1
|
Herrera Lopez M, Bertone Arolfo M, Remedi M, Gastaldi L, Wilson C, Guendulain GG, Ceschin D, Cardozo Gizzi A, Cáceres A, Moyano AL. Human neural rosettes secrete bioactive extracellular vesicles enriched in neuronal and glial cellular components. Sci Rep 2025; 15:1987. [PMID: 39814837 PMCID: PMC11736123 DOI: 10.1038/s41598-025-86094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Extracellular vesicles (EVs) play a critical role in the development of neural cells in the central nervous system (CNS). Human neural rosettes (hNRs) are radial cell structures that assemble from induced pluripotent stem cells (hiPSCs) and recapitulate some stages of neural tube morphogenesis. Here we show that hiPSCs and hNRs secrete EVs (hiPSC-EVs and hNR-EVs) with distinctive protein cargoes. Remarkably, hNR-EVs carry neuronal and glial cellular components involved in human CNS development. Importantly, hNR-EVs stimulate stem cells to change their cellular morphology and promote neurite growth in human and murine neurons with a significant dysregulation of SOX2 levels. This transcription factor modulates both neural differentiation and pluripotency. Interestingly, these effects were inhibited by antibodies against an unexpected neuroglial cargo of hNR-EVs: the major proteolipid protein (PLP). These findings show that hNRs secrete bioactive EVs containing neural components and might contribute as trophic factors during human neurodevelopment.
Collapse
Affiliation(s)
- Malena Herrera Lopez
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Matías Bertone Arolfo
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Mónica Remedi
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Laura Gastaldi
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Carlos Wilson
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Gonzalo G Guendulain
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Danilo Ceschin
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Andrés Cardozo Gizzi
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Alfredo Cáceres
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
| | - Ana Lis Moyano
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
| |
Collapse
|
2
|
Gil Y, Ryu J, Yang H, Ma Y, Nam KH, Jang SW, Shim S. Molecular Characterization of Subdomain Specification of Cochlear Duct Based on Foxg1 and Gata3. Int J Mol Sci 2024; 25:12700. [PMID: 39684410 DOI: 10.3390/ijms252312700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The inner ear is one of the sensory organs of vertebrates and is largely composed of the vestibule, which controls balance, and the cochlea, which is responsible for hearing. In particular, a problem in cochlear development can lead to hearing loss. Although numerous studies have been conducted on genes involved in the development of the cochlea, many areas still need to be discovered regarding factors that control the patterning of the early cochlear duct. Herein, based on the dynamic expression pattern of FOXG1 in the apical and basal regions of the E13.5 cochlear duct, we identified detailed expression regions through an open-source analysis of single-cell RNA analysis data and demonstrated a clinical correlation with hearing loss. The distinct expression patterns of FOXG1 and GATA3 during the patterning process of the cochlear duct provide important clues to understanding how the fates of the apical and basal regions are divided. These results are expected to be extremely important not only for understanding the molecular mechanisms involved in the early development of the cochlear duct, but also for identifying potential genes that cause hearing loss.
Collapse
Affiliation(s)
- Yongjin Gil
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jiho Ryu
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hayoung Yang
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yechan Ma
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sung-Wuk Jang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Sungbo Shim
- Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
3
|
Capauto D, Wang Y, Wu F, Norton S, Mariani J, Inoue F, Crawford GE, Ahituv N, Abyzov A, Vaccarino FM. Characterization of enhancer activity in early human neurodevelopment using Massively Parallel Reporter Assay (MPRA) and forebrain organoids. Sci Rep 2024; 14:3936. [PMID: 38365907 PMCID: PMC10873509 DOI: 10.1038/s41598-024-54302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/11/2024] [Indexed: 02/18/2024] Open
Abstract
Regulation of gene expression through enhancers is one of the major processes shaping the structure and function of the human brain during development. High-throughput assays have predicted thousands of enhancers involved in neurodevelopment, and confirming their activity through orthogonal functional assays is crucial. Here, we utilized Massively Parallel Reporter Assays (MPRAs) in stem cells and forebrain organoids to evaluate the activity of ~ 7000 gene-linked enhancers previously identified in human fetal tissues and brain organoids. We used a Gaussian mixture model to evaluate the contribution of background noise in the measured activity signal to confirm the activity of ~ 35% of the tested enhancers, with most showing temporal-specific activity, suggesting their evolving role in neurodevelopment. The temporal specificity was further supported by the correlation of activity with gene expression. Our findings provide a valuable gene regulatory resource to the scientific community.
Collapse
Affiliation(s)
- Davide Capauto
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Feinan Wu
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Jessica Mariani
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | | | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Acharya P, Choi NY, Shrestha S, Jeong S, Lee MY. Brain organoids: A revolutionary tool for modeling neurological disorders and development of therapeutics. Biotechnol Bioeng 2024; 121:489-506. [PMID: 38013504 PMCID: PMC10842775 DOI: 10.1002/bit.28606] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Brain organoids are self-organized, three-dimensional (3D) aggregates derived from pluripotent stem cells that have cell types and cellular architectures resembling those of the developing human brain. The current understanding of human brain developmental processes and neurological disorders has advanced significantly with the introduction of this in vitro model. Brain organoids serve as a translational link between two-dimensional (2D) cultures and in vivo models which imitate the neural tube formation at the early and late stages and the differentiation of neuroepithelium with whole-brain regionalization. In addition, the generation of region-specific brain organoids made it possible to investigate the pathogenic and etiological aspects of acquired and inherited brain disease along with drug discovery and drug toxicity testing. In this review article, we first summarize an overview of the existing methods and platforms used for generating brain organoids and their limitations and then discuss the recent advancement in brain organoid technology. In addition, we discuss how brain organoids have been used to model aspects of neurodevelopmental and neurodegenerative diseases, including autism spectrum disorder (ASD), Rett syndrome, Zika virus-related microcephaly, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
- Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Sehoon Jeong
- Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| |
Collapse
|
5
|
Wang F, Li R, Zhang L, Nie X, Wang L, Chen L. Cell Transdifferentiation: A Challenging Strategy with Great Potential. Cell Reprogram 2023; 25:154-161. [PMID: 37471050 DOI: 10.1089/cell.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
With the discovery and development of somatic cell nuclear transfer, cell fusion, and induced pluripotent stem cells, cell transdifferentiation research has presented unique advantages and stimulated a heated discussion worldwide. Cell transdifferentiation is a phenomenon by which a cell changes its lineage and acquires the phenotype of other cell types when exposed to certain conditions. Indeed, many adult stem cells and differentiated cells were reported to change their phenotype and transform into other lineages. This article reviews the differentiation of stem cells and classification of transdifferentiation, as well as the advantages, challenges, and prospects of cell transdifferentiation. This review discusses new research directions and the main challenges in the use of transdifferentiation in human cells and molecular replacement therapy. Overall, such knowledge is expected to provide a deep understanding of cell fate and regulation, which can change through differentiation, dedifferentiation, and transdifferentiation, with multiple applications.
Collapse
Affiliation(s)
- Fuping Wang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Runting Li
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Limeng Zhang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Xiaoning Nie
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Linqing Wang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| | - Longxin Chen
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou China
| |
Collapse
|
6
|
De Kleijn KMA, Zuure WA, Straasheijm KR, Martens MB, Avramut MC, Koning RI, Martens GJM. Human cortical spheroids with a high diversity of innately developing brain cell types. Stem Cell Res Ther 2023; 14:50. [PMID: 36959625 PMCID: PMC10035191 DOI: 10.1186/s13287-023-03261-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) human brain spheroids are instrumental to study central nervous system (CNS) development and (dys)function. Yet, in current brain spheroid models the limited variety of cell types hampers an integrated exploration of CNS (disease) mechanisms. METHODS Here we report a 5-month culture protocol that reproducibly generates H9 embryonic stem cell-derived human cortical spheroids (hCSs) with a large cell-type variety. RESULTS We established the presence of not only neuroectoderm-derived neural progenitor populations, mature excitatory and inhibitory neurons, astrocytes and oligodendrocyte (precursor) cells, but also mesoderm-derived microglia and endothelial cell populations in the hCSs via RNA-sequencing, qPCR, immunocytochemistry and transmission electron microscopy. Transcriptomic analysis revealed resemblance between the 5-months-old hCSs and dorsal frontal rather than inferior regions of human fetal brains of 19-26 weeks of gestational age. Pro-inflammatory stimulation of the generated hCSs induced a neuroinflammatory response, offering a proof-of-principle of the applicability of the spheroids. CONCLUSIONS Our protocol provides a 3D human brain cell model containing a wide variety of innately developing neuroectoderm- as well as mesoderm-derived cell types, furnishing a versatile platform for comprehensive examination of intercellular CNS communication and neurological disease mechanisms.
Collapse
Affiliation(s)
- Kim M A De Kleijn
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands.
