1
|
Zheng Y, Chen Y, Meng X, Zhang L, Ma Y, Zhou R, Fu S, Chen H, Xuanyuan X, Jiang R, Hou P, Song X, Wang Y, Sun J, Zhang W, Li J, Liu Z, Zhang Z, Zeng H, He Y. FADD Functions as an Oncogene in Chr11q13.3-Amplified Head and Neck Squamous Cell Carcinoma. Cancer Res 2025; 85:1909-1927. [PMID: 40370064 DOI: 10.1158/0008-5472.can-24-2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/02/2024] [Accepted: 02/21/2025] [Indexed: 05/16/2025]
Abstract
Chromosomal 11q13.3 amplification is the most common gene copy-number variation event in head and neck squamous cell carcinoma (HNSCC) that corresponds with poor prognosis. Although cyclin D1, a G1/S phase cell-cycle regulatory protein at this locus, is considered as a key driver of malignant progression, further exploration is needed to develop more effective targets for cases with this amplification. Using CRISPR-based gene knockout screening of genes located in chr11q13.3, we found that loss of the gene encoding the Fas-associated death domain (FADD) protein, a well-recognized adapter to caspase-8 that induces cell apoptosis, significantly reduced cancer cell proliferation. FADD expression was elevated in chr11q13.3-amplified tumors and correlated with poor prognosis. RNA sequencing, mass spectrometry, and proteomics analyses revealed a direct relationship between FADD and the DNA helicase MCM5 in the S phase. FADD and cyclin D1 acted at different stages of the cell cycle to synergistically induce proliferation, and caspase-8 deficiency was required for the oncogenic activity of FADD. In a patient-derived xenograft model with chr11q13.3 amplification, combined administration of the DNA helicase complex inhibitor and CDK4/6 inhibitor effectively curtailed tumor growth. Overall, this study identified a nonclassic oncogenic role for FADD in mediating tumor progression in HNSCC and provided a feasible treatment option for patients with chr11q13.3 amplification. Significance: FADD promotes progression of tumors with chr11q13.3 amplification by binding to the DNA helicase complex, which can be targeted in combination with cyclin D1 as a viable therapeutic strategy for HNSCC patients.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yinan Chen
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Meng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Li Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanni Ma
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuiting Fu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Heng Chen
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinyang Xuanyuan
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Jiang
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcong Hou
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Song
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Jingjing Sun
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wuchang Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonglong Liu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Zeng
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue He
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Ni D, Wu J, Pan J, Liang Y, Xu Z, Yan Z, Xu K, Wei F. The value of a metabolic and immune-related gene signature and adjuvant therapeutic response in pancreatic cancer. Front Genet 2025; 15:1475378. [PMID: 39867576 PMCID: PMC11758928 DOI: 10.3389/fgene.2024.1475378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a dismal prognosis. Treatment outcomes exhibit substantial variability across patients, underscoring the urgent need for robust predictive models to effectively estimate survival probabilities and therapeutic responses in PDAC. Methods Metabolic and immune-related genes exhibiting differential expression were identified using the TCGA-PDAC and GTEx datasets. A genetic prognostic model was developed via univariable Cox regression analysis on a training cohort. Predictive accuracy was assessed using Kaplan-Meier (K-M) curves, calibration plots, and ROC curves. Additional analyses, including GSAE and immune cell infiltration studies, were conducted to explore relevant biological mechanisms and predict therapeutic efficacy. Results An 8-gene prognostic model (AK2, CXCL11, TYK2, ANGPT4, IL20RA, MET, ENPP6, and CA12) was established. Three genes (AK2, ENPP6, and CA12) were associated with metabolism, while the others were immune-related. Most genes correlated with poor prognosis. Validation in TCGA-PDAC and GSE57495 datasets demonstrated robust performance, with AUC values for 1-, 3-, and 5-year OS exceeding 0.7. The model also effectively predicted responses to adjuvant therapy. Conclusion This 8-gene signature enhances prognostic accuracy and therapeutic decision-making in PDAC, offering valuable insights for clinical applications and personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kequn Xu
- Department of Oncology, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Feifei Wei
- Department of Oncology, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
3
|
Liu C, Xu X, Sun G, Song C, Jiang S, Sun P, Tian J. Targeting DUSP26 to drive cardiac mitochondrial dynamics via FAK-ERK signaling in diabetic cardiomyopathy. Free Radic Biol Med 2024; 225:856-870. [PMID: 39510451 DOI: 10.1016/j.freeradbiomed.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a severe cardiac complication of diabetes mellitus, characterized by structural and functional myocardial abnormalities. The molecular mechanisms underlying DCM, particularly the role of dual-specificity phosphatase 26 (DUSP26), remain insufficiently understood. Our study reveals that DUSP26 expression is markedly downregulated in the cardiomyocytes of diabetic db/db mice and under glucolipotoxic stress. Overexpression of DUSP26 in db/db mice significantly improved cardiac function, as demonstrated by enhanced left ventricular ejection fraction and fractional shortening, alongside reduced myocardial fibrosis and hypertrophy. Mitochondrial analysis indicated that DUSP26 overexpression led to increased ATP production, enhanced mitochondrial fusion, and improved structural integrity. In addition, lipid accumulation was reduced, reflecting enhanced metabolic function. We also discovered that DUSP26 is necessary for regulating the focal adhesion kinase (FAK)-extracellular signal-regulated kinase (ERK) pathway, with pharmacological activation of FAK partially offsetting the benefits of DUSP26 overexpression in rescue experiments. These findings underscore the pivotal role of DUSP26 as a potential therapeutic target, highlighting the importance of developing targeted molecular interventions to address diabetic cardiac complications.
Collapse
MESH Headings
- Animals
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/genetics
- Mice
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Dual-Specificity Phosphatases/metabolism
- Dual-Specificity Phosphatases/genetics
- Mitochondrial Dynamics
- MAP Kinase Signaling System
- Focal Adhesion Kinase 1/metabolism
- Focal Adhesion Kinase 1/genetics
- Male
- Humans
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/complications
- Mitogen-Activated Protein Kinase Phosphatases/metabolism
- Mitogen-Activated Protein Kinase Phosphatases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Extracellular Signal-Regulated MAP Kinases/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Chong Liu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China
| | - Xiangli Xu
- Department of Ultrasound, The Second Hospital of Harbin City, NO. 38, Weixing Road, Daowai District, Harbin, 150086, China
| | - Guiming Sun
- Department of Ultrasound, Harbin Traditional Chinese Medicine Hospital, NO. 2, Xinglin Road, Daoli District, Harbin, 150086, China
| | - Chengchao Song
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China
| | - Shuangquan Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China.
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China.
| |
Collapse
|
4
|
Herrera-Quintana L, Vázquez-Lorente H, Silva RCMC, Olivares-Arancibia J, Reyes-Amigo T, Pires BRB, Plaza-Diaz J. The Role of the Microbiome and of Radiotherapy-Derived Metabolites in Breast Cancer. Cancers (Basel) 2024; 16:3671. [PMID: 39518108 PMCID: PMC11545256 DOI: 10.3390/cancers16213671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiome has emerged as a crucial player in modulating cancer therapies, including radiotherapy. In the case of breast cancer, the interplay between the microbiome and radiotherapy-derived metabolites may enhance therapeutic outcomes and minimize adverse effects. In this review, we explore the bidirectional relationship between the gut microbiome and breast cancer. We explain how gut microbiome composition influences cancer progression and treatment response, and how breast cancer and its treatments influence microbiome composition. A dual role for radiotherapy-derived metabolites is explored in this article, highlighting both their therapeutic benefits and potential hazards. By integrating genomics, metabolomics, and bioinformatics tools, we present a comprehensive overview of these interactions. The study provides real-world insight through case studies and clinical trials, while therapeutic innovations such as probiotics, and dietary interventions are examined for their potential to modulate the microbiome and enhance treatment effectiveness. Moreover, ethical considerations and patient perspectives are discussed, ensuring a comprehensive understanding of the subject. Towards revolutionizing treatment strategies and improving patient outcomes, the review concludes with future research directions. It also envisions integrating microbiome and metabolite research into personalized breast cancer therapy.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | | | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Tomás Reyes-Amigo
- Physical Activity Sciences Observatory (OCAF), Department of Physical Activity Sciences, Universidad de Playa Ancha, Valparaíso 2360072, Chile;
| | - Bruno Ricardo Barreto Pires
- Biometry and Biophysics Department, Institute of Biology Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, RJ, Brazil;
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- School of Health Sciences, Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| |
Collapse
|
5
|
Huang RH, Zeng QM, Jiang B, Xu G, Xiao GC, Xia W, Liao YF, Wu YT, Zou JR, Qian B, Xiao RH, Yuan YH, Zhang GX, Zou XF. Overexpression of DUSP26 gene suppressed the proliferation, migration, and invasion of human prostate cancer cells. Exp Cell Res 2024; 442:114231. [PMID: 39222869 DOI: 10.1016/j.yexcr.2024.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Prostate cancer (PCa) is threatening the health of millions of people, the pathological mechanism of prostate cancer has not been fully elaborated, and needs to be further explored. Here, we found that the expression of DUSP26 is dramatically suppressed, and a positive connection of its expression with PCa prognosis was also observed. In vitro, overexpression of DUSP26 significantly inhibited the proliferative, migrative, and invasive capacities of PC3 cells, DUSP26 silencing presented opposite results. Tumor formation experiments in subcutaneous nude mice demonstrated that DUSP26 overexpression could significantly suppress PC3 growth in vivo. Moreover, the mechanism of DUSP26 gene and PCa was discovered by RNA-Seq analysis. We found that DUSP26 significantly inhibited MAPK signaling pathway activation, and further experiments displayed that DUSP26 could impair TAK1, p38, and JNK phosphorylation. Interestingly, treatment with the TAK1 inhibitor (iTAK1) attenuated the effect of DUSP26 on PC3 cells. Together, these results suggested that DUSP26 may serve as a novel therapeutic target for PC3 cell type PCa, the underlying mechanism may be through TAK1-JNK/p38 signaling.
