- Centre for Anthropological Research and Department of Anthropology and Development Studies, University of Johannesburg, 2006 Johannesburg, South Africa
- SciLifeLab, SE-751 23 Uppsala, Sweden
| |
Collapse
|
36
|
The demographic and adaptive history of central African hunter-gatherers and farmers. Curr Opin Genet Dev 2018; 53:90-97. [PMID: 30103089 DOI: 10.1016/j.gde.2018.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
Central Africa, a forested region that supports an exceptionally high biodiversity, hosts the world's largest group of hunter-gatherers, who live in close proximity with groups that have adopted agriculture over the past 5000 years. Our understanding of the prehistory of these populations has been dramatically hampered by the almost total absence of fossil remains in this region, a limitation that has recently been circumvented by population genomics approaches. Different studies have estimated that ancestors of rainforest hunter-gatherers and Bantu-speaking farmers separated more than 60 000 years ago, supporting the occurrence of ancient population structure in Africa since the Late Pleistocene. Conversely, the Holocene in central Africa was characterized by large-scale population migrations associated with the emergence of agriculture, and increased genetic interactions between autochthonous rainforest hunter-gatherers and expanding Bantu-speaking farmers. Genomic scans have detected numerous candidate loci for positive selection in these populations, including convergent adaptation for short stature in groups of rainforest hunter-gatherers and local adaptation to endemic malaria in western and central Africans. Furthermore, there is recent increasing evidence that adaptive variation has been acquired by various African populations through admixture, suggesting a previously unappreciated role of intraspecies gene flow in local adaptation. Ancient and modern DNA studies will greatly broaden, and probably challenge, our view on the past history of central Africa, where introgression from yet uncharacterized archaic hominins and long-term adaptation to distinct ecological niches are suspected.
Collapse
|
37
|
Pemberton TJ, Verdu P, Becker NS, Willer CJ, Hewlett BS, Le Bomin S, Froment A, Rosenberg NA, Heyer E. A genome scan for genes underlying adult body size differences between Central African hunter-gatherers and farmers. Hum Genet 2018; 137:487-509. [PMID: 30008065 DOI: 10.1007/s00439-018-1902-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
The evolutionary and biological bases of the Central African "pygmy" phenotype, a characteristic of rainforest hunter-gatherers defined by reduced body size compared with neighboring farmers, remain largely unknown. Here, we perform a joint investigation in Central African hunter-gatherers and farmers of adult standing height, sitting height, leg length, and body mass index (BMI), considering 358 hunter-gatherers and 169 farmers with genotypes for 153,798 SNPs. In addition to reduced standing heights, hunter-gatherers have shorter sitting heights and leg lengths and higher sitting/standing height ratios than farmers and lower BMI for males. Standing height, sitting height, and leg length are strongly correlated with inferred levels of farmer genetic ancestry, whereas BMI is only weakly correlated, perhaps reflecting greater contributions of non-genetic factors to body weight than to height. Single- and multi-marker association tests identify one region and eight genes associated with hunter-gatherer/farmer status, and 24 genes associated with the height-related traits. Many of these genes have putative functions consistent with roles in determining their associated traits and the pygmy phenotype, and they include three associated with standing height in non-Africans (PRKG1, DSCAM, MAGI2). We find evidence that European height-associated SNPs or variants in linkage disequilibrium with them contribute to standing- and sitting-height determination in Central Africans, but not to the differential status of hunter-gatherers and farmers. These findings provide new insights into the biological basis of the pygmy phenotype, and they highlight the potential of cross-population studies for exploring the genetic basis of phenotypes that vary naturally across populations.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| | - Paul Verdu
- CNRS-MNHN-Université Paris Diderot, UMR 7206 Eco-Anthropologie et Ethnobiologie, Paris, France.