- NeuroDrug Research Ltd, 6525ED, Nijmegen, The Netherlands.
| | - Wieteke A Zuure
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands
| | | | | | - M Cristina Avramut
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Roman I Koning
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300RC, Leiden, The Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Faculty of Science, Radboud University, 6525GA, Nijmegen, The Netherlands
- NeuroDrug Research Ltd, 6525ED, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Kwon M, Lee JH, Yoon Y, Pleasure SJ, Yoon K. The CRHR1/CREB/REST signaling cascade regulates mammalian embryonic neural stem cell properties. EMBO Rep 2023; 24:e55313. [PMID: 36413000 PMCID: PMC9900344 DOI: 10.15252/embr.202255313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Growing evidence suggests that the corticotropin-releasing hormone (CRH) signaling pathway, mainly known as a critical initiator of humoral stress responses, has a role in normal neuronal physiology. However, despite the evidence of CRH receptor (CRHR) expression in the embryonic ventricular zone, the exact functions of CRH signaling in embryonic brain development have not yet been fully determined. In this study, we show that CRHR1 is required for the maintenance of neural stem cell properties, as assessed by in vitro neurosphere assays and cell distribution in the embryonic cortical layers following in utero electroporation. Identifying the underlying molecular mechanisms of CRHR1 action, we find that CRHR1 functions are accomplished through the increasing expression of the master transcription factor REST. Furthermore, luciferase reporter and chromatin immunoprecipitation assays reveal that CRHR1-induced CREB activity is responsible for increased REST expression at the transcriptional level. Taken together, these findings indicate that the CRHR1/CREB/REST signaling cascade plays an important role downstream of CRH in the regulation of neural stem cells during embryonic brain development.
Collapse
Affiliation(s)
- Mookwang Kwon
- Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwonSouth Korea
| | - Ju Hyun Lee
- Department of Biopharmaceutical ConvergenceSungkyunkwan UniversitySuwonSouth Korea
| | - Youngik Yoon
- Department of Biopharmaceutical ConvergenceSungkyunkwan UniversitySuwonSouth Korea
| | - Samuel J Pleasure
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Keejung Yoon
- Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwonSouth Korea
- Department of Biopharmaceutical ConvergenceSungkyunkwan UniversitySuwonSouth Korea
| |
Collapse
|
8
|
Farley SJ, Grishok A, Zeldich E. Shaking up the silence: consequences of HMGN1 antagonizing PRC2 in the Down syndrome brain. Epigenetics Chromatin 2022; 15:39. [PMID: 36463299 PMCID: PMC9719135 DOI: 10.1186/s13072-022-00471-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.
Collapse
Affiliation(s)
- Sean J. Farley
- grid.189504.10000 0004 1936 7558Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Alla Grishok
- grid.189504.10000 0004 1936 7558Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Boston University Genome Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
9
|
Ahmed T. Neural stem cell engineering for the treatment of multiple sclerosis. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
10
|
Rosebrock D, Arora S, Mutukula N, Volkman R, Gralinska E, Balaskas A, Aragonés Hernández A, Buschow R, Brändl B, Müller FJ, Arndt PF, Vingron M, Elkabetz Y. Enhanced cortical neural stem cell identity through short SMAD and WNT inhibition in human cerebral organoids facilitates emergence of outer radial glial cells. Nat Cell Biol 2022; 24:981-995. [PMID: 35697781 PMCID: PMC9203281 DOI: 10.1038/s41556-022-00929-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Cerebral organoids exhibit broad regional heterogeneity accompanied by limited cortical cellular diversity despite the tremendous upsurge in derivation methods, suggesting inadequate patterning of early neural stem cells (NSCs). Here we show that a short and early Dual SMAD and WNT inhibition course is necessary and sufficient to establish robust and lasting cortical organoid NSC identity, efficiently suppressing non-cortical NSC fates, while other widely used methods are inconsistent in their cortical NSC-specification capacity. Accordingly, this method selectively enriches for outer radial glia NSCs, which cyto-architecturally demarcate well-defined outer sub-ventricular-like regions propagating from superiorly radially organized, apical cortical rosette NSCs. Finally, this method culminates in the emergence of molecularly distinct deep and upper cortical layer neurons, and reliably uncovers cortex-specific microcephaly defects. Thus, a short SMAD and WNT inhibition is critical for establishing a rich cortical cell repertoire that enables mirroring of fundamental molecular and cyto-architectural features of cortical development and meaningful disease modelling. Rosebrock, Arora et al. report a method to overcome limited cortical cellular diversity in human organoids, thus mirroring fundamental features of cortical development and offering a basis for organoid-based disease modelling.
Collapse
Affiliation(s)
- Daniel Rosebrock
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Computational Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Sneha Arora
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Biology, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Naresh Mutukula
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rotem Volkman
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elzbieta Gralinska
- Department of Computational Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Anastasios Balaskas
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Amèlia Aragonés Hernández
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Biology, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Peter F Arndt
- Department of Computational Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Vingron
- Department of Computational Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Yechiel Elkabetz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Varga BV, Faiz M, Pivonkova H, Khelifi G, Yang H, Gao S, Linderoth E, Zhen M, Karadottir RT, Hussein SM, Nagy A. Signal requirement for cortical potential of transplantable human neuroepithelial stem cells. Nat Commun 2022; 13:2844. [PMID: 35606347 PMCID: PMC9126949 DOI: 10.1038/s41467-022-29839-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/21/2022] [Indexed: 01/26/2023] Open
Abstract
The cerebral cortex develops from dorsal forebrain neuroepithelial progenitor cells. Following the initial expansion of the progenitor cell pool, these cells generate neurons of all the cortical layers and then astrocytes and oligodendrocytes. Yet, the regulatory pathways that control the expansion and maintenance of the progenitor cell pool are currently unknown. Here we define six basic pathway components that regulate proliferation of cortically specified human neuroepithelial stem cells (cNESCs) in vitro without the loss of cerebral cortex developmental potential. We show that activation of FGF and inhibition of BMP and ACTIVIN A signalling are required for long-term cNESC proliferation. We also demonstrate that cNESCs preserve dorsal telencephalon-specific potential when GSK3, AKT and nuclear CATENIN-β1 activity are low. Remarkably, regulation of these six pathway components supports the clonal expansion of cNESCs. Moreover, cNESCs differentiate into lower- and upper-layer cortical neurons in vitro and in vivo. The identification of mechanisms that drive the neuroepithelial stem cell self-renewal and differentiation and preserve this potential in vitro is key to developing regenerative and cell-based therapeutic approaches to treat neurological conditions.
Collapse
Affiliation(s)
- Balazs V Varga
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.
| | - Maryam Faiz
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Surgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Helena Pivonkova
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK
| | - Gabriel Khelifi
- Cancer Research Center, Université Laval, Quebec City, QC, Canada.,CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Huijuan Yang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shangbang Gao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Emma Linderoth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ragnhildur Thora Karadottir
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Samer M Hussein
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Cancer Research Center, Université Laval, Quebec City, QC, Canada.,CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Obstetrics and Gynaecology, and Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Soft surfaces promote astrocytic differentiation of mouse embryonic neural stem cells via dephosphorylation of MRLC in the absence of serum. Sci Rep 2021; 11:19574. [PMID: 34599241 PMCID: PMC8486742 DOI: 10.1038/s41598-021-99059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Astrocytes, which can be obtained from neural stem cells (NSCs) by adding serum and/or recombinant proteins in culture media or by passaging NSCs repeatedly, are expected to be applicable in regenerative medicine for the treatment of neurodegenerative diseases. However, astrocytes obtained using existing methods are costly and have poor quality. The stiffness of culture surfaces has been reported to affect astrocytic differentiation of adult NSCs. However, the influence of surface stiffness on astrocytic differentiation of embryonic NSCs has not yet been reported. In this study, we showed that astrocytic differentiation of embryonic NSCs was increased on soft surfaces (1 kPa and 12 kPa) compared with the NSCs on stiff surfaces (2.8 GPa) in serum-free condition. Furthermore, di-phosphorylated myosin regulatory light chain (PP-MRLC) was decreased in embryonic NSCs cultured on the soft surfaces than the cells on the stiff surfaces. Additionally, astrocytic differentiation of embryonic NSCs was induced by a Ras homolog associated kinase (ROCK) inhibitor, which decreased PP-MRLC in NSCs. These results suggest that decreasing the PP-MRLC of embryonic NSCs on soft surfaces or treating NSCs with a ROCK inhibitor is a good method to prepare astrocytes for application in regenerative medicine.
Collapse
|
13
|
Roth JG, Huang MS, Li TL, Feig VR, Jiang Y, Cui B, Greely HT, Bao Z, Paşca SP, Heilshorn SC. Advancing models of neural development with biomaterials. Nat Rev Neurosci 2021; 22:593-615. [PMID: 34376834 PMCID: PMC8612873 DOI: 10.1038/s41583-021-00496-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells have emerged as a promising in vitro model system for studying the brain. Two-dimensional and three-dimensional cell culture paradigms have provided valuable insights into the pathogenesis of neuropsychiatric disorders, but they remain limited in their capacity to model certain features of human neural development. Specifically, current models do not efficiently incorporate extracellular matrix-derived biochemical and biophysical cues, facilitate multicellular spatio-temporal patterning, or achieve advanced functional maturation. Engineered biomaterials have the capacity to create increasingly biomimetic neural microenvironments, yet further refinement is needed before these approaches are widely implemented. This Review therefore highlights how continued progression and increased integration of engineered biomaterials may be well poised to address intractable challenges in recapitulating human neural development.
