1
|
Gu J, Li Y, Tian Y, Zhang Y, Cheng Y, Tang Y. Noncanonical functions of microRNAs in the nucleus. Acta Biochim Biophys Sin (Shanghai) 2024; 56:151-161. [PMID: 38167929 PMCID: PMC10984876 DOI: 10.3724/abbs.2023268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs) that play their roles in the regulation of physiological and pathological processes. Originally, it was assumed that miRNAs only modulate gene expression posttranscriptionally in the cytoplasm by inducing target mRNA degradation. However, with further research, evidence shows that mature miRNAs also exist in the cell nucleus, where they can impact gene transcription and ncRNA maturation in several ways. This review provides an overview of novel models of nuclear miRNA functions. Some of the models remain to be verified by experimental evidence, and more details of the miRNA regulation network remain to be discovered in the future.
Collapse
Affiliation(s)
- Jiayi Gu
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yuanan Li
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Youtong Tian
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yehao Zhang
- College of Basic Medical SciencesShanghai Jiao Tong University School of MedicineShanghai200001China
| | - Yongjun Cheng
- Department of Rheumatologythe First People’s Hospital of WenlingWenling317500China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology/Department of RheumatologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200001China
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai200031China
| |
Collapse
|
2
|
Moradi S, Guenther S, Soori S, Sharifi-Zarchi A, Kuenne C, Khoddami V, Tavakol P, Kreutzer S, Braun T, Baharvand H. Time-resolved Small-RNA Sequencing Identifies MicroRNAs Critical for Formation of Embryonic Stem Cells from the Inner Cell Mass of Mouse Embryos. Stem Cell Rev Rep 2023; 19:2361-2377. [PMID: 37402099 DOI: 10.1007/s12015-023-10582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Cells of the inner cell mass (ICM) acquire a unique ability for unlimited self-renewal during transition into embryonic stem cells (ESCs) in vitro, while preserving their natural multi-lineage differentiation potential. Several different pathways have been identified to play roles in ESC formation but the function of non-coding RNAs in this process is poorly understood. Here, we describe several microRNAs (miRNAs) that are crucial for efficient generation of mouse ESCs from ICMs. Using small-RNA sequencing, we characterize dynamic changes in miRNA expression profiles during outgrowth of ICMs in a high-resolution, time-course dependent manner. We report several waves of miRNA transcription during ESC formation, to which miRNAs from the imprinted Dlk1-Dio3 locus contribute extensively. In silico analyses followed by functional investigations reveal that Dlk1-Dio3 locus-embedded miRNAs (miR-541-5p, miR-410-3p, and miR-381-3p), miR-183-5p, and miR-302b-3p promote, while miR-212-5p and let-7d-3p inhibit ESC formation. Collectively, these findings offer new mechanistic insights into the role of miRNAs during ESC derivation.
Collapse
Affiliation(s)
- Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Stefan Guenther
- Department of Cardiac Development and Remodelling, Max-Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Samira Soori
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Carsten Kuenne
- Department of Cardiac Development and Remodelling, Max-Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Vahid Khoddami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pouya Tavakol
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Susanne Kreutzer
- Department of Cardiac Development and Remodelling, Max-Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max-Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231, Bad Nauheim, Germany.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
3
|
Wang J, Chen HC, Sheng Q, Dawson TR, Coffey RJ, Patton JG, Weaver AM, Shyr Y, Liu Q. Systematic Assessment of Small RNA Profiling in Human Extracellular Vesicles. Cancers (Basel) 2023; 15:3446. [PMID: 37444556 PMCID: PMC10340377 DOI: 10.3390/cancers15133446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
MOTIVATION Extracellular vesicles (EVs) are produced and released by most cells and are now recognized to play a role in intercellular communication through the delivery of molecular cargo, including proteins, lipids, and RNA. Small RNA sequencing (small RNA-seq) has been widely used to characterize the small RNA content in EVs. However, there is a lack of a systematic assessment of the quality, technical biases, RNA composition, and RNA biotypes enrichment for small RNA profiling of EVs across cell types, biofluids, and conditions. METHODS We collected and reanalyzed small RNA-seq datasets for 2756 samples from 83 studies involving 55 with EVs only and 28 with both EVs and matched donor cells. We assessed their quality by the total number of reads after adapter trimming, the overall alignment rate to the host and non-host genomes, and the proportional abundance of total small RNA and specific biotypes, such as miRNA, tRNA, rRNA, and Y RNA. RESULTS We found that EV extraction methods varied in their reproducibility in isolating small RNAs, with effects on small RNA composition. Comparing proportional abundances of RNA biotypes between EVs and matched donor cells, we discovered that rRNA and tRNA fragments were relatively enriched, but miRNAs and snoRNA were depleted in EVs. Except for the export of eight miRNAs being context-independent, the selective release of most miRNAs into EVs was study-specific. CONCLUSION This work guides quality control and the selection of EV isolation methods and enhances the interpretation of small RNA contents and preferential loading in EVs.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - T. Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.R.D.); (R.J.C.); (A.M.W.)
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Robert J. Coffey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.R.D.); (R.J.C.); (A.M.W.)
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA;
| | - Alissa M. Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.R.D.); (R.J.C.); (A.M.W.)
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.W.); (H.-C.C.); (Q.S.)
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Salloum-Asfar S, Abdulla SA, Taha RZ, Thompson IR, Emara MM. Combined Noncoding RNA-mRNA Regulomics Signature in Reprogramming and Pluripotency in iPSCs. Cells 2022; 11:cells11233833. [PMID: 36497092 PMCID: PMC9737797 DOI: 10.3390/cells11233833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Somatic cells are reprogrammed with reprogramming factors to generate induced pluripotent stem cells (iPSCs), offering a promising future for disease modeling and treatment by overcoming the limitations of embryonic stem cells. However, this process remains inefficient since only a small percentage of transfected cells can undergo full reprogramming. Introducing miRNAs, such as miR-294 and miR302/3667, with reprogramming factors, has shown to increase iPSC colony formation. Previously, we identified five transcription factors, GBX2, NANOGP8, SP8, PEG3, and ZIC1, which may boost iPSC generation. In this study, we performed quantitative miRNAome and small RNA-seq sequencing and applied our previously identified transcriptome to identify the potential miRNA-mRNA regulomics and regulatory network of other ncRNAs. From each fibroblast (N = 4), three iPSC clones were examined (N = 12). iPSCs and original fibroblasts expressed miRNA clusters differently and miRNA clusters were compared to mRNA hits. Moreover, miRNA, piRNA, and snoRNAs expression profiles in iPSCs and original fibroblasts were assessed to identify the potential role of ncRNAs in enhancing iPSC generation, pluripotency, and differentiation. Decreased levels of let-7a-5p showed an increase of SP8 as described previously. Remarkably, the targets of identifier miRNAs were grouped into pluripotency canonical pathways, on stemness, cellular development, growth and proliferation, cellular assembly, and organization of iPSCs.
Collapse
Affiliation(s)
- Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: (S.S.-A.); (S.A.A.)
