1
|
Jo Y, Greene TT, Chiale C, Zhang K, Fang Z, Dallari S, Marooki N, Wang W, Zuniga EI. Genomic analysis of progenitors in viral infection implicates glucocorticoids as suppressors of plasmacytoid dendritic cell generation. Proc Natl Acad Sci U S A 2025; 122:e2410092122. [PMID: 40294270 DOI: 10.1073/pnas.2410092122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/19/2025] [Indexed: 04/30/2025] Open
Abstract
Plasmacytoid Dendritic cells (pDCs) are the most potent producers of interferons, which are critical antiviral cytokines. pDC development is, however, compromised following a viral infection, and this phenomenon, as well as its relationship to conventional (c)DC development is still incompletely understood. By using lymphocytic choriomeningitis virus (LCMV) infection in mice as a model system, we observed that DC progenitors skewed away from pDC and toward cDC development during in vivo viral infection. Subsequent characterization of the transcriptional and epigenetic landscape of fms-like tyrosine kinase 3+ (Flt3+) DC progenitors and follow-up studies revealed increased apoptosis and reduced proliferation in different individual DC-progenitors as well as a profound type I interferon (IFN-I)-dependent ablation of pre-pDCs, but not pre-DC precursors, after both acute and chronic LCMV infections. In addition, integrated genomic analysis identified altered activity of 34 transcription factors in Flt3+ DC progenitors from infected mice, including two regulators of Glucocorticoid (GC) responses. Subsequent studies demonstrated that addition of GCs to DC progenitors led to downregulated pDC-primed-genes while upregulating cDC-primed-genes, and that endogenous GCs selectively decreased pDC, but not cDC, numbers upon in vivo LCMV infection. These findings demonstrate a significant ablation of pre-pDCs in infected mice and identify GCs as suppressors of pDC generation from early progenitors. This provides a potential explanation for the impaired pDC development following viral infection and links pDC numbers to the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Yeara Jo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Trever T Greene
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Carolina Chiale
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Kai Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Ziyan Fang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Simone Dallari
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Nuha Marooki
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Elina I Zuniga
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
2
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
3
|
Engelbrecht E, Stamp BF, Chew L, Sarkar OS, Harter P, Waigel SJ, Rouchka EC, Chariker J, Smolenkov A, Chesney J, McMasters K, Watson CT, Yaddanapudi K. Single-cell transcriptomics of melanoma sentinel lymph nodes identifies immune cell signatures associated with metastasis. JCI Insight 2025; 10:e183080. [PMID: 40048259 PMCID: PMC11981627 DOI: 10.1172/jci.insight.183080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
The sentinel lymph node (SLN) is the first lymph node encountered by a metastatic cancer cell and serves as a predictor of poor prognosis, as cases with clinically occult SLN metastases are classified as stage III with elevated rates of recurrence and diminished overall survival. However, the dynamics of immune infiltrates in SLNs remain poorly characterized. Here, using an unbiased cellular indexing of transcriptomes and epitopes by sequencing technique, we profiled 97,777 cells from SLN tissues obtained from patients with stages I/II and III cutaneous melanoma. We described the transcriptional programs of a multitude of T, B, and myeloid cell subtypes in SLNs. Based on the proportions of cell types, we determined that SLN subtypes stratified along a naive → activated axis; patients with a "high activated" signature score appeared to be undergoing a robust melanoma antigen-driven adaptive immune response and, thus, could be responsive to immunotherapy. Additionally, we identified transcriptomic signatures of SLN-infiltrating dendritic cell subsets that compromise antitumor immune responses. Our analyses provide valuable insights into tumor-driven immune changes in the SLN tissue, offering a powerful tool for the informed design of immune therapies for patients with high-risk melanoma.
Collapse
Affiliation(s)
| | | | - Lewis Chew
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
| | - Omar Sadi Sarkar
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
| | - Phillip Harter
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
| | | | - Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics
- Department of Computer Science and Engineering
| | | | | | - Jason Chesney
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- UofL-Health Brown Cancer Center
| | | | | | - Kavitha Yaddanapudi
- Immuno-Oncology Group, UofL-Health Brown Cancer Center
- Department of Microbiology/Immunology
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Baek S, Cui K. Targeting CD200 in Breast Cancer: Opportunities and Challenges in Immunotherapeutic Strategies. Int J Mol Sci 2024; 26:115. [PMID: 39795972 PMCID: PMC11719565 DOI: 10.3390/ijms26010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
One of the key factors that contribute to tumor progression and resistance is the immunosuppressive microenvironment of the tumor. CD200 is a recently identified cell surface glycoprotein recognized as an important molecule in breast cancer for its versatile modulation of the immune response via its receptor, CD200R. The interaction between CD200 and CD200R suppresses the immune activities against tumor cells and allows them to be undetected and, in doing so, to escape from the destructive capability of the immune cells. Here, we review recent advances and future trends in CD200-targeted therapies for cancer treatments. We also discuss molecular pathways that include variable expressions across different cancer types and their importance in treatment options.
Collapse
Affiliation(s)
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Poveda-Garavito N, Orozco Castaño CA, Torres-Llanos Y, Cruz-Rodriguez N, Parra-Medina R, Quijano S, Zabaleta J, Combita AL. ID1 and ID3 functions in the modulation of the tumour immune microenvironment in adult patients with B-cell acute lymphoblastic leukaemia. Front Immunol 2024; 15:1473909. [PMID: 39676870 PMCID: PMC11638060 DOI: 10.3389/fimmu.2024.1473909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction B-cell acute lymphoblastic leukemia (B-ALL) in adults often presents a poor prognosis. ID1 and ID3 genes have been identified as predictors of poor response in Colombian adult B-ALL patients, contributing to cancer development. In various cancer models, these genes have been associated with immune regulatory populations within the tumor immune microenvironment (TIME). B-ALL progression alters immune cell composition and the bone marrow (BM) microenvironment, impacting disease progression and therapy response. This study investigates the relationship between ID1 and ID3 expression, TIME dynamics, and immune evasion mechanisms in adult B-ALL patients. Methods This exploratory study analysed BM samples from 10 B-ALL adult patients diagnosed at the National Cancer Institute of Colombia. First, RT-qPCR was used to assess ID1 and ID3 expression in BM tumour cells. Flow cytometry characterised immune populations in the TIME. RNA-seq evaluated immune genes associatedwith B-ALL immune response, while xCell and CytoSig analysed TIME cell profiles and cytokines. Pathway analysis, gene ontology, and differential gene expression (DEGs) were examined, with functional enrichment analysis performed using KEGG ontology. Results Patients were divided into two groups based on ID1 and ID3 expression, namely basal and overexpression. A total of 94 differentially expressed genes were identified between these groups, with top overexpressed genes associated with neutrophil pathways. Gene set enrichment analysis revealed increased expression of genes associated with neutrophil degranulation, immune response-related neutrophil activation, and neutrophil-mediated immunity. These findings correlated with xCell data. Overexpression group showed significant differences in neutrophils, monocytes and CD4+ naive T cells compared to basal group patients. Microenvironment and immune scores were also significantly different, consistent with the flow cytometry results. Elevated cytokine levels associated with neutrophil activation supported these findings. Validation was performed using the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) TCGA B-ALL cohorts. Discussion These findings highlight significant differences in ID1 and ID3 expression levels and their impact on TIME populations, particularly neutrophil-related pathways. The results suggest a potential role for ID1 and ID3 in immune evasion in adult B-ALL, mediated through neutrophil activation and immune regulation.