Collapse
Affiliation(s)
- Julien G Roth
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Thomas L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vivian R Feig
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Henry T Greely
- Stanford Law School, Stanford University, Stanford, CA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Heydari Z, Moeinvaziri F, Agarwal T, Pooyan P, Shpichka A, Maiti TK, Timashev P, Baharvand H, Vosough M. Organoids: a novel modality in disease modeling. Biodes Manuf 2021; 4:689-716. [PMID: 34395032 PMCID: PMC8349706 DOI: 10.1007/s42242-021-00150-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Limitations of monolayer culture conditions have motivated scientists to explore new models that can recapitulate the architecture and function of human organs more accurately. Recent advances in the improvement of protocols have resulted in establishing three-dimensional (3D) organ-like architectures called 'organoids' that can display the characteristics of their corresponding real organs, including morphological features, functional activities, and personalized responses to specific pathogens. We discuss different organoid-based 3D models herein, which are classified based on their original germinal layer. Studies of organoids simulating the complexity of real tissues could provide novel platforms and opportunities for generating practical knowledge along with preclinical studies, including drug screening, toxicology, and molecular pathophysiology of diseases. This paper also outlines the key challenges, advantages, and prospects of current organoid systems.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Farideh Moeinvaziri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Paria Pooyan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
| | - Anastasia Shpichka
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 19991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tapas K. Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 19991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
| |
Collapse
|
15
|
Song G, Zhao M, Chen H, Zhou X, Lenahan C, Ou Y, He Y. The Application of Brain Organoid Technology in Stroke Research: Challenges and Prospects. Front Cell Neurosci 2021; 15:646921. [PMID: 34234646 PMCID: PMC8257041 DOI: 10.3389/fncel.2021.646921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a neurological disease responsible for significant morbidity and disability worldwide. However, there remains a dearth of effective therapies. The failure of many therapies for stroke in clinical trials has promoted the development of human cell-based models, such as brain organoids. Brain organoids differ from pluripotent stem cells in that they recapitulate various key features of the human central nervous system (CNS) in three-dimensional (3D) space. Recent studies have demonstrated that brain organoids could serve as a new platform to study various neurological diseases. However, there are several limitations, such as the scarcity of glia and vasculature in organoids, which are important for studying stroke. Herein, we have summarized the application of brain organoid technology in stroke research, such as for modeling and transplantation purposes. We also discuss methods to overcome the limitations of brain organoid technology, as well as future prospects for its application in stroke research. Although there are many difficulties and challenges associated with brain organoid technology, it is clear that this approach will play a critical role in the future exploration of stroke treatment.
Collapse
Affiliation(s)
- Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Micali N, Kim SK, Diaz-Bustamante M, Stein-O'Brien G, Seo S, Shin JH, Rash BG, Ma S, Wang Y, Olivares NA, Arellano JI, Maynard KR, Fertig EJ, Cross AJ, Bürli RW, Brandon NJ, Weinberger DR, Chenoweth JG, Hoeppner DJ, Sestan N, Rakic P, Colantuoni C, McKay RD. Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates. Cell Rep 2021; 31:107599. [PMID: 32375049 PMCID: PMC7357345 DOI: 10.1016/j.celrep.2020.107599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/22/2019] [Accepted: 04/10/2020] [Indexed: 11/06/2022] Open
Abstract
Better understanding of the progression of neural stem cells (NSCs) in the developing cerebral cortex is important for modeling neurogenesis and defining the pathogenesis of neuropsychiatric disorders. Here, we use RNA sequencing, cell imaging, and lineage tracing of mouse and human in vitro NSCs and monkey brain sections to model the generation of cortical neuronal fates. We show that conserved signaling mechanisms regulate the acute transition from proliferative NSCs to committed glutamatergic excitatory neurons. As human telencephalic NSCs develop from pluripotency in vitro, they transition through organizer states that spatially pattern the cortex before generating glutamatergic precursor fates. NSCs derived from multiple human pluripotent lines vary in these early patterning states, leading differentially to dorsal or ventral telencephalic fates. This work furthers systematic analyses of the earliest patterning events that generate the major neuronal trajectories of the human telencephalon. Micali et al. report that human telencephalic NSCs in vitro transition through the organizer states that pattern the neocortex. Human pluripotent lines vary in organizer formation, generating divergent neuronal differentiation trajectories biased toward dorsal or ventral telencephalic fates and opening further analysis of the earliest cortical specification events.
Collapse
Affiliation(s)
- Nicola Micali
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Suel-Kee Kim
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Genevieve Stein-O'Brien
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Seungmae Seo
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Joo-Heon Shin
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Brian G Rash
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shaojie Ma
- Departments of Comparative Medicine, Genetics, and Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Nicolas A Olivares
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Jon I Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Alan J Cross
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Roland W Bürli
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Nicholas J Brandon
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joshua G Chenoweth
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA
| | - Daniel J Hoeppner
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Astellas Research Institute of America, 3565 General Atomics Ct., Ste. 200, San Diego, CA 92121, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Departments of Comparative Medicine, Genetics, and Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Carlo Colantuoni
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Ronald D McKay
- Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Izsak J, Seth H, Theiss S, Hanse E, Illes S. Human Cerebrospinal Fluid Promotes Neuronal Circuit Maturation of Human Induced Pluripotent Stem Cell-Derived 3D Neural Aggregates. Stem Cell Reports 2021; 14:1044-1059. [PMID: 32521247 PMCID: PMC7355159 DOI: 10.1016/j.stemcr.2020.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 01/09/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived in vitro neural and organoid models resemble fetal, rather than adult brain properties, indicating that currently applied cultivation media and supplements are insufficient to achieve neural maturation beyond the fetal stage. In vivo, cerebrospinal fluid molecules are regulating the transition of the immature fetal human brain into a mature adult brain. By culturing hiPSC-3D neural aggregates in human cerebrospinal fluid (hCSF) obtained from healthy adult individuals, we demonstrate that hCSF rapidly triggers neurogenesis, gliogenesis, synapse formation, neurite outgrowth, suppresses proliferation of residing neural stem cells, and results in the formation of synchronously active neuronal circuits in vitro within 3 days. Thus, a physiologically relevant and adult brain-like milieu triggers maturation of hiPSC-3D neural aggregates into highly functional neuronal circuits in vitro. The approach presented here opens a new avenue to identify novel physiological factors for the improvement of hiPSC neural in vitro models. Human CSF triggers rapidly multiple maturation processes in human 3D neural models Human CSF triggers human neurogenesis and suppresses neural stem cell proliferation Human CSF triggers human astrocyte development, neurite growth, and synapse formation Human CSF triggers the maturation of neurons into highly functional neuronal circuits
Collapse
Affiliation(s)
- Julia Izsak
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Henrik Seth
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Result Medical GmbH, Düsseldorf, Germany
| | - Eric Hanse
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Illes
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
18
|
Adhya D, Swarup V, Nagy R, Dutan L, Shum C, Valencia-Alarcón EP, Jozwik KM, Mendez MA, Horder J, Loth E, Nowosiad P, Lee I, Skuse D, Flinter FA, Murphy D, McAlonan G, Geschwind DH, Price J, Carroll J, Srivastava DP, Baron-Cohen S. Atypical Neurogenesis in Induced Pluripotent Stem Cells From Autistic Individuals. Biol Psychiatry 2021; 89:486-496. [PMID: 32826066 PMCID: PMC7843956 DOI: 10.1016/j.biopsych.2020.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/12/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autism is a heterogeneous collection of disorders with a complex molecular underpinning. Evidence from postmortem brain studies have indicated that early prenatal development may be altered in autism. Induced pluripotent stem cells (iPSCs) generated from individuals with autism with macrocephaly also indicate prenatal development as a critical period for this condition. But little is known about early altered cellular events during prenatal stages in autism. METHODS iPSCs were generated from 9 unrelated individuals with autism without macrocephaly and with heterogeneous genetic backgrounds, and 6 typically developing control individuals. iPSCs were differentiated toward either cortical or midbrain fates. Gene expression and high throughput cellular phenotyping was used to characterize iPSCs at different stages of differentiation. RESULTS A subset of autism-iPSC cortical neurons were RNA-sequenced to reveal autism-specific signatures similar to postmortem brain studies, indicating a potential common biological mechanism. Autism-iPSCs differentiated toward a cortical fate displayed impairments in the ability to self-form into neural rosettes. In addition, autism-iPSCs demonstrated significant differences in rate of cell type assignment of cortical precursors and dorsal and ventral forebrain precursors. These cellular phenotypes occurred in the absence of alterations in cell proliferation during cortical differentiation, differing from previous studies. Acquisition of cell fate during midbrain differentiation was not different between control- and autism-iPSCs. CONCLUSIONS Taken together, our data indicate that autism-iPSCs diverge from control-iPSCs at a cellular level during early stage of neurodevelopment. This suggests that unique developmental differences associated with autism may be established at early prenatal stages.
