1
|
Wang X, Yang S, Zheng C, Huang C, Yao H, Guo Z, Wu Y, Wang Z, Wu Z, Ge R, Cheng W, Yan Y, Jiang S, Sun J, Li X, Xie Q, Wang H. Multi-Omics Profiles of Small Intestine Organoids in Reaction to Breast Milk and Different Infant Formula Preparations. Nutrients 2024; 16:2951. [PMID: 39275267 PMCID: PMC11397455 DOI: 10.3390/nu16172951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Ensuring optimal infant nutrition is crucial for the health and development of children. Many infants aged 0-6 months are fed with infant formula rather than breast milk. Research on cancer cell lines and animal models is limited to examining the nutrition effects of formula and breast milk, as it does not comprehensively consider absorption, metabolism, and the health and social determinants of the infant and its physiology. Our study utilized small intestine organoids induced from human embryo stem cell (ESC) to compare the nutritional effects of breast milk from five donors during their postpartum lactation period of 1-6 months and three types of Stage 1 infant formulae from regular retail stores. Using transcriptomics and untargeted metabolomics approaches, we focused on the differences such as cell growth and development, cell junctions, and extracellular matrix. We also analyzed the roles of pathways including AMPK, Hippo, and Wnt, and identified key genes such as ALPI, SMAD3, TJP1, and WWTR1 for small intestine development. Through observational and in-vitro analysis, our study demonstrates ESC-derived organoids might be a promising model for exploring nutritional effects and underlying mechanisms.
Collapse
Affiliation(s)
- Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chengdong Zheng
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zimo Guo
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yilun Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zening Wang
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Zhenyang Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ruihong Ge
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Yan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shilong Jiang
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Jianguo Sun
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinggang Xie
- Heilongjiang Firmus Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Oduro-Kwateng E, Ali M, Kehinde IO, Zhang Z, Soliman MES. De Novo Rational Design of Peptide-Based Protein-Protein Inhibitors (Pep-PPIs) Approach by Mapping the Interaction Motifs of the PP Interface and Physicochemical Filtration: A Case on p25-Cdk5-Mediated Neurodegenerative Diseases. J Cell Biochem 2024; 125:e30633. [PMID: 39148280 DOI: 10.1002/jcb.30633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Protein-protein interactions, or PPIs, are a part of every biological activity and have been linked to a number of diseases, including cancer, infectious diseases, and neurological disorders. As such, targeting PPIs is considered a strategic and vital approach in the development of new medications. Nonetheless, the wide and flat contact interface makes it difficult to find small-molecule PP inhibitors. An alternative strategy would be to use the PPI interaction motifs as building blocks for the design of peptide-based inhibitors. Herein, we designed 12-mer peptide inhibitors to target p25-inducing-cyclin-dependent kinase (Cdk5) hyperregulation, a PPI that has been shown to perpetuate neuroinflammation, which is one of the major causal implications of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. We generated a library of 5 062 500 peptide combination sequences (PCS) derived from the interaction motif of Cdk5/p25 PP interface. The 20 amino acids were differentiated into six groups, namely, hydrophobic (aliphatic), aromatic, basic, acidic, unique, and polar uncharged, on the basis of their physiochemical properties. To preserve the interaction motif necessary for ideal binding, de novo modeling of all possible peptide sequence substitutions was considered. A set of filters, backed by the Support Vector Machine (SVM) algorithm, was then used to create a shortlisted custom peptide library that met specific bioavailability, toxicity, and therapeutic relevance, leading to a refined library of 15 PCS. A greedy algorithm and coarse-grained force field were used to predict peptide structure and folding before subsequent modeling studies. Molecular docking was performed to estimate the relative binding affinities, and out of the top hits, Pep15 was subjected to molecular dynamics simulations and binding free-energy calculations in comparison to a known peptide inhibitor with experimental data (template peptide). Interestingly, the identified peptide through our protocol, Pep15, was found to show a significantly higher binding affinity than the reference template peptide (-48.10 ± 0.23 kcal/mol and -17.53 ± 0.27 kcal/mol, respectively). In comparison to the template peptide, Pep15 was found to possess a more compact and buried surface area, tighter binding landscape, and reduced conformational variability, leading to enhanced structural and kinetic stability of the Cdk5/p25 complex. Notably, both peptide inhibitors were found to have a minimal impact on the architectural integrity of the Cdk5/p25 secondary structure. Herein, we propose Pep15 as a novel and potentially disruptive peptide drug for Cdk5/p25-mediated neurodegenerative phenotypes that require further clinical investigation. The systematic protocol and findings of this report would serve as a valuable tool in the identification of critical PPI interface reactive residues, designing of analogs, and identification of more potent peptide-based PPI inhibitors.
Collapse
Affiliation(s)
- Ernest Oduro-Kwateng
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Musab Ali
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Ibrahim Oluwatobi Kehinde
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
3
|
Oner M, Chen MC, Cheng PT, Li YH, Cheng YC, Celik A, Soong SW, Hsu LW, Lin DY, Hossain Prince GMS, Dhar T, Cheng HC, Tang PC, Lin H. Impact of metformin on neocortical development during pregnancy: Involvement of ERK and p35/CDK5 pathways. CHEMOSPHERE 2024; 358:142124. [PMID: 38677614 DOI: 10.1016/j.chemosphere.2024.142124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Metformin, the most commonly prescribed drug for the treatment of diabetes, is increasingly used during pregnancy to address various disorders such as diabetes, obesity, preeclampsia, and metabolic diseases. However, its impact on neocortex development remains unclear. Here, we investigated the direct effects of metformin on neocortex development, focusing on ERK and p35/CDK5 regulation. Using a pregnant rat model, we found that metformin treatment during pregnancy induces small for gestational age (SGA) and reduces relative cortical thickness in embryos and neonates. Additionally, we discovered that metformin inhibits neural progenitor cell proliferation in the sub-ventricular zone (SVZ)/ventricular zone (VZ) of the developing neocortex, a process possibly mediated by ERK inactivation. Furthermore, metformin induces neuronal apoptosis in the SVZ/VZ area of the developing neocortex. Moreover, metformin retards neuronal migration, cortical lamination, and differentiation, potentially through p35/CDK5 inhibition in the developing neocortex. Remarkably, compensating for p35 through in utero electroporation partially rescues metformin-impaired neuronal migration and development. In summary, our study reveals that metformin disrupts neocortex development by inhibiting neuronal progenitor proliferation, neuronal migration, cortical layering, and cortical neuron maturation, likely via ERK and p35/CDK5 inhibition. Consequently, our findings advocate for caution in metformin usage during pregnancy, given its potential adverse effects on fetal brain development.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Hsuan Li
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Yu-Chiao Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ayse Celik
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shiuan-Woei Soong
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Li-Wen Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Din-You Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | | | - Trayee Dhar
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsu-Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
4
|
Hizawa K, Sasaki T, Arimura N. A comparative overview of DSCAM and its multifunctional roles in Drosophila and vertebrates. Neurosci Res 2024; 202:1-7. [PMID: 38141781 DOI: 10.1016/j.neures.2023.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
DSCAM (Down syndrome cell adhesion molecule) is a unique neuronal adhesion protein with extensively documented multifaceted functionalities. DSCAM also has interesting properties in vertebrates and invertebrates, respectively. In Drosophila species, particularly, Dscam exhibits remarkable genetic diversity, with tens of thousands of splicing isoforms that modulate the specificity of neuronal wiring. Interestingly, this splice variant diversity of Dscam is absent in vertebrates. DSCAM plays a pivotal role in mitigating excessive adhesion between identical cell types, thereby maintaining the structural and functional coherence of neural networks. DSCAM contributes to the oversight of selective intercellular interactions such as synaptogenesis; however, the precise regulatory mechanisms underlying the promotion and inhibition of cell adhesion involved remain unclear. In this review, we aim to delineate the distinct molecules that interact with DSCAM and their specific roles within the biological landscapes of Drosophila and vertebrates. By integrating these comparative insights, we aim to elucidate the multifunctional nature of DSCAM, particularly its capacity to facilitate or deter intercellular adhesion.
Collapse
Affiliation(s)
- Kento Hizawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan
| | - Nariko Arimura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
5
|
Fei Q, Im DS, Xu Y, Huang T, Qu D. Timing dependent neuronal migration is regulated by Cdk5-mediated phosphorylation of JIP1. Front Cell Dev Biol 2024; 12:1371568. [PMID: 38606319 PMCID: PMC11007206 DOI: 10.3389/fcell.2024.1371568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
The mammalian brain, especially the cerebral cortex, has evolved to increase in size and complexity. The proper development of the cerebral cortex requires the coordination of several events, such as differentiation and migration, that are essential for forming a precise six-layered structure. We have previously reported that Cdk5-mediated phosphorylation of JIP1 at T205 modulates axonal out-growth. However, the spatiotemporal expression patterns and functions of these three genes (Cdk5, Cdk5r1 or p35, and Mapk8ip1 or JIP1) in distinct cell types during cortical development remain unclear. In this study, we analyzed single-cell RNA-sequencing data of mouse embryonic cortex and discovered that Cdk5, p35, and JIP1 are dynamically expressed in intermediate progenitors (IPs). Pseudotime analysis revealed that the expression of these three genes was concomitantly upregulated in IPs during neuronal migration and differentiation. By manipulating the expression of JIP1 and phospho-mimetic JIP1 using in utero electroporation, we showed that phosphorylated JIP1 at T205 affected the temporal migration of neurons.