Collapse
Affiliation(s)
- Ruo-Hui Huang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Medical College of Soochow University, Suzhou, Jiangsu, 215006, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China.
| | - Qing-Ming Zeng
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Bo Jiang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Gang Xu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Guan-Cheng Xiao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Wei Xia
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Yun-Feng Liao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Yu-Ting Wu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Jun-Rong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Ri-Hai Xiao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Yuan-Hu Yuan
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Guo-Xi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China
| | - Xiao-Feng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China.
| |
Collapse
|
6
|
Torrecillas-Baena B, Camacho-Cardenosa M, Quesada-Gómez JM, Moreno-Moreno P, Dorado G, Gálvez-Moreno MÁ, Casado-Díaz A. Non-Specific Inhibition of Dipeptidyl Peptidases 8/9 by Dipeptidyl Peptidase 4 Inhibitors Negatively Affects Mesenchymal Stem Cell Differentiation. J Clin Med 2023; 12:4632. [PMID: 37510747 PMCID: PMC10380885 DOI: 10.3390/jcm12144632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
DPP4 may play a relevant role in MSC differentiation into osteoblasts or adipocytes. Dipeptidyl peptidase 4 (DPP4) inhibitors (DPP4i), such as sitagliptin and vildagliptin, are used as antidiabetic drugs. However, vildagliptin is not a specific DPP4i and also inhibits DPP8/9, which is involved in energy metabolism and immune regulation. The aim of this study is to evaluate how sitagliptin, vildagliptin or 1G244 (a DPP8/9 specific inhibitor) may influence cell viability, as well as osteogenic and adipogenic differentiation in human mesenchymal stem cells (MSC). Viability, apoptosis, osteoblastogenesis and adipogenesis markers, as well as protein synthesis of β-catenin, were studied in MSC cultures induced to differentiate into osteoblasts or adipocytes in the presence or absence of sitagliptin, vildagliptin or 1G244. The two tested DPP4i did not affect MSC viability, but 1G244 significantly decreased it in MSC and osteoblast-induced cells. Additionally, 1G244 and vildagliptin inhibited osteogenesis and adipogenesis, unlike sitagliptin. Therefore, inhibition of DPP4 did not affect MSC viability and differentiation, whereas inhibition of DPP8/9 negatively affected MSC. To the best of our knowledge, these results show for the first time that DPP8/9 have an important role in the viability and differentiation of human MSC. This data can be considered for human clinical use of drugs affecting DPP8/9 activity.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Paloma Moreno-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Gabriel Dorado
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
- Departamento Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 14004 Córdoba, Spain
| |
Collapse
|
7
|
Liu Z, Tang C, Teng X, Mohamed ZA, Fan J. Adenylate kinase 2 is a biomarker related to the prognosis of glioma and the immune microenvironment. J Clin Lab Anal 2023:e24892. [PMID: 37161605 DOI: 10.1002/jcla.24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Among the brain and the other central nervous system, gliomas are the most prevalent malignant primary tumors. Adenylate kinase 2 (AK2) is generally thought to be crucial for energy metabolism and signal transduction. Several disorders are correlated with its aberrant expression. However, it is unclear what functions AK2 might have in gliomas. METHODS We investigated the relationship between AK2 expression and clinicopathological features of glioma patients using information obtained from public databases and patient tissue microarrays. AK2 knockdown glioma cell lines were constructed to explore how AK2 affects glioma progress. The association between AK2 and the immune microenvironment in gliomas was evaluated by multiple methods. RESULTS AK2 expression was higher in glioma samples than in normal brain tissues. Older patients and those with higher-grade, IDH-wildtype, 1p/19q codeletion-free, and MGMT-unmethylated tumors had higher levels of AK2 expression, linking to poor outcomes. Thus, gliomas with high AK2 expression have a worse prognosis. GO and KEGG analyses demonstrated that AK2 was relevant to cell division and DNA replication. Downregulation of AK2 suppresses cell proliferation, migration, and colony formation of glioma cell lines in vitro. AK2 expression was positively connected to the inhibitory immune checkpoints, also correlating with immune infiltration degree. CONCLUSIONS In this study, AK2 may be a potential biological target for more precise molecular therapy of gliomas, since its high expression is associated with worse outcomes and a more malignant immune microenvironment.
Collapse
Affiliation(s)
- Zhichen Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunjiao Tang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu Teng
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Jingyi Fan
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Kikuchi S, Wada A, Kamihara Y, Okazaki K, Jawaid P, Rehman MU, Kobayashi E, Susukida T, Minemura T, Nabe Y, Iwao N, Ozawa T, Hatano R, Yamada M, Kishi H, Matsuya Y, Mizuguchi M, Hayakawa Y, Dang NH, Sakamoto Y, Morimoto C, Sato T. DPP8 Selective Inhibitor Tominostat as a Novel and Broad-Spectrum Anticancer Agent against Hematological Malignancies. Cells 2023; 12:cells12071100. [PMID: 37048172 PMCID: PMC10093441 DOI: 10.3390/cells12071100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
DPP8/9 inhibition induces either pyroptotic or apoptotic cell death in hematological malignancies. We previously reported that treatment with the DPP8/9 inhibitor 1G244 resulted in apoptotic cell death in myeloma, and our current study further evaluates the mechanism of action of 1G244 in different blood cancer cell lines. Specifically, 1G244 inhibited DPP9 to induce GSDMD-mediated-pyroptosis at low concentrations and inhibited DPP8 to cause caspase-3-mediated-apoptosis at high concentrations. HCK expression is necessary to induce susceptibility to pyroptosis but does not participate in the induction of apoptosis. To further characterize this DPP8-dependent broad-spectrum apoptosis induction effect, we evaluated the potential antineoplastic role for an analog of 1G244 with higher DPP8 selectivity, tominostat (also known as 12 m). In vitro studies demonstrated that the cytotoxic effect of 1G244 at high concentrations was enhanced in tominostat. Meanwhile, in vivo work showed tominostat exhibited antitumor activity that was more effective on a cell line sensitive to 1G244, and at higher doses, it was also effective on a cell line resistant to 1G244. Importantly, the weight loss morbidity associated with increasing doses of 1G244 was not observed with tominostat. These results suggest the possible development of novel drugs with antineoplastic activity against selected hematological malignancies by refining and increasing the DPP8 selectivity of tominostat.
Collapse
Affiliation(s)
- Shohei Kikuchi
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Akinori Wada
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yusuke Kamihara
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kosuke Okazaki
- Center for Clinical Research, Toyama University Hospital, 2630 Sugitani, Toyama 930-0194, Japan
| | - Paras Jawaid
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mati Ur Rehman
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi 74800, Pakistan
| | - Eiji Kobayashi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takeshi Susukida
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tomoki Minemura
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshimi Nabe
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Noriaki Iwao
- Department of Hematology, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni City, Shizuoka 410-2295, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mitsugu Yamada
- JEM Utilization Center Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba-shi 305-8505, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuji Matsuya
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nam H Dang
- Division of Hematology/Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Yasumitsu Sakamoto
- School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsutomu Sato
- Department of Hematology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
9
|
Zhao H, Lv J, Meng L, Lv J, Li Z. Dual-specificity phosphatase 26-dificient neurons are susceptible to oxygen-glucose deprivation/reoxygenation-evoked apoptosis and proinflammatory response by affecting the TAK1-medaited JNK/P38 MAPK pathway. Int Immunopharmacol 2023; 117:109980. [PMID: 37012870 DOI: 10.1016/j.intimp.2023.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Dual-specificity phosphatase 26 (DUSP26) is linked to a broad range of human disorders as it affects numerous signaling cascades. However, the involvement of DUSP26 in ischemic stroke has not been explored. Here, we investigated DUSP26 as a key mediator of oxygen-glucose deprivation/reoxygenation (OGD/R)-associated neuronal injury, an in vitro model for investigating ischemic stroke. A decline in DUSP26 occurred in neurons suffering from OGD/R. A deficiency in DUSP26 rendered neurons more susceptible to OGD/R by aggravating neuronal apoptosis and inflammation, while the overexpression of DUSP26 blocked OGD/R-evoked neuronal apoptosis and inflammation. Mechanistically, enhanced phosphorylation of transforming growth factor-β-activated kinase 1 (TAK1), c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (MAPK) was evidenced in DUSP26-deficient neurons suffering from OGD/R, whereas the opposite effects were observed in DUSP26-overexpressed neurons. Moreover, the inhibition of TAK1 abolished the DUSP26-deficiency-elicited activation of JNK and P38 MAPK and exhibited anti-OGD/R injury effects in DUSP26-deficiency neurons. Results from these experiments show that DUSP26 is essential for neurons in defending against OGD/R insult, while neuroprotection is achieved by restraining the TAK1-mediated JNK/P38 MAPK pathway. Therefore, DUSP26 may serve as a therapeutic target for the management of ischemic stroke.
Collapse
|
10
|
Regulation of Adenine Nucleotide Metabolism by Adenylate Kinase Isozymes: Physiological Roles and Diseases. Int J Mol Sci 2023; 24:ijms24065561. [PMID: 36982634 PMCID: PMC10056885 DOI: 10.3390/ijms24065561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Adenylate kinase (AK) regulates adenine nucleotide metabolism and catalyzes the ATP + AMP ⇌ 2ADP reaction in a wide range of organisms and bacteria. AKs regulate adenine nucleotide ratios in different intracellular compartments and maintain the homeostasis of the intracellular nucleotide metabolism necessary for growth, differentiation, and motility. To date, nine isozymes have been identified and their functions have been analyzed. Moreover, the dynamics of the intracellular energy metabolism, diseases caused by AK mutations, the relationship with carcinogenesis, and circadian rhythms have recently been reported. This article summarizes the current knowledge regarding the physiological roles of AK isozymes in different diseases. In particular, this review focused on the symptoms caused by mutated AK isozymes in humans and phenotypic changes arising from altered gene expression in animal models. The future analysis of intracellular, extracellular, and intercellular energy metabolism with a focus on AK will aid in a wide range of new therapeutic approaches for various diseases, including cancer, lifestyle-related diseases, and aging.
Collapse
|
11
|
Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, Qiu S, Zhou J, Fan J, Huang H, Gao Q. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab 2023; 5:61-79. [PMID: 36593272 DOI: 10.1038/s42255-022-00710-w] [Citation(s) in RCA: 241] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/11/2022] [Indexed: 01/03/2023]
Abstract
Enhanced glycolysis and accumulation of lactate is a common feature in various types of cancer. Intracellular lactate drives a recently described type of posttranslational modification, lysine lactylation (Kla), on core histones. However, the impact of lactylation on biological processes of tumour cells remains largely unknown. Here we show a global lactylome profiling on a prospectively collected hepatitis B virus-related hepatocellular carcinoma (HCC) cohort. Integrative lactylome and proteome analysis of the tumours and adjacent livers identifies 9,275 Kla sites, with 9,256 sites on non-histone proteins, indicating that Kla is a prevalent modification beyond histone proteins and transcriptional regulation. Notably, Kla preferentially affects enzymes involved in metabolic pathways, including the tricarboxylic acid cycle, and carbohydrate, amino acid, fatty acid and nucleotide metabolism. We further verify that lactylation at K28 inhibits the function of adenylate kinase 2, facilitating the proliferation and metastasis of HCC cells. Our study therefore reveals that Kla plays an important role in regulating cellular metabolism and may contribute to HCC progression.