Collapse
Affiliation(s)
- Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Roland Nagy
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lucia Dutan
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carole Shum
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva P Valencia-Alarcón
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Maria Andreina Mendez
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jamie Horder
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paulina Nowosiad
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Irene Lee
- Behavioural and Brain Sciences Unit, Population Policy Practice Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - David Skuse
- Behavioural and Brain Sciences Unit, Population Policy Practice Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Frances A Flinter
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Jason Carroll
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Dell' Amico C, Tata A, Pellegrino E, Onorati M, Conti L. Genome editing in stem cells for genetic neurodisorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:403-438. [PMID: 34175049 DOI: 10.1016/bs.pmbts.2020.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent advent of genome editing techniques and their rapid improvement paved the way in establishing innovative human neurological disease models and in developing new therapeutic opportunities. Human pluripotent (both induced or naive) stem cells and neural stem cells represent versatile tools to be applied to multiple research needs and, together with genomic snip and fix tools, have recently made possible the creation of unique platforms to directly investigate several human neural affections. In this chapter, we will discuss genome engineering tools, and their recent improvements, applied to the stem cell field, focusing on how these two technologies may be pivotal instruments to deeply unravel molecular mechanisms underlying development and function, as well as disorders, of the human brain. We will review how these frontier technologies may be exploited to investigate or treat severe neurodevelopmental disorders, such as microcephaly, autism spectrum disorder, schizophrenia, as well as neurodegenerative conditions, including Parkinson's disease, Huntington's disease, Alzheimer's disease, and spinal muscular atrophy.
Collapse
Affiliation(s)
- Claudia Dell' Amico
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Alice Tata
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Enrica Pellegrino
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy; Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy.
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
20
|
Arber C, Lovejoy C, Harris L, Willumsen N, Alatza A, Casey JM, Lines G, Kerins C, Mueller AK, Zetterberg H, Hardy J, Ryan NS, Fox NC, Lashley T, Wray S. Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Rep 2021; 34:108615. [PMID: 33440141 PMCID: PMC7809623 DOI: 10.1016/j.celrep.2020.108615] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in presenilin 1 (PSEN1) or presenilin 2 (PSEN2), the catalytic subunit of γ-secretase, cause familial Alzheimer's disease (fAD). We hypothesized that mutations in PSEN1 reduce Notch signaling and alter neurogenesis. Expression data from developmental and adult neurogenesis show relative enrichment of Notch and γ-secretase expression in stem cells, whereas expression of APP and β-secretase is enriched in neurons. We observe premature neurogenesis in fAD iPSCs harboring PSEN1 mutations using two orthogonal systems: cortical differentiation in 2D and cerebral organoid generation in 3D. This is partly driven by reduced Notch signaling. We extend these studies to adult hippocampal neurogenesis in mutation-confirmed postmortem tissue. fAD cases show mutation-specific effects and a trend toward reduced abundance of newborn neurons, supporting a premature aging phenotype. Altogether, these results support altered neurogenesis as a result of fAD mutations and suggest that neural stem cell biology is affected in aging and disease.
Collapse
Affiliation(s)
- Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| | - Christopher Lovejoy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Lachlan Harris
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Nanet Willumsen
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Argyro Alatza
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jackie M Casey
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Georgie Lines
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Caoimhe Kerins
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Anika K Mueller
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
21
|
Gomes AR, Fernandes TG, Vaz SH, Silva TP, Bekman EP, Xapelli S, Duarte S, Ghazvini M, Gribnau J, Muotri AR, Trujillo CA, Sebastião AM, Cabral JMS, Diogo MM. Modeling Rett Syndrome With Human Patient-Specific Forebrain Organoids. Front Cell Dev Biol 2020; 8:610427. [PMID: 33363173 PMCID: PMC7758289 DOI: 10.3389/fcell.2020.610427] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Engineering brain organoids from human induced pluripotent stem cells (hiPSCs) is a powerful tool for modeling brain development and neurological disorders. Rett syndrome (RTT), a rare neurodevelopmental disorder, can greatly benefit from this technology, since it affects multiple neuronal subtypes in forebrain sub-regions. We have established dorsal and ventral forebrain organoids from control and RTT patient-specific hiPSCs recapitulating 3D organization and functional network complexity. Our data revealed a premature development of the deep-cortical layer, associated to the formation of TBR1 and CTIP2 neurons, and a lower expression of neural progenitor/proliferative cells in female RTT dorsal organoids. Moreover, calcium imaging and electrophysiology analysis demonstrated functional defects of RTT neurons. Additionally, assembly of RTT dorsal and ventral organoids revealed impairments of interneuron’s migration. Overall, our models provide a better understanding of RTT during early stages of neural development, demonstrating a great potential for personalized diagnosis and drug screening.
Collapse
Affiliation(s)
- Ana Rita Gomes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa P Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia P Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine (Lisbon Campus), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Duarte
- Department of Pediatric Neurology, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Mehrnaz Ghazvini
- Erasmus MC iPS Facility, Erasmus Medical Center, University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus Medical Center, University Medical Center, Rotterdam, Netherlands
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, United States.,Center for Academic Research and Training in Anthropogeny, La Jolla, CA, United States
| | - Cleber A Trujillo
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ana M Sebastião
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Chiaradia I, Lancaster MA. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat Neurosci 2020; 23:1496-1508. [PMID: 33139941 DOI: 10.1038/s41593-020-00730-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Brain development is an extraordinarily complex process achieved through the spatially and temporally regulated release of key patterning factors. In vitro neurodevelopmental models seek to mimic these processes to recapitulate the steps of tissue fate acquisition and morphogenesis. Classic two-dimensional neural cultures present higher homogeneity but lower complexity compared to the brain. Brain organoids instead have more advanced cell composition, maturation and tissue architecture. They can thus be considered at the interface of in vitro and in vivo neurobiology, and further improvements in organoid techniques are continuing to narrow the gap with in vivo brain development. Here we describe these efforts to recapitulate brain development in neural organoids and focus on their applicability for disease modeling, evolutionary studies and neural network research.
Collapse
Affiliation(s)
- Ilaria Chiaradia
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
23
|
Galiakberova AA, Dashinimaev EB. Neural Stem Cells and Methods for Their Generation From Induced Pluripotent Stem Cells in vitro. Front Cell Dev Biol 2020; 8:815. [PMID: 33117792 PMCID: PMC7578226 DOI: 10.3389/fcell.2020.00815] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neural stem cells (NSCs) provide promising approaches for investigating embryonic neurogenesis, modeling of the pathogenesis of diseases of the central nervous system, and for designing drug-screening systems. Such cells also have an application in regenerative medicine. The most convenient and acceptable source of NSCs is pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells). However, there are many different protocols for the induction and differentiation of NSCs, and these result in a wide range of neural cell types. This review is intended to summarize the knowledge accumulated, to date, by workers in this field. It should be particularly useful for researchers who are beginning investigations in this area of cell biology.
Collapse
Affiliation(s)
- Adelya A Galiakberova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem B Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Izsak J, Vizlin-Hodzic D, Iljin M, Strandberg J, Jadasz J, Olsson Bontell T, Theiss S, Hanse E, Ågren H, Funa K, Illes S. TGF-β1 Suppresses Proliferation and Induces Differentiation in Human iPSC Neural in vitro Models. Front Cell Dev Biol 2020; 8:571332. [PMID: 33195202 PMCID: PMC7655796 DOI: 10.3389/fcell.2020.571332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Persistent neural stem cell (NSC) proliferation is, among others, a hallmark of immaturity in human induced pluripotent stem cell (hiPSC)-based neural models. TGF-β1 is known to regulate NSCs in vivo during embryonic development in rodents. Here we examined the role of TGF-β1 as a potential candidate to promote in vitro differentiation of hiPSCs-derived NSCs and maturation of neuronal progenies. We present that TGF-β1 is specifically present in early phases of human fetal brain development. We applied confocal imaging and electrophysiological assessment in hiPSC-NSC and 3D neural in vitro models and demonstrate that TGF-β1 is a signaling protein, which specifically suppresses proliferation, enhances neuronal and glial differentiation, without effecting neuronal maturation. Moreover, we demonstrate that TGF-β1 is equally efficient in enhancing neuronal differentiation of human NSCs as an artificial synthetic small molecule. The presented approach provides a proof-of-concept to replace artificial small molecules with more physiological signaling factors, which paves the way to improve the physiological relevance of human neural developmental in vitro models.
Collapse
Affiliation(s)
- Julia Izsak
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Dzeneta Vizlin-Hodzic
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Oncology Laboratory, Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Margarita Iljin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Joakim Strandberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Janusz Jadasz
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Olsson Bontell
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stephan Theiss
- Result Medical GmbH, Düsseldorf, Germany.,Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Eric Hanse
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hans Ågren
- Section of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Keiko Funa
- Oncology Laboratory, Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Illes
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Kumar S, Curran JE, DeLeon E, Leandro AC, Howard TE, Lehman DM, Williams-Blangero S, Glahn DC, Blangero J. Role of miRNA-mRNA Interaction in Neural Stem Cell Differentiation of Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21196980. [PMID: 32977388 PMCID: PMC7582477 DOI: 10.3390/ijms21196980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
miRNA regulates the expression of protein coding genes and plays a regulatory role in human development and disease. The human iPSCs and their differentiated progenies provide a unique opportunity to identify these miRNA-mediated regulatory mechanisms. To identify miRNA-mRNA regulatory interactions in human nervous system development, well characterized NSCs were differentiated from six validated iPSC lines and analyzed for differentially expressed (DE) miRNome and transcriptome by RNA sequencing. Following the criteria, moderated t statistics, FDR-corrected p-value ≤ 0.05 and fold change-absolute (FC-abs) ≥2.0, 51 miRNAs and 4033 mRNAs were found to be significantly DE between iPSCs and NSCs. The miRNA target prediction analysis identified 513 interactions between 30 miRNA families (mapped to 51 DE miRNAs) and 456 DE mRNAs that were paradoxically oppositely expressed. These 513 interactions were highly enriched in nervous system development functions (154 mRNAs; FDR-adjusted p-value range: 8.06 × 10-15-1.44 × 10-4). Furthermore, we have shown that the upregulated miR-10a-5p, miR-30c-5p, miR23-3p, miR130a-3p and miR-17-5p miRNA families were predicted to down-regulate several genes associated with the differentiation of neurons, neurite outgrowth and synapse formation, suggesting their role in promoting the self-renewal of undifferentiated NSCs. This study also provides a comprehensive characterization of iPSC-generated NSCs as dorsal neuroepithelium, important for their potential use in in vitro modeling of human brain development and disease.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (E.D.); (S.W.-B.)