Collapse
Affiliation(s)
- Nathaly Poveda-Garavito
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
- Maestría en Inmunología, Departamento de Microbiología - Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos A Orozco Castaño
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Yulieth Torres-Llanos
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
- Laboratorio clínico, Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Rafael Parra-Medina
- Departamento de Patología, Instituto Nacional de Cancerología, Bogotá, Colombia
- Research Institute, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia
| | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Alba Lucia Combita
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
- Maestría en Inmunología, Departamento de Microbiología - Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
6
|
Jung J, Kim NH, Park J, Lim D, Kwon M, Gil W, Jung S, Go M, Kim C, Cheong YH, Lee MH, Park HS, Eom YB, Park SA. Gremlin-2 is a novel tumor suppressor that negatively regulates ID1 in breast cancer. Breast Cancer Res 2024; 26:174. [PMID: 39614338 DOI: 10.1186/s13058-024-01935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common cancers in women and is closely associated with obesity. Gremlin-2 (GREM2), an antagonist for bone morphogenetic proteins (BMPs), has been considered an inhibitor of adipogenic differentiation in adipose-derived stromal/stem cells. However, the role of GREM2 in breast cancer cells remains largely unknown, and its signaling mechanism has yet to be clarified. METHODS Bioinformatics analysis was conducted using public databases. Breast cancer cells overexpressing mock or GREM2 were used for in vitro and in vivo studies. Cell viability, colony formation, migration, and animal studies were performed to investigate the role of GREM2 in breast cancer cells. Screening of target genes affected by GREM2 overexpression in breast cancer cells was performed through RNA sequencing (RNA-seq) analysis. RESULTS The expression level of GREM2 mRNA was significantly reduced in both breast cancer tissues and cell lines. Kaplan-Meier analysis showed that low expression of GREM2 and high methylation of the GREM2 promoter were each associated with poor patient survival. The low mRNA expression of GREM2 in breast cancer cells was increased by the demethylating agent decitabine. Breast cancer cells overexpressing GREM2 decreased cell proliferation when compared to control cells, both in vitro and in vivo. Through comparison of RNA-seq analysis between cell lines and tissue samples, gene ontologies that were consistently upregulated or downregulated by GREM2 in breast cancer were identified. In particular, the expression of inhibitor of DNA-binding-1 (ID1) was repressed by GREM2. BMP2 is one of the upstream regulators that increases the expression of ID1, and the expression of ID1 reduced by GREM2 was restored by overexpression of BMP2. Also, the migration ability of breast cancer cells, which had been suppressed by GREM2, was restored by BMP2 or ID1. CONCLUSIONS Low expression of GREM2 in breast cancer cells is associated with hypermethylation of the GREM2 promoter, which may ultimately contribute to poor patient survival. GREM2 participates in regulating the expression of various genes, including ID1, and is involved in suppressing the proliferation of breast cancer cells. This suggests that GREM2 has the potential to act as a novel tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Jiwoo Jung
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Na Hui Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jayeon Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Dayeon Lim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minji Kwon
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - World Gil
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Suyeon Jung
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minjeong Go
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Chaeeon Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Ye Hwang Cheong
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd, Yongin, 17073, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, 58245, Republic of Korea
| | - Hee Sun Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Sin-Aye Park
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
7
|
Jo Y, Greene TT, Zhang K, Chiale C, Fang Z, Dallari S, Marooki N, Wang W, Zuniga EI. Genomic Analysis of Progenitors in Viral Infection Implicates Glucocorticoids as Suppressors of Plasmacytoid Dendritic Cell Generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620771. [PMID: 39554106 PMCID: PMC11565824 DOI: 10.1101/2024.10.28.620771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Plasmacytoid Dendritic cells (pDCs) are the most potent producers of interferons, which are critical antiviral cytokines. pDC development is, however, compromised following a viral infection, and this phenomenon, as well as its relationship to conventional (c)DC development is still incompletely understood. By using lymphocytic choriomeningitis virus (LCMV) infection in mice as a model system, we observed that DC progenitors skewed away from pDC and towards cDC development during in vivo viral infection. Subsequent characterization of the transcriptional and epigenetic landscape of fms-like tyrosine kinase 3 + (Flt3 + ) DC progenitors and follow-up studies revealed increased apoptosis and reduced proliferation in different individual DC-progenitors as well as a profound IFN-I-dependent ablation of pre-pDCs, but not pre-DC precursor, after both acute and chronic LCMV infections. In addition, integrated genomic analysis identified altered activity of 34 transcription factors in Flt3 + DC progenitors from infected mice, including two regulators of Glucocorticoid (GC) responses. Subsequent studies demonstrated that addition of GCs to DC progenitors led to downregulated pDC-primed-genes while upregulating cDC-primed-genes, and that endogenous GCs selectively decreased pDC, but not cDC, numbers upon in-vivo LCMV infection. These findings demonstrate a significant ablation of pre-pDCs in infected mice and identify GCs as suppressors of pDC generation from early progenitors. This provides an explanation for the impaired pDC development following viral infection and links pDC generation to the hypothalamic-pituitary-adrenal axis. Significance Statement Plasmacytoid dendritic cells (pDCs) play critical roles in antiviral responses. However, adaptations of DC progenitors lead to compromised pDC generation after viral infection. Here, we characterized the transcriptional and epigenetic landscapes of DC progenitors after infection. We observed widespread changes in gene expression and chromatin accessibility, reflecting shifts in proliferation, apoptosis, and differentiation potential into various DC subsets. Notably, we identified alterations in the predicted activity of 34 transcription factors, including two regulators of glucocorticoid responses. Our data demonstrate that glucocorticoids inhibit pDC generation by reprogramming DC progenitors. These findings establish a molecular framework for understanding how DC progenitors adapt to infection and highlight the role of glucocorticoid signaling in this process.