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: (S.S.-A.); (S.A.A.)
| | - Rowaida Z. Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - I. Richard Thompson
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
5
|
Celik N, Kim MH, Hayes DJ, Ozbolat IT. miRNA induced co-differentiation and cross-talk of adipose tissue-derived progenitor cells for 3D heterotypic pre-vascularized bone formation. Biofabrication 2021; 13:10.1088/1758-5090/ac23ae. [PMID: 34479220 PMCID: PMC8596330 DOI: 10.1088/1758-5090/ac23ae] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/03/2021] [Indexed: 11/12/2022]
Abstract
Engineered bone grafts require a vascular network to supply cells with oxygen, nutrients and remove waste. Using heterotypic mature cells to create these graftsin vivohas resulted in limited cell density, ectopic tissue formation and disorganized tissue. Despite evidence that progenitor cell aggregates, such as progenitor spheroids, are a potential candidate for fabrication of native-like pre-vascularized bone tissue, the factors dictating progenitor co-differentiation to create heterotypic pre-vascularized bone tissue remains poorly understood. In this study, we examined a three-dimensional heterotypic pre-vascularized bone tissue model, using osteogenic and endotheliogenic progenitor spheroids induced by miR-148b and miR-210 mimic transfection, respectively. Spheroids made of transfected cells were assembled into heterotypic structures to determine the impact on co-differentiation as a function of micro-RNA (miRNA) mimic treatment group and induction time. Our results demonstrated that miRNAs supported the differentiation in heterotypic structures, and that developing heterotypic structures is determined in part by progenitor maturity, as confirmed by gene and protein markers of osteogenic and endotheliogenic differentiation and the mineralization assay. As a proof of concept, miRNA-transfected spheroids were also bioprinted using aspiration-assisted bioprinting and organized into hollow structures to mimic the Haversian canal. Overall, the presented approach could be useful in fabrication of vascularized bone tissue using spheroids as building blocks.
Collapse
Affiliation(s)
- Nazmiye Celik
- Department of Engineering Science and Mechanics, Pennsylvania State University, 212 Earth-Engineering Sciences Bldg., University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
| | - Myoung Hwan Kim
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, Chemical and Biomedical Engineering Bldg., University Park, PA 16802, United States of America
| | - Daniel J Hayes
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, Chemical and Biomedical Engineering Bldg., University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
| | - Ibrahim T Ozbolat
- Department of Engineering Science and Mechanics, Pennsylvania State University, 212 Earth-Engineering Sciences Bldg., University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, Chemical and Biomedical Engineering Bldg., University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
| |
Collapse
|
6
|
Transcription factor stoichiometry in cell fate determination. J Genet 2021. [DOI: 10.1007/s12041-021-01278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Zuo Y, Song M, Li H, Chen X, Cao P, Zheng L, Cao G. Analysis of the Epigenetic Signature of Cell Reprogramming by Computational DNA Methylation Profiles. Curr Bioinform 2020. [DOI: 10.2174/1574893614666190919103752] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
DNA methylation plays an important role in the reprogramming process.
Understanding the underlying molecular mechanism of reprogramming is crucial for answering
fundamental questions regarding the transition of cell identity.
Methods:
In this study, based on the genome-wide DNA methylation data from different cell lines,
comparative methylation profiles were proposed to identify the epigenetic signature of cell
reprogramming.
Results:
The density profile of CpG methylation showed that pluripotent cells are more polarized
than Human Dermal Fibroblasts (HDF) cells. The heterogeneity of iPS has a greater deviation in
the DNA hypermethylation pattern. The result of regional distribution showed that the differential
CpG sites between pluripotent cells and HDFs tend to accumulate in the gene body and CpG shelf
regions, whereas the internal differential methylation CpG sites (DMCs) of three types of
pluripotent cells tend to accumulate in the TSS1500 region. Furthermore, a series of endogenous
markers of cell reprogramming were identified based on the integrative analysis, including focal
adhesion, pluripotency maintenance and transcription regulation. The calcium signaling pathway
was detected as one of the signatures between NT cells and iPS cells. Finally, the regional bias of
DNA methylation for key pluripotency factors was discussed. Our studies provide new insight into
the barrier identification of cell reprogramming.
Conclusion:
Our studies analyzed some epigenetic markers and barriers of nuclear reprogramming,
hoping to provide new insight into understanding the underlying molecular mechanism
of reprogramming.
Collapse
Affiliation(s)
- Yongchun Zuo
- The College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Mingmin Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hanshuang Li
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xing Chen
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Pengbo Cao
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Zheng
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Guifang Cao
- The College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
8
|
Choi J, Pacheco CM, Mosbergen R, Korn O, Chen T, Nagpal I, Englart S, Angel PW, Wells CA. Stemformatics: visualize and download curated stem cell data. Nucleic Acids Res 2020; 47:D841-D846. [PMID: 30407577 PMCID: PMC6323943 DOI: 10.1093/nar/gky1064] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022] Open
Abstract
Stemformatics is an established gene expression data portal containing over 420 public gene expression datasets derived from microarray, RNA sequencing and single cell profiling technologies. Developed for the stem cell community, it has a major focus on pluripotency, tissue stem cells, and staged differentiation. Stemformatics includes curated ‘collections’ of data relevant to cell reprogramming, as well as hematopoiesis and leukaemia. Rather than simply rehosting datasets as they appear in public repositories, Stemformatics uses a stringent set of quality control metrics and its own pipelines to process handpicked datasets from raw files. This means that about 30% of datasets processed by Stemformatics fail the quality control metrics and never make it to the portal, ensuring that Stemformatics data are of high quality and have been processed in a consistent manner. Stemformatics provides easy-to-use and intuitive tools for biologists to visually explore the data, including interactive gene expression profiles, principal component analysis plots and hierarchical clusters, among others. The addition of tools that facilitate cross-dataset comparisons provides users with snapshots of gene expression in multiple cell and tissues, assisting the identification of cell-type restricted genes, or potential housekeeping genes. Stemformatics is freely available at stemformatics.org.
Collapse
Affiliation(s)
- Jarny Choi
- Centre for Stem Cell Systems, Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Chris M Pacheco
- Centre for Stem Cell Systems, Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Rowland Mosbergen
- Centre for Stem Cell Systems, Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Othmar Korn
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Tyrone Chen
- Centre for Stem Cell Systems, Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Isha Nagpal
- Centre for Stem Cell Systems, Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Steve Englart
- Centre for Stem Cell Systems, Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul W Angel
- Centre for Stem Cell Systems, Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Christine A Wells
- Centre for Stem Cell Systems, Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| |
Collapse
|
9
|
Wells CA, Choi J. Transcriptional Profiling of Stem Cells: Moving from Descriptive to Predictive Paradigms. Stem Cell Reports 2020; 13:237-246. [PMID: 31412285 PMCID: PMC6700522 DOI: 10.1016/j.stemcr.2019.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Transcriptional profiling is a powerful tool commonly used to benchmark stem cells and their differentiated progeny. As the wealth of stem cell data builds in public repositories, we highlight common data traps, and review approaches to combine and mine this data for new cell classification and cell prediction tools. We touch on future trends for stem cell profiling, such as single-cell profiling, long-read sequencing, and improved methods for measuring molecular modifications on chromatin and RNA that bring new challenges and opportunities for stem cell analysis.