Collapse
Affiliation(s)
- Zijian Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cong Yan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqiang Ma
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Panpan Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangli Cai
- Medical Department, Burning Rock Biotech, Guangdong, China
| | - Xia Shen
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
The Effect of Heterozygous Mutation of Adenylate Kinase 2 Gene on Neutrophil Differentiation. Int J Mol Sci 2022; 23:ijms232416089. [PMID: 36555730 PMCID: PMC9786915 DOI: 10.3390/ijms232416089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial ATP production plays an important role in most cellular activities, including growth and differentiation. Previously we reported that Adenylate kinase 2 (AK2) is the main ADP supplier in the mitochondrial intermembrane space in hematopoietic cells, especially in the bone marrow. AK2 is crucial for the production of neutrophils and T cells, and its deficiency causes reticular dysgenesis. However, the relationship between ADP supply by AK2 and neutrophil differentiation remains unclear. In this study, we used CRISPR/Cas9 technology to establish two heterozygous AK2 knock-out HL-60 clones as models for reticular dysgenesis. Their AK2 activities were about half that in the wild-type (WT). Furthermore, neutrophil differentiation was impaired in one of the clones. In silico analysis predicted that the obtained mutations might cause a structural change in AK2. Time course microarray analysis of the WT and mutants revealed that similar gene clusters responded to all-trans retinoic acid treatment, but their expression was lower in the mutants than in WT. Application of fructose partially restored neutrophil differentiation in the heterozygous knock-out HL-60 clone after all-trans retinoic acid treatment. Collectively, our study suggests that the mutation of N-terminal region in AK2 might play a role in AK2-dependent neutrophil differentiation and fructose could be used to treat AK2 deficiency.
Collapse
|
13
|
Abstract
Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| | - Detlev Boison
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland (G.G.Y.); Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, New Jersey (D.B.); and Rutgers Brain Health Institute, Piscataway, New Jersey (D.B.)
| |
Collapse
|
14
|
Klepinin A, Miller S, Reile I, Puurand M, Rebane-Klemm E, Klepinina L, Vija H, Zhang S, Terzic A, Dzeja P, Kaambre T. Stable Isotope Tracing Uncovers Reduced γ/β-ATP Turnover and Metabolic Flux Through Mitochondrial-Linked Phosphotransfer Circuits in Aggressive Breast Cancer Cells. Front Oncol 2022; 12:892195. [PMID: 35712500 PMCID: PMC9194814 DOI: 10.3389/fonc.2022.892195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Changes in dynamics of ATP γ- and β-phosphoryl turnover and metabolic flux through phosphotransfer pathways in cancer cells are still unknown. Using 18O phosphometabolite tagging technology, we have discovered phosphotransfer dynamics in three breast cancer cell lines: MCF7 (non-aggressive), MDA-MB-231 (aggressive), and MCF10A (control). Contrary to high intracellular ATP levels, the 18O labeling method revealed a decreased γ- and β-ATP turnover in both breast cancer cells, compared to control. Lower β-ATP[18O] turnover indicates decreased adenylate kinase (AK) flux. Aggressive cancer cells had also reduced fluxes through hexokinase (HK) G-6-P[18O], creatine kinase (CK) [CrP[18O], and mitochondrial G-3-P[18O] substrate shuttle. Decreased CK metabolic flux was linked to the downregulation of mitochondrial MTCK1A in breast cancer cells. Despite the decreased overall phosphoryl flux, overexpression of HK2, AK2, and AK6 isoforms within cell compartments could promote aggressive breast cancer growth.
Collapse
Affiliation(s)
- Aleksandr Klepinin
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Aleksandr Klepinin, ; Tuuli Kaambre,
| | - Sten Miller
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Indrek Reile
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Ljudmila Klepinina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Song Zhang
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Andre Terzic
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Petras Dzeja
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- *Correspondence: Aleksandr Klepinin, ; Tuuli Kaambre,
| |
Collapse
|
15
|
Kim H, Jeong M, Na DH, Ryu SH, Jeong EI, Jung K, Kang J, Lee HJ, Sim T, Yu DY, Yu HC, Cho BH, Jung YK. AK2 is an AMP-sensing negative regulator of BRAF in tumorigenesis. Cell Death Dis 2022; 13:469. [PMID: 35585049 PMCID: PMC9117275 DOI: 10.1038/s41419-022-04921-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
The RAS-BRAF signaling is a major pathway of cell proliferation and their mutations are frequently found in human cancers. Adenylate kinase 2 (AK2), which modulates balance of adenine nucleotide pool, has been implicated in cell death and cell proliferation independently of its enzyme activity. Recently, the role of AK2 in tumorigenesis was in part elucidated in some cancer types including lung adenocarcinoma and breast cancer, but the underlying mechanism is not clear. Here, we show that AK2 is a BRAF-suppressor. In in vitro assays and cell model, AK2 interacted with BRAF and inhibited BRAF activity and downstream ERK phosphorylation. Energy-deprived conditions in cell model and the addition of AMP to cell lysates strengthened the AK2-BRAF interaction, suggesting that AK2 is involved in the regulation of BRAF activity in response to cell metabolic state. AMP facilitated the AK2-BRAF complex formation through binding to AK2. In a panel of HCC cell lines, AK2 expression was inversely correlated with ERK/MAPK activation, and AK2-knockdown or -knockout increased BRAF activity and promoted cell proliferation. Tumors from HCC patients showed low-AK2 protein expression and increased ERK activation compared to non-tumor tissues and the downregulation of AK2 was also verified by two microarray datasets (TCGA-LIHC and GSE14520). Moreover, AK2/BRAF interaction was abrogated by RAS activation in in vitro assay and cell model and in a mouse model of HRASG12V-driven HCC, and AK2 ablation promoted tumor growth and BRAF activity. AK2 also bound to BRAF inhibitor-insensitive BRAF mutants and attenuated their activities. These findings indicate that AK2 monitoring cellular AMP levels is indeed a negative regulator of BRAF, linking the metabolic status to tumor growth.
Collapse
Affiliation(s)
- Hyunjoo Kim
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Muhah Jeong
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Do-Hyeong Na
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Shin-Hyeon Ryu
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Eun Il Jeong
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Kwangmin Jung
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Jaemin Kang
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Ho-June Lee
- grid.418158.10000 0004 0534 4718Departments of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080 USA
| | - Taebo Sim
- grid.35541.360000000121053345Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, 02792 Korea
| | - Dae-Yeul Yu
- grid.249967.70000 0004 0636 3099Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hee Chul Yu
- grid.411545.00000 0004 0470 4320Department of Surgery, Chonbuk National University Medical School, Jeonju, 561-180 Korea
| | - Baik-Hwan Cho
- grid.411545.00000 0004 0470 4320Department of Surgery, Chonbuk National University Medical School, Jeonju, 561-180 Korea
| | - Yong-Keun Jung
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
16
|
Eroglu B, Jin X, Deane S, Öztürk B, Ross OA, Moskophidis D, Mivechi NF. Dusp26 phosphatase regulates mitochondrial respiration and oxidative stress and protects neuronal cell death. Cell Mol Life Sci 2022; 79:198. [PMID: 35313355 PMCID: PMC10601927 DOI: 10.1007/s00018-022-04162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 11/29/2022]
Abstract
The dual specificity protein phosphatases (Dusps) control dephosphorylation of mitogen-activated protein kinases (MAPKs) as well as other substrates. Here, we report that Dusp26, which is highly expressed in neuroblastoma cells and primary neurons is targeted to the mitochondrial outer membrane via its NH2-terminal mitochondrial targeting sequence. Loss of Dusp26 has a significant impact on mitochondrial function that is associated with increased levels of reactive oxygen species (ROS), reduction in ATP generation, reduction in mitochondria motility and release of mitochondrial HtrA2 protease into the cytoplasm. The mitochondrial dysregulation in dusp26-deficient neuroblastoma cells leads to the inhibition of cell proliferation and cell death. In vivo, Dusp26 is highly expressed in neurons in different brain regions, including cortex and midbrain (MB). Ablation of Dusp26 in mouse model leads to dopaminergic (DA) neuronal cell loss in the substantia nigra par compacta (SNpc), inflammatory response in MB and striatum, and phenotypes that are normally associated with Neurodegenerative diseases. Consistent with the data from our mouse model, Dusp26 expressing cells are significantly reduced in the SNpc of Parkinson's Disease patients. The underlying mechanism of DA neuronal death is that loss of Dusp26 in neurons increases mitochondrial ROS and concurrent activation of MAPK/p38 signaling pathway and inflammatory response. Our results suggest that regulation of mitochondrial-associated protein phosphorylation is essential for the maintenance of mitochondrial homeostasis and dysregulation of this process may contribute to the initiation and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Binnur Eroglu
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
| | - Xiongjie Jin
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
| | - Sadiki Deane
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Bahadır Öztürk
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
- Medical Biochemistry Department, Selcuk University Medical Faculty, Konya, Turkey
| | - Owen A Ross
- Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
- Department of Medicine, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
- Departments of Radiation Oncology, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
- Charlie Norwood VAMC, One Freedom Way, Augusta, GA, 30904, USA.
| |
Collapse
|
17
|
Zhang J, Gao X, Cai G, Wang Y, Li J, Du H, Wang R, Zhang H, Huang J. An Adenylate Kinase OsAK3 Involves Brassinosteroid Signaling and Grain Length in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2021; 14:105. [PMID: 34962599 PMCID: PMC8714616 DOI: 10.1186/s12284-021-00546-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/17/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Grain size is one of the major determinants of cereal crop yield. As a class of plant polyhydroxysteroids, brassinosteroids (BRs) play essential roles in the regulation of grain size and plant architecture in rice. In a previous research, we cloned qGL3/OsPPKL1 encoding a protein phosphatase with Kelch-like repeat domains, which negatively regulates BR signaling and grain length in rice. RESULTS Here, we screened qGL3-interacting proteins (GIPs) via yeast two-hybrid assay and analyzed the phenotypes of the T-DNA insertion mutants of GIPs. Among these mutants, mutant osak3 presents shorter grain length and dwarfing phenotype. OsAK3 encodes an adenylate kinase, which regulates grain size by controlling cell expansion of rice spikelet glume. Overexpression of OsAK3 resulted in longer grain length. OsAK3 interacts with qGL3 in vivo and in vitro. Lamina inclination, coleoptile elongation and root inhibition experiments showed that the osak3 mutant was less sensitive to exogenous brassinolide (BL) treatment. The transcriptional level of OsAK3 was up-regulated under BL induction. In addition, RNA-Seq data indicate that OsAK3 is involved in a variety of biological processes that regulate BR signaling and grain development in rice. CONCLUSIONS Our study reveals a novel BR signaling component OsAK3 in the regulation of grain length, and provides novel clues for uncovering the potential functions of OsAK3 in rice growth and development.
Collapse
Affiliation(s)
- Jiaqi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Xiuying Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Guang Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Yuji Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Jianbo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Huaying Du
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Ruqin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China.
| |
Collapse
|
18
|
Cai F, Xu H, Zha D, Wang X, Li P, Yu S, Yao Y, Chang X, Chen J, Lu Y, Hua ZC, Zhuang H. AK2 Promotes the Migration and Invasion of Lung Adenocarcinoma by Activating TGF-β/Smad Pathway In vitro and In vivo. Front Pharmacol 2021; 12:714365. [PMID: 34630090 PMCID: PMC8493805 DOI: 10.3389/fphar.2021.714365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Adenylate kinase 2 (AK2) is a wide-spread and highly conserved protein kinase whose main function is to catalyze the exchange of nucleotide phosphate groups. In this study, we showed that AK2 regulated tumor cell metastasis in lung adenocarcinoma. Positive expression of AK2 is related to lung adenocarcinoma progression and poor survival of patients. Knockdown or knockout of AK2 inhibited, while overexpression of AK2 promoted, human lung adenocarcinoma cell migration and invasion ability. Differential proteomics results showed that AK2 might be closely related to epithelial-mesenchymal transition (EMT). Further research indicated that AK2 regulated EMT occurrence through the Smad-dependent classical signaling pathways as measured by western blot and qPCR assays. Additionally, in vivo experiments showed that AK2-knockout in human lung tumor cells reduced their EMT-like features and formed fewer metastatic nodules both in liver and in lung tissues. In conclusion, we uncover a cancer metastasis-promoting role for AK2 and provide a rationale for targeting AK2 as a potential therapeutic approach for lung cancer.