Collapse
|
8
|
Chang YS, Lee JM, Huang K, Vagts CL, Ascoli C, Edafetanure-Ibeh R, Huang Y, Cherian RA, Sarup N, Warpecha SR, Hwang S, Goel R, Turturice BA, Schott C, Martinez MH, Finn PW, Perkins DL. Network Analysis of Dysregulated Immune Response to COVID-19 mRNA Vaccination in Hemodialysis Patients. Vaccines (Basel) 2024; 12:1146. [PMID: 39460313 PMCID: PMC11511558 DOI: 10.3390/vaccines12101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
INTRODUCTION End-stage renal disease (ESRD) results in immune dysfunction that is characterized by both systemic inflammation and immune incompetence, leading to impaired responses to vaccination. METHODS To unravel the complex regulatory immune interplay in ESRD, we performed the network-based transcriptomic profiling of ESRD patients on maintenance hemodialysis (HD) and matched healthy controls (HCs) who received the two-dose regimen of the COVID-19 mRNA vaccine BNT162b2. RESULTS Co-expression networks based on blood transcription modules (BTMs) of genes differentially expressed between the HD and HC groups revealed co-expression patterns that were highly similar between the two groups but weaker in magnitude in the HD compared to HC subjects. These networks also showed weakened coregulation between BTMs within the dendritic cell (DC) family as well as with other BTM families involved with innate immunity. The gene regulatory networks of the most enriched BTMs, likewise, highlighted weakened targeting by transcription factors of key genes implicated in DC, natural killer (NK) cell, and T cell activation and function. The computational deconvolution of immune cell populations further bolstered these findings with discrepant proportions of conventional DC subtypes, NK T cells, and CD8+ T cells in HD subjects relative to HCs. CONCLUSION Altogether, our results indicate that constitutive inflammation in ESRD compromises the activation of DCs and NK cells, and, ultimately, their mediation of downstream lymphocytes, leading to a delayed but intact immune response to mRNA vaccination.
Collapse
Affiliation(s)
- Yi-Shin Chang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jessica M. Lee
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kai Huang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Christen L. Vagts
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Christian Ascoli
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Russell Edafetanure-Ibeh
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Yue Huang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Ruth A. Cherian
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Nandini Sarup
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Samantha R. Warpecha
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Sunghyun Hwang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Rhea Goel
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Benjamin A. Turturice
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Cody Schott
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Montserrat H. Martinez
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
| | - Patricia W. Finn
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - David L. Perkins
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA (J.M.L.); (K.H.); (C.L.V.); (C.A.); (S.R.W.); (B.A.T.); (M.H.M.); (D.L.P.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
9
|
Leifheit ME, Johnson G, Kuzel TM, Schneider JR, Barker E, Yun HD, Ustun C, Goldufsky JW, Gupta K, Marzo AL. Enhancing Therapeutic Efficacy of FLT3 Inhibitors with Combination Therapy for Treatment of Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:9448. [PMID: 39273395 PMCID: PMC11394928 DOI: 10.3390/ijms25179448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations are genetic changes found in approximately thirty percent of patients with acute myeloid leukemia (AML). FLT3 mutations in AML represent a challenging clinical scenario characterized by a high rate of relapse, even after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The advent of FLT3 tyrosine kinase inhibitors (TKIs), such as midostaurin and gilteritinib, has shown promise in achieving complete remission. However, a substantial proportion of patients still experience relapse following TKI treatment, necessitating innovative therapeutic strategies. This review critically addresses the current landscape of TKI treatments for FLT3+ AML, with a particular focus on gilteritinib. Gilteritinib, a highly selective FLT3 inhibitor, has demonstrated efficacy in targeting the mutant FLT3 receptor, thereby inhibiting aberrant signaling pathways that drive leukemic proliferation. However, monotherapy with TKIs may not be sufficient to eradicate AML blasts. Specifically, we provide evidence for integrating gilteritinib with mammalian targets of rapamycin (mTOR) inhibitors and interleukin-15 (IL-15) complexes. The combination of gilteritinib, mTOR inhibitors, and IL-15 complexes presents a compelling strategy to enhance the eradication of AML blasts and enhance NK cell killing, offering a potential for improved patient outcomes.
Collapse
Affiliation(s)
- Malia E Leifheit
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gunnar Johnson
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M Kuzel
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey R Schneider
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Hyun D Yun
- Hematology, Oncology, Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
- Department of Medicine, Division of Hematology, Oncology, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Celalettin Ustun
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W Goldufsky
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kajal Gupta
- Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amanda L Marzo
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
11
|
Tzetzo SL, Kramer ED, Mohammadpour H, Kim M, Rosario SR, Yu H, Dolan MR, Oturkar CC, Morreale BG, Bogner PN, Stablewski AB, Benavides FJ, Brackett CM, Ebos JM, Das GM, Opyrchal M, Nemeth MJ, Evans SS, Abrams SI. Downregulation of IRF8 in alveolar macrophages by G-CSF promotes metastatic tumor progression. iScience 2024; 27:109187. [PMID: 38420590 PMCID: PMC10901102 DOI: 10.1016/j.isci.2024.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Tissue-resident macrophages (TRMs) are abundant immune cells within pre-metastatic sites, yet their functional contributions to metastasis remain incompletely understood. Here, we show that alveolar macrophages (AMs), the main TRMs of the lung, are susceptible to downregulation of the immune stimulatory transcription factor IRF8, impairing anti-metastatic activity in models of metastatic breast cancer. G-CSF is a key tumor-associated factor (TAF) that acts upon AMs to reduce IRF8 levels and facilitate metastasis. Translational relevance of IRF8 downregulation was observed among macrophage precursors in breast cancer and a CD68hiIRF8loG-CSFhi gene signature suggests poorer prognosis in triple-negative breast cancer (TNBC), a G-CSF-expressing subtype. Our data highlight the underappreciated, pro-metastatic roles of AMs in response to G-CSF and identify the contribution of IRF8-deficient AMs to metastatic burden. AMs are an attractive target of local neoadjuvant G-CSF blockade to recover anti-metastatic activity.