Collapse
Affiliation(s)
- Christine A Wells
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Australia.
| | - Jarny Choi
- Centre for Stem Cell Systems, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
10
|
Shao A, Tu S, Lu J, Zhang J. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res Ther 2019; 10:238. [PMID: 31387621 PMCID: PMC6683526 DOI: 10.1186/s13287-019-1357-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The injured spinal cord is difficult to repair and regenerate. Traditional treatments are not effective. Stem cells are a type of cells that have the potential to differentiate into various cells, including neurons. They exert a therapeutic effect by safely and effectively differentiating into neurons or replacing damaged cells, secreting neurotrophic factors, and inhibiting the inflammatory response. Many types of stem cells have been used for transplantation, and each has its own advantages and disadvantages. This review discusses the possible mechanisms of stem cell therapy for spinal cord injury, and the types of stem cells commonly used in experiments, to provide a reference for basic and clinical research on stem cell therapy for spinal cord injury.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Sheng Tu
- Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Brain Research Institute, Zhejiang University, Hangzhou, 310003, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
11
|
Li R, Xing QW, Wu XL, Zhang L, Tang M, Tang JY, Wang JZ, Han P, Wang SQ, Wang W, Zhang W, Zhou GP, Qin ZQ. Di-n-butyl phthalate epigenetically induces reproductive toxicity via the PTEN/AKT pathway. Cell Death Dis 2019; 10:307. [PMID: 30952838 PMCID: PMC6450951 DOI: 10.1038/s41419-019-1547-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Di-n-butyl phthalate (DBP) is a kind of ubiquitous chemical linked to hormonal disruptions that affects male reproductive system. However, the mechanism of DBP-induced germ cells toxicity remains unclear. Here, we demonstrate that DBP induces reduction of proliferation, increase of apoptosis and DNA damage dependent on the PTEN/AKT pathway. Mechanistically, DBP decreases PTEN promoter methylation and increases its transcriptional activity, leading to increased PTEN expression. Notably, DNMT3b is confirmed as a target of miR-29b and miR-29b-mediated status of PTEN methylation is involved in the effects of DBP treatment. Meanwhile, DBP decreases AKT pathway expression via increasing PTEN expression. In addition, the fact that DBP decreases the sperm number and the percentage of motile and progressive sperm is associated with downregulated AKT pathway and sperm flagellum-related genes. Collectively, these findings indicate that DBP induces aberrant PTEN demethylation, leading to inhibition of the AKT pathway, which contributes to the reproductive toxicity.
Collapse
Affiliation(s)
- Ran Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Qian-Wei Xing
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Department of Urology, Affiliated Hospital of Nantong University, 226001, Nantong, China
| | - Xiao-Lu Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Lei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Jing-Yuan Tang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210029, Nanjing, China
| | - Jing-Zi Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Peng Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Shang-Qian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Zhi-Qiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
| |
Collapse
|
12
|
Kanitz A, Syed AP, Kaji K, Zavolan M. Conserved regulation of RNA processing in somatic cell reprogramming. BMC Genomics 2019; 20:100. [PMID: 30704403 PMCID: PMC6357513 DOI: 10.1186/s12864-019-5438-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Along with the reorganization of epigenetic and transcriptional networks, somatic cell reprogramming brings about numerous changes at the level of RNA processing. These include the expression of specific transcript isoforms and 3' untranslated regions. A number of studies have uncovered RNA processing factors that modulate the efficiency of the reprogramming process. However, a comprehensive evaluation of the involvement of RNA processing factors in the reprogramming of somatic mammalian cells is lacking. RESULTS Here, we used data from a large number of studies carried out in three mammalian species, mouse, chimpanzee and human, to uncover consistent changes in gene expression upon reprogramming of somatic cells. We found that a core set of nine splicing factors have consistent changes across the majority of data sets in all three species. Most striking among these are ESRP1 and ESRP2, which accelerate and enhance the efficiency of somatic cell reprogramming by promoting isoform expression changes associated with mesenchymal-to-epithelial transition. We further identify genes and processes in which splicing changes are observed in both human and mouse. CONCLUSIONS Our results provide a general resource for gene expression and splicing changes that take place during somatic cell reprogramming. Furthermore, they support the concept that splicing factors with evolutionarily conserved, cell type-specific expression can modulate the efficiency of the process by reinforcing intermediate states resembling the cell types in which these factors are normally expressed.
Collapse
Affiliation(s)
- Alexander Kanitz
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Afzal Pasha Syed
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mihaela Zavolan
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
13
|
Pennings S, Revuelta A, McLaughlin KA, Abd Hadi NA, Petchreing P, Ottaviano R, Meehan RR. Dynamics and Mechanisms of DNA Methylation Reprogramming. EPIGENETICS AND REGENERATION 2019:19-45. [DOI: 10.1016/b978-0-12-814879-2.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Mahabadi JA, Sabzalipoor H, Nikzad H, Seyedhosseini E, Enderami SE, Gheibi Hayat SM, Sahebkar A. The role of microRNAs in embryonic stem cell and induced pluripotent stem cell differentiation in male germ cells. J Cell Physiol 2018; 234:12278-12289. [PMID: 30536380 DOI: 10.1002/jcp.27990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
New perspectives have been opened by advances in stem cell research for reproductive and regenerative medicine. Several different cell types can be differentiated from stem cells (SCs) under suitable in vitro and in vivo conditions. The differentiation of SCs into male germ cells has been reported by many groups. Due to their unlimited pluripotency and self-renewal, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be used as valuable tools for drug delivery, disease modeling, developmental studies, and cell-based therapies in regenerative medicine. The unique features of SCs are controlled by a dynamic interplay between extrinsic signaling pathways, and regulations at epigenetic, transcriptional and posttranscriptional levels. In recent years, significant progress has been made toward better understanding of the functions and expression of specific microRNAs (miRNAs) in the maintenance of SC pluripotency. miRNAs are short noncoding molecules, which play a functional role in the regulation of gene expression. In addition, the important regulatory role of miRNAs in differentiation and dedifferentiation has been recently demonstrated. A balance between differentiation and pluripotency is maintained by miRNAs in the embryo and stem cells. This review summarizes the recent findings about the role of miRNAs in the regulation of self-renewal and pluripotency of iPSCs and ESCs, as well as their impact on cellular reprogramming and stem cell differentiation into male germ cells.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyedhosseini
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Guo L, Karoubi G, Duchesneau P, Aoki FG, Shutova MV, Rogers I, Nagy A, Waddell TK. Interrupted reprogramming of alveolar type II cells induces progenitor-like cells that ameliorate pulmonary fibrosis. NPJ Regen Med 2018; 3:14. [PMID: 30210809 PMCID: PMC6123410 DOI: 10.1038/s41536-018-0052-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 02/04/2023] Open
Abstract
We describe here an interrupted reprogramming strategy to generate “induced progenitor-like (iPL) cells” from alveolar epithelial type II (AEC-II) cells. A carefully defined period of transient expression of reprogramming factors (Oct4, Sox2, Klf4, and c-Myc (OSKM)) is able to rescue the limited in vitro clonogenic capacity of AEC-II cells, potentially by activation of a bipotential progenitor-like state. Importantly, our results demonstrate that interrupted reprogramming results in controlled expansion of cell numbers yet preservation of the differentiation pathway to the alveolar epithelial lineage. When transplanted to the injured lungs, AEC-II-iPL cells are retained in the lung and ameliorate bleomycin-induced pulmonary fibrosis. Interrupted reprogramming can be used as an alternative approach to produce highly specified functional therapeutic cell populations and may lead to significant advances in regenerative medicine. A modified reprogramming strategy helps expand populations of surfactant-producing lung cells in a dish without altering their cellular function. A team led by Thomas Waddell and Andras Nagy from the University of Toronto, Canada isolated alveolar type II cells from the lungs of mice. They transiently induced expression of four reprogramming factors in these cells for a defined period of time. Before this “interrupted” reprogramming, the lung cells had limited ability to continue replicating themselves. Afterwards, the cells could expand their numbers dramatically without entering a pluripotent state. Rather, the cells maintained their original function while also expressing genes associated with lung precursor cells, which could explain their proliferative ability. The cells, when transplanted into the injured lungs, helped ameliorate pulmonary fibrosis in a mouse model, suggesting that a similar cell-based therapy may be useful in people.