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Cristen J Willer
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Barry S Hewlett
- Department of Anthropology, Washington State University, Vancouver, WA, USA
| | - Sylvie Le Bomin
- CNRS-MNHN-Université Paris Diderot, UMR 7206 Eco-Anthropologie et Ethnobiologie, Paris, France
| | | | | | - Evelyne Heyer
- CNRS-MNHN-Université Paris Diderot, UMR 7206 Eco-Anthropologie et Ethnobiologie, Paris, France.
| |
Collapse
|
38
|
Romero A, Ramirez-Rozzi FV, Pérez-Pérez A. Dental size variability in Central African Pygmy hunter-gatherers and Bantu-speaking farmers. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:671-681. [PMID: 29566431 DOI: 10.1002/ajpa.23458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Odontometric studies of African populations show high within-group variation in tooth size. Overall, North Africans exhibit smaller dimensions than groups from eastern and southern sub-Saharan regions, but no previous studies have analyzed the full dental metrics among extant African Pygmy hunter-gatherers and Bantu-speaking farmers. Furthermore, the population variability in tooth crown sizes from equatorial rainforest regions remains to be elucidated. MATERIALS AND METHODS The mesiodistal and buccolingual diameters of the permanent teeth (I1-M2) were measured in vivo using high-resolution replicas from Baka Pygmies and Mvae and Yassa Bantu-speakers from Cameroon (western Africa). Analyses of variance were used to record sex-related and population-level differences in tooth sizes, and a principal component analysis of geometrically scaled measures was used to plot the odontometric variability among groups. RESULTS Cameroonian Baka Pygmies differ in dental size from their Bantu-speaking neighbors. Molar teeth are larger in Pygmies than in Bantu individuals, while the anterior dentition is larger in the Bantu. Baka males exhibit significantly larger teeth than females, whereas sexual dimorphism in non-Pygmies is only present in the anterior dentition. DISCUSSION Odontometric patterns and the degree of sexual dimorphism in dental size differ among Central African groups, indicating adaptation to their different forager and farmer lifestyles. In particular, the admixture of Bantu-speakers in Baka populations is smaller than that in other western Pygmy groups. The greater dental phenetic diversity in Baka compared to that of the smaller-toothed farmers suggests that ecogenetic and microevolutionary factors are influencing a particular divergence scenario.
Collapse
Affiliation(s)
- Alejandro Romero
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Alicante, 03080, Spain
| | | | - Alejandro Pérez-Pérez
- Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Secció Zoologia i Antropologia Biològica, Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
39
|
|
40
|
Jagadeesan A, Gunnarsdóttir ED, Ebenesersdóttir SS, Guðmundsdóttir VB, Thordardottir EL, Einarsdóttir MS, Jónsson H, Dugoujon JM, Fortes-Lima C, Migot-Nabias F, Massougbodji A, Bellis G, Pereira L, Másson G, Kong A, Stefánsson K, Helgason A. Reconstructing an African haploid genome from the 18th century. Nat Genet 2018; 50:199-205. [PMID: 29335549 DOI: 10.1038/s41588-017-0031-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023]
Abstract
A genome is a mosaic of chromosome fragments from ancestors who existed some arbitrary number of generations earlier. Here, we reconstruct the genome of Hans Jonatan (HJ), born in the Caribbean in 1784 to an enslaved African mother and European father. HJ migrated to Iceland in 1802, married and had two children. We genotyped 182 of his 788 descendants using single-nucleotide polymorphism (SNP) chips and whole-genome sequenced (WGS) 20 of them. Using these data, we reconstructed 38% of HJ's maternal genome and inferred that his mother was from the region spanned by Benin, Nigeria and Cameroon.