Collapse
Affiliation(s)
- Stephanie L. Tzetzo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Elliot D. Kramer
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hemn Mohammadpour
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Minhyung Kim
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Melissa R. Dolan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Chetan C. Oturkar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Brian G. Morreale
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Paul N. Bogner
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aimee B. Stablewski
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Fernando J. Benavides
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - John M.L. Ebos
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Gokul M. Das
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mateusz Opyrchal
- Department of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Michael J. Nemeth
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sharon S. Evans
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
12
|
Luri-Rey C, Gomis G, Glez-Vaz J, Manzanal A, Martinez Riaño A, Rodriguez Ruiz ME, Teijeira A, Melero I. Cytotoxicity as a form of immunogenic cell death leading to efficient tumor antigen cross-priming. Immunol Rev 2024; 321:143-151. [PMID: 37822051 DOI: 10.1111/imr.13281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Antigen cross-priming of CD8+ T cells is a critical process necessary for the effective expansion and activation of CD8+ T cells endowed with the ability to recognize and destroy tumor cells. The cross-presentation of tumor antigens to cross-prime CD8+ T cells is mainly mediated, if not only, by a subset of professional antigen-presenting cells termed type-1 conventional dendritic cells (cDC1). The demise of malignant cells can be immunogenic if it occurs in the context of premortem stress. These ways of dying are termed immunogenic cell death (ICD) and are associated with biochemical features favoring cDC1 for the efficient cross-priming of tumor antigens. Immunosurveillance and the success of immunotherapies heavily rely on the ability of cytotoxic immune cells, primarily CD8+ T cells and NK cells, to detect and eliminate tumor cells through mechanisms collectively known as cytotoxicity. Recent studies have revealed the significance of NK- and CTL-mediated cytotoxicity as a prominent form of immunogenic cell death, resulting in mechanisms that promote and sustain antigen-specific immune responses. This review focuses on the mechanisms underlying the cross-presentation of antigens released during tumor cell killing by cytotoxic immune cells, with an emphasis on the role of cDC1 cells. Indeed, cDC1s are instrumental in the effectiveness of most immunotherapies, underscoring the significance of tumor antigen cross-priming in contexts of immunogenic cell death. The notion of the potent immunogenicity of cell death resulting from NK or cytotoxic T lymphocyte (CTL)-mediated cytotoxicity has far-reaching implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Almudena Manzanal
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Ana Martinez Riaño
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | | | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
13
|
Schmassmann P, Roux J, Dettling S, Hogan S, Shekarian T, Martins TA, Ritz MF, Herter S, Bacac M, Hutter G. Single-cell characterization of human GBM reveals regional differences in tumor-infiltrating leukocyte activation. eLife 2023; 12:RP92678. [PMID: 38127790 PMCID: PMC10735226 DOI: 10.7554/elife.92678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Glioblastoma (GBM) harbors a highly immunosuppressive tumor microenvironment (TME) which influences glioma growth. Major efforts have been undertaken to describe the TME on a single-cell level. However, human data on regional differences within the TME remain scarce. Here, we performed high-depth single-cell RNA sequencing (scRNAseq) on paired biopsies from the tumor center, peripheral infiltration zone and blood of five primary GBM patients. Through analysis of >45,000 cells, we revealed a regionally distinct transcription profile of microglia (MG) and monocyte-derived macrophages (MdMs) and an impaired activation signature in the tumor-peripheral cytotoxic-cell compartment. Comparing tumor-infiltrating CD8+ T cells with circulating cells identified CX3CR1high and CX3CR1int CD8+ T cells with effector and memory phenotype, respectively, enriched in blood but absent in the TME. Tumor CD8+ T cells displayed a tissue-resident memory phenotype with dysfunctional features. Our analysis provides a regionally resolved mapping of transcriptional states in GBM-associated leukocytes, serving as an additional asset in the effort towards novel therapeutic strategies to combat this fatal disease.
Collapse
Affiliation(s)
- Philip Schmassmann
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of BaselBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Steffen Dettling
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center MunichPenzbergGermany
| | - Sabrina Hogan
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Tala Shekarian
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Tomás A Martins
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Marie-Françoise Ritz
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Sylvia Herter
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center ZürichSchlierenSwitzerland
| | - Marina Bacac
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center ZürichSchlierenSwitzerland
| | - Gregor Hutter
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of BaselBaselSwitzerland
- Department of Neurosurgery, University Hospital BaselBaselSwitzerland
| |
Collapse
|
14
|
Papadas A, Huang Y, Cicala A, Dou Y, Fields M, Gibbons A, Hong D, Lagal DJ, Quintana V, Rizo A, Zomalan B, Asimakopoulos F. Emerging roles for tumor stroma in antigen presentation and anti-cancer immunity. Biochem Soc Trans 2023; 51:2017-2028. [PMID: 38031753 PMCID: PMC10754280 DOI: 10.1042/bst20221083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Advances in immunotherapy in the last decade have revolutionized treatment paradigms across multiple cancer diagnoses. However, only a minority of patients derive durable benefit and progress with traditional approaches, such as cancer vaccines, remains unsatisfactory. A key to overcoming these barriers resides with a deeper understanding of tumor antigen presentation and the complex and dynamic heterogeneity of tumor-infiltrating antigen-presenting cells (APCs). Reminiscent of the 'second touch' hypothesis proposed by Klaus Ley for CD4+ T cell differentiation, the acquisition of full effector potential by lymph node- primed CD8+ T cells requires a second round of co-stimulation at the site where the antigen originated, i.e. the tumor bed. The tumor stroma holds a prime role in this process by hosting specialized APC niches, apparently distinct from tertiary lymphoid structures, that support second antigenic touch encounters and CD8+ T cell effector proliferation and differentiation. We propose that APC within second-touch niches become licensed for co-stimulation through stromal-derived instructive signals emulating embryonic or wound-healing provisional matrix remodeling. These immunostimulatory roles of stroma contrast with its widely accepted view as a physical and functional 'immune barrier'. Stromal control of antigen presentation makes evolutionary sense as the host stroma-tumor interface constitutes the prime line of homeostatic 'defense' against the emerging tumor. In this review, we outline how stroma-derived signals and cells regulate tumor antigen presentation and T-cell effector differentiation in the tumor bed. The re-definition of tumor stroma as immune rheostat rather than as inflexible immune barrier harbors significant untapped therapeutic opportunity.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Yun Huang
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Yaling Dou
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Matteo Fields
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alicia Gibbons
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Duncan Hong
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Daniel J. Lagal
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Victoria Quintana
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Alejandro Rizo
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Brolyn Zomalan
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| |
Collapse
|
15
|
Wang X, Eichhorn PJA, Thiery JP. TGF-β, EMT, and resistance to anti-cancer treatment. Semin Cancer Biol 2023; 97:1-11. [PMID: 37944215 DOI: 10.1016/j.semcancer.2023.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates cell-specific programs involved in embryonic development, wound-healing, and immune homeostasis. Yet, during tumor progression, these TGF-β-mediated programs are altered, leading to epithelial cell plasticity and a reprogramming of epithelial cells into mesenchymal lineages through epithelial-to-mesenchymal transition (EMT), a critical developmental program in morphogenesis and organogenesis. These changes, in turn, lead to enhanced carcinoma cell invasion, metastasis, immune cell differentiation, immune evasion, and chemotherapy resistance. Here, we discuss EMT as one of the critical programs associated with carcinoma cell plasticity and the influence exerted by TGF-β on carcinoma status and function. We further explore the composition of carcinoma and other cell populations within the tumor microenvironment, and consider the relevant outcomes related to the programs associated with cancer treatment resistance.