Collapse
Affiliation(s)
- Qinglin Fei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Doo Soon Im
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yiwen Xu
- Fujian Key Laboratory of Vascular Aging, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tianwen Huang
- Fujian Key Laboratory of Vascular Aging, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dianbo Qu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Kittock CM, Pilaz LJ. Advances in in utero electroporation. Dev Neurobiol 2023; 83:73-90. [PMID: 36861639 DOI: 10.1002/dneu.22910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
In utero electroporation (IUE) is a technique developed in the early 2000s to transfect the neurons and neural progenitors of embryonic brains, thus enabling continued development in utero and subsequent analyses of neural development. Early IUE experiments focused on ectopic expression of plasmid DNA to analyze parameters such as neuron morphology and migration. Recent advances made in other fields, such as CRISPR/CAS9 genome editing, have been incorporated into IUE techniques as they were developed. Here, we provide a general review of the mechanics and techniques involved in IUE and explore the breadth of approaches that can be used in conjunction with IUE to study cortical development in a rodent model, with a focus on the novel advances in IUE techniques. We also highlight a few cases that exemplify the potential of IUE to study a broad range of questions in neural development.
Collapse
Affiliation(s)
- Claire M Kittock
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
7
|
A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases. Int J Biol Macromol 2023; 230:123259. [PMID: 36641018 DOI: 10.1016/j.ijbiomac.2023.123259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cyclin-dependent kinase 5 (CDK5) is the serine/threonine-directed kinase mainly found in the brain and plays a significant role in developing the central nervous system. Recent evidence suggests that CDK5 is activated by specific cyclins regulating its expression and activity. P35 and p39 activate CDK5, and their proteolytic degradation produces p25 and p29, which are stable products involved in the hyperphosphorylation of tau protein, a significant hallmark of various neurological diseases. Numerous high-affinity inhibitors of CDK5 have been designed, and some are marketed drugs. Roscovitine, like other drugs, is being used to minimize neurological symptoms. Here, we performed an extensive literature analysis to highlight the role of CDK5 in neurons, synaptic plasticity, DNA damage repair, cell cycle, etc. We have investigated the structural features of CDK5, and their binding mode with the designed inhibitors is discussed in detail to develop attractive strategies in the therapeutic targeting of CDK5 for neurodegenerative diseases. This review provides deeper mechanistic insights into the therapeutic potential of CDK5 inhibitors and their implications in the clinical management of neurodegenerative diseases.
Collapse
|
8
|
Whole Genome Analysis of Dizygotic Twins With Autism Reveals Prevalent Transposon Insertion Within Neuronal Regulatory Elements: Potential Implications for Disease Etiology and Clinical Assessment. J Autism Dev Disord 2023; 53:1091-1106. [PMID: 35759154 DOI: 10.1007/s10803-022-05636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022]
Abstract
Transposable elements (TEs) have been implicated in autism spectrum disorder (ASD). However, our understanding of their roles is far from complete. Herein, we explored de novo TE insertions (dnTEIs) and de novo variants (DNVs) across the genomes of dizygotic twins with ASD and their parents. The neuronal regulatory elements had a tendency to harbor dnTEIs that were shared between twins, but ASD-risk genes had dnTEIs that were unique to each twin. The dnTEIs were 4.6-fold enriched in enhancers that are active in embryonic stem cell (ESC)-neurons (p < 0.001), but DNVs were 1.5-fold enriched in active enhancers of astrocytes (p = 0.0051). Our findings suggest that dnTEIs and DNVs play a role in ASD etiology by disrupting enhancers of neurons and astrocytes.
Collapse
|
9
|
Tian Z, Feng B, Wang XQ, Tian J. Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders. Front Mol Neurosci 2022; 15:1030639. [PMID: 36438186 PMCID: PMC9687395 DOI: 10.3389/fnmol.2022.1030639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/20/2023] Open
Abstract
Cyclin-dependent kinases 5 (Cdk5) is a special member of proline-directed serine threonine kinase family. Unlike other Cdks, Cdk5 is not directly involved in cell cycle regulation but plays important roles in nervous system functions. Under physiological conditions, the activity of Cdk5 is tightly controlled by p35 or p39, which are specific activators of Cdk5 and highly expressed in post-mitotic neurons. However, they will be cleaved into the corresponding truncated forms namely p25 and p29 under pathological conditions, such as neurodegenerative diseases and neurotoxic insults. The binding to truncated co-activators results in aberrant Cdk5 activity and contributes to the initiation and progression of multiple neurological disorders through affecting the down-stream targets. Although Cdk5 kinase activity is mainly regulated through combining with co-activators, it is not the only way. Post-translational modifications of Cdk5 including phosphorylation, S-nitrosylation, sumoylation, and acetylation can also affect its kinase activity and then participate in physiological and pathological processes of nervous system. In this review, we focus on the regulatory mechanisms of Cdk5 and its roles in a series of common neurological disorders such as neurodegenerative diseases, stroke, anxiety/depression, pathological pain and epilepsy.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Bin Feng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Xing-Qin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines On Public Health in Chongqing, Chongqing, China
| |
Collapse
|
10
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
11
|
He CQ, Mao L, Yao J, Zhao WC, Huang B, Hu N, Long DX. The Threshold Effects of Low-Dose-Rate Radiation on miRNA-Mediated Neurodevelopment of Zebrafish. Radiat Res 2021; 196:633-646. [PMID: 34399425 DOI: 10.1667/rade-20-00265.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/29/2021] [Indexed: 11/03/2022]
Abstract
The biological effects and regulatory mechanisms of low-dose and low-dose-rate radiation are still rather controversial. Therefore, in this study we investigated the effects of low-dose-rate radiation on zebrafish neurodevelopment and the role of miRNAs in radiation-induced neurodevelopment. Zebrafish embryos received prolonged gamma-ray irradiation (0 mGy/h, 0.1 mGy/h, 0.2 mGy/h, 0.4 mGy/h) during development. Neurodevelopmental indicators included mortality, malformation rate, swimming speed, as well as the morphology changes of the lateral line system and brain tissue. Additionally, spatiotemporal expression of development-related miRNAs (dre-miR-196a-5p, dre-miR-210-3p, dre-miR-338) and miRNA processing enzymes genes (Dicer and Drosha) were assessed by qRT-PCR and whole mount in situ hybridization (WISH). The results revealed a decline in mortality, malformation and swimming speed, with normal histological and morphological appearance, in zebrafish that received 0.1 mGy/h; however, increased mortality, malformation and swimming speed were observed, with pathological changes, in zebrafish that received 0.2 mGy/h and 0.4 mGy/h. The expression of miRNA processing enzyme genes was altered after irradiation, and miRNAs expression was downregulated in the 0.1 mGy/h group, and upregulated in the 0.2 mGy/h and 0.4 mGy/h groups. Furthermore, ectopic expression of dre-miR-210-3p, Dicer and Drosha was also observed in the 0.4 mGy/h group. In conclusion, the effect of low-dose and low-dose-rate radiation on neurodevelopment follows the threshold model, under the regulation of miRNAs, excitatory effects occurred at a dose rate of 0.1 mGy/h and toxic effects occurred at a dose rate of 0.2 mGy/h and 0.4 mGy/h.
Collapse
Affiliation(s)
- Chu-Qi He
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Liang Mao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Jin Yao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Wei-Chao Zhao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Ding-Xin Long
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| |
Collapse
|
12
|
Yamazaki Y, Moizumi M, Nagai J, Hatashita Y, Cai T, Kolattukudy P, Inoue T, Goshima Y, Ohshima T. Requirement of CRMP2 Phosphorylation in Neuronal Migration of Developing Mouse Cerebral Cortex and Hippocampus and Redundant Roles of CRMP1 and CRMP4. Cereb Cortex 2021; 32:520-527. [PMID: 34297816 DOI: 10.1093/cercor/bhab228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex is characterized by a 6-layer structure, and proper neuronal migration is critical for its formation. Cyclin-dependent kinase 5 (Cdk5) has been shown to be a critical kinase for neuronal migration. Several Cdk5 substrates have been suggested to be involved in ordered neuronal migration. However, in vivo loss-of-function studies on the function of Cdk5 phosphorylation substrates in neuronal migration in the developing cerebral cortex have not been reported. In this study, we demonstrated that Cdk5-mediated phosphorylation of collapsing mediator protein (CRMP) 2 is critical for neuronal migration in the developing cerebral cortex with redundant functions of CRMP1 and CRMP4. The cerebral cortices of triple-mutant CRMP1 knock-out (KO); CRMP2 knock-in (KI)/KI; and CRMP4 KO mice showed disturbed positioning of layers II-V neurons in the cerebral cortex. Further experiments using bromodeoxyuridine birthdate-labeling and in utero electroporation implicated radial migration defects in cortical neurons. Ectopic neurons were detected around the CA1 region and dentate gyrus in CRMP1 KO; CRMP2 KI/KI; and CRMP4 KO mice. These results suggest the importance of CRMP2 phosphorylation by Cdk5 and redundancy of CRMP1 and CRMP4 in proper neuronal migration in the developing cerebral cortex and hippocampus.