Collapse
Affiliation(s)
- Anuradha Jagadeesan
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | - S Sunna Ebenesersdóttir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Valdis B Guðmundsdóttir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | - Margrét S Einarsdóttir
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | - Jean-Michel Dugoujon
- Laboratoire d'Eco-Anthropologie et Ethnobiologie, Equipe d'Anthropologie Evolutive, UMR 7206, Centre National de la Recherche Scientifique (CNRS) et Université Diderot Paris 7, Paris, France
| | - Cesar Fortes-Lima
- Laboratoire d'Eco-Anthropologie et Ethnobiologie, Equipe d'Anthropologie Evolutive, UMR 7206, Centre National de la Recherche Scientifique (CNRS) et Université Diderot Paris 7, Paris, France
| | - Florence Migot-Nabias
- Institut de Recherche pour le Développement, UMR D216 MERIT (Mère et enfant face aux infections tropicales), Paris, France
- COMUE Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et l'Enfance (CERPAGE), Cotonou, Benin
- Laboratoire de Parasitologie, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin
| | - Gil Bellis
- Institut National d'Etudes Démographiques (INED), Paris, France
| | - Luisa Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | | | | | - Kári Stefánsson
- deCODE Genetics/Amgen, Reykjavik, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| | - Agnar Helgason
- deCODE Genetics/Amgen, Reykjavik, Iceland.
- Department of Anthropology, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
41
|
Patin E, Lopez M, Grollemund R, Verdu P, Harmant C, Quach H, Laval G, Perry GH, Barreiro LB, Froment A, Heyer E, Massougbodji A, Fortes-Lima C, Migot-Nabias F, Bellis G, Dugoujon JM, Pereira JB, Fernandes V, Pereira L, Van der Veen L, Mouguiama-Daouda P, Bustamante CD, Hombert JM, Quintana-Murci L. Dispersals and genetic adaptation of Bantu-speaking populations in Africa and North America. Science 2018; 356:543-546. [PMID: 28473590 DOI: 10.1126/science.aal1988] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
Abstract
Bantu languages are spoken by about 310 million Africans, yet the genetic history of Bantu-speaking populations remains largely unexplored. We generated genomic data for 1318 individuals from 35 populations in western central Africa, where Bantu languages originated. We found that early Bantu speakers first moved southward, through the equatorial rainforest, before spreading toward eastern and southern Africa. We also found that genetic adaptation of Bantu speakers was facilitated by admixture with local populations, particularly for the HLA and LCT loci. Finally, we identified a major contribution of western central African Bantu speakers to the ancestry of African Americans, whose genomes present no strong signals of natural selection. Together, these results highlight the contribution of Bantu-speaking peoples to the complex genetic history of Africans and African Americans.
Collapse
Affiliation(s)
- Etienne Patin
- Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France. .,Centre National de la Recherche Scientifique URA3012, 75015 Paris, France.,Center of Bioinformatics, Biostatistics, and Integrative Biology, Institut Pasteur, 75015 Paris, France
| | - Marie Lopez
- Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique URA3012, 75015 Paris, France.,Center of Bioinformatics, Biostatistics, and Integrative Biology, Institut Pasteur, 75015 Paris, France
| | - Rebecca Grollemund
- Evolutionary Biology Group, School of Biological Sciences, University of Reading, Reading RG6 6BX, England.,Departments of English and Anthropology, University of Missouri, Columbia, Missouri, MO 65211, USA
| | - Paul Verdu
- Centre National de la Recherche Scientifique UMR7206, Muséum National d'Histoire Naturelle, Université Paris Diderot, Sorbonne Paris Cité, 75016 Paris, France
| | - Christine Harmant
- Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique URA3012, 75015 Paris, France.,Center of Bioinformatics, Biostatistics, and Integrative Biology, Institut Pasteur, 75015 Paris, France
| | - Hélène Quach
- Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique URA3012, 75015 Paris, France.,Center of Bioinformatics, Biostatistics, and Integrative Biology, Institut Pasteur, 75015 Paris, France
| | - Guillaume Laval
- Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique URA3012, 75015 Paris, France.,Center of Bioinformatics, Biostatistics, and Integrative Biology, Institut Pasteur, 75015 Paris, France
| | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Luis B Barreiro
- Université de Montréal, Centre de Recherche CHU Sainte-Justine, Montréal, Québec H3T 1C5, Canada
| | - Alain Froment
- Institut de Recherche pour le Développement, UMR 208, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Evelyne Heyer
- Centre National de la Recherche Scientifique UMR7206, Muséum National d'Histoire Naturelle, Université Paris Diderot, Sorbonne Paris Cité, 75016 Paris, France
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et l'Enfance (CERPAGE), Cotonou, Bénin.,Institut de Recherche Clinique du Bénin (IRCB), 01 BP 188 Cotonou, Bénin
| | - Cesar Fortes-Lima
- Centre National de la Recherche Scientifique UMR7206, Muséum National d'Histoire Naturelle, Université Paris Diderot, Sorbonne Paris Cité, 75016 Paris, France.,Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique UMR 5288/Université Paul Sabatier Toulouse 3, 31073 Toulouse Cedex 3, France
| | - Florence Migot-Nabias
- Institut de Recherche pour le Développement, UMR 216, 75006 Paris, France.,Communautés d'Universités et Etablissements (COMUE) Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France
| | - Gil Bellis
- Institut National d'Etudes Démographiques, 75020 Paris, France
| | - Jean-Michel Dugoujon
- Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique UMR 5288/Université Paul Sabatier Toulouse 3, 31073 Toulouse Cedex 3, France
| | - Joana B Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-465, Portugal
| | - Verónica Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-465, Portugal
| | - Luisa Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-465, Portugal.,Faculdade de Medicina da Universidade do Porto, Porto 4200-319, Portugal
| | - Lolke Van der Veen
- Centre National de la Recherche Scientifique UMR 5596, Dynamique du Langage, Université Lumière-Lyon 2, 69007 Lyon, France
| | - Patrick Mouguiama-Daouda
- Centre National de la Recherche Scientifique UMR 5596, Dynamique du Langage, Université Lumière-Lyon 2, 69007 Lyon, France.,Laboratoire Langue, Culture et Cognition (LCC), Université Omar Bongo, 13131 Libreville, Gabon
| | - Carlos D Bustamante
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Jean-Marie Hombert
- Centre National de la Recherche Scientifique UMR 5596, Dynamique du Langage, Université Lumière-Lyon 2, 69007 Lyon, France
| | - Lluís Quintana-Murci
- Human Evolutionary Genetics, Institut Pasteur, 75015 Paris, France. .,Centre National de la Recherche Scientifique URA3012, 75015 Paris, France.,Center of Bioinformatics, Biostatistics, and Integrative Biology, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
42
|
Whole-genome sequencing for an enhanced understanding of genetic variation among South Africans. Nat Commun 2017; 8:2062. [PMID: 29233967 PMCID: PMC5727231 DOI: 10.1038/s41467-017-00663-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 07/17/2017] [Indexed: 11/08/2022] Open
Abstract
The Southern African Human Genome Programme is a national initiative that aspires to unlock the unique genetic character of southern African populations for a better understanding of human genetic diversity. In this pilot study the Southern African Human Genome Programme characterizes the genomes of 24 individuals (8 Coloured and 16 black southeastern Bantu-speakers) using deep whole-genome sequencing. A total of ~16 million unique variants are identified. Despite the shallow time depth since divergence between the two main southeastern Bantu-speaking groups (Nguni and Sotho-Tswana), principal component analysis and structure analysis reveal significant (p < 10−6) differentiation, and FST analysis identifies regions with high divergence. The Coloured individuals show evidence of varying proportions of admixture with Khoesan, Bantu-speakers, Europeans, and populations from the Indian sub-continent. Whole-genome sequencing data reveal extensive genomic diversity, increasing our understanding of the complex and region-specific history of African populations and highlighting its potential impact on biomedical research and genetic susceptibility to disease. African populations show a high level of genetic diversity and extensive regional admixture. Here, the authors sequence the whole genomes of 24 South African individuals of different ethnolinguistic origin and find substantive genomic divergence between two southeastern Bantu-speaking groups.