Collapse
Affiliation(s)
- Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Huangru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Daolong Zha
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Ping Li
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Shihui Yu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yingying Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Jia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yanyan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Wang Y, Han D, Zhou T, Chen C, Cao H, Zhang JZ, Ma N, Liu C, Song M, Shi J, Jin X, Cao F, Dong N. DUSP26 induces aortic valve calcification by antagonizing MDM2-mediated ubiquitination of DPP4 in human valvular interstitial cells. Eur Heart J 2021; 42:2935-2951. [PMID: 34179958 DOI: 10.1093/eurheartj/ehab316] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/21/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
AIMS The morbidity and mortality rates of calcific aortic valve disease (CAVD) remain high while treatment options are limited. Here, we evaluated the role and therapeutic value of dual-specificity phosphatase 26 (DUSP26) in CAVD. METHODS AND RESULTS Microarray profiling of human calcific aortic valves and normal controls demonstrated that DUSP26 was significantly up-regulated in calcific aortic valves. ApoE-/- mice fed a normal diet or a high cholesterol diet (HCD) were infected with adeno-associated virus serotype 2 carrying DUSP26 short-hairpin RNA to examine the effects of DUSP26 silencing on aortic valve calcification. DUSP26 silencing ameliorated aortic valve calcification in HCD-treated ApoE-/- mice, as evidenced by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased peak transvalvular jet velocity and mean transvalvular pressure gradient, as well as increased aortic valve area), and decreased levels of osteogenic markers (Runx2, osterix, and osteocalcin) in the aortic valves. These results were confirmed in osteogenic medium-induced human valvular interstitial cells. Immunoprecipitation, liquid chromatography-tandem mass spectrometry, and functional assays revealed that dipeptidyl peptidase-4 (DPP4) interacted with DUSP26 to mediate the procalcific effects of DUSP26. High N6-methyladenosine levels up-regulated DUSP26 in CAVD; in turn, DUSP26 activated DPP4 by antagonizing mouse double minute 2-mediated ubiquitination and degradation of DPP4, thereby promoting CAVD progression. CONCLUSION DUSP26 promotes aortic valve calcification by inhibiting DPP4 degradation. Our findings identify a previously unrecognized mechanism of DPP4 up-regulation in CAVD, suggesting that DUSP26 silencing or inhibition is a viable therapeutic strategy to impede CAVD progression.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Dong Han
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Cheng Chen
- Institute of Geriatrics, National Clinical Research Center for Geriatrics Disease, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Joe Z Zhang
- Stanford Cardiovascular Institute, Stanford School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Ning Ma
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 96# Xingdao South Road, Haizhu District, Guangzhou, Guangdong 510320, China
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Moshi Song
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 1# Beichen West Road, Beijing 100101, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, 139# Renmin middle road, Changsha, Hunan 410011, China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, 28# Fuxing Road, Beijing 100853, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277# Jiefang Avenue, Wuhan, Hubei 430022, China
| |
Collapse
|
20
|
Adenylate kinase 2 expression and addiction in T-ALL. Blood Adv 2021; 5:700-710. [PMID: 33560378 DOI: 10.1182/bloodadvances.2020002700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) represents the malignant expansion of immature T cells blocked in their differentiation. T-ALL is still associated with a poor prognosis, mainly related to occurrence of relapse or refractory disease. A critical medical need therefore exists for new therapies to improve the disease prognosis. Adenylate kinase 2 (AK2) is a mitochondrial kinase involved in adenine nucleotide homeostasis recently reported as essential in normal T-cell development, as defective AK2 signaling pathway results in a severe combined immunodeficiency with a complete absence of T-cell differentiation. In this study, we show that AK2 is constitutively expressed in T-ALL to varying levels, irrespective of the stage of maturation arrest or the underlying oncogenetic features. T-ALL cell lines and patient T-ALL-derived xenografts present addiction to AK2, whereas B-cell precursor ALL cells do not. Indeed, AK2 knockdown leads to early and massive apoptosis of T-ALL cells that could not be rescued by the cytosolic isoform AK1. Mechanistically, AK2 depletion results in mitochondrial dysfunction marked by early mitochondrial depolarization and reactive oxygen species production, together with the depletion of antiapoptotic molecules (BCL-2 and BCL-XL). Finally, T-ALL exposure to a BCL-2 inhibitor (ABT-199 [venetoclax]) significantly enhances the cytotoxic effects of AK2 depletion. We also show that AK2 depletion disrupts the oxidative phosphorylation pathway. Combined with pharmaceutical inhibition of glycolysis, AK2 silencing prevents T-ALL metabolic adaptation, resulting in dramatic apoptosis. Altogether, we pinpoint AK2 as a genuine and promising therapeutic target in T-ALL.
Collapse
|
21
|
Chen J, Zeng Y, Wu R, Xuan Y, Jiang M, Teng H. Decreased DUSP26 Expression Promotes Malignant Behavior in Glioblastoma Cells via Deregulation of MAPK and Akt Signaling Pathway. Front Oncol 2021; 11:622826. [PMID: 33718185 PMCID: PMC7947697 DOI: 10.3389/fonc.2021.622826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/19/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose Dual-specificity protein phosphatases 26 (DUSP26) is a recently identified phosphatase enzyme that regulates MAPK and Akt signaling pathways. The role of DUSP26 in the development and prognosis of high-grade gliomas (HGGs) and primary glioblastoma (GBM) has remained unclear and was the focus of this study. Materials and Methods The prognostic value of DUSP26 was assessed using retrospective analyses using online data sets and tissue microarray of HGGs. U251 and U87 cells modified to overexpress DUSP26 were utilized to study the role of DUSP26 in cell growth, migration, and cell apoptosis analyzed by CCK-8 assay, clonogenic, transwell migration, and TUNEL, respectively. The phosphorylation of proteins in MAPK and Akt signaling pathways was assayed by Western blot and immunofluorescence assays. Results Analyses using available online data sets and tissue microarray showed that DUSP26 is down-regulated in high-grade gliomas and GBM as compared to normal brain. Stratification of glioma patients based on DUSP26 expression level showed an inverse correlation between DUSP26 expression and patient survival. At the cellular level, DUSP26 overexpression led to decreased cell proliferation, migration, and senescence in U251 and U87 cells, whereas apoptosis was increased as compared to corresponding controls. Interestingly, the biologic effects of DUSP26 overexpression were associated with the dephosphorylation of proteins in the MAPK and Akt signaling pathways. Conclusions These findings suggest that the loss of DUSP26 expression, seen in a subset of high-grade gliomas and GBM patients, facilitates malignant behavior; and with inverse correlation between its expression levels with patient survival. DUSP26 can serve as an independent prognostic factor.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuecan Zeng
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xuan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Teng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Zhang S, Yamada S, Park S, Klepinin A, Kaambre T, Terzic A, Dzeja P. Adenylate kinase AK2 isoform integral in embryo and adult heart homeostasis. Biochem Biophys Res Commun 2021; 546:59-64. [PMID: 33571905 DOI: 10.1016/j.bbrc.2021.01.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
Adenylate kinase2 (AK2) catalyzes trans-compartmental nucleotide exchange, but the functional implications of this mitochondrial intermembrane isoform is only partially understood. Here, transgenic AK2-/- null homozygosity was lethal early in embryo, indicating a mandatory role for intact AK2 in utero development. In the adult, conditional organ-specific ablation of AK2 precipitated abrupt heart failure with Krebs cycle and glycolytic metabolite buildup, suggesting a vital contribution to energy demanding cardiac performance. Depressed pump function recovered to pre-deletion levels overtime, suggestive of an adaptive response. Compensatory upregulation of phosphotransferase AK1, AK3, AK4 isozymes, creatine kinase isoforms, and hexokinase, along with remodeling of cell cycle/growth genes and mitochondrial ultrastructure supported organ rescue. Taken together, the requirement of AK2 in early embryonic stages, and the immediate collapse of heart performance in the AK2-deficient postnatal state underscore a primordial function of the AK2 isoform. Unsalvageable in embryo, loss of AK2 in the adult heart was recoverable, underscoring an AK2-integrated bioenergetics system with innate plasticity to maintain homeostasis on demand.
Collapse
Affiliation(s)
- Song Zhang
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Satsuki Yamada
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA; Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aleksandr Klepinin
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA; Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, 12618, Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, 12618, Estonia
| | - Andre Terzic
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Petras Dzeja
- Department of Cardiovascular Medicine and Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
23
|
Thompson EM, Stoker AW. A Review of DUSP26: Structure, Regulation and Relevance in Human Disease. Int J Mol Sci 2021; 22:ijms22020776. [PMID: 33466673 PMCID: PMC7828806 DOI: 10.3390/ijms22020776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
Dual specificity phosphatases (DUSPs) play a crucial role in the regulation of intracellular signalling pathways, which in turn influence a broad range of physiological processes. DUSP malfunction is increasingly observed in a broad range of human diseases due to deregulation of key pathways, most notably the MAP kinase (MAPK) cascades. Dual specificity phosphatase 26 (DUSP26) is an atypical DUSP with a range of physiological substrates including the MAPKs. The residues that govern DUSP26 substrate specificity are yet to be determined; however, recent evidence suggests that interactions with a binding partner may be required for DUSP26 catalytic activity. DUSP26 is heavily implicated in cancer where, akin to other DUSPs, it displays both tumour-suppressive and -promoting properties, depending on the context. Here we review DUSP26 by evaluating its transcriptional patterns, protein crystallographic structure and substrate binding, as well as its physiological role(s) and binding partners, its role in human disease and the development of DUSP26 inhibitors.
Collapse
|
24
|
Finger Y, Habich M, Gerlich S, Urbanczyk S, van de Logt E, Koch J, Schu L, Lapacz KJ, Ali M, Petrungaro C, Salscheider SL, Pichlo C, Baumann U, Mielenz D, Dengjel J, Brachvogel B, Hofmann K, Riemer J. Proteasomal degradation induced by DPP9-mediated processing competes with mitochondrial protein import. EMBO J 2020; 39:e103889. [PMID: 32815200 PMCID: PMC7527813 DOI: 10.15252/embj.2019103889] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9-mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments.