Collapse
Affiliation(s)
- Yuki Yamazaki
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Maho Moizumi
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Jun Nagai
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan.,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda City, Tokyo 102-0083, Japan
| | - Yoshiki Hatashita
- Laboratory for Neurophysiology, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tianhong Cai
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Papachan Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida 32816, USA
| | - Takafumi Inoue
- Laboratory for Neurophysiology, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
13
|
Wang S, Li X, Zhang Q, Chai X, Wang Y, Förster E, Zhu X, Zhao S. Nyap1 Regulates Multipolar-Bipolar Transition and Morphology of Migrating Neurons by Fyn Phosphorylation during Corticogenesis. Cereb Cortex 2021; 30:929-941. [PMID: 31609430 DOI: 10.1093/cercor/bhz137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
The coordination of cytoskeletal regulation is a prerequisite for proper neuronal migration during mammalian corticogenesis. Neuronal tyrosine-phosphorylated adaptor for the phosphoinositide 3-kinase 1 (Nyap1) is a member of the Nyap family of phosphoproteins, which has been studied in neuronal morphogenesis and is involved in remodeling of the actin cytoskeleton. However, the precise role of Nyap1 in neuronal migration remains unknown. Here, overexpression and knockdown of Nyap1 in the embryonic neocortex of mouse by in utero electroporation-induced abnormal morphologies and multipolar-bipolar transitions of migrating neurons. The level of phosphorylated Nyap1 was crucial for neuronal migration and morphogenesis in neurons. Furthermore, Nyap1 regulated neuronal migration as a downstream target of Fyn, a nonreceptor protein-tyrosine kinase that is a member of the Src family of kinases. Importantly, Nyap1 mediated the role of Fyn in the multipolar-bipolar transition of migrating neurons. Taken together, these results suggest that cortical radial migration is regulated by a molecular hierarchy of Fyn via Nyap1.
Collapse
Affiliation(s)
- Shuzhong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xuzhao Li
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Qianru Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xuejun Chai
- College of Basic Medicine, Xi'An Medical University, Xi'An, 710021, PR China
| | - Yi Wang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, PR China
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum 44801, Germany
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
14
|
Marlier Q, D'aes T, Verteneuil S, Vandenbosch R, Malgrange B. Core cell cycle machinery is crucially involved in both life and death of post-mitotic neurons. Cell Mol Life Sci 2020; 77:4553-4571. [PMID: 32476056 PMCID: PMC11105064 DOI: 10.1007/s00018-020-03548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
A persistent dogma in neuroscience supported the idea that terminally differentiated neurons permanently withdraw from the cell cycle. However, since the late 1990s, several studies have shown that cell cycle proteins are expressed in post-mitotic neurons under physiological conditions, indicating that the cell cycle machinery is not restricted to proliferating cells. Moreover, many studies have highlighted a clear link between cell cycle-related proteins and neurological disorders, particularly relating to apoptosis-induced neuronal death. Indeed, cell cycle-related proteins can be upregulated or overactivated in post-mitotic neurons in case of acute or degenerative central nervous system disease. Given the considerable lack of effective treatments for age-related neurological disorders, new therapeutic approaches targeting the cell cycle machinery might thus be considered. This review aims at summarizing current knowledge about the role of the cell cycle machinery in post-mitotic neurons in healthy and pathological conditions.
Collapse
Affiliation(s)
- Quentin Marlier
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Tine D'aes
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Sébastien Verteneuil
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Renaud Vandenbosch
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium.
| |
Collapse
|
15
|
Pan L, McClain L, Shaw P, Donnellan N, Chu T, Finegold D, Peters D. Non-invasive epigenomic molecular phenotyping of the human brain via liquid biopsy of cerebrospinal fluid and next generation sequencing. Eur J Neurosci 2020; 52:4536-4545. [PMID: 33020990 DOI: 10.1111/ejn.14997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/15/2023]
Abstract
Our goal was to undertake a genome-wide epigenomic liquid biopsy of cerebrospinal fluid (CSF) for the comprehensive analysis of cell-free DNA (cfDNA) methylation signatures in the human central nervous system (CNS). Solution-phase hybridization and massively parallel sequencing of bisulfite converted human DNA was employed to compare methylation signatures of cfDNA obtained from CSF with plasma. Recovery of cfDNA from CSF was relatively low (68-840 pg/mL) compared to plasma (2720-8390 pg/mL) and cfDNA fragments from CSF were approximately 20 bp shorter than their plasma-derived counterparts. Distributions of CpG methylation signatures were significantly altered between CSF and plasma, both globally and at the level of functional elements including exons, introns, CpG islands, and shores. Sliding window analysis was used to identify differentially methylated regions. We found numerous gene/locus-specific differences in CpG methylation between cfDNA from CSF and plasma. These loci were more frequently hypomethylated in CSF compared to plasma. Differentially methylated CpGs in CSF were identified in genes related to branching of neurites and neuronal development. Using the GTEx RNA expression database, we found clear association between tissue-specific gene expression in the CNS and cfDNA methylation patterns in CSF. Ingenuity pathway analysis of differentially methylated regions identified an enrichment of functional pathways related to neurobiology. In conclusion, we present a genome-wide analysis of DNA methylation in human CSF. Our methods and the resulting data demonstrate the potential of epigenomic liquid biopsy of the human CNS for molecular phenotyping of brain-derived DNA methylation signatures.
Collapse
Affiliation(s)
- Lisa Pan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Lora McClain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | | | - Nicole Donnellan
- Magee-Womens Research Institute, Pittsburgh, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, USA
| | - Tianjiao Chu
- Magee-Womens Research Institute, Pittsburgh, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, USA
| | - David Finegold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA
| | - David Peters
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA.,Magee-Womens Research Institute, Pittsburgh, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
16
|
Martinez-Garay I. Molecular Mechanisms of Cadherin Function During Cortical Migration. Front Cell Dev Biol 2020; 8:588152. [PMID: 33043020 PMCID: PMC7523180 DOI: 10.3389/fcell.2020.588152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
During development of the cerebral cortex, different types of neurons migrate from distinct origins to create the different cortical layers and settle within them. Along their way, migrating neurons use cell adhesion molecules on their surface to interact with other cells that will play critical roles to ensure that migration is successful. Radially migrating projection neurons interact primarily with radial glia and Cajal-Retzius cells, whereas interneurons originating in the subpallium follow a longer, tangential route and encounter additional cellular substrates before reaching the cortex. Cell-cell adhesion is therefore essential for the correct migration of cortical neurons. Several members of the cadherin superfamily of cell adhesion proteins, which mediate cellular interactions through calcium-dependent, mostly homophilic binding, have been shown to play important roles during neuronal migration of both projection neurons and interneurons. Although several classical cadherins and protocadherins are involved in this process, the most prominent is CDH2. This mini review will explore the cellular and molecular mechanisms underpinning cadherin function during cortical migration, including recent advances in our understanding of the control of adhesive strength through regulation of cadherin surface levels.
Collapse
Affiliation(s)
- Isabel Martinez-Garay
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
17
|
Arimura N, Okada M, Taya S, Dewa KI, Tsuzuki A, Uetake H, Miyashita S, Hashizume K, Shimaoka K, Egusa S, Nishioka T, Yanagawa Y, Yamakawa K, Inoue YU, Inoue T, Kaibuchi K, Hoshino M. DSCAM regulates delamination of neurons in the developing midbrain. SCIENCE ADVANCES 2020; 6:6/36/eaba1693. [PMID: 32917586 PMCID: PMC7467692 DOI: 10.1126/sciadv.aba1693] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/22/2020] [Indexed: 06/10/2023]
Abstract
For normal neurogenesis and circuit formation, delamination of differentiating neurons from the proliferative zone must be precisely controlled; however, the regulatory mechanisms underlying cell attachment are poorly understood. Here, we show that Down syndrome cell adhesion molecule (DSCAM) controls neuronal delamination by local suppression of the RapGEF2-Rap1-N-cadherin cascade at the apical endfeet in the dorsal midbrain. Dscam transcripts were expressed in differentiating neurons, and DSCAM protein accumulated at the distal part of the apical endfeet. Cre-loxP-based neuronal labeling revealed that Dscam knockdown impaired endfeet detachment from ventricles. DSCAM associated with RapGEF2 to inactivate Rap1, whose activity is required for membrane localization of N-cadherin. Correspondingly, Dscam knockdown increased N-cadherin localization and ventricular attachment area at the endfeet. Furthermore, excessive endfeet attachment by Dscam knockdown was restored by co-knockdown of RapGEF2 or N-cadherin Our findings shed light on the molecular mechanism that regulates a critical step in early neuronal development.
Collapse
Affiliation(s)
- Nariko Arimura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Mako Okada
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ken-Ichi Dewa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Akiko Tsuzuki
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hirotomo Uetake
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Koichi Hashizume
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazumi Shimaoka
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Saki Egusa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
18
|
Taylor RJ, Carrington J, Gerlach LR, Taylor KL, Richters KE, Dent EW. Double UP: A Dual Color, Internally Controlled Platform for in utero Knockdown or Overexpression. Front Mol Neurosci 2020; 13:82. [PMID: 32508591 PMCID: PMC7251070 DOI: 10.3389/fnmol.2020.00082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/23/2020] [Indexed: 12/30/2022] Open
Abstract
In utero electroporation (IUE) is a powerful tool for testing the role of genes in neuronal migration and function, but this technique suffers from high degrees of variability. Such variability can result from inconsistent surgery, developmental gradients along both rostral-caudal and medial-lateral axes, differences within littermates and from one litter to another. Comparisons between control and experimental electroporations rely on section matching, which is inherently subjective. These sources of variability are cumulative, leading to difficult to interpret data and an increased risk of both false positives and false negatives. To address these limitations, we developed two tools: (1) a new plasmid, termed Double UP, which combines LoxP-flanked reporters and limiting Cre dosages to generate internal controls, and (2) an automated program for unbiased and precise quantification of migration. In concert, these tools allow for more rigorous and objective experiments, while decreasing the mice, time, and reagents required to complete studies.