- Correspondence:
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.E.C.); (A.C.L.); (T.E.H.); (J.B.)
| | - Erica DeLeon
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (E.D.); (S.W.-B.)
| | - Ana C. Leandro
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.E.C.); (A.C.L.); (T.E.H.); (J.B.)
| | - Tom E. Howard
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.E.C.); (A.C.L.); (T.E.H.); (J.B.)
| | - Donna M. Lehman
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Sarah Williams-Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (E.D.); (S.W.-B.)
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.E.C.); (A.C.L.); (T.E.H.); (J.B.)
| | - David C. Glahn
- Department of Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT 06102, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.E.C.); (A.C.L.); (T.E.H.); (J.B.)
| |
Collapse
|
26
|
|
27
|
Electric Field Application In Vivo Regulates Neural Precursor Cell Behavior in the Adult Mammalian Forebrain. eNeuro 2020; 7:ENEURO.0273-20.2020. [PMID: 32719101 PMCID: PMC7452733 DOI: 10.1523/eneuro.0273-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023] Open
Abstract
Deep brain stimulation (DBS), which uses electrical stimulation, is a well-established neurosurgical technique used to treat neurologic disorders. Despite its broad therapeutic use, the effects of electrical stimulation on brain cells is not fully understood. Here, we examine the effects of electrical stimulation on neural stem and progenitor cells (collectively neural precursor cells; NPCs) from the subventricular zone in the adult forebrain of C57BL/6J mice. Previous work has demonstrated that adult-derived NPCs are electro sensitive and undergo rapid and directed migration in response to application of clinically relevant electric fields (EFs). We examine NPC proliferation kinetics and their differentiation profile following EF application using in vitro and in vivo assays. In vitro direct current electrical stimulation of 250 mV/mm is sufficient to elicit a 2-fold increase in the neural stem cell pool and increases neurogenesis and oligogenesis. In vivo, asymmetric biphasic electrical stimulation similarly increases the size of the NPC pool and alters neurogenesis. These findings provide insight into the effects of electrical stimulation on NPCs and suggest its potential use as a regenerative approach to neural repair.
Collapse
|
28
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
29
|
Nam KH, Yi SA, Jang HJ, Han JW, Lee J. In vitro modeling for inherited neurological diseases using induced pluripotent stem cells: from 2D to organoid. Arch Pharm Res 2020; 43:877-889. [PMID: 32761309 DOI: 10.1007/s12272-020-01260-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Stem cells are characterized by self-renewal and by their ability to differentiate into cells of various organs. With massive progress in 2D and 3D cell culture techniques, in vitro generation of various types of such organoids from patient-derived stem cells is now possible. As in vitro differentiation protocols are usually made to resemble human developmental processes, organogenesis of patient-derived stem cells can provide key information regarding a range of developmental diseases. Human stem cell-based in vitro modeling as opposed to using animal models can particularly benefit the evaluation of neurological diseases because of significant differences in structure and developmental processes between the human and the animal brain. This review focuses on stem cell-based in vitro modeling of neurodevelopmental disorders, more specifically, the fundamentals and technical advancements in monolayer neuron and brain organoid cultures. Furthermore, we discuss the drawbacks of the conventional culture method and explore the advanced, cutting edge 3D organoid models for several neurodevelopmental diseases, including genetic diseases such as Down syndrome, Rett syndrome, and Miller-Dieker syndrome, as well as brain malformations like macrocephaly and microcephaly. Finally, we discuss the limitations of the current organoid techniques and some potential solutions that pave the way for accurate modeling of neurological disorders in a dish.
Collapse
Affiliation(s)
- Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Ji Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Imnewrun Biosciences Inc., Suwon, 16419, Republic of Korea.
| |
Collapse
|
30
|
Lundin A, Ricchiuto P, Clausen M, Hicks R, Falk A, Herland A. hiPS-Derived Astroglia Model Shows Temporal Transcriptomic Profile Related to Human Neural Development and Glia Competence Acquisition of a Maturing Astrocytic Identity. ACTA ACUST UNITED AC 2020; 4:e1900226. [PMID: 32402123 DOI: 10.1002/adbi.201900226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 11/10/2022]
Abstract
Astrocyte biology has a functional and cellular diversity only observed in humans. The understanding of the regulatory network governing outer radial glia (RG), responsible for the expansion of the outer subventricular zone (oSVZ), and astrocyte cellular development remains elusive, partly since relevant human material to study these features is not readily available. A human-induced pluripotent stem cell derived astrocytic model, NES-Astro, has been recently developed, with high expression of astrocyte-associated markers and high astrocyte-relevant functionality. Here it is studied how the NES-Astro phenotype develops during specification and its correlation to known RG and astrocyte characteristics in human brain development. It is demonstrated that directed differentiation of neurogenic long-term neuroepithelial stem cells undergo a neurogenic-to-gliogenic competence preferential change, acquiring a glial fate. Temporal transcript profiles of long- and small RNA corroborate previously shown neurogenic restriction by glia-associated let-7 expression. Furthermore, NES-Astro differentiation displays proposed mechanistic features important for the evolutionary expansion of the oSVZ together with an astroglia/astrocyte transcriptome. The NES-Astro generation is a straight-forward differentiation protocol from stable and expandable neuroepithelial stem cell lines derived from iPS cells. Thus, the NES-Astro is an easy-access cell system with high biological relevance for studies of mechanistic traits of glia and astrocyte.
Collapse
Affiliation(s)
- Anders Lundin
- Translational Genomics, BioPharmaceuticals R&D, Discovery Sciences, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Piero Ricchiuto
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Darwin Building, 310 Milton Rd, Cambridge, CB4 0WG, UK
| | - Maryam Clausen
- Translational Genomics, BioPharmaceuticals R&D, Discovery Sciences, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Ryan Hicks
- Translational Genomics, BioPharmaceuticals R&D, Discovery Sciences, AstraZeneca, Gothenburg, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Anna Herland
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden.,Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, 10044, Sweden.,AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet, Stockholm, 17177, Sweden
| |
Collapse
|
31
|
Lukmanto D, Khanh VC, Shirota S, Kato T, Takasaki MM, Ohneda O. Dynamic Changes of Mouse Embryonic Stem Cell-Derived Neural Stem Cells Under In Vitro Prolonged Culture and Hypoxic Conditions. Stem Cells Dev 2019; 28:1434-1450. [DOI: 10.1089/scd.2019.0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Donny Lukmanto
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Vuong Cat Khanh
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Saori Shirota
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Toshiki Kato
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Mami Matsuo Takasaki
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Laboratory of Regenerative Medicine and Stem Cell Biology, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
32
|
Yasui T, Nakashima K. [Hypoxia epigenetically bestows astrocytic differentiation potential on human pluripotent cell-derived neural stem/precursor cells]. Nihon Yakurigaku Zasshi 2019; 153:54-60. [PMID: 30745514 DOI: 10.1254/fpj.153.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The central nervous system (CNS) is composed of three major cell types, neurons, astrocytes, and oligodendrocytes, which differentiate from common multipotent neural stem/precursor cells (NS/PCs). However, NS/PCs do not have this multipotentiality from the beginning: neurons are generated first and astrocytes are later during CNS development. This developmental progression is observed in vitro by using human (h) NS/PCs derived from pluripotent cells, such as embryonic- and induced pluripotent-stem cells (ES/iPSCs), however, in contrast to rodent's pluripotent cells, they require quite long time to obtain astrocytic differentiation potential. Here, we show that hypoxia confers astrocytic differentiation potential on hNS/PCs through epigenetic alteration for gene regulation. Furthermore, we found that these molecular mechanisms can be applied to functional analysis of patient' iPSC-derived astrocytes. In this review, we summarize recent findings that address molecular mechanisms of epigenetic and transcription factor-mediated regulation that specify NS/PC fate and the development of potential therapeutic strategies for treating astrocyte-mediated neurological disorders.