Collapse
Affiliation(s)
- Xuecong Wang
- Guangzhou National Laboratory, Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore
| | | |
Collapse
|
16
|
Song P, Yue Q, Chen X, Fu Q, Zhang P, Zhou R. Identification of ID1 and miR-150 interaction and effects on proliferation and apoptosis in ovine granulosa cells. Theriogenology 2023; 212:1-8. [PMID: 37672890 DOI: 10.1016/j.theriogenology.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Granulosa cells (GCs) proliferation and apoptosis play a significantly role in follicular development and atresia. ID1 and miR-150 are involved in cell apoptosis and follicular atresia, but the interaction and function of ID1 and miR-150 in GCs are unclear. This study focuses on ID1 and miR-150 in terms of the interaction and effects on proliferation and apoptosis in ovine granulosa cells. Our findings revealed that ID1 decreased the promoter activity and expression level of oar-miR-150. However, the expression of ID1 was downregulated by miR-150, and ID1 was identified as a target gene of oar-miR-150. miR-150 mimic inhibited proliferation and upregulated apoptosis rate in ovine GCs, while the results of miR-150 inhibitor were opposite. Overexpression of ID1 significantly inhibited ovine GCs proliferation and cell cycle-related genes (CDK1, CDK2, CDK4, CCND2, CDC20, and PCNA) expression, whereas knockdown of ID1 promoted cell proliferation and those genes expression. Overexpression of ID1 significantly downregulated mitochondrial membrane potential and Bcl-2 expression in ovine GCs, and upregulated the expression of pro-apoptosis genes Bax, Caspase-3, and Caspase-9, whereas the results of ID1 knockdown were reversed. Collectively, these findings indicate the interaction and the vital role of ID1 and miR-150 on proliferation and apoptosis in ovine granulosa cells, which may suggest a novel target for ovine follicular development and atresia.
Collapse
Affiliation(s)
- Pengyan Song
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Qiaoxian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Qiang Fu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Peiying Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, China.
| |
Collapse
|
17
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
18
|
Shang S, Yang C, Chen F, Xiang RS, Zhang H, Dai SY, Liu J, Lv XX, Zhang C, Liu XT, Zhang Q, Lu SB, Song JW, Yu JJ, Zhou JC, Zhang XW, Cui B, Li PP, Zhu ST, Zhang HZ, Hua F. ID1 expressing macrophages support cancer cell stemness and limit CD8 + T cell infiltration in colorectal cancer. Nat Commun 2023; 14:7661. [PMID: 37996458 PMCID: PMC10667515 DOI: 10.1038/s41467-023-43548-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Elimination of cancer stem cells (CSCs) and reinvigoration of antitumor immunity remain unmet challenges for cancer therapy. Tumor-associated macrophages (TAMs) constitute the prominant population of immune cells in tumor tissues, contributing to the formation of CSC niches and a suppressive immune microenvironment. Here, we report that high expression of inhibitor of differentiation 1 (ID1) in TAMs correlates with poor outcome in patients with colorectal cancer (CRC). ID1 expressing macrophages maintain cancer stemness and impede CD8+ T cell infiltration. Mechanistically, ID1 interacts with STAT1 to induce its cytoplasmic distribution and inhibits STAT1-mediated SerpinB2 and CCL4 transcription, two secretory factors responsible for cancer stemness inhibition and CD8+ T cell recruitment. Reducing ID1 expression ameliorates CRC progression and enhances tumor sensitivity to immunotherapy and chemotherapy. Collectively, our study highlights the pivotal role of ID1 in controlling the protumor phenotype of TAMs and paves the way for therapeutic targeting of ID1 in CRC.
Collapse
Affiliation(s)
- Shuang Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Chen Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Fei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Ren-Shen Xiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
| | - Huan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Shu-Yuan Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Jing Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xiao-Xi Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Department of Pharmacy, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Xiao-Tong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Qi Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
| | - Shuai-Bing Lu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China
| | - Jia-Wei Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Jiao-Jiao Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Ji-Chao Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xiao-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Ping-Ping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China
| | - Sheng-Tao Zhu
- Beijing Digestive Diseases Center, Beijing Friendship Hospital, 100050, Beijing, P. R. China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing Friendship Hospital, 100050, Beijing, P. R. China
| | - Hai-Zeng Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China.
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, P. R. China.
| | - Fang Hua
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China.
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study (BZ0150), Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China.