Collapse
Affiliation(s)
- Russell J Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Justin Carrington
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Leah R Gerlach
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Karl E Richters
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
19
|
Yamazaki Y, Nagai J, Akinaga S, Koga Y, Hasegawa M, Takahashi M, Yamashita N, Kolattukudy P, Goshima Y, Ohshima T. Phosphorylation of CRMP2 is required for migration and positioning of Purkinje cells: Redundant roles of CRMP1 and CRMP4. Brain Res 2020; 1736:146762. [PMID: 32156571 DOI: 10.1016/j.brainres.2020.146762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/31/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
Proper migration and positioning of Purkinje cells are important for formation of the developing cerebellum. Although several cyclin-dependent kinase 5 (Cdk5) substrates are known to be critical for ordered neuronal migration, there are no reports of mutant mouse-based, in vivo studies on the function of Cdk5-phosphorylation substrates in migration of Purkinje cells. We focused on the analysis of collapsin response mediator protein 2 (CRMP2), one of the Cdk5 substrates, because a previous study reported migration defects of cortical neurons with shRNA-mediated knockdown of CRMP2. However, CRMP2 KI/KI mice, in which Cdk5-phosphorylation is inhibited, showed little defects in Purkinje cell migration and positioning. We hypothesized compensatory redundant functions of the other CRMPs, and analyzed the migration and positioning of Purkinje cells in the cerebellum in every combination of CRMP1 knockout (KO), CRMP2 KI/KI, and CRMP4 KO mice. Severe disturbance of migration and positioning of Purkinje cells were observed in the triple mutant mice. We also found motor coordination defects in the triple CRMPs mutant mice. These results suggest the importance of both, phosphorylation of CRMP2 by Cdk5 and the redundant functions of CRMP1 and CRMP4 in proper migration and positioning of Purkinje cells in developing cerebellum.
Collapse
Affiliation(s)
- Yuki Yamazaki
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Jun Nagai
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Society for the Promotion of Science, Japan
| | - Satoshi Akinaga
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yumeno Koga
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Masaya Hasegawa
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Miyuki Takahashi
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Papachan Kolattukudy
- Biomolecular Science Center, University of Central Florida, Biomolecular Science, Orlando, FL 32816, USA
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda Univeristy, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
20
|
Balan S, Toyoshima M, Yoshikawa T. Contribution of induced pluripotent stem cell technologies to the understanding of cellular phenotypes in schizophrenia. Neurobiol Dis 2019; 131:104162. [DOI: 10.1016/j.nbd.2018.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023] Open
|
21
|
Quan Q, Qian Y, Li X, Li M. CDK5 Participates in Amyloid-β Production by Regulating PPARγ Phosphorylation in Primary Rat Hippocampal Neurons. J Alzheimers Dis 2019; 71:443-460. [PMID: 31403945 DOI: 10.3233/jad-190026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education of China, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yihua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education of China, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ming Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
22
|
Zhu B, Cao A, Li J, Young J, Wong J, Ashraf S, Bierzynska A, Menon MC, Hou S, Sawyers C, Campbell KN, Saleem MA, He JC, Hildebrandt F, D'Agati VD, Peng W, Kaufman L. Disruption of MAGI2-RapGEF2-Rap1 signaling contributes to podocyte dysfunction in congenital nephrotic syndrome caused by mutations in MAGI2. Kidney Int 2019; 96:642-655. [PMID: 31171376 PMCID: PMC7259463 DOI: 10.1016/j.kint.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 03/03/2019] [Accepted: 03/14/2019] [Indexed: 11/21/2022]
Abstract
The essential role of membrane associated guanylate kinase 2 (MAGI2) in podocytes is indicated by the phenotypes of severe glomerulosclerosis of both MAGI2 knockout mice and in patients with congenital nephrotic syndrome (CNS) caused by mutations in MAGI2. Here, we show that MAGI2 forms a complex with the Rap1 guanine nucleotide exchange factor, RapGEF2, and that this complex is lost when expressing MAGI2 CNS variants. Co-expression of RapGEF2 with wild-type MAGI2, but not MAGI2 CNS variants, enhanced activation of the small GTPase Rap1, a central signaling node in podocytes. In mice, podocyte-specific RapGEF2 deletion resulted in spontaneous glomerulosclerosis, with qualitative glomerular features comparable to MAGI2 knockout mice. Knockdown of RapGEF2 or MAGI2 in human podocytes caused similar reductions in levels of Rap1 activation and Rap1-mediated downstream signaling. Furthermore, human podocytes expressing MAGI2 CNS variants show severe abnormalities of cellular morphology and dramatic loss of actin cytoskeletal organization, features completely rescued by pharmacological activation of Rap1 via a non-MAGI2 dependent upstream pathway. Finally, immunostaining of kidney sections from patients with congenital nephrotic syndrome and MAGI2 mutations showed reduced podocyte Rap1-mediated signaling. Thus, MAGI2-RapGEF2-Rap1 signaling is essential for normal podocyte function. Hence, disruption of this pathway is an important cause of the renal phenotype induced by MAGI2 CNS mutations.
Collapse
Affiliation(s)
- Bingbing Zhu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aili Cao
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James Young
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jenny Wong
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shazia Ashraf
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Agnieszka Bierzynska
- University of Bristol, Children's Renal Unit and Bristol Renal, Bristol, United Kingdom
| | - Madhav C Menon
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steven Hou
- National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Charles Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Moin A Saleem
- University of Bristol, Children's Renal Unit and Bristol Renal, Bristol, United Kingdom
| | - John C He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivette D D'Agati
- Renal Pathology Laboratory, Columbia University Medical Center, New York, New York, USA
| | - Wen Peng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lewis Kaufman
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
23
|
Xu Z, Chen Y, Chen Y. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells 2019; 8:cells8060568. [PMID: 31185627 PMCID: PMC6627650 DOI: 10.3390/cells8060568] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Neuronal migration is essential for the orchestration of brain development and involves several contiguous steps: interkinetic nuclear movement (INM), multipolar–bipolar transition, locomotion, and translocation. Growing evidence suggests that Rho GTPases, including RhoA, Rac, Cdc42, and the atypical Rnd members, play critical roles in neuronal migration by regulating both actin and microtubule cytoskeletal components. This review focuses on the spatiotemporal-specific regulation of Rho GTPases as well as their regulators and effectors in distinct steps during the neuronal migration process. Their roles in bridging extracellular signals and cytoskeletal dynamics to provide optimal structural support to the migrating neurons will also be discussed.
Collapse
Affiliation(s)
- Zhenyan Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
| | - Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| |
Collapse
|
24
|
Alharatani R, Griffin JN, Liu KJ. Expression of the guanine nucleotide exchange factor, RAPGEF5, during mouse and human embryogenesis. Gene Expr Patterns 2019; 34:119057. [PMID: 31163262 DOI: 10.1016/j.gep.2019.119057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/25/2019] [Accepted: 05/31/2019] [Indexed: 01/19/2023]
Abstract
Rap GTPases mediate fundamental cellular processes, including cell adhesion, migration and intracellular signal transduction. The subcellular activity of these GTPases is regulated by dedicated activators (guanine nucleotide exchange factors, GEFs) and deactivators (GTPase-activating proteins, GAPs). RAPGEF5 is a potent activator of Rap proteins and mutations in RAPGEF5 have been linked to both neurological disorders and congenital heart disease. In the frog model, Xenopus tropicalis, Rapgef5 is a critical regulator of the canonical Wnt signalling pathway and is required for normal gastrulation and correct establishment of the left-right body axis. However, requirements for RAPGEF5 in other developmental contexts, and in mammalian embryogenesis in particular, remain undefined. Here, we describe RAPGEF5 mRNA expression patterns during mouse (E9.5 - E16.5) and human (Carnegie stage 21) development, as an initial step towards better understanding its developmental functions.
Collapse
Affiliation(s)
- Reham Alharatani
- The Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - John N Griffin
- The Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
| | - Karen J Liu
- The Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
25
|
Hakanen J, Ruiz-Reig N, Tissir F. Linking Cell Polarity to Cortical Development and Malformations. Front Cell Neurosci 2019; 13:244. [PMID: 31213986 PMCID: PMC6558068 DOI: 10.3389/fncel.2019.00244] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
Cell polarity refers to the asymmetric distribution of signaling molecules, cellular organelles, and cytoskeleton in a cell. Neural progenitors and neurons are highly polarized cells in which the cell membrane and cytoplasmic components are compartmentalized into distinct functional domains in response to internal and external cues that coordinate polarity and behavior during development and disease. In neural progenitor cells, polarity has a prominent impact on cell shape and coordinate several processes such as adhesion, division, and fate determination. Polarity also accompanies a neuron from the beginning until the end of its life. It is essential for development and later functionality of neuronal circuitries. During development, polarity governs transitions between multipolar and bipolar during migration of postmitotic neurons, and directs the specification and directional growth of axons. Once reaching final positions in cortical layers, neurons form dendrites which become compartmentalized to ensure proper establishment of neuronal connections and signaling. Changes in neuronal polarity induce signaling cascades that regulate cytoskeletal changes, as well as mRNA, protein, and vesicle trafficking, required for synapses to form and function. Hence, defects in establishing and maintaining cell polarity are associated with several neural disorders such as microcephaly, lissencephaly, schizophrenia, autism, and epilepsy. In this review we summarize the role of polarity genes in cortical development and emphasize the relationship between polarity dysfunctions and cortical malformations.