Collapse
Affiliation(s)
- Li Guo
- 1Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON Canada
| | - Golnaz Karoubi
- 1Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON Canada
| | - Pascal Duchesneau
- 1Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON Canada
| | - Fabio Gava Aoki
- 1Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON Canada
| | - Maria V Shutova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON Canada
| | - Ian Rogers
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON Canada.,3Department of Physiology, University of Toronto, Toronto, ON Canada.,4Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON Canada
| | - Andras Nagy
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON Canada.,4Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON Canada.,5Institute of Medical Science, University of Toronto, Toronto, ON Canada.,6Monash University, Melbourne, VIC Australia
| | - Thomas K Waddell
- 1Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON Canada.,5Institute of Medical Science, University of Toronto, Toronto, ON Canada
| |
Collapse
|
16
|
Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors. Stem Cell Rev Rep 2018; 13:513-531. [PMID: 28239758 PMCID: PMC5493730 DOI: 10.1007/s12015-016-9712-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The development of strategies for tissue regeneration and bio-artificial organ development is based on our understanding of embryogenesis. Differentiation protocols attempt to recapitulate the signaling modalities of gastrulation and organogenesis, coupled with cell selection regimens to isolate the cells of choice. This strategy is impeded by the lack of optimal in vitro culture systems since traditional culture systems do not allow for the three-dimensional interaction between cells and the extracellular matrix. While artificial three-dimensional scaffolds are available, using the natural extracellular matrix scaffold is advantageous because it has a distinct architecture that is difficult to replicate. The adult extracellular matrix is predicted to mediate signaling related to tissue repair not embryogenesis but existing similarities between the two argues that the extracellular matrix will influence the differentiation of stem and progenitor cells. Previous studies using undifferentiated embryonic stem cells grown directly on acellular kidney ECM demonstrated that the acellular kidney supported cell growth but limited differentiation occurred. Using mouse kidney extracellular matrix and mouse embryonic stem cells we report that the extracellular matrix can support the development of kidney structures if the stem cells are first differentiated to kidney progenitor cells before being applied to the acellular organ.
Collapse
|
17
|
Feng H, Xu M, Zheng X, Zhu T, Gao X, Huang L. microRNAs and Their Targets in Apple ( Malus domestica cv. "Fuji") Involved in Response to Infection of Pathogen Valsa mali. FRONTIERS IN PLANT SCIENCE 2017; 8:2081. [PMID: 29270184 PMCID: PMC5723928 DOI: 10.3389/fpls.2017.02081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/21/2017] [Indexed: 05/19/2023]
Abstract
miRNAs are important regulators involving in plant-pathogen interactions. However, their roles in apple tree response to Valsa canker pathogen (Valsa mali, Vm) infection were poorly understood. In this study, we constructed two miRNA libraries using the twig bark tissues of apple tree (Malus domestica Borkh. cv. "Fuji") inoculated with Vm (IVm) and PDA medium (control, BMd). Among all detected miRNAs, 23 miRNAs were specifically isolated from BMd and 39 miRNAs were specifically isolated from IVm. Meanwhile, the expression of 294 miRNAs decreased; and another 172 miRNAs showed an increased expression trend in IVm compared with that in BMd. Furthermore, two degradome sequencing libraries were also constructed to identify the target genes of these miRNAs. In total, 353 differentially expressed miRNAs between IVm and BMd were detected to be able to target 1,077 unigenes with 2,251 cleavage sites. Based on GO and KEGG analysis, these genes were found to be mainly related to transcription regulation and signal transduction. In addition, we selected 17 miRNAs and 22 corresponding target genes to screen the expression profiles when apple twigs were infected by Vm. The expression trends of most miRNAs/target genes were consist with the results of deep sequencing. Many of them may involve in the apple twig-Vm interaction by inducing/reducing their expression. What's more, miRNAs and their target genes regulate the apple twig-Vm interaction by forming many complicated regulation networks rather than one to one model. It is worth that a conserved miRNAs mdm-miR482b, which was down regulated in IVm compared with BMd, has 14 potential target genes, most of which are disease resistance related genes. This indicates that mdm-miR482b may play important roles in apple twig response to Vm. More important, the feedback regulation of sRNA pathway in apple twig is also very complex, and play critical role in the interaction between apple twig and Vm based on the results of expression analysis. In all, the results will provide insights into the crucial functions of miRNAs in the woody plant, apple tree-Vm interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Generation of Induced Progenitor-like Cells from Mature Epithelial Cells Using Interrupted Reprogramming. Stem Cell Reports 2017; 9:1780-1795. [PMID: 29198829 PMCID: PMC5785620 DOI: 10.1016/j.stemcr.2017.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 01/17/2023] Open
Abstract
A suitable source of progenitor cells is required to attenuate disease or affect cure. We present an "interrupted reprogramming" strategy to generate "induced progenitor-like (iPL) cells" using carefully timed expression of induced pluripotent stem cell reprogramming factors (Oct4, Sox2, Klf4, and c-Myc; OSKM) from non-proliferative Club cells. Interrupted reprogramming allowed controlled expansion yet preservation of lineage commitment. Under clonogenic conditions, iPL cells expanded and functioned as a bronchiolar progenitor-like population to generate mature Club cells, mucin-producing goblet cells, and cystic fibrosis transmembrane conductance regulator (CFTR)-expressing ciliated epithelium. In vivo, iPL cells can repopulate CFTR-deficient epithelium. This interrupted reprogramming process could be metronomically applied to achieve controlled progenitor-like proliferation. By carefully controlling the duration of expression of OSKM, iPL cells do not become pluripotent, and they maintain their memory of origin and retain their ability to efficiently return to their original phenotype. A generic technique to produce highly specified populations may have significant implications for regenerative medicine.
Collapse
|
19
|
|
20
|
|
21
|
Abstract
INTRODUCTION Spinal cord injury (SCI) is a devastating condition, where regenerative failure and cell loss lead to paralysis. The heterogeneous and time-sensitive pathophysiology has made it difficult to target tissue repair. Despite many medical advances, there are no effective regenerative therapies. As stem cells offer multi-targeted and environmentally responsive benefits, cell therapy is a promising treatment approach. Areas covered: This review highlights the cell therapies being investigated for SCI, including Schwann cells, olfactory ensheathing cells, mensenchymal stem/stromal cells, neural precursors, oligodendrocyte progenitors, embryonic stem cells, and induced pluripotent stem cells. Through mechanisms of cell replacement, scaffolding, trophic support and immune modulation, each approach targets unique features of SCI pathology. However, as the injury is multifaceted, it is increasingly recognized that a combinatorial approach will be necessary to treat SCI. Expert opinion: Most preclinical studies, and an increasing number of clinical trials, are finding that single cell therapies have only modest benefits after SCI. These considerations, alongside issues of therapy cost-effectiveness, need to be addressed at the bench. In addition to exploring combinatorial strategies, researchers should consider cell reproducibility and storage parameters when designing animal experiments. Equally important, clinical trials must follow strict regulatory guidelines that will enable transparency of results.