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050, Beijing, P. R. China.
| |
Collapse
|
19
|
Puyalto A, Rodríguez-Remírez M, López I, Iribarren F, Simón JA, Ecay M, Collantes M, Vilalta-Lacarra A, Francisco-Cruz A, Solórzano JL, Sandiego S, Peñuelas I, Calvo A, Ajona D, Gil-Bazo I. A novel [ 89Zr]-anti-PD-1-PET-CT to assess response to PD-1/PD-L1 blockade in lung cancer. Front Immunol 2023; 14:1272570. [PMID: 37841258 PMCID: PMC10569300 DOI: 10.3389/fimmu.2023.1272570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background Harnessing the anti-tumor immune system response by targeting the program cell death protein (PD-1) and program cell death ligand protein (PD-L1) axis has been a major breakthrough in non-small cell lung cancer (NSCLC) therapy. Nonetheless, conventional imaging tools cannot accurately assess response in immunotherapy-treated patients. Using a lung cancer syngeneic mouse model responder to immunotherapy, we aimed to demonstrate that [89Zr]-anti-PD-1 immuno-PET is a safe and feasible imaging modality to assess the response to PD-1/PD-L1 blockade in NSCLC. Materials and methods A syngeneic mouse model responder to anti-PD-1 therapy was used. Tumor growth and response to PD-1 blockade were monitored by conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) PET scans. Additionally, tumor lymphocyte infiltration was analyzed by the use of an [89Zr]-labeled anti-PD-1 antibody and measured as 89Zr tumor uptake. Results Conventional [18F]-FDG-PET scans failed to detect the antitumor activity exerted by anti-PD-1 therapy. However, [89Zr]-anti-PD-1 uptake was substantially higher in mice that responded to PD-1 blockade. The analysis of tumor-infiltrating immune cell populations and interleukins demonstrated an increased anti-tumor effect elicited by activation of effector immune cells in PD-1-responder mice. Interestingly, a positive correlation between [89Zr]-anti-PD-1 uptake and the proportion of tumor-infiltrating lymphocytes (TILs) was found (Cor = 0.8; p = 0.001). Conclusion Our data may support the clinical implementation of immuno-PET as a promising novel imaging tool to predict and assess the response of PD-1/PD-L1 inhibitors in patients with NSCLC.
Collapse
Affiliation(s)
- Ander Puyalto
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - María Rodríguez-Remírez
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Inés López
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Fabiola Iribarren
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
| | - Jon Ander Simón
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
- Translational Molecular Imaging Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marga Ecay
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
- Translational Molecular Imaging Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - María Collantes
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
- Translational Molecular Imaging Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Anna Vilalta-Lacarra
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
| | | | - Jose Luis Solórzano
- Departamento de Anatomía Patológica y Diagnóstico Molecular, Md Anderson Cancer Center, Madrid, Spain
- Unidad de Investigación Clínica de Cáncer de Pulmón Hospital Universitario 12 de octubre- Centro Nacional de Investigaciones Oncologicas (H12O-CNIO), Madrid, Spain
| | - Sergio Sandiego
- Department of Oncology, Fundación Instituto Valenciano de Oncología (FIVO), Valencia, Spain
| | - Iván Peñuelas
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
- Translational Molecular Imaging Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alfonso Calvo
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red - Cáncer (CIBERONC), Madrid, Spain
| | - Daniel Ajona
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red - Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Gil-Bazo
- Department of Medical Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- University of Navarra, Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Department of Oncology, Fundación Instituto Valenciano de Oncología (FIVO), Valencia, Spain
- Centro de Investigación Biomédica en Red - Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
20
|
TRUONG NC, HUYNH NT, PHAM KD, PHAM PV. Roles of cancer stem cells in cancer immune surveillance. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
21
|
Lyu Z, Huang B, Zhang J, Qian Q, Pu X, Cui N, Ou Y, Li B, You Z, Lian M, Tang R, Chen W, Zhao Z, Hou J, Gershwin ME, Zhang H, Xia Q, Ma X. Suppression of YTHDF2 attenuates autoimmune hepatitis by expansion of myeloid-derived suppressor cells. J Autoimmun 2023; 135:102993. [PMID: 36642058 DOI: 10.1016/j.jaut.2023.102993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS The N6-methyladenosine (m6A) reader YTH domain-containing family protein 2 (YTHDF2) is critically involved in a multiplicity of biological processes by mediating the degradation of m6A modified mRNAs. Based on our current understanding of this process, we hypothesized that YTHDF2 will play a role in the natural history and function of myeloid-derived suppressor cells (MDSC) and in particular in AIH. APPROACH & RESULTS We took advantage of YTHDF2 conditional knock-out mice to first address the phenotype and function of MDSCs by flow cytometry. Importantly, the loss of YTHDF2 resulted in a gradual elevation of MDSCs including PMN-MDSCs both in liver and ultimately in the BM. Notably, YTHDF2 deficiency in myeloid cells attenuated concanavalin (ConA)-induced liver injury, with enhanced expansion and chemotaxis to liver. Furthermore, MDSCs from Ythdf2CKO mice had a greater suppressive ability to inhibit the proliferation of T cells. Using multi-omic analysis of m6A RNA immunoprecipitation (RIP) and mRNA sequencing, we noted RXRα as potential target of YTHDF2. Indeed YTHDF2-RIP-qPCR confirmed that YTHDF2 directly binds RXRα mRNA thus promoting degradation and decreasing gene expression. Finally, by IHC and immunofluorescence, YTHDF2 expression was significantly upregulated in the liver of patients with AIH which correlated with the degree of inflammation. CONCLUSION Suppression of YTHDF2 enhances the expansion, chemotaxis and suppressive function of MDSCs and our data reveals a unique therapeutical target in immune mediated hepatitis.