Collapse
Affiliation(s)
- Janne Hakanen
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| |
Collapse
|
26
|
Lee DK, Lee H, Yoon J, Hong S, Lee Y, Kim KT, Kim JW, Song MR. Cdk5 regulates N-cadherin-dependent neuronal migration during cortical development. Biochem Biophys Res Commun 2019; 514:645-652. [PMID: 31076103 DOI: 10.1016/j.bbrc.2019.04.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) controls neuronal migration in the developing cortex when multipolar newborn neurons transform to become bipolar. However, by which mechanisms Cdk5 controls cell adhesion in migrating neurons are not fully understood. In this study, we examined the functional interaction between Cdk5 and N-cadherin (Ncad) in newborn neurons when they undergo the multipolar to bipolar transition in the intermediate zone (IZ). Detailed expression analysis revealed that both Cdk5 and Ncad were present in GFP-electroporated migrating neurons in the IZ. Misexpression of dominant negative Cdk5 into the embryonic brains stalled neuronal locomotion in the lower IZ in which arrested cells were round or multipolar. When Ncad was co-introduced with Cdk5DN, however, cells continue to migrate into the cortical plate (CP) and migrating neurons acquired typical bipolar morphology with a pia-directed leading process. Similarly, downregulation of CDK5 resulted in lesser aggregation ability, reversed by the expression of Ncad in vitro. Down-regulation of activity or protein level of CDK5 did not alter the total amount of NCAD proteins but lowered its surface expression in cells. Lastly, expression of CDK5 and NCAD overlapped in the IZ of the human fetal cortex, indicating that the role of Cdk5 and Ncad in neuronal migration is evolutionarily conserved.
Collapse
Affiliation(s)
- Dong-Keun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Hojae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Jiyoung Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Sujeong Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Kyung-Tai Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Jong Woon Kim
- Department of Obstetrics and Gynecology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea.
| |
Collapse
|
27
|
Yang C, Li X, Zhang B, Fu S, Li S, Shen J, Guan L, Qiao L, Lin J. The Mechanism of Rap1 Regulates N-cadherin to Control Neuronal Migration. J Mol Neurosci 2019; 68:539-548. [PMID: 30982164 DOI: 10.1007/s12031-019-01316-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/28/2019] [Indexed: 11/30/2022]
Abstract
Rap1 and N-cadherin regulate glia-independent translocation of cortical neurons. It remains unclear how Rap1 regulates N-cadherin-mediated neuronal migration. Here, we overexpressed Rap1gap in mouse brains (embryonic day 16) to inactivate Rap1, and observed that neurons did not migrate to the outer layer. We confirmed that Rap1 was involved in the regulation of late neurons in vivo. Rap1gap overexpression and Rap1 suppression in CHO cells decreased the expression of cytoskeletal proteins such as tubulin. Changes in the expression of cell morphology regulators, such as N-cadherin and β-catenin, were also observed. Inhibition of N-cadherin in mouse brains prevented neuronal migration to the outer layer. The morphology of CHO cells was changed after overexpression of Rap1gap. We propose that Rap1 regulates the expression of N-cadherin during embryonic development, which affects β-catenin expression. Beta-catenin in turn regulates cytoskeletal protein expression, ultimately affecting neuronal morphology and migration.
Collapse
Affiliation(s)
- Ciqing Yang
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Xiaoying Li
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Bichao Zhang
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Sulei Fu
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Shuanqing Li
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jianing Shen
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lihong Guan
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Liang Qiao
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Juntang Lin
- Xinxiang Key Laboratory of Neural Development, Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China. .,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
28
|
Diaz A, Jeanneret V, Merino P, McCann P, Yepes M. Tissue-type plasminogen activator regulates p35-mediated Cdk5 activation in the postsynaptic terminal. J Cell Sci 2019; 132:jcs224196. [PMID: 30709918 PMCID: PMC6432712 DOI: 10.1242/jcs.224196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/19/2019] [Indexed: 11/20/2022] Open
Abstract
Neuronal depolarization induces the synaptic release of tissue-type plasminogen activator (tPA). Cyclin-dependent kinase-5 (Cdk5) is a member of the family of cyclin-dependent kinases that regulates cell migration and synaptic function in postmitotic neurons. Cdk5 is activated by its binding to p35 (also known as Cdk5r1), a membrane-anchored protein that is rapidly degraded by the proteasome. Here, we show that tPA prevents the degradation of p35 in the synapse by a plasminogen-dependent mechanism that requires open synaptic N-methyl-D-aspartate (NMDA) receptors. We show that tPA treatment increases the abundance of p35 and its binding to Cdk5 in the postsynaptic density (PSD). Furthermore, our data indicate that tPA-induced p35-mediated Cdk5 activation does not induce cell death, but instead prevents NMDA-induced ubiquitylation of postsynaptic density protein-95 (PSD-95; also known as Dlg4) and the removal of GluR1 (also known as Gria1)-containing α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors from the PSD. These results show that the interaction between tPA and synaptic NMDA receptors regulates the expression of AMPA receptor subunits in the PSD via p35-mediated Cdk5 activation. This is a novel role for tPA as a regulator of Cdk5 activation in cerebral cortical neurons.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Valerie Jeanneret
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Patrick McCann
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| |
Collapse
|
29
|
Ou M, Wang S, Sun M, An J, Lv H, Zeng X, Hou SX, Xie W. The PDZ-GEF Gef26 regulates synapse development and function via FasII and Rap1 at the Drosophila neuromuscular junction. Exp Cell Res 2018; 374:342-352. [PMID: 30553967 DOI: 10.1016/j.yexcr.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022]
Abstract
Guanine nucleotide exchange factors (GEFs) are essential for small G proteins to activate their downstream signaling pathways, which are involved in morphogenesis, cell adhesion, and migration. Mutants of Gef26, a PDZ-GEF (PDZ domain-containing guanine nucleotide exchange factor) in Drosophila, exhibit strong defects in wings, eyes, and the reproductive and nervous systems. However, the precise roles of Gef26 in development remain unclear. In the present study, we analyzed the role of Gef26 in synaptic development and function. We identified significant decreases in bouton number and branch length at larval neuromuscular junctions (NMJs) in Gef26 mutants, and these defects were fully rescued by restoring Gef26 expression, indicating that Gef26 plays an important role in NMJ morphogenesis. In addition to the observed defects in NMJ morphology, electrophysiological analyses revealed functional defects at NMJs, and locomotor deficiency appeared in Gef26 mutant larvae. Furthermore, Gef26 regulated NMJ morphogenesis by regulating the level of synaptic Fasciclin II (FasII), a well-studied cell adhesion molecule that functions in NMJ development and remodeling. Finally, our data demonstrate that Gef26-specific small G protein Rap1 worked downstream of Gef26 to regulate the level of FasII at NMJs, possibly through a βPS integrin-mediated signaling pathway. Taken together, our findings define a novel role of Gef26 in regulating NMJ development and function.
Collapse
Affiliation(s)
- Mengzhu Ou
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Su Wang
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Mingkuan Sun
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Jinsong An
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Huihui Lv
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xiankun Zeng
- Basic Research Laboratory, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Steven X Hou
- Basic Research Laboratory, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA.
| | - Wei Xie
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| |
Collapse
|
30
|
Hiester BG, Becker MI, Bowen AB, Schwartz SL, Kennedy MJ. Mechanisms and Role of Dendritic Membrane Trafficking for Long-Term Potentiation. Front Cell Neurosci 2018; 12:391. [PMID: 30425622 PMCID: PMC6218485 DOI: 10.3389/fncel.2018.00391] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/11/2018] [Indexed: 01/19/2023] Open
Abstract
Long-term potentiation (LTP) of excitatory synapses is a major form of plasticity for learning and memory in the central nervous system. While the molecular mechanisms of LTP have been debated for decades, there is consensus that LTP induction activates membrane trafficking pathways within dendrites that are essential for synapse growth and strengthening. Current models suggest that key molecules for synaptic potentiation are sequestered within intracellular organelles, which are mobilized by synaptic activity to fuse with the plasma membrane following LTP induction. While the identity of the factors mobilized to the plasma membrane during LTP remain obscure, the field has narrowly focused on AMPA-type glutamate receptors. Here, we review recent literature and present new experimental data from our lab investigating whether AMPA receptors trafficked from intracellular organelles directly contribute to synaptic strengthening during LTP. We propose a modified model where membrane trafficking delivers distinct factors that are required to maintain synapse growth and AMPA receptor incorporation following LTP. Finally, we pose several fundamental questions that may guide further inquiry into the role of membrane trafficking for synaptic plasticity.