Collapse
Affiliation(s)
- Tetsuro Yasui
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
33
|
Alia C, Terrigno M, Busti I, Cremisi F, Caleo M. Pluripotent Stem Cells for Brain Repair: Protocols and Preclinical Applications in Cortical and Hippocampal Pathologies. Front Neurosci 2019; 13:684. [PMID: 31447623 PMCID: PMC6691396 DOI: 10.3389/fnins.2019.00684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Brain injuries causing chronic sensory or motor deficit, such as stroke, are among the leading causes of disability worldwide, according to the World Health Organization; furthermore, they carry heavy social and economic burdens due to decreased quality of life and need of assistance. Given the limited effectiveness of rehabilitation, novel therapeutic strategies are required to enhance functional recovery. Since cell-based approaches have emerged as an intriguing and promising strategy to promote brain repair, many efforts have been made to study the functional integration of neurons derived from pluripotent stem cells (PSCs), or fetal neurons, after grafting into the damaged host tissue. PSCs hold great promises for their clinical applications, such as cellular replacement of damaged neural tissues with autologous neurons. They also offer the possibility to create in vitro models to assess the efficacy of drugs and therapies. Notwithstanding these potential applications, PSC-derived transplanted neurons have to match the precise sub-type, positional and functional identity of the lesioned neural tissue. Thus, the requirement of highly specific and efficient differentiation protocols of PSCs in neurons with appropriate neural identity constitutes the main challenge limiting the clinical use of stem cells in the near future. In this Review, we discuss the recent advances in the derivation of telencephalic (cortical and hippocampal) neurons from PSCs, assessing specificity and efficiency of the differentiation protocols, with particular emphasis on the genetic and molecular characterization of PSC-derived neurons. Second, we address the remaining challenges for cellular replacement therapies in cortical brain injuries, focusing on electrophysiological properties, functional integration and therapeutic effects of the transplanted neurons.
Collapse
Affiliation(s)
- Claudia Alia
- CNR Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Marco Terrigno
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Irene Busti
- CNR Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Neuroscience, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, Florence, Italy
| | - Federico Cremisi
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy.,Biophysics Institute (IBF), National Research Council (CNR), Pisa, Italy
| | - Matteo Caleo
- CNR Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
34
|
Kyrousi C, Cappello S. Using brain organoids to study human neurodevelopment, evolution and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e347. [PMID: 31071759 DOI: 10.1002/wdev.347] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/18/2019] [Accepted: 04/07/2019] [Indexed: 01/12/2023]
Abstract
The brain is one of the most complex organs, responsible for the advanced intellectual and cognitive ability of humans. Although primates are to some extent capable of performing cognitive tasks, their abilities are less evolved. One of the reasons for this is the vast differences in the brain of humans compared to other mammals, in terms of shape, size and complexity. Such differences make the study of human brain development fascinating. Interestingly, the cerebral cortex is by far the most complex brain region resulting from its selective evolution within mammals over millions of years. Unraveling the molecular and cellular mechanisms regulating brain development, as well as the evolutionary differences seen across species and the need to understand human brain disorders, are some of the reasons why scientists are interested in improving their current knowledge on human corticogenesis. Toward this end, several animal models including primates have been used, however, these models are limited in their extent to recapitulate human-specific features. Recent technological achievements in the field of stem cell research, which have enabled the generation of human models of corticogenesis, called brain or cerebral organoids, are of great importance. This review focuses on the main cellular and molecular features of human corticogenesis and the use of brain organoids to study it. We will discuss the key differences between cortical development in human and nonhuman mammals, the technological applications of brain organoids and the different aspects of cortical development in normal and pathological conditions, which can be modeled using brain organoids. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Christina Kyrousi
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Silvia Cappello
- Department of Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
35
|
Izsak J, Seth H, Andersson M, Vizlin-Hodzic D, Theiss S, Hanse E, Ågren H, Funa K, Illes S. Robust Generation of Person-Specific, Synchronously Active Neuronal Networks Using Purely Isogenic Human iPSC-3D Neural Aggregate Cultures. Front Neurosci 2019; 13:351. [PMID: 31068774 PMCID: PMC6491690 DOI: 10.3389/fnins.2019.00351] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
Reproducibly generating human induced pluripotent stem cell-based functional neuronal circuits, solely obtained from single individuals, poses particular challenges to achieve personalized and patient specific functional neuronal in vitro models. A hallmark of functional neuronal assemblies, synchronous neuronal activity, can be non-invasively studied by microelectrode array (MEA) technology, reliably capturing physiological and pathophysiological aspects of human brain function. In our here presented manuscript, we demonstrate a procedure to generate 3D neural aggregates comprising astrocytes, oligodendroglial cells, and neurons obtained from the same human tissue sample. Moreover, we demonstrate the robust ability of those neurons to create a highly synchronously active neuronal network within 3 weeks in vitro, without additionally applied astrocytes. The fusion of MEA-technology with functional neuronal circuits solely obtained from one individual's cells represent isogenic person-specific human neuronal sensor chips that pave the way for specific personalized in vitro neuronal networks as well as neurological and neuropsychiatric disease modeling.
Collapse
Affiliation(s)
- Julia Izsak
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Henrik Seth
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Mats Andersson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Dzeneta Vizlin-Hodzic
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Result Medical GmbH, Düsseldorf, Germany
| | - Eric Hanse
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Hans Ågren
- Institute of Neuroscience and Physiology, Section of Psychiatry and Neurochemistry, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Keiko Funa
- Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Oncology Laboratory, Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sebastian Illes
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
36
|
Pacitti D, Privolizzi R, Bax BE. Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Front Cell Neurosci 2019; 13:129. [PMID: 31024259 PMCID: PMC6465581 DOI: 10.3389/fncel.2019.00129] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as "the most complex thing in the universe." The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
- College of Medicine and Health, St Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Riccardo Privolizzi
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, United Kingdom
| | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
| |
Collapse
|
37
|
Edri R, Gal I, Noor N, Harel T, Fleischer S, Adadi N, Green O, Shabat D, Heller L, Shapira A, Gat-Viks I, Peer D, Dvir T. Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803895. [PMID: 30406960 DOI: 10.1002/adma.201803895] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Indexed: 05/22/2023]
Abstract
Despite incremental improvements in the field of tissue engineering, no technology is currently available for producing completely autologous implants where both the cells and the scaffolding material are generated from the patient, and thus do not provoke an immune response that may lead to implant rejection. Here, a new approach is introduced to efficiently engineer any tissue type, which its differentiation cues are known, from one small tissue biopsy. Pieces of omental tissues are extracted from patients and, while the cells are reprogrammed to become induced pluripotent stem cells, the extracellular matrix is processed into an immunologically matching, thermoresponsive hydrogel. Efficient cell differentiation within a large 3D hydrogel is reported, and, as a proof of concept, the generation of functional cardiac, cortical, spinal cord, and adipogenic tissue implants is demonstrated. This versatile bioengineering approach may assist to regenerate any tissue and organ with a minimal risk for immune rejection.
Collapse
Affiliation(s)
- Reuven Edri
- School for Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Idan Gal
- School for Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nadav Noor
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tom Harel
- School for Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sharon Fleischer
- School for Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nofar Adadi
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ori Green
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Doron Shabat
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Lior Heller
- Department of Plastic Surgery, Assaf Harofeh MC, Beer Ya'akov, Zerifin, 70300, Israel
| | - Assaf Shapira
- School for Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Irit Gat-Viks
- School for Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dan Peer
- School for Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tal Dvir
- School for Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
38
|
Liu F, Huang J, Zhang L, Chen J, Zeng Y, Tang Y, Liu Z. Advances in Cerebral Organoid Systems and their Application in Disease Modeling. Neuroscience 2018; 399:28-38. [PMID: 30578974 DOI: 10.1016/j.neuroscience.2018.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Processes associated with human brain development and function are exceedingly complex, limiting our capacity to investigate disease status and potential treatment strategies in vitro. Recent advancements in human cerebral organoid systems-which replicate early stage neural tube formation, neuroepithelium differentiation, and whole-brain regional differentiation-have allowed researchers to generate more accurate models of brain development and disease. The generation of region-specific cerebral organoids also allows for the direct investigation of the etiology and pathological processes associated with inherited and acquired brain diseases, drug discovery, and drug toxicity. In this review, we provide an overview of various neural differentiation technologies, as well as a critical analysis of their strengths and limitations. We primarily focus on the generation of three-dimensional brain organoid systems and their application in infectious disease modeling, high-throughput compound screening, and neurodevelopmental disease modeling.
Collapse
Affiliation(s)
- Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jing Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Chinese National Clinical Research Center on Mental Disorders (xiangya), Chinese National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Yongjian Tang
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University (CSU), Changsha, China.
| |
Collapse
|
39
|
Modrek AS, Golub D, Khan T, Bready D, Prado J, Bowman C, Deng J, Zhang G, Rocha PP, Raviram R, Lazaris C, Stafford JM, LeRoy G, Kader M, Dhaliwal J, Bayin NS, Frenster JD, Serrano J, Chiriboga L, Baitalmal R, Nanjangud G, Chi AS, Golfinos JG, Wang J, Karajannis MA, Bonneau RA, Reinberg D, Tsirigos A, Zagzag D, Snuderl M, Skok JA, Neubert TA, Placantonakis DG. Low-Grade Astrocytoma Mutations in IDH1, P53, and ATRX Cooperate to Block Differentiation of Human Neural Stem Cells via Repression of SOX2. Cell Rep 2018; 21:1267-1280. [PMID: 29091765 DOI: 10.1016/j.celrep.2017.10.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/24/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
Low-grade astrocytomas (LGAs) carry neomorphic mutations in isocitrate dehydrogenase (IDH) concurrently with P53 and ATRX loss. To model LGA formation, we introduced R132H IDH1, P53 shRNA, and ATRX shRNA into human neural stem cells (NSCs). These oncogenic hits blocked NSC differentiation, increased invasiveness in vivo, and led to a DNA methylation and transcriptional profile resembling IDH1 mutant human LGAs. The differentiation block was caused by transcriptional silencing of the transcription factor SOX2 secondary to disassociation of its promoter from a putative enhancer. This occurred because of reduced binding of the chromatin organizer CTCF to its DNA motifs and disrupted chromatin looping. Our human model of IDH mutant LGA formation implicates impaired NSC differentiation because of repression of SOX2 as an early driver of gliomagenesis.