Collapse
Affiliation(s)
- Yannik Finger
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Markus Habich
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Sarah Gerlich
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Erik van de Logt
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Julian Koch
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Laura Schu
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Kim Jasmin Lapacz
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Muna Ali
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Carmelina Petrungaro
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | | | - Christian Pichlo
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Klepinin A, Zhang S, Klepinina L, Rebane-Klemm E, Terzic A, Kaambre T, Dzeja P. Adenylate Kinase and Metabolic Signaling in Cancer Cells. Front Oncol 2020; 10:660. [PMID: 32509571 PMCID: PMC7248387 DOI: 10.3389/fonc.2020.00660] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
A hallmark of cancer cells is the ability to rewire their bioenergetics and metabolic signaling circuits to fuel their uncontrolled proliferation and metastasis. Adenylate kinase (AK) is the critical enzyme in the metabolic monitoring of cellular adenine nucleotide homeostasis. It also directs AK→ AMP→ AMPK signaling controlling cell cycle and proliferation, and ATP energy transfer from mitochondria to distribute energy among cellular processes. The significance of AK isoform network in the regulation of a variety of cellular processes, which include cell differentiation and motility, is rapidly growing. Adenylate kinase 2 (AK2) isoform, localized in intermembrane and intra-cristae space, is vital for mitochondria nucleotide exchange and ATP export. AK2 deficiency disrupts cell energetics, causes severe human diseases, and is embryonically lethal in mice, signifying the importance of catalyzed phosphotransfer in cellular energetics. Suppression of AK phosphotransfer and AMP generation in cancer cells and consequently signaling through AMPK could be an important factor in the initiation of cancerous transformation, unleashing uncontrolled cell cycle and growth. Evidence also builds up that shift in AK isoforms is used later by cancer cells for rewiring energy metabolism to support their high proliferation activity and tumor progression. As cell motility is an energy-consuming process, positioning of AK isoforms to increased energy consumption sites could be an essential factor to incline cancer cells to metastases. In this review, we summarize recent advances in studies of the significance of AK isoforms involved in cancer cell metabolism, metabolic signaling, metastatic potential, and a therapeutic target.
Collapse
Affiliation(s)
- Aleksandr Klepinin
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ljudmila Klepinina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
26
|
Rissone A, Jimenez E, Bishop K, Carrington B, Slevin C, Wincovitch SM, Sood R, Candotti F, Burgess SM. A model for reticular dysgenesis shows impaired sensory organ development and hair cell regeneration linked to cellular stress. Dis Model Mech 2019; 12:dmm040170. [PMID: 31727854 PMCID: PMC6955229 DOI: 10.1242/dmm.040170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the gene AK2 are responsible for reticular dysgenesis (RD), a rare and severe form of primary immunodeficiency in children. RD patients have a severely shortened life expectancy and without treatment die, generally from sepsis soon after birth. The only available therapeutic option for RD is hematopoietic stem cell transplantation (HSCT). To gain insight into the pathophysiology of RD, we previously created zebrafish models for Ak2 deficiencies. One of the clinical features of RD is hearing loss, but its pathophysiology and causes have not been determined. In adult mammals, sensory hair cells of the inner ear do not regenerate; however, their regeneration has been observed in several non-mammalian vertebrates, including zebrafish. Therefore, we used our RD zebrafish models to determine whether Ak2 deficiency affects sensory organ development and/or hair cell regeneration. Our studies indicated that Ak2 is required for the correct development, survival and regeneration of sensory hair cells. Interestingly, Ak2 deficiency induces the expression of several oxidative stress markers and it triggers an increased level of cell death in the hair cells. Finally, we show that glutathione treatment can partially rescue hair cell development in the sensory organs in our RD models, pointing to the potential use of antioxidants as a therapeutic treatment supplementing HSCT to prevent or ameliorate sensorineural hearing deficits in RD patients.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Erin Jimenez
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kevin Bishop
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Blake Carrington
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Claire Slevin
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Raman Sood
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
- NHGRI Zebrafish Core, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, MD, USA
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
27
|
Prognostic and therapeutic potential of Adenylate kinase 2 in lung adenocarcinoma. Sci Rep 2019; 9:17757. [PMID: 31780678 PMCID: PMC6883075 DOI: 10.1038/s41598-019-53594-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/23/2018] [Indexed: 01/10/2023] Open
Abstract
Adenylate kinase 2 (AK2), an isoenzyme of the AK family, may have momentous extra-mitochondrial functions, especially in tumourigenesis in addition to the well-known control of energy metabolism. In this study, we provided the first evidence that AK2 is overexpressed in lung adenocarcinoma. The positive expression of AK2 is associated with tumor progression, and poor survival in patients with pulmonary adenocarcinoma. Knockdown of AK2 could suppress proliferation, migration, and invasion as well as induce apoptosis and autophagy in human lung adenocarcinoma cells. Remarkably, silencing AK2 exerted the greater tumor suppression roles when combined with hydroxychloroquine, an effective autophagy inhibitor, in vitro and in xenografts mouse models. Our data have probably provided preclinical proof that systematic inhibition of AK2 and autophagy could be therapeutically effective on lung cancer.
Collapse
|
28
|
FADD in Cancer: Mechanisms of Altered Expression and Function, and Clinical Implications. Cancers (Basel) 2019; 11:cancers11101462. [PMID: 31569512 PMCID: PMC6826683 DOI: 10.3390/cancers11101462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
FADD was initially described as an adaptor molecule for death receptor-mediated apoptosis, but subsequently it has been implicated in nonapoptotic cellular processes such as proliferation and cell cycle control. During the last decade, FADD has been shown to play a pivotal role in most of the signalosome complexes, such as the necroptosome and the inflammasome. Interestingly, various mechanisms involved in regulating FADD functions have been identified, essentially posttranslational modifications and secretion. All these aspects have been thoroughly addressed in previous reviews. However, FADD implication in cancer is complex, due to pleiotropic effects. It has been reported either as anti- or protumorigenic, depending on the cell type. Regulation of FADD expression in cancer is a complex issue since both overexpression and downregulation have been reported, but the mechanisms underlying such alterations have not been fully unveiled. Posttranslational modifications also constitute a relevant mechanism controlling FADD levels and functions in tumor cells. In this review, we aim to provide detailed, updated information on alterations leading to changes in FADD expression and function in cancer. The participation of FADD in various biological processes is recapitulated, with a mention of interesting novel functions recently proposed for FADD, such as regulation of gene expression and control of metabolic pathways. Finally, we gather all the available evidence regarding the clinical implications of FADD alterations in cancer, especially as it has been proposed as a potential biomarker with prognostic value.
Collapse
|
29
|
Lacombe J, Brengues M, Mangé A, Bourgier C, Gourgou S, Pèlegrin A, Ozsahin M, Solassol J, Azria D. Quantitative proteomic analysis reveals AK2 as potential biomarker for late normal tissue radiotoxicity. Radiat Oncol 2019; 14:142. [PMID: 31399108 PMCID: PMC6688300 DOI: 10.1186/s13014-019-1351-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background Biomarkers for predicting late normal tissue toxicity to radiotherapy are necessary to personalize treatments and to optimize clinical benefit. Many radiogenomic studies have been published on this topic. Conversely, proteomics approaches are not much developed, despite their advantages. Methods We used the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic approach to analyze differences in protein expression levels in ex-vivo irradiated (8 Gy) T lymphocytes from patients with grade ≥ 2 radiation-induced breast fibrosis (grade ≥ 2 bf+) and patients with grade < 2 bf + after curative intent radiotherapy. Patients were selected from two prospective clinical trials (COHORT and PHRC 2005) and were used as discovery and confirmation cohorts. Results Among the 1979 quantified proteins, 23 fulfilled our stringent biological criteria. Immunoblotting analysis of four of these candidate proteins (adenylate kinase 2, AK2; annexin A1; heat shock cognate 71 kDa protein; and isocitrate dehydrogenase 2) confirmed AK2 overexpression in 8 Gy-irradiated T lymphocytes from patients with grade ≥ 2 bf + compared with patients with grade < 2 bf+. As these candidate proteins are involved in oxidative stress regulation, we also evaluated radiation-induced reactive oxygen species (ROS) production in peripheral blood mononuclear cells from patients with grade ≥ 2 bf + and grade < 2 bf+. Total ROS level, and especially superoxide anion level, increased upon ex-vivo 8 Gy-irradiation in all patients. Analysis of NADPH oxidases (NOXs), a major source of superoxide ion in the cell, showed a significant increase of NOX4 mRNA and protein levels after irradiation in both patient groups. Conversely, only NOX4 mRNA level was significantly different between groups (grade ≥ 2 bf + and grade < 2 bf+). Conclusion These findings identify AK2 as a potential radiosensitivity candidate biomarker. Overall, our proteomic approach highlights the important role of oxidative stress in late radiation-induced toxicity, and paves the way for additional studies on NOXs and superoxide ion metabolism. Electronic supplementary material The online version of this article (10.1186/s13014-019-1351-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jérôme Lacombe
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Muriel Brengues
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Alain Mangé
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Céline Bourgier
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - André Pèlegrin
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - Jérôme Solassol
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France.,Department of Pathology and Onco-Biology, CHU Montpellier, Montpellier, France
| | - David Azria
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France. .,Department of Radiation Oncology, ICM, 34298, Montpellier Cedex 5, France.
| |
Collapse
|
30
|
Autophagy promotes angiogenesis via AMPK/Akt/mTOR signaling during the recovery of heat-denatured endothelial cells. Cell Death Dis 2018; 9:1152. [PMID: 30455420 PMCID: PMC6242874 DOI: 10.1038/s41419-018-1194-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023]
Abstract
Our previous study demonstrated that angiogenesis increased during the recovery of heat-denatured endothelial cells. However, the mechanism is still unclear. This study aimed to investigate the relation of autophagy and angiogenesis during the recovery of heat-denatured endothelial cells. A rat deep partial-thickness burn model and heat-denatured human umbilical vein endothelial cells (HUVECs) model (52 °C for 35 s) were used. Autophagy increased significantly in the dermis and HUVECs in a time-dependent manner after heat denaturation and recovery for 2-5 days. Rapamycin-mediated autophagy enhanced the pro-angiogenic effect, evidenced by increased proliferation and migration of HUVECs, and formation of tube-like structures. Autophagy inhibition by 3-Methyladenine (3-MA) abolished the angiogenesis in heat-denatured HUVECs after recovery for 3-5 days. Moreover, heat denaturation augmented the phosphorylation of AMP-activated protein kinase (AMPK) but reduced the phosphorylation of Akt and mTOR in HUVECs. Furthermore, autophagy inhibition by antioxidant NAC, compound C or AMPK siRNA impaired cell proliferation, migration and tube formation heat-denatured HUVECs. At last, the in vivo experiments also showed that inhibition of autophagy by bafilomycin A1 could suppress angiogenesis and recovery of heat-denatured dermis.Taken together, we firstly revealed that autophagy promotes angiogenesis via AMPK/Akt/mTOR signaling during the recovery of heat-denatured endothelial cells and may provide a potential therapeutic target for the recovery of heat-denatured dermis.