Collapse
Affiliation(s)
- Brian G Hiester
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew I Becker
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron B Bowen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Samantha L Schwartz
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
31
|
The Sema3A receptor Plexin-A1 suppresses supernumerary axons through Rap1 GTPases. Sci Rep 2018; 8:15647. [PMID: 30353093 PMCID: PMC6199275 DOI: 10.1038/s41598-018-34092-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 10/06/2018] [Indexed: 01/14/2023] Open
Abstract
The highly conserved Rap1 GTPases perform essential functions during neuronal development. They are required for the polarity of neuronal progenitors and neurons as well as for neuronal migration in the embryonic brain. Neuronal polarization and axon formation depend on the precise temporal and spatial regulation of Rap1 activity by guanine nucleotide exchange factors (GEFs) and GTPases-activating proteins (GAPs). Several Rap1 GEFs have been identified that direct the formation of axons during cortical and hippocampal development in vivo and in cultured neurons. However little is known about the GAPs that limit the activity of Rap1 GTPases during neuronal development. Here we investigate the function of Sema3A and Plexin-A1 as a regulator of Rap1 GTPases during the polarization of hippocampal neurons. Sema3A was shown to suppress axon formation when neurons are cultured on a patterned substrate. Plexin-A1 functions as the signal-transducing subunit of receptors for Sema3A and displays GAP activity for Rap1 GTPases. We show that Sema3A and Plexin-A1 suppress the formation of supernumerary axons in cultured neurons, which depends on Rap1 GTPases.
Collapse
|
32
|
Hara Y, Fukaya M, Sugawara T, Sakagami H. FIP4/Arfophilin-2 plays overlapping but distinct roles from FIP3/Arfophilin-1 in neuronal migration during cortical layer formation. Eur J Neurosci 2018; 48:3082-3096. [PMID: 30295969 DOI: 10.1111/ejn.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 11/29/2022]
Abstract
The class II Rab11 family-interacting proteins, FIP3 and FIP4, also termed Arfophilin-1 and Arfophilin-2, respectively, are endosomal proteins that function as dual effector proteins for Rab11 and ADP ribosylation factor (Arf) small GTPases. In the present study, we examined the expression and role of FIP4 in neuronal migration during cerebral layer formation. FIP4 mRNA was first weakly detected in post-mitotic migrating neurons in the upper intermediate zone, and expression was markedly increased in the cortical layer. Exogenously expressed FIP4 protein was localized to subpopulations of EEA1- and syntaxin 12-positive endosomes in migrating neurons, and was partially colocalized with FIP3. Knockdown of FIP4 by in utero electroporation significantly stalled transfected neurons in the lower cortical layer and decreased the speed of neuronal migration in the upper intermediate zone and in the cortical plate compared with control small hairpin RNA (shRNA)-transfected neurons. Furthermore, co-transfection of shRNA-resistant wild-type FIP4, but not wild type FIP3 or FIP4 mutants lacking the binding region for Rab11 or Arf, significantly improved the disturbed cortical layer formation caused by FIP4 knockdown. Collectively, our findings suggest that FIP4 and FIP3 play overlapping but distinct roles in neuronal migration downstream of Arf and Rab11 during cortical layer formation.
Collapse
Affiliation(s)
- Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
33
|
The acetylation of cyclin-dependent kinase 5 at lysine 33 regulates kinase activity and neurite length in hippocampal neurons. Sci Rep 2018; 8:13676. [PMID: 30209341 PMCID: PMC6135752 DOI: 10.1038/s41598-018-31785-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/19/2018] [Indexed: 01/06/2023] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) plays a pivotal role in neural development and neurodegeneration. CDK5 activity can be regulated by posttranslational modifications, including phosphorylation and S-nitrosylation. In this study, we demonstrate a novel mechanism by which the acetylation of CDK5 at K33 (Ac-CDK5) results in the loss of ATP binding and impaired kinase activity. We identify GCN5 and SIRT1 as critical factor controlling Ac-CDK5 levels. Ac-CDK5 achieved its lowest levels in rat fetal brains but was dramatically increased during postnatal periods. Intriguingly, nuclear Ac-CDK5 levels negatively correlated with neurite length in embryonic hippocampal neurons. Either treatment with the SIRT1 activator SRT1720 or overexpression of SIRT1 leads to increases in neurite length, whereas SIRT1 inhibitor EX527 or ectopic expression of acetyl-mimetic (K33Q) CDK5 induced the opposite effect. Furthermore, the expression of nuclear-targeted CDK5 K33Q abolished the SRT1720-induced neurite outgrowth, showing that SIRT1 positively regulates neurite outgrowth via deacetylation of nuclear CDK5. The CDK5 activity-dependent increase of neurite length was mediated by enhanced transcriptional regulation of BDNF via unknown mechanism(s). Our findings identify a novel mechanism by which acetylation-mediated regulation of nuclear CDK5 activity plays a critical role in determining neurite length in embryonic neurons.
Collapse
|
34
|
Lin C, Chen P, Chan H, Huang Y, Chang NW. Peroxisome proliferator‐activated receptor alpha accelerates neuronal differentiation and this might involve the mitogen‐activated protein kinase pathway. Int J Dev Neurosci 2018; 71:46-51. [DOI: 10.1016/j.ijdevneu.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Chingju Lin
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Pei‐Yi Chen
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Hsu‐Chin Chan
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Yi‐Ping Huang
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Nai Wen Chang
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| |
Collapse
|
35
|
Denley MCS, Gatford NJF, Sellers KJ, Srivastava DP. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? Front Neurosci 2018; 12:245. [PMID: 29887794 PMCID: PMC5981095 DOI: 10.3389/fnins.2018.00245] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
The cerebral cortex undergoes rapid folding in an "inside-outside" manner during embryonic development resulting in the establishment of six discrete cortical layers. This unique cytoarchitecture occurs via the coordinated processes of neurogenesis and cell migration. In addition, these processes are fine-tuned by a number of extracellular cues, which exert their effects by regulating intracellular signaling pathways. Interestingly, multiple brain regions have been shown to develop in a sexually dimorphic manner. In many cases, estrogens have been demonstrated to play an integral role in mediating these sexual dimorphisms in both males and females. Indeed, 17β-estradiol, the main biologically active estrogen, plays a critical organizational role during early brain development and has been shown to be pivotal in the sexually dimorphic development and regulation of the neural circuitry underlying sex-typical and socio-aggressive behaviors in males and females. However, whether and how estrogens, and 17β-estradiol in particular, regulate the development of the cerebral cortex is less well understood. In this review, we outline the evidence that estrogens are not only present but are engaged and regulate molecular machinery required for the fine-tuning of processes central to the cortex. We discuss how estrogens are thought to regulate the function of key molecular players and signaling pathways involved in corticogenesis, and where possible, highlight if these processes are sexually dimorphic. Collectively, we hope this review highlights the need to consider how estrogens may influence the development of brain regions directly involved in the sex-typical and socio-aggressive behaviors as well as development of sexually dimorphic regions such as the cerebral cortex.
Collapse
Affiliation(s)
- Matthew C. S. Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Nicholas J. F. Gatford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Katherine J. Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
36
|
Guo Y, He X, Zhao L, Liu L, Song H, Wang X, Xu J, Ju X, Guo W, Zhu X. Gβ2 Regulates the Multipolar-Bipolar Transition of Newborn Neurons in the Developing Neocortex. Cereb Cortex 2018; 27:3414-3426. [PMID: 28334111 DOI: 10.1093/cercor/bhx042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 01/14/2023] Open
Abstract
Proper neuronal migration is critical for the formation of the six-layered neocortex in the mammalian brain. However, the precise control of neuronal migration is not well understood. Heterotrimeric guanine nucleotide binding proteins (G proteins), composed of Gα and Gβγ, transduce signals from G protein-coupled receptors to downstream effectors and play crucial roles in brain development. However, the functions of individual subunits of G proteins in prenatal brain development remain unclear. Here, we report that Gβ2 is expressed in the embryonic neocortex, with abundant expression in the intermediate zone, and is significantly upregulated in differentiated neurons. Perturbation of Gβ2 expression impairs the morphogenetic transformation of migrating neurons from multipolar to bipolar and subsequently delays neuronal migration. Moreover, Gβ2 acts as a scaffold protein to organize the MP1-MEK1-ERK1/2 complex and mediates the phosphorylation of ERK1/2. Importantly, expression of a constitutively active variant of MEK1 rescues the migration defects that are caused by the loss of Gβ2. In conclusion, our findings reveal that Gβ2 regulates proper neuronal migration during neocortex development by activating the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Ye Guo
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xiaoxiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Lu Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Lin Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Huifang Song
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xudong Wang
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Jiahui Xu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xingda Ju
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
37
|
Shah B, Lutter D, Tsytsyura Y, Glyvuk N, Sakakibara A, Klingauf J, Püschel AW. Rap1 GTPases Are Master Regulators of Neural Cell Polarity in the Developing Neocortex. Cereb Cortex 2018; 27:1253-1269. [PMID: 26733533 DOI: 10.1093/cercor/bhv341] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During the development of the mammalian neocortex, the generation of neurons by neural progenitors and their migration to the final position are closely coordinated. The highly polarized radial glial cells (RGCs) serve both as progenitor cells to generate neurons and as support for the migration of these neurons. After their generation, neurons transiently assume a multipolar morphology before they polarize and begin their migration along the RGCs. Here, we show that Rap1 GTPases perform essential functions for cortical organization as master regulators of cell polarity. Conditional deletion of Rap1 GTPases leads to a complete loss of cortical lamination. In RGCs, Rap1 GTPases are required to maintain their polarized organization. In newborn neurons, the loss of Rap1 GTPases prevents the formation of axons and leading processes and thereby interferes with radial migration. Taken together, the loss of RGC and neuronal polarity results in the disruption of cortical organization.