Collapse
Affiliation(s)
- Anna Badner
- a Department of Genetics and Development , Krembil Research Institute, University Health Network , Toronto , ON , Canada.,b Institute of Medical Sciences , University of Toronto , Toronto , ON , Canada
| | - Ahad M Siddiqui
- a Department of Genetics and Development , Krembil Research Institute, University Health Network , Toronto , ON , Canada
| | - Michael G Fehlings
- a Department of Genetics and Development , Krembil Research Institute, University Health Network , Toronto , ON , Canada.,b Institute of Medical Sciences , University of Toronto , Toronto , ON , Canada.,c Canada Spinal Program , University Health Network, Toronto Western Hospital , Toronto , ON , Canada
| |
Collapse
|
22
|
MicroRNA profiling of low-grade glial and glioneuronal tumors shows an independent role for cluster 14q32.31 member miR-487b. Mod Pathol 2017; 30:204-216. [PMID: 27739438 PMCID: PMC5288128 DOI: 10.1038/modpathol.2016.177] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
Low-grade (WHO I-II) gliomas and glioneuronal tumors represent the most frequent primary tumors of the central nervous system in children. They often have a good prognosis following total resection, however they can create many neurological complications due to mass effect, and may be difficult to resect depending on anatomic location. MicroRNAs have been identified as molecular regulators of protein expression/translation that can repress multiple mRNAs concurrently through base pairing, and have an important role in cancer, including brain tumors. Using the NanoString digital counting system, we analyzed the expression levels of 800 microRNAs in nine low-grade glial and glioneuronal tumor types (n=45). A set of 61 of these microRNAs were differentially expressed in tumors compared with the brain, and several showed levels varying by tumor type. The expression differences were more accentuated in subependymal giant cell astrocytoma, compared with other groups, and demonstrated the highest degree of microRNA repression validated by RT-PCR, including miR-129-2-3p, miR-219-5p, miR-338-3p, miR-487b, miR-885-5p, and miR-323a-3p. Conversely, miR-4488 and miR-1246 were overexpressed in dysembryoplastic neuroepithelial tumors compared with the brain and other tumors. The cluster 14q32.31 member miR-487b was variably under-expressed in pediatric glioma lines compared with human neural stem cells. Overexpression of miR-487b in a pediatric glioma cell line (KNS42) using lentiviral vectors led to a decrease in colony formation in soft agar (30%) (P<0.05), and decreased expression of known predicted targets PROM1 and Nestin (but not WNT5A). miR-487b overexpression had no significant effect on cell growth, proliferation, sensitivity to temozolomide, migration, or invasion. In summary, microRNA regulation appears to have a role in the biology of glial and glioneuronal tumor subtypes, a finding that deserves further investigation.
Collapse
|
23
|
Hawkins KE, Moschidou D, Faccenda D, Wruck W, Martin-Trujillo A, Hau KL, Ranzoni AM, Sanchez-Freire V, Tommasini F, Eaton S, De Coppi P, Monk D, Campanella M, Thrasher AJ, Adjaye J, Guillot PV. Human Amniocytes Are Receptive to Chemically Induced Reprogramming to Pluripotency. Mol Ther 2017; 25:427-442. [PMID: 28153093 PMCID: PMC5368475 DOI: 10.1016/j.ymthe.2016.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/11/2016] [Accepted: 11/27/2016] [Indexed: 01/05/2023] Open
Abstract
Restoring pluripotency using chemical compounds alone would be a major step forward in developing clinical-grade pluripotent stem cells, but this has not yet been reported in human cells. We previously demonstrated that VPA_AFS cells, human amniocytes cultivated with valproic acid (VPA) acquired functional pluripotency while remaining distinct from human embryonic stem cells (hESCs), questioning the relationship between the modulation of cell fate and molecular regulation of the pluripotency network. Here, we used single-cell analysis and functional assays to reveal that VPA treatment resulted in a homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks of pluripotency, i.e., a short G1 phase, a dependence on glycolytic metabolism, expression of epigenetic modifications on histones 3 and 4, and reactivation of endogenous OCT4 and downstream targets at a lower level than that observed in hESCs. Mechanistic insights into the process of VPA-induced reprogramming revealed that it was dependent on OCT4 promoter activation, which was achieved independently of the PI3K (phosphatidylinositol 3-kinase)/AKT/mTOR (mammalian target of rapamycin) pathway or GSK3β inhibition but was concomitant with the presence of acetylated histones H3K9 and H3K56, which promote pluripotency. Our data identify, for the first time, the pluripotent transcriptional and molecular signature and metabolic status of human chemically induced pluripotent stem cells.
Collapse
Affiliation(s)
- Kate E Hawkins
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | - Dafni Moschidou
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | - Danilo Faccenda
- Department of Comparative Biomedical Sciences, The Royal Veterinary College (RVC), Royal College Street, London NW1 0TU, UK
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Alex Martin-Trujillo
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Duran i Reynals, Barcelona 08908, Spain
| | - Kwan-Leong Hau
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK; Imperial College London, National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Anna Maria Ranzoni
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | | | - Fabio Tommasini
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK; Institute for Child Health, University College London, London WC1N 1EH, UK
| | - Simon Eaton
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - Paolo De Coppi
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - David Monk
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College (RVC), Royal College Street, London NW1 0TU, UK; Consortium for Mitochondrial Research, University College London, Royal College Street, London NW1 0TU, UK
| | - Adrian J Thrasher
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Pascale V Guillot
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK.
| |
Collapse
|
24
|
Rasko JEJ, Wong JJL. Nuclear microRNAs in normal hemopoiesis and cancer. J Hematol Oncol 2017; 10:8. [PMID: 28057040 PMCID: PMC5217201 DOI: 10.1186/s13045-016-0375-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of microRNAs (miRNAs) in the early 1990s, these small molecules have been increasingly recognized as key players in the regulation of critical biological processes. They have also been implicated in many diverse human diseases. The canonical function of miRNAs is to target the 3′ untranslated region (3′ UTR) of cytoplasmic messenger RNA to post-transcriptionally regulate mRNA and protein levels. It has now been shown that miRNAs can also bind to the promoter regions of genes or primary miRNA transcripts to regulate gene expression. Such observations have indicated the presence of miRNAs in the nucleus and implied additional non-canonical functions. Nevertheless, the role(s) of nuclear miRNAs in normal hemopoiesis and cancer remains elusive despite a burgeoning literature. Herein, we review current knowledge concerning the abundance and/or functions of nuclear miRNAs during blood cell development and cancer biology. We also discuss ongoing challenges in order to provoke further studies into identifying key roles for nuclear miRNAs in the development of other cell lineages and human cancers.