Collapse
Affiliation(s)
- Aram S Modrek
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA
| | - Danielle Golub
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA
| | - Themasap Khan
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA
| | - Jod Prado
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA
| | - Christopher Bowman
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Jingjing Deng
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Guoan Zhang
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Pedro P Rocha
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Ramya Raviram
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Charalampos Lazaris
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Center, NYU School of Medicine, New York, NY 10016, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Gary LeRoy
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Michael Kader
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA
| | - Joravar Dhaliwal
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA
| | - N Sumru Bayin
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Joshua D Frenster
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Jonathan Serrano
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Luis Chiriboga
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Rabaa Baitalmal
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Gouri Nanjangud
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew S Chi
- Department of Neurology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA; Brain Tumor Center, NYU School of Medicine, New York, NY 10016, USA
| | - John G Golfinos
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA; Brain Tumor Center, NYU School of Medicine, New York, NY 10016, USA
| | - Jing Wang
- Department of Anesthesiology, NYU School of Medicine, New York, NY 10016, USA
| | - Matthias A Karajannis
- Department of Pediatrics, NYU School of Medicine, New York, NY 10016, USA; Department of Otolaryngology, NYU School of Medicine, New York, NY 10016, USA
| | - Richard A Bonneau
- Department of Biology, New York University, New York, New York, 10003, USA; Department of Computer Science, New York University, New York, New York, 10003, USA; Simons Center for Data Analysis, New York, NY 10010, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Center, NYU School of Medicine, New York, NY 10016, USA
| | - David Zagzag
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA; Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA; Brain Tumor Center, NYU School of Medicine, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Department of Neurology, NYU School of Medicine, New York, NY 10016, USA; Brain Tumor Center, NYU School of Medicine, New York, NY 10016, USA
| | - Jane A Skok
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA; Brain Tumor Center, NYU School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
40
|
Wang Z, Wang SN, Xu TY, Miao ZW, Su DF, Miao CY. Organoid technology for brain and therapeutics research. CNS Neurosci Ther 2018; 23:771-778. [PMID: 28884977 DOI: 10.1111/cns.12754] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
Brain is one of the most complex organs in human. The current brain research is mainly based on the animal models and traditional cell culture. However, the inherent species differences between humans and animals as well as the gap between organ level and cell level make it difficult to study human brain development and associated disorders through traditional technologies. Recently, the brain organoids derived from pluripotent stem cells have been reported to recapitulate many key features of human brain in vivo, for example recapitulating the zone of putative outer radial glia cells. Brain organoids offer a new platform for scientists to study brain development, neurological diseases, drug discovery and personalized medicine, regenerative medicine, and so on. Here, we discuss the progress, applications, advantages, limitations, and prospects of brain organoid technology in neurosciences and related therapeutics.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Tian-Ying Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhu-Wei Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
41
|
Homan CC, Pederson S, To TH, Tan C, Piltz S, Corbett MA, Wolvetang E, Thomas PQ, Jolly LA, Gecz J. PCDH19 regulation of neural progenitor cell differentiation suggests asynchrony of neurogenesis as a mechanism contributing to PCDH19 Girls Clustering Epilepsy. Neurobiol Dis 2018; 116:106-119. [PMID: 29763708 DOI: 10.1016/j.nbd.2018.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 01/12/2023] Open
Abstract
PCDH19-Girls Clustering Epilepsy (PCDH19-GCE) is a childhood epileptic encephalopathy characterised by a spectrum of neurodevelopmental problems. PCDH19-GCE is caused by heterozygous loss-of-function mutations in the X-chromosome gene, Protocadherin 19 (PCDH19) encoding a cell-cell adhesion molecule. Intriguingly, hemizygous males are generally unaffected. As PCDH19 is subjected to random X-inactivation, heterozygous females are comprised of a mosaic of cells expressing either the normal or mutant allele, which is thought to drive pathology. Despite being the second most prevalent monogeneic cause of epilepsy, little is known about the role of PCDH19 in brain development. In this study we show that PCDH19 is highly expressed in human neural stem and progenitor cells (NSPCs) and investigate its function in vitro in these cells of both mouse and human origin. Transcriptomic analysis of mouse NSPCs lacking Pcdh19 revealed changes to genes involved in regulation of neuronal differentiation, and we subsequently show that loss of Pcdh19 causes increased NSPC neurogenesis. We reprogramed human fibroblast cells harbouring a pathogenic PCDH19 mutation into human induced pluripotent stem cells (hiPSC) and employed neural differentiation of these to extend our studies into human NSPCs. As in mouse, loss of PCDH19 function caused increased neurogenesis, and furthermore, we show this is associated with a loss of human NSPC polarity. Overall our data suggests a conserved role for PCDH19 in regulating mammalian cortical neurogenesis and has implications for the pathogenesis of PCDH19-GCE. We propose that the difference in timing or "heterochrony" of neuronal cell production originating from PCDH19 wildtype and mutant NSPCs within the same individual may lead to downstream asynchronies and abnormalities in neuronal network formation, which in-part predispose the individual to network dysfunction and epileptic activity.
Collapse
Affiliation(s)
- Claire C Homan
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Thu-Hien To
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Chuan Tan
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Mark A Corbett
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Lachlan A Jolly
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia.
| | - Jozef Gecz
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia.
| |
Collapse
|
42
|
Terrigno M, Busti I, Alia C, Pietrasanta M, Arisi I, D'Onofrio M, Caleo M, Cremisi F. Neurons Generated by Mouse ESCs with Hippocampal or Cortical Identity Display Distinct Projection Patterns When Co-transplanted in the Adult Brain. Stem Cell Reports 2018; 10:1016-1029. [PMID: 29456186 PMCID: PMC5918192 DOI: 10.1016/j.stemcr.2018.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
The capability of generating neural precursor cells with distinct types of regional identity in vitro has recently opened new opportunities for cell replacement in animal models of neurodegenerative diseases. By manipulating Wnt and BMP signaling, we steered the differentiation of mouse embryonic stem cells (ESCs) toward isocortical or hippocampal molecular identity. These two types of cells showed different degrees of axonal outgrowth and targeted different regions when co-transplanted in healthy or lesioned isocortex or in hippocampus. In hippocampus, only precursor cells with hippocampal molecular identity were able to extend projections, contacting CA3. Conversely, isocortical-like cells were capable of extending long-range axonal projections only when transplanted in motor cortex, sending fibers toward both intra- and extra-cortical targets. Ischemic damage induced by photothrombosis greatly enhanced the capability of isocortical-like cells to extend far-reaching projections. Our results indicate that neural precursors generated by ESCs carry intrinsic signals specifying axonal extension in different environments. Wnt signaling induces hippocampal fate in neuralized mouse ESCs Transplanted cortical and hippocampal neurons target distinct regions in adult brain Photothrombotic lesion favors neurite elongation of cortical transplanted cells Cortical cell transplantation improves the motor performance after ischemic damage
Collapse
Affiliation(s)
| | - Irene Busti
- Neurofarba, University of Florence, Florence 50134, Italy; Istituto di Neuroscienze, CNR, Pisa 56124, Italy
| | - Claudia Alia
- Istituto di Neuroscienze, CNR, Pisa 56124, Italy
| | | | - Ivan Arisi
- European Brain Research Institute (EBRI) "Rita Levi-Montalcini", Roma 00161, Italy
| | - Mara D'Onofrio
- European Brain Research Institute (EBRI) "Rita Levi-Montalcini", Roma 00161, Italy
| | - Matteo Caleo
- Istituto di Neuroscienze, CNR, Pisa 56124, Italy
| | | |
Collapse
|
43
|
Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda-Andoh T, Okano H, Nakashima K. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports 2018; 8:1743-1756. [PMID: 28591654 PMCID: PMC5470174 DOI: 10.1016/j.stemcr.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/22/2022] Open
Abstract
Human neural precursor cells (hNPCs) derived from pluripotent stem cells display a high propensity for neuronal differentiation, but they require long-term culturing to differentiate efficiently into astrocytes. The mechanisms underlying this biased fate specification of hNPCs remain elusive. Here, we show that hypoxia confers astrocytic differentiation potential on hNPCs through epigenetic gene regulation, and that this was achieved by cooperation between hypoxia-inducible factor 1α and Notch signaling, accompanied by a reduction of DNA methylation level in the promoter region of a typical astrocyte-specific gene, Glial fibrillary acidic protein. Furthermore, we found that this hypoxic culture condition could be applied to rapid generation of astrocytes from Rett syndrome patient-derived hNPCs, and that these astrocytes impaired neuronal development. Thus, our findings shed further light on the molecular mechanisms regulating hNPC differentiation and provide attractive tools for the development of therapeutic strategies for treating astrocyte-mediated neurological disorders.