Collapse
Affiliation(s)
- Zhuwan Lyu
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Xiting Pu
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yiyan Ou
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Weihua Chen
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Jiajie Hou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Haiyan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
22
|
Zhang W, Fang X, Gao C, Song C, He Y, Zhou T, Yang X, Shang Y, Xu J. MDSCs in sepsis-induced immunosuppression and its potential therapeutic targets. Cytokine Growth Factor Rev 2023; 69:90-103. [PMID: 35927154 DOI: 10.1016/j.cytogfr.2022.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis, a complicated immune response is initiated, which varies over time with sustained excessive inflammation and immunosuppression. Identifying a promising way to orchestrate sepsis-induced immunosuppression is a challenge. Myeloid-derived suppressor cells (MDSCs) comprise pathologically activated neutrophils and monocytes with potent immunosuppressive activity. They play an important part in inhibiting innate and adaptive immune responses, and have emerged as part of the immune response in sepsis. MDSCs numbers are persistently high in sepsis patients, and associated with nosocomial infections and other adverse clinical outcomes. However, their characteristics and functional mechanisms during sepsis have not been addressed fully. Our review sheds light on the features and suppressive mechanism of MDSCs. We also review the potential applications of MDSCs as biomarkers and targets for clinical treatment of sepsis.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangzhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenggang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoying Song
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
23
|
IGF2: A Role in Metastasis and Tumor Evasion from Immune Surveillance? Biomedicines 2023; 11:biomedicines11010229. [PMID: 36672737 PMCID: PMC9855361 DOI: 10.3390/biomedicines11010229] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor 2 (IGF2) is upregulated in both childhood and adult malignancies. Its overexpression is associated with resistance to chemotherapy and worse prognosis. However, our understanding of its physiological and pathological role is lagging behind what we know about IGF1. Dysregulation of the expression and function of IGF2 receptors, insulin receptor isoform A (IR-A), insulin growth factor receptor 1 (IGF1R), and their downstream signaling effectors drive cancer initiation and progression. The involvement of IGF2 in carcinogenesis depends on its ability to link high energy intake, increase cell proliferation, and suppress apoptosis to cancer risk, and this is likely the key mechanism bridging insulin resistance to cancer. New aspects are emerging regarding the role of IGF2 in promoting cancer metastasis by promoting evasion from immune destruction. This review provides a perspective on IGF2 and an update on recent research findings. Specifically, we focus on studies providing compelling evidence that IGF2 is not only a major factor in primary tumor development, but it also plays a crucial role in cancer spread, immune evasion, and resistance to therapies. Further studies are needed in order to find new therapeutic approaches to target IGF2 action.
Collapse
|
24
|
Villar VH, Subotički T, Đikić D, Mitrović-Ajtić O, Simon F, Santibanez JF. Transforming Growth Factor-β1 in Cancer Immunology: Opportunities for Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:309-328. [PMID: 37093435 DOI: 10.1007/978-3-031-26163-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Transforming growth factor-beta1 (TGF-β) regulates a plethora of cell-intrinsic processes that modulate tumor progression in a context-dependent manner. Thus, although TGF-β acts as a tumor suppressor in the early stages of tumorigenesis, in late stages, this factor promotes tumor progression and metastasis. In addition, TGF-β also impinges on the tumor microenvironment by modulating the immune system. In this aspect, TGF-β exhibits a potent immunosuppressive effect, which allows both cancer cells to escape from immune surveillance and confers resistance to immunotherapy. While TGF-β inhibits the activation and antitumoral functions of T-cell lymphocytes, dendritic cells, and natural killer cells, it promotes the generation of T-regulatory cells and myeloid-derived suppressor cells, which hinder antitumoral T-cell activities. Moreover, TGF-β promotes tumor-associated macrophages and neutrophils polarization from M1 into M2 and N1 to N2, respectively. Altogether, these effects contribute to the generation of an immunosuppressive tumor microenvironment and support tumor promotion. This review aims to analyze the relevant evidence on the complex role of TGF-β in cancer immunology, the current outcomes of combined immunotherapies, and the anti-TGF-β therapies that may improve the success of current and new oncotherapies.
Collapse
Affiliation(s)
- Víctor H Villar
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Tijana Subotički
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragoslava Đikić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Olivera Mitrović-Ajtić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute On Immunology and Immunotherapy, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago, Chile.
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Dr. Subotica 4, POB 102, 11129, Belgrade, Serbia.
| |
Collapse
|
25
|
Ke CH, Chiu YH, Huang KC, Lin CS. Exposure of Immunogenic Tumor Antigens in Surrendered Immunity and the Significance of Autologous Tumor Cell-Based Vaccination in Precision Medicine. Int J Mol Sci 2022; 24:ijms24010147. [PMID: 36613591 PMCID: PMC9820296 DOI: 10.3390/ijms24010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The mechanisms by which immune systems identify and destroy tumors, known as immunosurveillance, have been discussed for decades. However, several factors that lead to tumor persistence and escape from the attack of immune cells in a normal immune system have been found. In the process known as immunoediting, tumors decrease their immunogenicity and evade immunosurveillance. Furthermore, tumors exploit factors such as regulatory T cells, myeloid-derived suppressive cells, and inhibitory cytokines that avoid cytotoxic T cell (CTL) recognition. Current immunotherapies targeting tumors and their surroundings have been proposed. One such immunotherapy is autologous cancer vaccines (ACVs), which are characterized by enriched tumor antigens that can escalate specific CTL responses. Unfortunately, ACVs usually fail to activate desirable therapeutic effects, and the low immunogenicity of ACVs still needs to be elucidated. This difficulty highlights the significance of immunogenic antigens in antitumor therapies. Previous studies have shown that defective host immunity triggers tumor development by reprogramming tumor antigenic expressions. This phenomenon sheds new light on ACVs and provides a potential cue to improve the effectiveness of ACVs. Furthermore, synergistically with the ACV treatment, combinational therapy, which can reverse the suppressive tumor microenvironments, has also been widely proposed. Thus, in this review, we focus on tumor immunogenicity sculpted by the immune systems and discuss the significance and application of restructuring tumor antigens in precision medicine.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 111002, Taiwan
| | - Kuo-Chin Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-233-661-286
| |
Collapse
|
26
|
Bu MT, Chandrasekhar P, Ding L, Hugo W. The roles of TGF-β and VEGF pathways in the suppression of antitumor immunity in melanoma and other solid tumors. Pharmacol Ther 2022; 240:108211. [PMID: 35577211 PMCID: PMC10956517 DOI: 10.1016/j.pharmthera.2022.108211] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Immune checkpoint blockade (ICB) has become well-known in cancer therapy, strengthening the body's antitumor immune response rather than directly targeting cancer cells. Therapies targeting immune inhibitory checkpoints, such as PD-1, PD-L1, and CTLA-4, have resulted in impressive clinical responses across different types of solid tumors. However, as with other types of cancer treatments, ICB-based immunotherapy is hampered by both innate and acquired drug resistance. We previously reported the enrichment of gene signatures associated with wound healing, epithelial-to-mesenchymal, and angiogenesis processes in the tumors of patients with innate resistance to PD-1 checkpoint antibody therapy; we termed these the Innate Anti-PD-1 Resistance Signatures (IPRES). The TGF-β and VEGFA pathways emerge as the dominant drivers of IPRES-associated processes. Here, we review these pathways' functions, their roles in immunosuppression, and the currently available therapies that target them. We also discuss recent developments in the targeting of TGF-β using a specific antibody class termed trap antibody. The application of trap antibodies opens the promise of localized targeting of the TGF-β and VEGFA pathways within the tumor microenvironment. Such specificity may offer an enhanced therapeutic window that enables suppression of the IPRES processes in the tumor microenvironment while sparing the normal homeostatic functions of TGF-β and VEGFA in healthy tissues.