Collapse
Affiliation(s)
- John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia. .,Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia. .,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, Australia. .,, Locked Bag 6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
25
|
Bian Q, Cahan P. Computational Tools for Stem Cell Biology. Trends Biotechnol 2016; 34:993-1009. [PMID: 27318512 PMCID: PMC5116400 DOI: 10.1016/j.tibtech.2016.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022]
Abstract
For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate.
Collapse
Affiliation(s)
- Qin Bian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
T Cell Genesis: In Vitro Veritas Est? Trends Immunol 2016; 37:889-901. [PMID: 27789110 DOI: 10.1016/j.it.2016.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
T cells, as orchestrators of the adaptive immune response, serve important physiological and potentially therapeutic roles, for example in cancer immunotherapy. T cells are readily isolated from patients; however, the yield of antigen-specific T cells is limited, thus making their clinical use challenging. Therefore, the generation of T lymphocytes from hematopoietic stem/progenitor cells (HSPCs) and human pluripotent stem cells (PSCs) in vitro provides an attractive method for the large-scale production and genetic manipulation of T cells. In this review, we discuss recent strategies for the generation of T cells from human HSPCs and PSCs in vitro. Continued advancement in the generation of human T cells in vitro will expand their benefits and therapeutic potential in the clinic.
Collapse
|
27
|
Yagdi E, Cerella C, Dicato M, Diederich M. Garlic-derived natural polysulfanes as hydrogen sulfide donors: Friend or foe? Food Chem Toxicol 2016; 95:219-33. [DOI: 10.1016/j.fct.2016.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
|
28
|
van den Hurk M, Kenis G, Bardy C, van den Hove DL, Gage FH, Steinbusch HW, Rutten BP. Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency. Epigenomics 2016; 8:1131-49. [PMID: 27419933 DOI: 10.2217/epi-2016-0032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enforced ectopic expression of a cocktail of pluripotency-associated genes such as Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). The remarkable proliferation ability of iPSCs and their aptitude to redifferentiate into any cell lineage makes these cells a promising tool for generating a variety of human tissue in vitro. Yet, pluripotency induction is an inefficient process, as cells undergoing reprogramming need to overcome developmentally imposed epigenetic barriers. Recent work has shed new light on the molecular mechanisms that drive the reprogramming of somatic cells to iPSCs. Here, we present current knowledge on the transcriptional and epigenetic regulation of pluripotency induction and discuss how variability in epigenetic states impacts iPSCs' inherent biological properties.
Collapse
Affiliation(s)
- Mark van den Hurk
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands.,Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gunter Kenis
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Cedric Bardy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daniel L van den Hove
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands.,Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics & Psychotherapy, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Harry W Steinbusch
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Bart P Rutten
- Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.,European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
29
|
Salomonis N, Dexheimer PJ, Omberg L, Schroll R, Bush S, Huo J, Schriml L, Ho Sui S, Keddache M, Mayhew C, Shanmukhappa SK, Wells J, Daily K, Hubler S, Wang Y, Zambidis E, Margolin A, Hide W, Hatzopoulos AK, Malik P, Cancelas JA, Aronow BJ, Lutzko C. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium. Stem Cell Reports 2016; 7:110-25. [PMID: 27293150 PMCID: PMC4944587 DOI: 10.1016/j.stemcr.2016.05.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/07/2023] Open
Abstract
The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community. Comprehensive portal for diverse iPSC, protocols, metadata, and genomic assays Recurrent CNV occur during reprogramming, impact oncogenes and tumor suppressors DNA methylation is influenced by cell of origin in iPSC PSC X-chromosome inactivation impacts lineage differentiation outcomes
Collapse
Affiliation(s)
- Nathan Salomonis
- Department of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Phillip J Dexheimer
- Department of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | | | - Robin Schroll
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Stacy Bush
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Jeffrey Huo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Lynn Schriml
- Department of Epidemiology and Public Health, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shannan Ho Sui
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Mehdi Keddache
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Christopher Mayhew
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | | | - James Wells
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | | | | | - Yuliang Wang
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elias Zambidis
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Adam Margolin
- Sage Bionetworks, Seattle, WA 98109, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Winston Hide
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Antonis K Hatzopoulos
- Division of Cardiovascular Medicine, Departments of Medicine and Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA; Hoxworth Blood Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bruce J Aronow
- Department of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Carolyn Lutzko
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA; Hoxworth Blood Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
30
|
Choi HY, Lee TJ, Yang GM, Oh J, Won J, Han J, Jeong GJ, Kim J, Kim JH, Kim BS, Cho SG. Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells. J Control Release 2016; 235:222-235. [PMID: 27266364 DOI: 10.1016/j.jconrel.2016.06.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/29/2022]
Abstract
Clinical applications of induced pluripotent stem cells (iPSCs) require development of technologies for the production of "footprint-free" (gene integration-free) iPSCs, which avoid the potential risk of insertional mutagenesis in humans. Previously, several studies have shown that mRNA transfer can generate "footprint-free" iPSCs, but these studies did not use a delivery vehicle and thus repetitive daily transfection was required because of mRNA degradation. Here, we report an mRNA delivery system employing graphene oxide (GO)-polyethylenimine (PEI) complexes for the efficient generation of "footprint-free" iPSCs. GO-PEI complexes were found to be very effective for loading mRNA of reprogramming transcription factors and protection from mRNA degradation by RNase. Dynamic suspension cultures of GO-PEI/RNA complexes-treated cells dramatically increased the reprogramming efficiency and successfully generated rat and human iPSCs from adult adipose tissue-derived fibroblasts without repetitive daily transfection. The iPSCs showed all the hallmarks of pluripotent stem cells including expression of pluripotency genes, epigenetic reprogramming, and differentiation into the three germ layers. These results demonstrate that mRNA delivery using GO-PEI-RNA complexes can efficiently generate "footprint-free" iPSCs, which may advance the translation of iPSC technology into the clinical settings.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Department of Animal Biotechnology (Stem Cell & Regenerative Biotechnology), Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae-Jin Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Pathology and Immunology, Washington University School of Medicine, MO, USA
| | - Gwang-Mo Yang
- Department of Animal Biotechnology (Stem Cell & Regenerative Biotechnology), Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jaesur Oh
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jihye Won
- Department of Animal Biotechnology (Stem Cell & Regenerative Biotechnology), Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jihae Han
- Department of Animal Biotechnology (Stem Cell & Regenerative Biotechnology), Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Gun-Jae Jeong
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University, Seoul 100-715, Republic of Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology (Stem Cell & Regenerative Biotechnology), Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Ssang-Goo Cho
- Department of Animal Biotechnology (Stem Cell & Regenerative Biotechnology), Animal Resources Research Center, Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
31
|
Soetanto R, Hynes CJ, Patel HR, Humphreys DT, Evers M, Duan G, Parker BJ, Archer SK, Clancy JL, Graham RM, Beilharz TH, Smith NJ, Preiss T. Role of miRNAs and alternative mRNA 3'-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:744-56. [PMID: 27032571 DOI: 10.1016/j.bbagrm.2016.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/25/2016] [Accepted: 03/20/2016] [Indexed: 12/19/2022]
Abstract
miRNAs play critical roles in heart disease. In addition to differential miRNA expression, miRNA-mediated control is also affected by variable miRNA processing or alternative 3'-end cleavage and polyadenylation (APA) of their mRNA targets. To what extent these phenomena play a role in the heart remains unclear. We sought to explore miRNA processing and mRNA APA in cardiomyocytes, and whether these change during cardiac hypertrophy. Thoracic aortic constriction (TAC) was performed to induce hypertrophy in C57BL/6J mice. RNA extracted from cardiomyocytes of sham-treated, pre-hypertrophic (2 days post-TAC), and hypertrophic (7 days post-TAC) mice was subjected to small RNA- and poly(A)-test sequencing (PAT-Seq). Differential expression analysis matched expectations; nevertheless we identified ~400 mRNAs and hundreds of noncoding RNA loci as altered with hypertrophy for the first time. Although multiple processing variants were observed for many miRNAs, there was little change in their relative proportions during hypertrophy. PAT-Seq mapped ~48,000 mRNA 3'-ends, identifying novel 3' untranslated regions (3'UTRs) for over 7000 genes. Importantly, hypertrophy was associated with marked changes in APA with a net shift from distal to more proximal mRNA 3'-ends, which is predicted to decrease overall miRNA repression strength. We independently validated several examples of 3'UTR proportion change and showed that alternative 3'UTRs associate with differences in mRNA translation. Our work suggests that APA contributes to altered gene expression with the development of cardiomyocyte hypertrophy and provides a rich resource for a systems-level understanding of miRNA-mediated regulation in physiological and pathological states of the heart.