Collapse
|
31
|
Mouasni S, Tourneur L. FADD at the Crossroads between Cancer and Inflammation. Trends Immunol 2018; 39:1036-1053. [PMID: 30401514 DOI: 10.1016/j.it.2018.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
Initially described as an adaptor molecule for death receptor (DR)-mediated apoptosis, Fas-associated death domain (FADD) was later implicated in nonapoptotic cellular processes. During the last decade, FADD has been shown to participate and regulate most of the signalosome complexes, including necrosome, FADDosome, innateosome, and inflammasome. Given the role of these signaling complexes, FADD has emerged as a new actor in innate immunity, inflammation, and cancer development. Concomitant to these new roles, a surprising number of mechanisms deemed to regulate FADD functions have been identified, including post-translational modifications of FADD protein and FADD secretion. This review focuses on recent knowledge of the biological roles of FADD, a pleiotropic molecule having multiple partners, and its impact in cancer, innate immunity, and inflammation.
Collapse
Affiliation(s)
- Sara Mouasni
- Department of Infection, Immunity and Inflammation, Cochin Institute, 75014 Paris, France; INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Léa Tourneur
- Department of Infection, Immunity and Inflammation, Cochin Institute, 75014 Paris, France; INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
32
|
Ge L, Wang Q, Hu S, Yang X. Rs217727 polymorphism in H19 promotes cell apoptosis by regulating the expressions of H19 and the activation of its downstream signaling pathway. J Cell Physiol 2018; 234:7279-7291. [PMID: 30362559 DOI: 10.1002/jcp.27485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND The objective of the current study was to explore the role of H19 rs217727 polymorphism in the control of hepatocellular carcinoma (HCC). METHOD The Student's t test, Cox regression, and Kaplan-Meier analyses were used to clarify whether the H19 rs217727 polymorphism played an important role in the development of HCC. Real-time polymerase chain reaction (PCR) and western-blot analysis were carried out to measure the levels of H19, microRNA (miR)-675, FAS-associated death domain (FADD), caspase-8, and caspase-3 among H19 CC, CT, and TT groups, as well as in cells transfected with H19/si-H19, or miR-675 mimic/inhibitor. The MTT assay, colony formation assay, and flow cytometry assay were performed to detect the effect of H19/miR-675 on cell viability, cell colony formation, and cell apoptosis. RESULT T allele of H19 rs217727 polymorphism apparently increased the survival rate of patients with HCC. Meanwhile, H19 enhanced miR-675 expression but reduced the mRNA and protein levels of FADD, caspase-3, and caspase-8. The T allele of H19 rs217727 polymorphism apparently increased the apoptotic rate of HCC cells. Furthermore, FADD was a virtual target gene of miR-675 with a potential "hit" located in the 3'-untranslated region (UTR) of FADD, whereas H19 inhibited FADD expression via increasing the expression of miR-675. Moreover, H19 upregulated the expression of miR-675 whereas reducing the expression of FADD, caspase-3, and caspase-8. Finally, H19 and miR-675 promoted cell proliferation and cell colony formation but repressed cell apoptosis. CONCLUSION In summary, the above findings demonstrated that the polymorphism of rs217727 in H19 was associated with HCC via the H19/miR-675/FADD/caspase-8/caspase-3/apoptosis signaling pathway.
Collapse
Affiliation(s)
- Lili Ge
- Henan Provincial Key Labratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital, Zhengzhou Children's Hospital), Zhengzhou, Henan, China
| | - Qinglei Wang
- Department of Pediatric Orthopedics, Zhengzhou Orthopedic Hospital, Zhengzhou, Henan, China
| | - Shengnan Hu
- Department of Liver Disease, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoang Yang
- Department of Liver Disease, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Bansagi B, Phan V, Baker MR, O'Sullivan J, Jennings MJ, Whittaker RG, Müller JS, Duff J, Griffin H, Miller JAL, Gorman GS, Lochmüller H, Chinnery PF, Roos A, Swan LE, Horvath R. Multifocal demyelinating motor neuropathy and hamartoma syndrome associated with a de novo PTEN mutation. Neurology 2018; 90:e1842-e1848. [PMID: 29720545 PMCID: PMC5962916 DOI: 10.1212/wnl.0000000000005566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/01/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To describe a patient with a multifocal demyelinating motor neuropathy with onset in childhood and a mutation in phosphatase and tensin homolog (PTEN), a tumor suppressor gene associated with inherited tumor susceptibility conditions, macrocephaly, autism, ataxia, tremor, and epilepsy. Functional implications of this protein have been investigated in Parkinson and Alzheimer diseases. METHODS We performed whole-exome sequencing in the patient's genomic DNA validated by Sanger sequencing. Immunoblotting, in vitro enzymatic assay, and label-free shotgun proteomic profiling were performed in the patient's fibroblasts. RESULTS The predominant clinical presentation of the patient was a childhood onset, asymmetric progressive multifocal motor neuropathy. In addition, he presented with macrocephaly, autism spectrum disorder, and skin hamartomas, considered as clinical criteria for PTEN-related hamartoma tumor syndrome. Extensive tumor screening did not detect any malignancies. We detected a novel de novo heterozygous c.269T>C, p.(Phe90Ser) PTEN variant, which was absent in both parents. The pathogenicity of the variant is supported by altered expression of several PTEN-associated proteins involved in tumorigenesis. Moreover, fibroblasts showed a defect in catalytic activity of PTEN against the secondary substrate, phosphatidylinositol 3,4-trisphosphate. In support of our findings, focal hypermyelination leading to peripheral neuropathy has been reported in PTEN-deficient mice. CONCLUSION We describe a novel phenotype, PTEN-associated multifocal demyelinating motor neuropathy with a skin hamartoma syndrome. A similar mechanism may potentially underlie other forms of Charcot-Marie-Tooth disease with involvement of the phosphatidylinositol pathway.
Collapse
Affiliation(s)
- Boglarka Bansagi
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Vietxuan Phan
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mark R Baker
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Julia O'Sullivan
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Matthew J Jennings
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Roger G Whittaker
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Juliane S Müller
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jennifer Duff
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Helen Griffin
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - James A L Miller
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Grainne S Gorman
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Hanns Lochmüller
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Patrick F Chinnery
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Andreas Roos
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Laura E Swan
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Rita Horvath
- From the Wellcome Centre for Mitochondrial Research (G.S.G.), Institute of Genetic Medicine (B.B., M.J., J.S.M., J.D., H.G., H.L., P.F.C., A.R., R.H.), and Institute of Neuroscience (M.R.B., R.G.W., G.S.G.), Newcastle University, Newcastle upon Tyne, UK; Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V. (V.P., A.R.), Dortmund, Germany; Departments of Neurology (M.R.B., J.A.L.M., G.S.G.) and Clinical Neurophysiology (M.R.B., R.G.W., R.H.), Royal Victoria Infirmary, Newcastle upon Tyne; Department of Cellular and Molecular Physiology (J.O., L.E.S.), Institute of Translational Medicine, University of Liverpool; Department of Clinical Neurosciences (P.F.C.), University of Cambridge, Cambridge Biomedical Campus, UK; Department of Neuropediatrics and Muscle Disorders (H.L.), Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; and Centro Nacional de Análisis Genómico (CNAG-CRG) (H.L.), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
34
|
Discovery of genetic variants of the kinases that activate tenofovir among individuals in the United States, Thailand, and South Africa: HPTN067. PLoS One 2018; 13:e0195764. [PMID: 29641561 PMCID: PMC5895070 DOI: 10.1371/journal.pone.0195764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/28/2018] [Indexed: 01/12/2023] Open
Abstract
Tenofovir (TFV), a nucleotide reverse transcriptase inhibitor, requires two phosphorylation steps to form a competitive inhibitor of HIV reverse transcriptase. Adenylate kinase 2 (AK2) has been previously demonstrated to phosphorylate tenofovir to tenofovir-monophosphate, while creatine kinase, muscle (CKM), pyruvate kinase, muscle (PKM) and pyruvate kinase, liver and red blood cell (PKLR) each have been found to phosphorylate tenofovir-monophosphate to the pharmacologically active tenofovir-diphosphate. In the present study, genomic DNA isolated from dried blood spots collected from 505 participants from Bangkok, Thailand; Cape Town, South Africa; and New York City, USA were examined for variants in AK2, CKM, PKM, and PKLR using next-generation sequencing. The bioinformatics tools SIFT and PolyPhen predicted that 19 of the 505 individuals (3.7% frequency) carried variants in at least one kinase that would result in a decrease or loss of enzymatic activity. To functionally test these predictions, AK2 and AK2 variants were expressed in and purified from E. coli, followed by investigation of their activities towards tenofovir. Interestingly, we found that purified AK2 had the ability to phosphorylate tenofovir-monophosphate to tenofovir-diphosphate in addition to phosphorylating tenofovir to tenofovir-monophosphate. Further, four of the six AK2 variants predicted to result in a loss or decrease of enzyme function exhibited a ≥30% decrease in activity towards tenofovir in our in vitro assays. Of note, an AK2 K28R variant resulted in a 72% and 81% decrease in the formation of tenofovir-monophosphate and tenofovir-diphosphate, respectively. These data suggest that there are naturally occurring genetic variants that could potentially impact TFV activation.
Collapse
|
35
|
Moelans CB, van Maldegem CMG, van der Wall E, van Diest PJ. Copy number changes at 8p11-12 predict adverse clinical outcome and chemo- and radiotherapy response in breast cancer. Oncotarget 2018; 9:17078-17092. [PMID: 29682206 PMCID: PMC5908307 DOI: 10.18632/oncotarget.24904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/12/2018] [Indexed: 01/15/2023] Open
Abstract
Purpose The short arm of chromosome 8 (8p) is a frequent target of loss of heterozygosity (LOH) in cancer, and 8p LOH is commonly associated with a more aggressive tumor phenotype. The 8p11-12 region is a recurrent breakpoint area characterized by a sharp decrease in gains/amplifications and increase in allelic loss towards 8pter. However, the clustering of genomic aberrations in this region, even in the absence of proximal amplifications or distal LOH, suggests that the 8p11-12 region could play a pivotal role in oncogenesis. Results Loss in the FGFR1 and ZNF703-containing 8p11 region was seen in 25% of patients, correlated with lower mRNA expression levels and independently predicted poor survival, particularly in systemic treatment-naïve patients and even without adjacent 8p12 loss. Amplification of FGFR1 at 8p11 and loss of DUSP26 and UNC5D, located in the 8p12 breakpoint region, independently predicted worse event free survival. Gains in the 8p12 region encompassing WRN, NRG1, DUSP26 and UNC5D, seen in 20-30% of patients, were associated with higher mRNA expression and independently predicted chemotherapy sensitivity. Losses at 8p12 independently predicted radiotherapy resistance. Material and methods Multiplex ligation-dependent probe amplification was used to investigate copy number aberrations at 8p11-12 in 234 female breast cancers. Alterations were correlated with clinicopathologic characteristics, survival and response to therapy. Results were validated using public METABRIC data. Conclusion Allelic loss and amplification in the 8p11-12 breakpoint region predict poor survival and chemo- and radiotherapy response. Assessment of 8p11-12 gene copy number status seems to augment existing prognostic and predictive tools.