Collapse
Affiliation(s)
- Bhavin Shah
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
| | - Daniela Lutter
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | - Natalia Glyvuk
- Institute of Medical Physics and Biophysics, D-48149 Münster, Germany
| | - Akira Sakakibara
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan.,Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jürgen Klingauf
- Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.,Institute of Medical Physics and Biophysics, D- 48149 Münster, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
38
|
Genetic analysis of very obese children with autism spectrum disorder. Mol Genet Genomics 2018; 293:725-736. [PMID: 29327328 DOI: 10.1007/s00438-018-1418-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/06/2018] [Indexed: 12/31/2022]
Abstract
Autism spectrum disorder (ASD) is defined by the triad of deficits in social interactions, deficits in communication, and repetitive behaviors. Common co-morbidities in syndromic forms of ASD include intellectual disability, seizures, and obesity. We asked whether very obese children with ASD had different behavioral, physical and genetic characteristics compared to children with ASD who were not obese. We found that very obese children with ASD had significantly poorer scores on standardized behavioral tests. Very obese boys with ASD had lower full scale IQ and increased impairments with respect to stereotypies, communication and social skills. Very obese girls with ASD had increased impairments with respect to irritability and oppositional defiant behavior. We identified genetic lesions in a subset of the children with ASD and obesity and attempted to identify enriched biological pathways. Our study demonstrates the value of identifying co-morbidities in children with ASD as we move forward towards understanding the biological processes that contribute to this complex disorder and prepare to design customized treatments that target the diverse genetic lesions present in individuals with ASD.
Collapse
|
39
|
Dong J, Wyss A, Yang J, Price TR, Nicolas A, Nalls M, Tranah G, Franceschini N, Xu Z, Schulte C, Alonso A, Cummings SR, Fornage M, Zaykin D, Li L, Huang X, Kritchevsky S, Liu Y, Gasser T, Wilson RS, De Jager PL, Singleton AB, Pinto JM, Harris T, Mosley TH, Bennett DA, London S, Yu L, Chen H. Genome-Wide Association Analysis of the Sense of Smell in U.S. Older Adults: Identification of Novel Risk Loci in African-Americans and European-Americans. Mol Neurobiol 2017; 54:8021-8032. [PMID: 27878761 PMCID: PMC5441979 DOI: 10.1007/s12035-016-0282-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Abstract
The human sense of smell decreases with age, and a poor sense of smell are among the most important prodromal symptoms of several neurodegenerative diseases. Recent evidence further suggests a racial difference in the sense of smell among U.S. older adults. However, no genome-wide association study (GWAS) on the sense of smell has been conducted in African-Americans (AAs). We performed the first genome-wide meta-analysis of the sense of smell among 1979 AAs and 6582 European-Americans (EAs) from three U.S. aging cohorts. In the AA population, we identified nine novel regions (KLF4-ACTL7B, RAPGEF2-FSTL5, TCF4-LOC100505474, PCDH10, KIAA1751, MYO5B, MIR320B1-CD2, NR5A2-LINC00862, SALL1-C16orf97) that were associated with the sense of smell (P < 5 × 10-8). Many of these regions have been previously linked to neuropsychiatric (schizophrenia or epilepsy) or neurodegenerative (Parkinson's or Alzheimer's disease) diseases associated with a decreased sense of smell. In the EA population, we identified two novel loci in or near RASGRP1 and ANXA2P3 associated with sense of smell. In conclusion, this study identified several ancestry-specific loci that are associated with the sense of smell in older adults. While these findings need independent confirmation, they may lead to novel insights into the biology of the sense of smell in older adults and its relationships to neuropsychological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Dong
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. P.O. Box 12233, Mail drop A3-05, Research Triangle Park, NC, 27709, USA.
| | - Annah Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. P.O. Box 12233, Mail drop A3-05, Research Triangle Park, NC, 27709, USA
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - T Ryan Price
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Aude Nicolas
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Michael Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Greg Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. P.O. Box 12233, Mail drop A3-05, Research Triangle Park, NC, 27709, USA
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Genome Biology for Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dmitri Zaykin
- Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Leping Li
- Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Xuemei Huang
- Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Stephen Kritchevsky
- Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yongmei Liu
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Genome Biology for Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert S Wilson
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Program in Translational Neuro Psychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital; Harvard Medical School; Program in Medical and Population Genetics, Broad Institute, Boston, MA, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Jayant M Pinto
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Tamara Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, MD, USA
| | - Thomas H Mosley
- Division of Geriatrics, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Stephanie London
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. P.O. Box 12233, Mail drop A3-05, Research Triangle Park, NC, 27709, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Honglei Chen
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. P.O. Box 12233, Mail drop A3-05, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
40
|
Farag MI, Yoshikawa Y, Maeta K, Kataoka T. Rapgef2, a guanine nucleotide exchange factor for Rap1 small GTPases, plays a crucial role in adherence junction (AJ) formation in radial glial cells through ERK-mediated upregulation of the AJ-constituent protein expression. Biochem Biophys Res Commun 2017; 493:139-145. [PMID: 28917843 DOI: 10.1016/j.bbrc.2017.09.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 11/28/2022]
Abstract
Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap1, characterized by possession of the Ras/Rap-associating domains and implicated in the etiology of schizophrenia. We previously found that dorsal telencephalon-specific Rapgef2 conditional knockout mice exhibits severe defects in formation of apical surface adherence junctions (AJs) and localization of radial glial cells (RGCs). In this study, we analyze the underlying molecular mechanism by using primary cultures of RGCs established from the developing cerebral cortex. The results show that Rapgef2-deficient RGCs exhibit a decreased ability of neurosphere formation, morphological changes represented by regression of radial glial (RG) fibers and reduced expression of AJ-constituent proteins such as N-cadherin, zonula occludens-1, E-cadherin and β-catenin. Moreover, siRNA-mediated knockdown of Rapgef2 or Rap1A inhibits the AJ protein expression and RG fiber formation while overexpression of Rapgef2, Rapgef6, Rap1AG12V or Rap1BG12V in Rapgef2-deficient RGCs restores them. Furthermore, Rapgef2-deficient RGCs exhibit a reduction in phosphorylation of extracellular signal-regulated kinase (ERK) leading to downregulation of the expression of c-jun, which is implicated in the AJ protein expression. These results indicate a crucial role of the Rapgef2-Rap1A-ERK-c-jun pathway in regulation of the AJ formation in RGCs.
Collapse
Affiliation(s)
- Maged Ibrahim Farag
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoko Yoshikawa
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kazuhiro Maeta
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| |
Collapse
|
41
|
The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochem J 2017; 474:3137-3165. [PMID: 28887403 DOI: 10.1042/bcj20160628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.
Collapse
|
42
|
Han J, Kim HJ, Schafer ST, Paquola A, Clemenson GD, Toda T, Oh J, Pankonin AR, Lee BS, Johnston ST, Sarkar A, Denli AM, Gage FH. Functional Implications of miR-19 in the Migration of Newborn Neurons in the Adult Brain. Neuron 2017; 91:79-89. [PMID: 27387650 DOI: 10.1016/j.neuron.2016.05.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 04/13/2016] [Accepted: 05/18/2016] [Indexed: 12/27/2022]
Abstract
Altered microRNA profiles have been implicated in human brain disorders. However, the functional contribution of individual microRNAs to neuronal development and function is largely unknown. Here, we report biological functions for miR-19 in adult neurogenesis. We determined that miR-19 is enriched in neural progenitor cells (NPCs) and downregulated during neuronal development in the adult hippocampus. By manipulating miR-19 in NPCs for gain- and loss-of-function studies, we discovered that miR-19 regulates cell migration by directly targeting Rapgef2. Concordantly, dysregulation of miR-19 in NPCs alters the positioning of newborn neurons in the adult brain. Furthermore, we found abnormal expression of miR-19 in human NPCs generated from schizophrenic patient-derived induced pluripotent stem cells (iPSCs) that have been described as displaying aberrant migration. Our study demonstrates the significance of posttranscriptional gene regulation by miR-19 in preventing the irregular migration of adult-born neurons that may contribute to the etiology of schizophrenia.
Collapse
Affiliation(s)
- Jinju Han
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Hyung Joon Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon T Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Institute of Physiology, University of Greifswald, 17495 Karlsburg, Germany
| | - Apua Paquola
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gregory D Clemenson
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tomohisa Toda
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jinseo Oh
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Aimee R Pankonin
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bo Suk Lee
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephen T Johnston
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anindita Sarkar
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ahmet M Denli
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Cdk5-dependent phosphorylation of liprinα1 mediates neuronal activity-dependent synapse development. Proc Natl Acad Sci U S A 2017; 114:E6992-E7001. [PMID: 28760951 DOI: 10.1073/pnas.1708240114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The experience-dependent modulation of brain circuitry depends on dynamic changes in synaptic connections that are guided by neuronal activity. In particular, postsynaptic maturation requires changes in dendritic spine morphology, the targeting of postsynaptic proteins, and the insertion of synaptic neurotransmitter receptors. Thus, it is critical to understand how neuronal activity controls postsynaptic maturation. Here we report that the scaffold protein liprinα1 and its phosphorylation by cyclin-dependent kinase 5 (Cdk5) are critical for the maturation of excitatory synapses through regulation of the synaptic localization of the major postsynaptic organizer postsynaptic density (PSD)-95. Whereas Cdk5 phosphorylates liprinα1 at Thr701, this phosphorylation decreases in neurons in response to neuronal activity. Blockade of liprinα1 phosphorylation enhances the structural and functional maturation of excitatory synapses. Nanoscale superresolution imaging reveals that inhibition of liprinα1 phosphorylation increases the colocalization of liprinα1 with PSD-95. Furthermore, disruption of liprinα1 phosphorylation by a small interfering peptide, siLIP, promotes the synaptic localization of PSD-95 and enhances synaptic strength in vivo. Our findings collectively demonstrate that the Cdk5-dependent phosphorylation of liprinα1 is important for the postsynaptic organization during activity-dependent synapse development.