Collapse
|
43
|
Fortes-Lima C, Gessain A, Ruiz-Linares A, Bortolini MC, Migot-Nabias F, Bellis G, Moreno-Mayar JV, Restrepo BN, Rojas W, Avendaño-Tamayo E, Bedoya G, Orlando L, Salas A, Helgason A, Gilbert MTP, Sikora M, Schroeder H, Dugoujon JM. Genome-wide Ancestry and Demographic History of African-Descendant Maroon Communities from French Guiana and Suriname. Am J Hum Genet 2017; 101:725-736. [PMID: 29100086 DOI: 10.1016/j.ajhg.2017.09.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023] Open
Abstract
The transatlantic slave trade was the largest forced migration in world history. However, the origins of the enslaved Africans and their admixture dynamics remain unclear. To investigate the demographic history of African-descendant Marron populations, we generated genome-wide data (4.3 million markers) from 107 individuals from three African-descendant populations in South America, as well as 124 individuals from six west African populations. Throughout the Americas, thousands of enslaved Africans managed to escape captivity and establish lasting communities, such as the Noir Marron. We find that this population has the highest proportion of African ancestry (∼98%) of any African-descendant population analyzed to date, presumably because of centuries of genetic isolation. By contrast, African-descendant populations in Brazil and Colombia harbor substantially more European and Native American ancestry as a result of their complex admixture histories. Using ancestry tract-length analysis, we detect different dates for the European admixture events in the African-Colombian (1749 CE; confidence interval [CI]: 1737-1764) and African-Brazilian (1796 CE; CI: 1789-1804) populations in our dataset, consistent with the historically attested earlier influx of Africans into Colombia. Furthermore, we find evidence for sex-specific admixture patterns, resulting from predominantly European paternal gene flow. Finally, we detect strong genetic links between the African-descendant populations and specific source populations in Africa on the basis of haplotype sharing patterns. Although the Noir Marron and African-Colombians show stronger affinities with African populations from the Bight of Benin and the Gold Coast, the African-Brazilian population from Rio de Janeiro has greater genetic affinity with Bantu-speaking populations from the Bight of Biafra and west central Africa.
Collapse
Affiliation(s)
- Cesar Fortes-Lima
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, AMIS UMR5288, Centre National de la Recherche Scientifique (CNRS) -Université Paul Sabatier Toulouse III, Toulouse 31000, France; Laboratory Eco-Anthropology and Ethno-Biology, UMR7206, CNRS-MNHN-University Paris Diderot, Musée de l'Homme, 17 Place du Trocadéro, 75016 Paris, France
| | - Antoine Gessain
- Oncogenic Virus Epidemiology and Pathophysiology Group, Department of Virology, CNRS UMR3569, Pasteur Institute, Paris 75015, France
| | - Andres Ruiz-Linares
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom; Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China; Laboratory of Biocultural Anthropology, Law, Ethics, and Health, CNRS/EFS ADES UMR7268, Aix-Marseille University, Marseille 13824, France
| | - Maria-Cátira Bortolini
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Florence Migot-Nabias
- Mother and Child Facing Tropical Infections (MERIT), Research Institute for Development, Paris 5 University, Sorbonne Paris Cité, Paris 75006, France
| | - Gil Bellis
- French Institute for Demographic Studies, Paris 75020, France
| | - J Víctor Moreno-Mayar
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Berta Nelly Restrepo
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Antioquia 055450, Colombia
| | - Winston Rojas
- Laboratory of Molecular Genetics, Institute of Biology, University of Antioquia, Medellín 050010, Colombia
| | - Efren Avendaño-Tamayo
- Laboratory of Molecular Genetics, Institute of Biology, University of Antioquia, Medellín 050010, Colombia; Grupo de Ciencias Básicas Aplicadas del Tecnológico de Antioquia, Tecnológico de Antioquia - Institución Universitaria, Medellín 050034, Colombia
| | - Gabriel Bedoya
- Laboratory of Molecular Genetics, Institute of Biology, University of Antioquia, Medellín 050010, Colombia
| | - Ludovic Orlando
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, AMIS UMR5288, Centre National de la Recherche Scientifique (CNRS) -Université Paul Sabatier Toulouse III, Toulouse 31000, France; Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia 15782, Spain; GenPoB Research Group, Instituto de Investigaciones Sanitarias, Hospital Clínico Universitario de Santiago, Galicia 15782, Spain
| | | | - M Thomas P Gilbert
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark; Norwegian University of Science and Technology, University Museum, Trondheim 7491, Norway
| | - Martin Sikora
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Hannes Schroeder
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark; Faculty of Archaeology, Leiden University, Leiden 2333, the Netherlands.