Collapse
Affiliation(s)
- R Soetanto
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - C J Hynes
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - H R Patel
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - D T Humphreys
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - M Evers
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - G Duan
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - B J Parker
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - S K Archer
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia; Monash Bioinformatics Platform, Monash University, Melbourne, Victoria 3800, Australia
| | - J L Clancy
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - R M Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - T H Beilharz
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - N J Smith
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - T Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.
| |
Collapse
|
32
|
Woltjen K, Kim SI, Nagy A. The piggyBac Transposon as a Platform Technology for Somatic Cell Reprogramming Studies in Mouse. Methods Mol Biol 2016; 1357:1-22. [PMID: 26126450 DOI: 10.1007/7651_2015_274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Somatic cell reprogramming to induced pluripotent stem cells (iPSCs) is a revolutionary technology, with repercussions affecting modern functional genomics and regenerative medicine. Still, relatively little is known about the processes underlying this dramatic cellular and molecular metamorphosis. Reprogramming technology based on the implementation of piggyBac (PB) transposons has enabled studies of iPSC reprogramming mechanisms, shedding an increasing light on these processes. Unique characteristics of PB transposons such as efficient genomic integration, unlimited cargo capacity, robust gene expression, and even seamless excision highlight the importance of this transgenic tool in advancing stem cell biology. In this chapter, we provide a detailed overview of versatile primary iPSC generation from mouse somatic cells using PB transposons, and the subsequent establishment of robust secondary reprogramming systems. These protocols are highlighted with examples from recent studies as to how PB has been, and continues to be, conducive to the dissection of reprogramming processes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| | - Shin-Il Kim
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| |
Collapse
|
33
|
Dynamically reorganized chromatin is the key for the reprogramming of somatic cells to pluripotent cells. Sci Rep 2015; 5:17691. [PMID: 26639176 PMCID: PMC4671053 DOI: 10.1038/srep17691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/02/2015] [Indexed: 01/04/2023] Open
Abstract
Nucleosome positioning and histone modification play a critical role in gene regulation, but their role during reprogramming has not been fully elucidated. Here, we determined the genome-wide nucleosome coverage and histone methylation occupancy in mouse embryonic fibroblasts (MEFs), induced pluripotent stem cells (iPSCs) and pre-iPSCs. We found that nucleosome occupancy increases in promoter regions and decreases in intergenic regions in pre-iPSCs, then recovers to an intermediate level in iPSCs. We also found that nucleosomes in pre-iPSCs are much more phased than those in MEFs and iPSCs. During reprogramming, nucleosome reorganization and histone methylation around transcription start sites (TSSs) are highly coordinated with distinctively transcriptional activities. Bivalent promoters gradually increase, while repressive promoters gradually decrease. High CpG (HCG) promoters of active genes are characterized by nucleosome depletion at TSSs, while low CpG (LCG) promoters exhibit the opposite characteristics. In addition, we show that vitamin C (VC) promotes reorganizations of canonical, H3K4me3- and H3K27me3-modified nucleosomes on specific genes during transition from pre-iPSCs to iPSCs. These data demonstrate that pre-iPSCs have a more open and phased chromatin architecture than that of MEFs and iPSCs. Finally, this study reveals the dynamics and critical roles of nucleosome positioning and chromatin organization in gene regulation during reprogramming.
Collapse
|
34
|
Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders. Stem Cell Reports 2015; 5:933-945. [PMID: 26610635 PMCID: PMC4881284 DOI: 10.1016/j.stemcr.2015.10.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field. A key limitation of the field is difficulty in accurately defining cell state Next step will be building complexity by achieving network and circuit structures Epigenetic factors and somatic mosaicism in iPS cells may contribute to disease A critical advance will be improving scalability and reproducibility of assays
Collapse
|
35
|
Barta T, Peskova L, Collin J, Montaner D, Neganova I, Armstrong L, Lako M. Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells 2015; 34:246-51. [PMID: 26418476 PMCID: PMC4982107 DOI: 10.1002/stem.2220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/24/2015] [Indexed: 11/11/2022]
Abstract
MicroRNA (miRNAs) are short noncoding RNA molecules involved in many cellular processes and shown to play a key role in somatic cell induced reprogramming. We performed an array based screening to identify candidates that are differentially expressed between dermal skin fibroblasts (DFs) and induced pluripotent stem cells (iPSCs). We focused our investigations on miR‐145 and showed that this candidate is highly expressed in DFs relative to iPSCs and significantly downregulated during reprogramming process. Inhibition of miR‐145 in DFs led to the induction of “cellular plasticity” demonstrated by: (a) alteration of cell morphology associated with downregulation of mesenchymal and upregulation of epithelial markers; (b) upregulation of pluripotency‐associated genes including SOX2, KLF4, C‐MYC; (c) downregulation of miRNA let‐7b known to inhibit reprogramming; and (iv) increased efficiency of reprogramming to iPSCs in the presence of reprogramming factors. Together, our results indicate a direct functional link between miR‐145 and molecular pathways underlying reprogramming of somatic cells to iPSCs. Stem Cells2016;34:246–251
Collapse
Affiliation(s)
- Tomas Barta
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucie Peskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Joseph Collin
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - David Montaner
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Irina Neganova
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
36
|
González F, Huangfu D. Mechanisms underlying the formation of induced pluripotent stem cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:39-65. [PMID: 26383234 DOI: 10.1002/wdev.206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/13/2015] [Accepted: 07/21/2015] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cells (hPSCs) offer unique opportunities for studying human biology, modeling diseases, and therapeutic applications. The simplest approach so far to generate human PSC lines is through reprogramming of somatic cells from an individual by defined factors, referred to simply as reprogramming. Reprogramming circumvents the ethical controversies associated with human embryonic stem cells (hESCs) and nuclear transfer hESCs (nt-hESCs), and the resulting induced pluripotent stem cells (hiPSCs) retain the same basic genetic makeup as the somatic cell used for reprogramming. Since the first report of iPSCs by Takahashi and Yamanaka (Cell 2006, 126:663-676), the molecular mechanisms of reprogramming have been extensively investigated. A better mechanistic understanding of reprogramming is fundamental not only to iPSC biology and improving the quality of iPSCs for therapeutic use, but also to our understanding of the molecular basis of cell identity, pluripotency, and plasticity. Here, we summarize the genetic, epigenetic, and cellular events during reprogramming, and the roles of various factors identified thus far in the reprogramming process. WIREs Dev Biol 2016, 5:39-65. doi: 10.1002/wdev.206 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Federico González
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| |
Collapse
|
37
|
Benevento M, Tonge PD, Puri MC, Nagy A, Heck AJ, Munoz J. Fluctuations in histone H4 isoforms during cellular reprogramming monitored by middle-down proteomics. Proteomics 2015; 15:3219-31. [DOI: 10.1002/pmic.201500031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/16/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Marco Benevento
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
- Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Peter D. Tonge
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; TO Canada
| | - Mira C. Puri
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; TO Canada
- Department of Medical Biophysics; University of Toronto; TO Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; TO Canada
- Department of Obstetrics and Gynaecology; University of Toronto; TO Canada
- Institute of Medical Science; University of Toronto; TO Canada
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
- Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Javier Munoz
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
- Netherlands Proteomics Centre; Utrecht The Netherlands
| |
Collapse
|
38
|
Vidal SE, Stadtfeld M, Apostolou E. F-class cells: new routes and destinations for induced pluripotency. Cell Stem Cell 2015; 16:9-10. [PMID: 25575077 DOI: 10.1016/j.stem.2014.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A series of five related publications describe an alternative pluripotent state that is dependent on continuous high levels of exogenous reprogramming factor expression. A comprehensive effort to molecularly compare the acquisition of this state to induced pluripotency aims at providing new insights into the mechanisms underlying cellular reprogramming.