Collapse
|
44
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
45
|
Kos A, de Mooij-Malsen AJ, van Bokhoven H, Kaplan BB, Martens GJ, Kolk SM, Aschrafi A. MicroRNA-338 modulates cortical neuronal placement and polarity. RNA Biol 2017; 14:905-913. [PMID: 28494198 DOI: 10.1080/15476286.2017.1325067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The precise spatial and temporal regulation of gene expression orchestrates the many intricate processes during brain development. In the present study we examined the role of the brain-enriched microRNA-338 (miR-338) during mouse cortical development. Reduction of miR-338 levels in the developing mouse cortex, using a sequence-specific miR-sponge, resulted in a loss of neuronal polarity in the cortical plate and significantly reduced the number of neurons within this cortical layer. Conversely, miR-338 overexpression in developing mouse cortex increased the number of neurons, which exhibited a multipolar morphology. All together, our results raise the possibility for a direct role for this non-coding RNA, which was recently associated with schizophrenia, in the regulation of cortical neuronal polarity and layer placement.
Collapse
Affiliation(s)
- Aron Kos
- a Department of Cognitive Neuroscience , Radboud University Medical Center , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Annetrude J de Mooij-Malsen
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands.,f Institute of Physiology, CAU Kiel University , Germany
| | - Hans van Bokhoven
- a Department of Cognitive Neuroscience , Radboud University Medical Center , Nijmegen , The Netherlands.,c Department of Human Genetics , Radboud University Medical Center , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Barry B Kaplan
- e Laboratory of Molecular Biology, National Institute of Mental Health , National Institutes of Health , Bethesda , MD , USA
| | - Gerard J Martens
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Sharon M Kolk
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Armaz Aschrafi
- e Laboratory of Molecular Biology, National Institute of Mental Health , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
46
|
Ji L, Bishayee K, Sadra A, Choi S, Choi W, Moon S, Jho EH, Huh SO. Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex. Neuroscience 2017; 355:126-140. [PMID: 28501506 DOI: 10.1016/j.neuroscience.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
Brain developmental disorders such as lissencephaly can result from faulty neuronal migration and differentiation during the formation of the mammalian neocortex. The cerebral cortex is a modular structure, where developmentally, newborn neurons are generated as a neuro-epithelial sheet and subsequently differentiate, migrate and organize into their final positions in the cerebral cortical plate via a process involving both tangential and radial migration. The specific role of Mest, an imprinted gene, in neuronal migration has not been previously studied. In this work, we reduced expression of Mest with in utero electroporation of neuronal progenitors in the developing embryonic mouse neocortex. Reduction of Mest levels by shRNA significantly reduced the number of neurons migrating to the cortical plate. Also, Mest-knockdown disrupted the transition of bipolar neurons into multipolar neurons migrating out of the sub-ventricular zone region. The migrating neurons also adopted a more tangential migration pattern upon knockdown of the Mest message, losing their potential to attach to radial glia cells, required for radial migration. The differentiation and migration properties of neurons via Wnt-Akt signaling were affected by Mest changes. In addition, miR-335, encoded in a Mest gene intron, was identified as being responsible for blocking the default tangential migration of the neurons. Our results suggest that Mest and its intron product, miR-335, play important roles in neuronal migration with Mest regulating the morphological transition of primary neurons required in the formation of the mammalian neocortex.
Collapse
Affiliation(s)
- Liting Ji
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Seunghyuk Choi
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Wooyul Choi
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Sungho Moon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea.
| |
Collapse
|
47
|
Chen HR, Juan HC, Wong YH, Tsai JW, Fann MJ. Cdk12 Regulates Neurogenesis and Late-Arising Neuronal Migration in the Developing Cerebral Cortex. Cereb Cortex 2017; 27:2289-2302. [PMID: 27073218 DOI: 10.1093/cercor/bhw081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA damage response (DDR) pathways are critical for ensuring that replication stress and various types of DNA lesion do not perturb production of neural cells during development. Cdk12 maintains genomic stability by regulating expression of DDR genes. Mutant mice in which Cdk12 is conditionally deleted in neural progenitor cells (NPCs) die after birth and exhibit microcephaly with a thinner cortical plate and an aberrant corpus callosum. We show that NPCs of mutant mice accumulate at G2 and M phase, and have lower expression of DDR genes, more DNA double-strand breaks and increased apoptosis. In addition to there being fewer neurons, there is misalignment of layers IV-II neurons and the presence of abnormal axonal tracts of these neurons, suggesting that Cdk12 is also required for the migration of late-arising cortical neurons. Using in utero electroporation, we demonstrate that the migrating mutant cells remain within the intermediate zone and fail to adopt a bipolar morphology. Overexpression of Cdk5 brings about a partially restoration of the neurons reaching layers IV-II in the mutant mice. Thus, Cdk12 is crucial to the repair of DNA damage during the proliferation of NPCs and is also central to the proper migration of late-arising neurons.
Collapse
Affiliation(s)
- Hong-Ru Chen
- Department of Life Sciences and Institute of Genome Sciences.,Brain Research Center
| | - Hsien-Chia Juan
- Department of Life Sciences and Institute of Genome Sciences
| | | | - Jin-Wu Tsai
- Brain Research Center.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan 11221, Republic of China
| | - Ming-Ji Fann
- Department of Life Sciences and Institute of Genome Sciences.,Brain Research Center
| |
Collapse
|
48
|
Zhao W, Yan J, Gao L, Zhao J, Zhao C, Gao C, Luo X, Zhu X. Cdk5 is required for the neuroprotective effect of transforming growth factor-β1 against cerebral ischemia-reperfusion. Biochem Biophys Res Commun 2017; 485:775-781. [DOI: 10.1016/j.bbrc.2017.02.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 12/01/2022]
|
49
|
Mitra I, Lavillaureix A, Yeh E, Traglia M, Tsang K, Bearden CE, Rauen KA, Weiss LA. Reverse Pathway Genetic Approach Identifies Epistasis in Autism Spectrum Disorders. PLoS Genet 2017; 13:e1006516. [PMID: 28076348 PMCID: PMC5226683 DOI: 10.1371/journal.pgen.1006516] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023] Open
Abstract
Although gene-gene interaction, or epistasis, plays a large role in complex traits in model organisms, genome-wide by genome-wide searches for two-way interaction have limited power in human studies. We thus used knowledge of a biological pathway in order to identify a contribution of epistasis to autism spectrum disorders (ASDs) in humans, a reverse-pathway genetic approach. Based on previous observation of increased ASD symptoms in Mendelian disorders of the Ras/MAPK pathway (RASopathies), we showed that common SNPs in RASopathy genes show enrichment for association signal in GWAS (P = 0.02). We then screened genome-wide for interactors with RASopathy gene SNPs and showed strong enrichment in ASD-affected individuals (P < 2.2 x 10-16), with a number of pairwise interactions meeting genome-wide criteria for significance. Finally, we utilized quantitative measures of ASD symptoms in RASopathy-affected individuals to perform modifier mapping via GWAS. One top region overlapped between these independent approaches, and we showed dysregulation of a gene in this region, GPR141, in a RASopathy neural cell line. We thus used orthogonal approaches to provide strong evidence for a contribution of epistasis to ASDs, confirm a role for the Ras/MAPK pathway in idiopathic ASDs, and to identify a convergent candidate gene that may interact with the Ras/MAPK pathway.
Collapse
Affiliation(s)
- Ileena Mitra
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Alinoë Lavillaureix
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Université Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine, Paris, France
| | - Erika Yeh
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Michela Traglia
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Kathryn Tsang
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Psychology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Katherine A. Rauen
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Lauren A. Weiss
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
50
|
ADP Ribosylation Factor 6 Regulates Neuronal Migration in the Developing Cerebral Cortex through FIP3/Arfophilin-1-dependent Endosomal Trafficking of N-cadherin. eNeuro 2016; 3:eN-NWR-0148-16. [PMID: 27622210 PMCID: PMC5002984 DOI: 10.1523/eneuro.0148-16.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
During neural development, endosomal trafficking controls cell shape and motility through the polarized transport of membrane proteins related to cell–cell and cell–extracellular matrix interactions. ADP ribosylation factor 6 (Arf6) is a critical small GTPase that regulates membrane trafficking between the plasma membrane and endosomes. We herein demonstrated that the knockdown of endogenous Arf6 in mouse cerebral cortices led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin and syntaxin12 in migrating neurons. Rescue experiments with separation-of-function Arf6 mutants identified Rab11 family-interacting protein 3 (FIP3)/Arfophilin-1, a dual effector for Arf6 and Rab11, as a downstream effector of Arf6 in migrating neurons. The knockdown of FIP3 led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin in migrating neurons, similar to that of Arf6, which could be rescued by the coexpression of wild-type FIP3 but not FIP3 mutants lacking the binding site for Arf6 or Rab11. These results suggest that Arf6 regulates cortical neuronal migration in the intermediate zone through the FIP3-dependent endosomal trafficking.
Collapse
|