| | - Jean-Michel Dugoujon
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, AMIS UMR5288, Centre National de la Recherche Scientifique (CNRS) -Université Paul Sabatier Toulouse III, Toulouse 31000, France.
| |
Collapse
|
44
|
Arias L, Barbieri C, Barreto G, Stoneking M, Pakendorf B. High-resolution mitochondrial DNA analysis sheds light on human diversity, cultural interactions, and population mobility in Northwestern Amazonia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 165:238-255. [DOI: 10.1002/ajpa.23345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/17/2017] [Accepted: 10/07/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Leonardo Arias
- Department of Evolutionary Genetics; Max Planck Institute for Evolutionary Anthropology; Leipzig D-04103 Germany
- Laboratorio de Genética Molecular Humana; Universidad del Valle; Cali Colombia
| | - Chiara Barbieri
- Department of Linguistic and Cultural Evolution; Max Planck Institute for the Science of Human History; Jena D-07745 Germany
| | - Guillermo Barreto
- Laboratorio de Genética Molecular Humana; Universidad del Valle; Cali Colombia
| | - Mark Stoneking
- Department of Evolutionary Genetics; Max Planck Institute for Evolutionary Anthropology; Leipzig D-04103 Germany
| | - Brigitte Pakendorf
- Dynamique du Langage; UMR5596, CNRS & Université de Lyon; Lyon Cedex 07 69363 France
| |
Collapse
|
45
|
Leonardi M, Barbujani G, Manica A. An earlier revolution: genetic and genomic analyses reveal pre-existing cultural differences leading to Neolithization. Sci Rep 2017; 7:3525. [PMID: 28615641 PMCID: PMC5471218 DOI: 10.1038/s41598-017-03717-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/02/2017] [Indexed: 01/28/2023] Open
Abstract
Archaeological evidence shows that, in the long run, Neolitization (the transition from foraging to food production) was associated with demographic growth. We used two methods (patterns of linkage disequilibrium from whole-genome SNPs and MSMC estimates on genomes) to reconstruct the demographic profiles for respectively 64 and 24 modern-day populations with contrasting lifestyles across the Old World (sub-Saharan Africa, south-eastern Asia, Siberia). Surprisingly, in all regions, food producers had larger effective population sizes (Ne) than foragers already 20 k years ago, well before the Neolithic revolution. As expected, this difference further increased ~12–10 k years ago, around or just before the onset of food production. Using paleoclimate reconstructions, we show that the early difference in Ne cannot be explained by food producers inhabiting more favorable regions. A number of mechanisms, including ancestral differences in census size, sedentism, exploitation of the natural resources, social stratification or connectivity between groups, might have led to the early differences in Ne detected in our analyses. Irrespective of the specific mechanisms involved, our results provide further evidence that long term cultural differences among populations of Palaeolithic hunter-gatherers are likely to have played an important role in the later Neolithization process.
Collapse
Affiliation(s)
- Michela Leonardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 44, 44121, Ferrara, Italy. .,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oester Voldgade 5-7, DK-1350, Copenhagen, Denmark.