Collapse
Affiliation(s)
- Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
36
|
Deregulated FADD expression and phosphorylation in T-cell lymphoblastic lymphoma. Oncotarget 2018; 7:61485-61499. [PMID: 27556297 PMCID: PMC5308666 DOI: 10.18632/oncotarget.11370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
In the present work, we show that T-cell lymphoblastic lymphoma cells exhibit a reduction of FADD availability in the cytoplasm, which may contribute to impaired apoptosis. In addition, we observe a reduction of FADD phosphorylation that inversely correlates with the proliferation capacity and tumor aggressiveness. The resultant balance between FADD-dependent apoptotic and non-apoptotic abilities may define the outcome of the tumor. Thus, we propose that FADD expression and phosphorylation can be reliable biomarkers with prognostic value for T-LBL stratification.
Collapse
|
37
|
Hoenig M, Pannicke U, Gaspar HB, Schwarz K. Recent advances in understanding the pathogenesis and management of reticular dysgenesis. Br J Haematol 2017; 180:644-653. [PMID: 29270983 DOI: 10.1111/bjh.15045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reticular Dysgenesis is a rare immunodeficiency which is clinically characterized by the combination of Severe Combined Immunodeficiency (SCID) with agranulocytosis and sensorineural deafness. Mutations in the gene encoding adenylate kinase 2 (AK2) were identified to cause this phenotype. In this review, we will demonstrate important clinical differences between reticular dysgenesis and other SCID entities and summarize recent concepts in the understanding of the pathophysiology of the disease and the management strategies for this difficult condition.
Collapse
Affiliation(s)
- Manfred Hoenig
- Department of Paediatrics, University Medical Centre Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg, Hessen, Germany
| | - Hubert B Gaspar
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg, Hessen, Germany
| |
Collapse
|
38
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
39
|
Yang CH, Yeh YJ, Wang JY, Liu YW, Chen YL, Cheng HW, Cheng CM, Chuang YJ, Yuh CH, Chen YR. NEAP/DUSP26 suppresses receptor tyrosine kinases and regulates neuronal development in zebrafish. Sci Rep 2017; 7:5241. [PMID: 28701747 PMCID: PMC5507855 DOI: 10.1038/s41598-017-05584-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
Expression of neuroendocrine-associated phosphatase (NEAP, also named as dual specificity phosphatase 26, [DUSP26]) is restricted to neuroendocrine tissues. We found that NEAP, but not its phosphatase-defective mutant, suppressed nerve growth factor (NGF) receptor TrkA and fibroblast growth factor receptor 1 (FGFR1) activation in PC12 cells upon NGF stimulation. Conversely, suppressing NEAP expression by RNA interference enhanced TrkA and FGFR1 phosphorylation. NEAP was capable of de-phosphorylating TrkA and FGFR1 directly in vitro. NEAP-orthologous gene existed in zebrafish. Morpholino (MO) suppression of NEAP in zebrafish resulted in hyper-phosphorylation of TrkA and FGFR1 as well as abnormal body postures and small eyes. Differentiation of retina in zebrafishes with NEAP MO treatment was severely defective, so were cranial motor neurons. Taken together, our data indicated that NEAP/DUSP26 have a critical role in regulating TrkA and FGFR1 signaling as well as proper development of retina and neuronal system in zebrafish.
Collapse
Affiliation(s)
- Chi-Hwa Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Yu-Jung Yeh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Jiz-Yuh Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Yen-Lin Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Hui-Wen Cheng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Chun-Mei Cheng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Yung-Jen Chuang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Yi-Rong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, 350, Taiwan.
| |
Collapse
|
40
|
Ounpuu L, Klepinin A, Pook M, Teino I, Peet N, Paju K, Tepp K, Chekulayev V, Shevchuk I, Koks S, Maimets T, Kaambre T. 2102Ep embryonal carcinoma cells have compromised respiration and shifted bioenergetic profile distinct from H9 human embryonic stem cells. Biochim Biophys Acta Gen Subj 2017; 1861:2146-2154. [PMID: 28552560 DOI: 10.1016/j.bbagen.2017.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
Abstract
Recent studies have shown that cellular bioenergetics may be involved in stem cell differentiation. Considering that during cancerogenesis cells acquire numerous properties of stem cells, it is possible to assume that the energy metabolism in tumorigenic cells might be differently regulated. The aim of this study was to compare the mitochondrial bioenergetic profile of normal pluripotent human embryonic stem cells (hESC) and relatively nullipotent embryonal carcinoma cells (2102Ep cell line). We examined three parameters related to cellular bioenergetics: phosphotransfer system, aerobic glycolysis, and oxygen consumption. Activities and expression levels of main enzymes that facilitate energy transfer were measured. The oxygen consumption rate studies were performed to investigate the respiratory capacity of cells. 2102Ep cells showed a shift in energy distribution towards adenylate kinase network. The total AK activity was almost 3 times higher in 2102Ep cells compared to hESCs (179.85±5.73 vs 64.39±2.55mU/mg of protein) and the expression of AK2 was significantly higher in these cells, while CK was downregulated. 2102Ep cells displayed reduced levels of oxygen consumption and increased levels of aerobic glycolysis compared to hESCs. The compromised respiration of 2102Ep cells is not the result of increased mitochondrial mass, increased proton leak, and reduced respiratory reserve capacity of the cells or impairment of respiratory chain complexes. Our data showed that the bioenergetic profile of 2102Ep cells clearly distinguishes them from normal hESCs. This should be considered when this cell line is used as a reference, and highlight the importance of further research concerning energy metabolism of stem cells.
Collapse
Affiliation(s)
- Lyudmila Ounpuu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Martin Pook
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Indrek Teino
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Nadezda Peet
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Kalju Paju
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Sulev Koks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Tuuli Kaambre
- Tallinn University, Narva mnt 25, 10120 Tallinn, Estonia; Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| |
Collapse
|
41
|
Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation. Nat Commun 2017; 8:15308. [PMID: 28516914 PMCID: PMC5454382 DOI: 10.1038/ncomms15308] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
Targeting the specific metabolic phenotypes of colorectal cancer stem cells (CRCSCs) is an innovative therapeutic strategy for colorectal cancer (CRC) patients with poor prognosis and relapse. However, the context-dependent metabolic traits of CRCSCs remain poorly elucidated. Here we report that adenylate kinase hCINAP is overexpressed in CRC tissues. Depletion of hCINAP inhibits invasion, self-renewal, tumorigenesis and chemoresistance of CRCSCs with a loss of mesenchymal signature. Mechanistically, hCINAP binds to the C-terminal domain of LDHA, the key regulator of glycolysis, and depends on its adenylate kinase activity to promote LDHA phosphorylation at tyrosine 10, resulting in the hyperactive Warburg effect and the lower cellular ROS level and conferring metabolic advantage to CRCSC invasion. Moreover, hCINAP expression is positively correlated with the level of Y10-phosphorylated LDHA in CRC patients. This study identifies hCINAP as a potent modulator of metabolic reprogramming in CRCSCs and a promising drug target for CRC invasion and metastasis.
Collapse
|
42
|
SUMO-Modified FADD Recruits Cytosolic Drp1 and Caspase-10 to Mitochondria for Regulated Necrosis. Mol Cell Biol 2017; 37:MCB.00254-16. [PMID: 27799292 DOI: 10.1128/mcb.00254-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
Fas-associated protein with death domain (FADD) plays a key role in extrinsic apoptosis. Here, we show that FADD is SUMOylated as an essential step during intrinsic necrosis. FADD was modified at multiple lysine residues (K120/125/149) by small ubiquitin-related modifier 2 (SUMO2) during necrosis caused by calcium ionophore A23187 and by ischemic damage. SUMOylated FADD bound to dynamin-related protein 1 (Drp1) in cells both in vitro and in ischemic tissue damage cores, thus promoting Drp1 recruitment by mitochondrial fission factor (Mff) to accomplish mitochondrial fragmentation. Mitochondrial-fragmentation-associated necrosis was blocked by FADD or Drp1 deficiency and SUMO-defective FADD expression. Interestingly, caspase-10, but not caspase-8, formed a ternary protein complex with SUMO-FADD/Drp1 on the mitochondria upon exposure to A23187 and potentiated Drp1 oligomerization for necrosis. Moreover, the caspase-10 L285F and A414V mutants, found in autoimmune lymphoproliferative syndrome and non-Hodgkin lymphoma, respectively, regulated this necrosis. Our study reveals an essential role of SUMOylated FADD in Drp1- and caspase-10-dependent necrosis, providing insights into the mechanism of regulated necrosis by calcium overload and ischemic injury.
Collapse
|
43
|
Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells. J Bioenerg Biomembr 2016; 48:531-548. [PMID: 27854030 DOI: 10.1007/s10863-016-9687-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
The adenylate kinase (AK) isoforms network plays an important role in the intracellular energy transfer processes, the maintenance of energy homeostasis, and it is a major player in AMP metabolic signaling circuits in some highly-differentiated cells. For this purpose, a rapid and sensitive method was developed that enables to estimate directly and semi-quantitatively the distribution between cytosolic AK1 and mitochondrial AK2 localized in the intermembrane space, both in isolated cells and tissue samples (biopsy material). Experiments were performed on isolated rat mitochondria or permeabilized material, including undifferentiated and differentiated neuroblastoma Neuro-2a cells, HL-1 cells, isolated rat heart cardiomyocytes as well as on human breast cancer postoperative samples. In these samples, the presence of AK1 and AK2 could be detected by high-resolution respirometry due to the functional coupling of these enzymes with ATP synthesis. By eliminating extra-mitochondrial ADP with an excess of pyruvate kinase and its substrate phosphoenolpyruvate, the coupling of the AK reaction with mitochondrial ATP synthesis could be quantified for total AK and mitochondrial AK2 as a specific AK index. In contrast to the creatine kinase pathway, the AK phosphotransfer pathway is up-regulated in murine neuroblastoma and HL-1 sarcoma cells and in these malignant cells expression of AK2 is higher than AK1. Differentiated Neuro-2a neuroblastoma cells exhibited considerably higher OXPHOS capacity than undifferentiated cells, and this was associated with a remarkable decrease in their AK activity. The respirometric method also revealed a considerable difference in mitochondrial affinity for AMP between non-transformed cells and tumor cells.
Collapse
|
44
|
Chien HT, Cheng SD, Chuang WY, Liao CT, Wang HM, Huang SF. Clinical Implications of FADD Gene Amplification and Protein Overexpression in Taiwanese Oral Cavity Squamous Cell Carcinomas. PLoS One 2016; 11:e0164870. [PMID: 27764170 PMCID: PMC5072707 DOI: 10.1371/journal.pone.0164870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/03/2016] [Indexed: 12/27/2022] Open
Abstract
Amplification of 11q13.3 is a frequent event in human cancers, including head and neck squamous cell carcinoma. This chromosome region contains several genes that are potentially cancer drivers, including FADD (Fas associated via death domain), an apoptotic effector that was previously identified as a novel oncogene in laryngeal/pharyngeal cancer. This study was designed to explore the role of FADD in oral squamous cell carcinomas (OSCCs) samples from Taiwanese patients, by assessing copy number variations (CNVs) and protein expression and the clinical implications of these factors in 339 male OSCCs. The intensity of FADD protein expression, as determined by immunohistochemistry, was strongly correlated with gene copy number amplification, as analyzed using a TaqMan CNV assay. Both FADD gene copy number amplification and high protein expression were significantly associated with lymph node metastasis (P < 0.001). Patients with both FADD copy number amplification and high protein expression had the shortest disease-free survival (DFS; P = 0.074 and P = 0.002) and overall survival (OS; P = 0.011 and P = 0.027). After adjusting for primary tumor status, tumor differentiation, lymph node metastasis and age at diagnosis, DFS was still significantly lower in patients with either copy number amplification or high protein expression (hazard ratio [H.R.] = 1.483; 95% confidence interval [C.I.], 1.044–2.106). In conclusion, our data reveal that FADD gene copy number and protein expression can be considered potential prognostic markers and are closely associated with lymph node metastasis in patients with OSCC in Taiwan.