Collapse
Affiliation(s)
- Simon E Vidal
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Matthias Stadtfeld
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | - Eftychia Apostolou
- Division of Hematology/Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
39
|
Ho SM, Topol A, Brennand KJ. From "directed differentiation" to "neuronal induction": modeling neuropsychiatric disease. Biomark Insights 2015; 10:31-41. [PMID: 26045654 PMCID: PMC4444490 DOI: 10.4137/bmi.s20066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/22/2015] [Accepted: 02/24/2015] [Indexed: 11/23/2022] Open
Abstract
Aberrant behavior and function of neurons are believed to be the primary causes of most neurological diseases and psychiatric disorders. Human postmortem samples have limited availability and, while they provide clues to the state of the brain after a prolonged illness, they offer limited insight into the factors contributing to disease onset. Conversely, animal models cannot recapitulate the polygenic origins of neuropsychiatric disease. Novel methods, such as somatic cell reprogramming, deliver nearly limitless numbers of pathogenic human neurons for the study of the mechanism of neuropsychiatric disease initiation and progression. First, this article reviews the advent of human induced pluripotent stem cell (hiPSC) technology and introduces two major methods, “directed differentiation” and “neuronal induction,” by which it is now possible to generate neurons for modeling neuropsychiatric disease. Second, it discusses the recent applications, and the limitations, of these technologies to in vitro studies of psychiatric disorders.
Collapse
Affiliation(s)
- Seok-Man Ho
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Aaron Topol
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Kristen J Brennand
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
40
|
|
41
|
Tonge PD, Corso AJ, Monetti C, Hussein SMI, Puri MC, Michael IP, Li M, Lee DS, Mar JC, Cloonan N, Wood DL, Gauthier ME, Korn O, Clancy JL, Preiss T, Grimmond SM, Shin JY, Seo JS, Wells CA, Rogers IM, Nagy A. Divergent reprogramming routes lead to alternative stem-cell states. Nature 2015; 516:192-7. [PMID: 25503232 DOI: 10.1038/nature14047] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/11/2014] [Indexed: 12/25/2022]
Abstract
Pluripotency is defined by the ability of a cell to differentiate to the derivatives of all the three embryonic germ layers: ectoderm, mesoderm and endoderm. Pluripotent cells can be captured via the archetypal derivation of embryonic stem cells or via somatic cell reprogramming. Somatic cells are induced to acquire a pluripotent stem cell (iPSC) state through the forced expression of key transcription factors, and in the mouse these cells can fulfil the strictest of all developmental assays for pluripotent cells by generating completely iPSC-derived embryos and mice. However, it is not known whether there are additional classes of pluripotent cells, or what the spectrum of reprogrammed phenotypes encompasses. Here we explore alternative outcomes of somatic reprogramming by fully characterizing reprogrammed cells independent of preconceived definitions of iPSC states. We demonstrate that by maintaining elevated reprogramming factor expression levels, mouse embryonic fibroblasts go through unique epigenetic modifications to arrive at a stable, Nanog-positive, alternative pluripotent state. In doing so, we prove that the pluripotent spectrum can encompass multiple, unique cell states.
Collapse
Affiliation(s)
- Peter D Tonge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Andrew J Corso
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - Claudio Monetti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Samer M I Hussein
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Mira C Puri
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - Iacovos P Michael
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - Mira Li
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Dong-Sung Lee
- 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea [3] Department of Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Jessica C Mar
- Department of Systems &Computational Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | - Nicole Cloonan
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - David L Wood
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Maely E Gauthier
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Othmar Korn
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer L Clancy
- Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), Australian Capital Territory 2601, Australia
| | - Thomas Preiss
- 1] Genome Biology Department, The John Curtin School of Medical Research, The Australian National University, Acton (Canberra), Australian Capital Territory 2601, Australia [2] Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia
| | - Sean M Grimmond
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jong-Yeon Shin
- 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea
| | - Jeong-Sun Seo
- 1] Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, South Korea [2] Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, South Korea [3] Department of Biochemistry, Seoul National University College of Medicine, Seoul 110-799, South Korea [4] Life Science Institute, Macrogen Inc., Seoul 153-781, South Korea
| | - Christine A Wells
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ian M Rogers
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Department of Physiology, University of Toronto, Toronto, Ontario M5T 3H7, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - Andras Nagy
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [2] Institute of Medical Science, University of Toronto, Toronto, Ontario M5T 3H7, Canada [3] Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| |
Collapse
|
42
|
Stem cells: multiple routes to pluripotency. Nat Rev Genet 2014; 16:67. [PMID: 25534322 DOI: 10.1038/nrg3892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
|
44
|
|
45
|
Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks. Nat Commun 2014; 5:5613. [DOI: 10.1038/ncomms6613] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/21/2014] [Indexed: 12/25/2022] Open
|
46
|
Hussein SMI, Puri MC, Tonge PD, Benevento M, Corso AJ, Clancy JL, Mosbergen R, Li M, Lee DS, Cloonan N, Wood DLA, Munoz J, Middleton R, Korn O, Patel HR, White CA, Shin JY, Gauthier ME, Cao KAL, Kim JI, Mar JC, Shakiba N, Ritchie W, Rasko JEJ, Grimmond SM, Zandstra PW, Wells CA, Preiss T, Seo JS, Heck AJR, Rogers IM, Nagy A. Genome-wide characterization of the routes to pluripotency. Nature 2014; 516:198-206. [DOI: 10.1038/nature14046] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/10/2014] [Indexed: 12/24/2022]
|