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 44, 44121, Ferrara, Italy
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing street, CB2 3EJ, Cambridge, UK
| |
Collapse
|
46
|
Trends in DNA Methylation with Age Replicate Across Diverse Human Populations. Genetics 2017; 206:1659-1674. [PMID: 28533441 DOI: 10.1534/genetics.116.195594] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/09/2017] [Indexed: 01/31/2023] Open
Abstract
Aging is associated with widespread changes in genome-wide patterns of DNA methylation. Thousands of CpG sites whose tissue-specific methylation levels are strongly correlated with chronological age have been previously identified. However, the majority of these studies have focused primarily on cosmopolitan populations living in the developed world; it is not known if age-related patterns of DNA methylation at these loci are similar across a broad range of human genetic and ecological diversity. We investigated genome-wide methylation patterns using saliva- and whole blood-derived DNA from two traditionally hunting and gathering African populations: the Baka of the western Central African rain forest and the ≠Khomani San of the South African Kalahari Desert. We identified hundreds of CpG sites whose methylation levels are significantly associated with age, thousands that are significant in a meta-analysis, and replicate trends previously reported in populations of non-African descent. We confirmed that an age-associated site in the promoter of the gene ELOVL2 shows a remarkably congruent relationship with aging in humans, despite extensive genetic and environmental variation across populations. We also demonstrate that genotype state at methylation quantitative trait loci (meQTLs) can affect methylation trends at some age-associated CpG sites. Our study explores the relationship between CpG methylation and chronological age in populations of African hunter-gatherers, who rely on different diets across diverse ecologies. While many age-related CpG sites replicate across populations, we show that considering common genetic variation at meQTLs further improves our ability to detect previously identified age associations.
Collapse
|
47
|
Quach H, Quintana-Murci L. Living in an adaptive world: Genomic dissection of the genus Homo and its immune response. J Exp Med 2017; 214:877-894. [PMID: 28351985 PMCID: PMC5379985 DOI: 10.1084/jem.20161942] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
More than a decade after the sequencing of the human genome, a deluge of genome-wide population data are generating a portrait of human genetic diversity at an unprecedented level of resolution. Genomic studies have provided new insight into the demographic and adaptive history of our species, Homo sapiens, including its interbreeding with other hominins, such as Neanderthals, and the ways in which natural selection, in its various guises, has shaped genome diversity. These studies, combined with functional genomic approaches, such as the mapping of expression quantitative trait loci, have helped to identify genes, functions, and mechanisms of prime importance for host survival and involved in phenotypic variation and differences in disease risk. This review summarizes new findings in this rapidly developing field, focusing on the human immune response. We discuss the importance of defining the genetic and evolutionary determinants driving immune response variation, and highlight the added value of population genomic approaches in settings relevant to immunity and infection.