Collapse
Affiliation(s)
- Huei-Tzu Chien
- Department of Public Health, Chang Gung University, Tao-Yuan, Taiwan, R.O.C
| | - Sou-De Cheng
- Department of Anatomy, Chang Gung University, Tao-Yuan, Taiwan, R.O.C
| | - Wen-Yu Chuang
- Department of Pathology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, R.O.C
| | - Chun-Ta Liao
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial, Tao-Yuan, Taiwan, R.O.C
- Taipei CGMH Head and Neck Oncology Group, Tao-Yuan, Taiwan, R.O.C
| | - Hung-Ming Wang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, R.O.C
- Taipei CGMH Head and Neck Oncology Group, Tao-Yuan, Taiwan, R.O.C
| | - Shiang-Fu Huang
- Department of Public Health, Chang Gung University, Tao-Yuan, Taiwan, R.O.C
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial, Tao-Yuan, Taiwan, R.O.C
- Taipei CGMH Head and Neck Oncology Group, Tao-Yuan, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
45
|
Won EY, Lee SO, Lee DH, Lee D, Bae KH, Lee SC, Kim SJ, Chi SW. Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26. PLoS One 2016; 11:e0162115. [PMID: 27583453 PMCID: PMC5008780 DOI: 10.1371/journal.pone.0162115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022] Open
Abstract
Human dual-specificity phosphatase 26 (DUSP26) is a novel target for anticancer therapy because its dephosphorylation of the p53 tumor suppressor regulates the apoptosis of cancer cells. DUSP26 inhibition results in neuroblastoma cell cytotoxicity through p53-mediated apoptosis. Despite the previous structural studies of DUSP26 catalytic domain (residues 61-211, DUSP26-C), the high-resolution structure of its catalytically active form has not been resolved. In this study, we determined the crystal structure of a catalytically active form of DUSP26 (residues 39-211, DUSP26-N) with an additional N-terminal region at 2.0 Å resolution. Unlike the C-terminal domain-swapped dimeric structure of DUSP26-C, the DUSP26-N (C152S) monomer adopts a fold-back conformation of the C-terminal α8-helix and has an additional α1-helix in the N-terminal region. Consistent with the canonically active conformation of its protein tyrosine phosphate-binding loop (PTP loop) observed in the structure, the phosphatase assay results demonstrated that DUSP26-N has significantly higher catalytic activity than DUSP26-C. Furthermore, size exclusion chromatography-multiangle laser scattering (SEC-MALS) measurements showed that DUSP26-N (C152S) exists as a monomer in solution. Notably, the crystal structure of DUSP26-N (C152S) revealed that the N-terminal region of DUSP26-N (C152S) serves a scaffolding role by positioning the surrounding α7-α8 loop for interaction with the PTP-loop through formation of an extensive hydrogen bond network, which seems to be critical in making the PTP-loop conformation competent for phosphatase activity. Our study provides the first high-resolution structure of a catalytically active form of DUSP26, which will contribute to the structure-based rational design of novel DUSP26-targeting anticancer therapeutics.
Collapse
Affiliation(s)
- Eun-Young Won
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sang-Ok Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Hwa Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (SWC); (SJK)
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (SWC); (SJK)
| |
Collapse
|
46
|
Jung S, Nah J, Han J, Choi SG, Kim H, Park J, Pyo HK, Jung YK. Dual-specificity phosphatase 26 (DUSP26) stimulates Aβ42 generation by promoting amyloid precursor protein axonal transport during hypoxia. J Neurochem 2016; 137:770-81. [PMID: 26924229 DOI: 10.1111/jnc.13597] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 12/23/2022]
Abstract
Amyloid beta peptide (Aβ) is a pathological hallmark of Alzheimer's disease (AD) and is generated through the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases. Hypoxia is a known risk factor for AD and stimulates Aβ generation by γ-secretase; however, the underlying mechanisms remain unclear. In this study, we showed that dual-specificity phosphatase 26 (DUSP26) regulates Aβ generation through changes in subcellular localization of the γ-secretase complex and its substrate C99 under hypoxic conditions. DUSP26 was identified as a novel γ-secretase regulator from a genome-wide functional screen using a cDNA expression library. The phosphatase activity of DUSP26 was required for the increase in Aβ42 generation through γ-secretase, but this regulation did not affect the amount of the γ-secretase complex. Interestingly, DUSP26 induced the accumulation of C99 in the axons by stimulating anterograde transport of C99-positive vesicles. Additionally, DUSP26 induced c-Jun N-terminal kinase (JNK) activation for APP processing and axonal transport of C99. Under hypoxic conditions, DUSP26 expression levels were elevated together with JNK activation, and treatment with JNK inhibitor SP600125, or the DUSP26 inhibitor NSC-87877, reduced hypoxia-induced Aβ generation by diminishing vesicle trafficking of C99 to the axons. Finally, we observed enhanced DUSP26 expression and JNK activation in the hippocampus of AD patients. Our results suggest that DUSP26 mediates hypoxia-induced Aβ generation through JNK activation, revealing a new regulator of γ-secretase-mediated APP processing under hypoxic conditions. We propose the role of phosphatase dual-specificity phosphatase 26 (DUSP26) in the selective regulation of Aβ42 production in neuronal cells under hypoxic stress. Induction of DUSP26 causes JNK-dependent shift in the subcellular localization of γ-secretase and C99 from the cell body to axons for Aβ42 generation. These findings provide a new strategy for developing new therapeutic targets to arrest AD progression.
Collapse
Affiliation(s)
- Sunmin Jung
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jihoon Nah
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jonghee Han
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Seon-Guk Choi
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Hyunjoo Kim
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jaesang Park
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Ha-Kyung Pyo
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Yong-Keun Jung
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|
47
|
Benatti P, Chiaramonte ML, Lorenzo M, Hartley JA, Hochhauser D, Gnesutta N, Mantovani R, Imbriano C, Dolfini D. NF-Y activates genes of metabolic pathways altered in cancer cells. Oncotarget 2016; 7:1633-50. [PMID: 26646448 PMCID: PMC4811486 DOI: 10.18632/oncotarget.6453] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/15/2015] [Indexed: 12/21/2022] Open
Abstract
The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings after inactivation of NF-Y subunits in different cell types. NF-Y controls de novo biosynthetic pathways of lipids, teaming up with the master SREBPs regulators. It activates glycolytic genes, but, surprisingly, is neutral or represses mitochondrial respiratory genes. NF-Y targets the SOCG (Serine, One Carbon, Glycine) and Glutamine pathways, as well as genes involved in the biosynthesis of polyamines and purines. Specific cancer-driving nodes are generally under NF-Y control. Altogether, these data delineate a coherent strategy to promote expression of metabolic genes fuelling anaerobic energy production and other anabolic pathways commonly altered in cancer cells.
Collapse
Affiliation(s)
- Paolo Benatti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | | | - Mariangela Lorenzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - John A. Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
48
|
Yegutkin GG. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 2015; 49:473-97. [PMID: 25418535 DOI: 10.3109/10409238.2014.953627] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- Department of Medical Microbiology and Immunology, University of Turku , Turku , Finland
| |
Collapse
|
49
|
AK2 deficiency compromises the mitochondrial energy metabolism required for differentiation of human neutrophil and lymphoid lineages. Cell Death Dis 2015; 6:e1856. [PMID: 26270350 PMCID: PMC4558504 DOI: 10.1038/cddis.2015.211] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 06/19/2015] [Accepted: 06/30/2015] [Indexed: 11/09/2022]
Abstract
Reticular dysgenesis is a human severe combined immunodeficiency that is primarily characterized by profound neutropenia and lymphopenia. The condition is caused by mutations in the adenylate kinase 2 (AK2) gene, resulting in the loss of mitochondrial AK2 protein expression. AK2 regulates the homeostasis of mitochondrial adenine nucleotides (ADP, ATP and AMP) by catalyzing the transfer of high-energy phosphate. Our present results demonstrate that AK2-knocked-down progenitor cells have poor proliferative and survival capacities and are blocked in their differentiation toward lymphoid and granulocyte lineages. We also observed that AK2 deficiency impaired mitochondrial function in general and oxidative phosphorylation in particular - showing that AK2 is critical in the control of energy metabolism. Loss of AK2 disrupts this regulation and leads to a profound block in lymphoid and myeloid cell differentiation.
Collapse
|
50
|
NSC-87877 inhibits DUSP26 function in neuroblastoma resulting in p53-mediated apoptosis. Cell Death Dis 2015; 6:e1841. [PMID: 26247726 PMCID: PMC4558500 DOI: 10.1038/cddis.2015.207] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 01/07/2023]
Abstract
Dual specificity protein phosphatase 26 (DUSP26) is overexpressed in high-risk neuroblastoma (NB) and contributes to chemoresistance by inhibiting p53 function. In vitro, DUSP26 has also been shown to effectively inhibit p38 MAP kinase. We hypothesize that inhibiting DUSP26 will result in decreased NB cell growth in a p53 and/or p38-mediated manner. NSC-87877 (8-hydroxy-7-[(6-sulfo-2-naphthyl)azo]-5-quinolinesulfonic acid), a novel DUSP26 small molecule inhibitor, shows effective growth inhibition and induction of apoptosis in NB cell lines. NB cell lines treated with small hairpin RNA (shRNA) targeting DUSP26 also exhibit a proliferation defect both in vitro and in vivo. Treatment of NB cell lines with NSC-87877 results in increased p53 phosphorylation (Ser37 and Ser46) and activation, increased activation of downstream p38 effector proteins (heat shock protein 27 (HSP27) and MAP kinase-activated protein kinase 2 (MAPKAPK2)) and poly ADP ribose polymerase/caspase-3 cleavage. The cytotoxicity resulting from DUSP26 inhibition is partially reversed by knocking down p53 expression with shRNA and also by inhibiting p38 activity with SB203580 (4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine). In an intrarenal mouse model of NB, NSC-87877 treatment results in decreased tumor growth and increased p53 and p38 activity. Together, these results suggest that DUSP26 inhibition with NSC-87877 is an effective strategy to induce NB cell cytotoxicity in vitro and in vivo through activation of the p53 and p38 mitogen-activated protein kinase (MAPK) tumor-suppressor pathways.
Collapse
|