Collapse
Affiliation(s)
- Tetsuro Yasui
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Naohiro Uezono
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hirofumi Noguchi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Tomoko Noda-Andoh
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
44
|
West MD, Labat I, Sternberg H, Larocca D, Nasonkin I, Chapman KB, Singh R, Makarev E, Aliper A, Kazennov A, Alekseenko A, Shuvalov N, Cheskidova E, Alekseev A, Artemov A, Putin E, Mamoshina P, Pryanichnikov N, Larocca J, Copeland K, Izumchenko E, Korzinkin M, Zhavoronkov A. Use of deep neural network ensembles to identify embryonic-fetal transition markers: repression of COX7A1 in embryonic and cancer cells. Oncotarget 2017; 9:7796-7811. [PMID: 29487692 PMCID: PMC5814259 DOI: 10.18632/oncotarget.23748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
Here we present the application of deep neural network (DNN) ensembles trained on transcriptomic data to identify the novel markers associated with the mammalian embryonic-fetal transition (EFT). Molecular markers of this process could provide important insights into regulatory mechanisms of normal development, epimorphic tissue regeneration and cancer. Subsequent analysis of the most significant genes behind the DNNs classifier on an independent dataset of adult-derived and human embryonic stem cell (hESC)-derived progenitor cell lines led to the identification of COX7A1 gene as a potential EFT marker. COX7A1, encoding a cytochrome C oxidase subunit, was up-regulated in post-EFT murine and human cells including adult stem cells, but was not expressed in pre-EFT pluripotent embryonic stem cells or their in vitro-derived progeny. COX7A1 expression level was observed to be undetectable or low in multiple sarcoma and carcinoma cell lines as compared to normal controls. The knockout of the gene in mice led to a marked glycolytic shift reminiscent of the Warburg effect that occurs in cancer cells. The DNN approach facilitated the elucidation of a potentially new biomarker of cancer and pre-EFT cells, the embryo-onco phenotype, which may potentially be used as a target for controlling the embryonic-fetal transition.
Collapse
Affiliation(s)
| | - Ivan Labat
- AgeX Therapeutics, Inc., Alameda, CA, USA
| | | | | | | | | | | | - Eugene Makarev
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA
| | - Alex Aliper
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA
| | - Andrey Kazennov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey Alekseenko
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA.,Innopolis University, Innoplis, Russia
| | - Nikolai Shuvalov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Evgenia Cheskidova
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandr Alekseev
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Artem Artemov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA
| | - Evgeny Putin
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA.,Computer Technologies Lab, ITMO University, St. Petersburg, Russia
| | - Polina Mamoshina
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA
| | - Nikita Pryanichnikov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA
| | | | | | - Evgeny Izumchenko
- Johns Hopkins University, School of Medicine, Department of Otolaryngology-Head and Neck Cancer Research, Baltimore, MD, USA
| | - Mikhail Korzinkin
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA
| | - Alex Zhavoronkov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, USA.,The Biogerontology Research Foundation, Trevissome Park, Truro, UK
| |
Collapse
|
45
|
Radial Extracorporeal Shock Wave Therapy Enhances the Proliferation and Differentiation of Neural Stem Cells by Notch, PI3K/AKT, and Wnt/β-catenin Signaling. Sci Rep 2017; 7:15321. [PMID: 29127399 PMCID: PMC5681501 DOI: 10.1038/s41598-017-15662-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/20/2017] [Indexed: 01/05/2023] Open
Abstract
Neural stem cell (NSC) proliferation and differentiation play a pivotal role in the repair of brain function in central nervous system (CNS) diseases. Radial extracorporeal shock wave therapy (rESWT) is a non-invasive and innovative treatment for many conditions, yet little is known about the effects of this treatment on NSCs. Mouse NSCs (NE-4C) were exposed to rESWT with 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 bar (500 impulses, and 2 Hz) in vitro. Cell viability test results indicated that rESWT, at a dose of 2.5 bar, 500 impulses, and 2 Hz, increased NE-4C viability within 72 h, and that the PI3K/AKT pathway was involved in its mechanisms. Exposure to rESWT also affected proliferation and differentiation of NE-4C after 8 weeks, which may be associated with Wnt/β-catenin and Notch pathways. This assessment is corroborated by the ability of inhibitors of Wnt/β-catenin [Dickkopf-1 (Dkk-1)] and the Notch pathway (DAPT) to weaken proliferation and differentiation of NSCs. In summary, a proper dose of rESWT enhanced NSCs augment via the PI3K/AKT pathway initially. Also, Wnt/β-catenin and the Notch pathway play important roles in regulation of the long-term efficacy of rESWT. This study reveals a novel approach to culture NSCs in vitro and support neurogenesis.
Collapse
|
46
|
Di Lullo E, Kriegstein AR. The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 2017; 18:573-584. [PMID: 28878372 PMCID: PMC5667942 DOI: 10.1038/nrn.2017.107] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the development and dysfunction of the human brain is a major goal of neurobiology. Much of our current understanding of human brain development has been derived from the examination of post-mortem and pathological specimens, bolstered by observations of developing non-human primates and experimental studies focused largely on mouse models. However, these tissue specimens and model systems cannot fully capture the unique and dynamic features of human brain development. Recent advances in stem cell technologies that enable the generation of human brain organoids from pluripotent stem cells (PSCs) promise to profoundly change our understanding of the development of the human brain and enable a detailed study of the pathogenesis of inherited and acquired brain diseases.
Collapse
Affiliation(s)
- Elizabeth Di Lullo
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA
- Department of Neurology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
47
|
Mutukula N, Elkabetz Y. "Neural Killer" Cells: Autologous Cytotoxic Neural Stem Cells for Fighting Glioma. Cell Stem Cell 2017; 20:426-428. [PMID: 28388425 DOI: 10.1016/j.stem.2017.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently in Science Translational Medicine, Bagó et al. (2017) reported an advance in treating glioblastoma using tumor-homing cytotoxic induced neural stem cells (h-iNSCTE). This approach circumvents problems associated with immune rejection and minimizes the bench-to-clinic time window critical for these patients.
Collapse
Affiliation(s)
- Naresh Mutukula
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Yechiel Elkabetz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| |
Collapse
|
48
|
Methotrexate and Valproic Acid Affect Early Neurogenesis of Human Amniotic Fluid Stem Cells from Myelomeningocele. Stem Cells Int 2017; 2017:6101609. [PMID: 29056972 PMCID: PMC5615990 DOI: 10.1155/2017/6101609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
Myelomeningocele (MMC) is a severe type of neural tube defect (NTD), in which the backbone and spinal canal do not close completely during early embryonic development. This condition results in serious morbidity and increased mortality after birth. Folic acid significantly reduces, and conversely, folate antagonist methotrexate (MTX) and valproic acid (VPA) increase the occurrence of NTDs, including MMC. How these pharmacological agents exactly influence the early neurulation process is still largely unclear. Here, we characterized human amniotic fluid-derived stem cells (AFSCs) from prenatally diagnosed MMC and observed an effect of MTX and VPA administration on the early neural differentiation process. We found that MMC-derived AFSCs highly expressed early neural and radial glial genes that were negatively affected by MTX and VPA exposure. In conclusion, we setup a human cell model of MMC to study early neurogenesis and for drug screening purposes. We also proposed the detection of early neural gene expression in AFSCs as an additional MMC diagnostic tool.
Collapse
|
49
|
Abstract
Recent breakthroughs in pluripotent stem cell technologies have enabled a new class of in vitro systems for functional modeling of human brain development. These advances, in combination with improvements in neural differentiation methods, allow the generation of in vitro systems that reproduce many in vivo features of the brain with remarkable similarity. Here, we describe advances in the development of these methods, focusing on neural rosette and organoid approaches, and compare their relative capabilities and limitations. We also discuss current technical hurdles for recreating the cell-type complexity and spatial architecture of the brain in culture and offer potential solutions.
Collapse
|
50
|
Pourchet A, Modrek AS, Placantonakis DG, Mohr I, Wilson AC. Modeling HSV-1 Latency in Human Embryonic Stem Cell-Derived Neurons. Pathogens 2017; 6:E24. [PMID: 28594343 PMCID: PMC5488658 DOI: 10.3390/pathogens6020024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) uses latency in peripheral ganglia to persist in its human host, however, recurrent reactivation from this reservoir can cause debilitating and potentially life-threatening disease. Most studies of latency use live-animal infection models, but these are complex, multilayered systems and can be difficult to manipulate. Infection of cultured primary neurons provides a powerful alternative, yielding important insights into host signaling pathways controlling latency. However, small animal models do not recapitulate all aspects of HSV-1 infection in humans and are limited in terms of the available molecular tools. To address this, we have developed a latency model based on human neurons differentiated in culture from an NIH-approved embryonic stem cell line. The resulting neurons are highly permissive for replication of wild-type HSV-1, but establish a non-productive infection state resembling latency when infected at low viral doses in the presence of the antivirals acyclovir and interferon-α. In this state, viral replication and expression of a late viral gene marker are not detected but there is an accumulation of the viral latency-associated transcript (LAT) RNA. After a six-day establishment period, antivirals can be removed and the infected cultures maintained for several weeks. Subsequent treatment with sodium butyrate induces reactivation and production of new infectious virus. Human neurons derived from stem cells provide the appropriate species context to study this exclusively human virus with the potential for more extensive manipulation of the progenitors and access to a wide range of preexisting molecular tools.
Collapse
Affiliation(s)
- Aldo Pourchet
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Aram S Modrek
- Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA.
| | - Dimitris G Placantonakis
- Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA.
- Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
- Brain Tumor Center, New York University School of Medicine, New York, NY 10016, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA.
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|