Collapse
Affiliation(s)
- Hélène Quach
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique, URA3012, 75015 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France .,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique, URA3012, 75015 Paris, France
| |
Collapse
|
48
|
McManus KF, Taravella AM, Henn BM, Bustamante CD, Sikora M, Cornejo OE. Population genetic analysis of the DARC locus (Duffy) reveals adaptation from standing variation associated with malaria resistance in humans. PLoS Genet 2017; 13:e1006560. [PMID: 28282382 PMCID: PMC5365118 DOI: 10.1371/journal.pgen.1006560] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 03/24/2017] [Accepted: 12/30/2016] [Indexed: 12/22/2022] Open
Abstract
The human DARC (Duffy antigen receptor for chemokines) gene encodes a membrane-bound chemokine receptor crucial for the infection of red blood cells by Plasmodium vivax, a major causative agent of malaria. Of the three major allelic classes segregating in human populations, the FY*O allele has been shown to protect against P. vivax infection and is at near fixation in sub-Saharan Africa, while FY*B and FY*A are common in Europe and Asia, respectively. Due to the combination of strong geographic differentiation and association with malaria resistance, DARC is considered a canonical example of positive selection in humans. Despite this, details of the timing and mode of selection at DARC remain poorly understood. Here, we use sequencing data from over 1,000 individuals in twenty-one human populations, as well as ancient human genomes, to perform a fine-scale investigation of the evolutionary history of DARC. We estimate the time to most recent common ancestor (TMRCA) of the most common FY*O haplotype to be 42 kya (95% CI: 34-49 kya). We infer the FY*O null mutation swept to fixation in Africa from standing variation with very low initial frequency (0.1%) and a selection coefficient of 0.043 (95% CI:0.011-0.18), which is among the strongest estimated in the human genome. We estimate the TMRCA of the FY*A mutation in non-Africans to be 57 kya (95% CI: 48-65 kya) and infer that, prior to the sweep of FY*O, all three alleles were segregating in Africa, as highly diverged populations from Asia and ≠Khomani San hunter-gatherers share the same FY*A haplotypes. We test multiple models of admixture that may account for this observation and reject recent Asian or European admixture as the cause.
Collapse
Affiliation(s)
- Kimberly F. McManus
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Angela M. Taravella
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Brenna M. Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Carlos D. Bustamante
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Martin Sikora
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Centre for Geogenetics, Natural History Museum Denmark, Copenhagen, Denmark
| | - Omar E. Cornejo
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Biological Sciences, Washington State University, Pullman, washington, United States of America
| |
Collapse
|
49
|
Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations. Cell 2016; 167:643-656.e17. [PMID: 27768888 PMCID: PMC5075285 DOI: 10.1016/j.cell.2016.09.024] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/14/2016] [Accepted: 09/15/2016] [Indexed: 12/30/2022]
Abstract
Humans differ in the outcome that follows exposure to life-threatening pathogens, yet the extent of population differences in immune responses and their genetic and evolutionary determinants remain undefined. Here, we characterized, using RNA sequencing, the transcriptional response of primary monocytes from Africans and Europeans to bacterial and viral stimuli-ligands activating Toll-like receptor pathways (TLR1/2, TLR4, and TLR7/8) and influenza virus-and mapped expression quantitative trait loci (eQTLs). We identify numerous cis-eQTLs that contribute to the marked differences in immune responses detected within and between populations and a strong trans-eQTL hotspot at TLR1 that decreases expression of pro-inflammatory genes in Europeans only. We find that immune-responsive regulatory variants are enriched in population-specific signals of natural selection and show that admixture with Neandertals introduced regulatory variants into European genomes, affecting preferentially responses to viral challenges. Together, our study uncovers evolutionarily important determinants of differences in host immune responsiveness between human populations.
Collapse
|
50
|
Complex Ancient Genetic Structure and Cultural Transitions in Southern African Populations. Genetics 2016; 205:303-316. [PMID: 27838627 PMCID: PMC5223510 DOI: 10.1534/genetics.116.189209] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
The characterization of the structure of southern African populations has been the subject of numerous genetic, medical, linguistic, archaeological, and anthropological investigations. Current diversity in the subcontinent is the result of complex events of genetic admixture and cultural contact between early inhabitants and migrants that arrived in the region over the last 2000 years. Here, we analyze 1856 individuals from 91 populations, comprising novel and published genotype data, to characterize the genetic ancestry profiles of 631 individuals from 51 southern African populations. Combining both local ancestry and allele frequency based analyses, we identify a tripartite, ancient, Khoesan-related genetic structure. This structure correlates neither with linguistic affiliation nor subsistence strategy, but with geography, revealing the importance of isolation-by-distance dynamics in the area. Fine-mapping of these components in southern African populations reveals admixture and cultural reversion involving several Khoesan groups, and highlights that Bantu speakers and Coloured individuals have different mixtures of these ancient ancestries.
Collapse
|