Collapse
Affiliation(s)
- Melissa T Bu
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pallavi Chandrasekhar
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lizhong Ding
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy UCLA, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Willy Hugo
- Department of Medicine/Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy UCLA, USA; David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Roles of TGF- β in cancer hallmarks and emerging onco-therapeutic design. Expert Rev Mol Med 2022; 24:e42. [PMID: 36345661 DOI: 10.1017/erm.2022.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a double-edged sword in cancer treatment because of its pivotal yet complex and roles played during cancer initiation/development. Current anti-cancer strategies involving TGF-β largely view TGF-β as an onco-therapeutic target that not only substantially hinders its full utilisation for cancer control, but also considerably restricts innovations in this field. Thereby, how to take advantages of therapeutically favourable properties of TGF-β for cancer management represents an interesting and less investigated problem. Here, by categorising cancer hallmarks into four critical transition events and one enabling characteristic controlling cancer initiation and progression, and delineating TGF-β complexities according to these cancer traits, we identify the suppressive role of TGF-β in tumour initiation and early-stage progression and its promotive functionalities in cancer metastasis as well as other cancer hallmarks. We also propose the feasibility and possible scenarios of combining cold atmospheric plasma (CAP) with onco-therapeutics utilising TGF-β for cancer control given the intrinsic properties of CAP against cancer hallmarks.
Collapse
|
28
|
Mestrallet G, Sone K, Bhardwaj N. Strategies to overcome DC dysregulation in the tumor microenvironment. Front Immunol 2022; 13:980709. [PMID: 36275666 PMCID: PMC9583271 DOI: 10.3389/fimmu.2022.980709] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Dendritic cells (DCs) play a key role to modulate anti-cancer immunity in the tumor microenvironment (TME). They link innate to adaptive immunity by processing and presenting tumor antigens to T cells thereby initiating an anti-tumor response. However, subsets of DCs also induce immune-tolerance, leading to tumor immune escape. In this regard, the TME plays a major role in adversely affecting DC function. Better understanding of DC impairment mechanisms in the TME will lead to more efficient DC-targeting immunotherapy. Here, we review the different subtypes and functions of DCs in the TME, including conventional DCs, plasmacytoid DC and the newly proposed subset, mregDC. We further focus on how cancer cells modulate DCs to escape from the host's immune-surveillance. Immune checkpoint expression, small molecule mediators, metabolites, deprivation of pro-immunogenic and release of pro-tumorigenic cytokine secretion by tumors and tumor-attracted immuno-suppressive cells inhibit DC differentiation and function. Finally, we discuss the impact of established therapies on DCs, such as immune checkpoint blockade. Creative DC-targeted therapeutic strategies will be highlighted, including cancer vaccines and cell-based therapies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kazuki Sone
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Extramural Member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
29
|
Pardo-Sánchez I, García-Moreno D, Mulero V. Zebrafish Models to Study the Crosstalk between Inflammation and NADPH Oxidase-Derived Oxidative Stress in Melanoma. Antioxidants (Basel) 2022; 11:1277. [PMID: 35883768 PMCID: PMC9311651 DOI: 10.3390/antiox11071277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer, and its incidence continues to increase. In the early stages of melanoma, when the malignant cells have not spread to lymph nodes, they can be removed by simple surgery and there is usually low recurrence. Melanoma has a high mortality rate due to its ability to metastasize; once melanoma has spread, it becomes a major health complication. For these reasons, it is important to study how healthy melanocytes transform into melanoma cells, how they interact with the immune system, which mechanisms they use to escape immunosurveillance, and, finally, how they spread and colonize other tissues, metastasizing. Inflammation and oxidative stress play important roles in the development of several types of cancer, including melanoma, but it is not yet clear under which conditions they are beneficial or detrimental. Models capable of studying the relevance of inflammation and oxidative stress in the early steps of melanocyte transformation are urgently needed, as they are expected to help recognize premetastatic lesions in patients by improving both early detection and the development of new therapies.
Collapse
Affiliation(s)
- Irene Pardo-Sánchez
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
30
|
Challagundla N, Shah D, Yadav S, Agrawal-Rajput R. Saga of monokines in shaping tumour-immune microenvironment: Origin to execution. Cytokine 2022; 157:155948. [PMID: 35764025 DOI: 10.1016/j.cyto.2022.155948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Cellular communication mediated by cytokines is an important mechanism dictating immune responses, their cross talk and final immune output. Cytokines play a major role in dictating the immune outcome to cancer by regulating the events of development, differentiation and activation of innate immune cells. Cytokines are pleiotropic in nature, hence understanding their role individually or as member of network cytokines is critical to delineate their role in tumour immunity. Tumour systemically manipulates the immune system to evade and escape immune recognition for their uncontrollable growth and metastasis. The developing tumour comprise a large and diverse set of myeloid cells which are vulnerable to manipulation by the tumour-microenvironment. The innate immune cells of the monocytic lineage skew the fate of the adaptive immune cells and thus dictating cancer elimination or progression. Targeting cells at tumour cite is preposterous owing to their tight network, poor reach and abundance of immunosuppressive mechanisms. Monocytic lineage-derived cytokines (monokines) play crucial role in tumour regression or progression by either directly killing the tumour cells with TNFα or promoting its growth by TGFβ. In addition, the monokines like IL-12, IL-1β, IL-6, IL-10 and TGFβ direct the adaptive immune cells to secrete anti-tumour cytokines, TNFα, IFNγ, perforin and granzyme or pro-tumour cytokines, IL-10 and TGFβ. In this review, we elucidate the roles of monokines in dictating the fate of tumour by regulating responses at various stages of generation, differentiation and activation of immune cells along with the extensive cross talk. We have attempted to delineate the synergy and antagonism of major monokines among themselves or with tumour-derived or adaptive immune cytokines. The review provides an update on the possibilities of placing monokines to potential practical use as cytokine therapy against cancer.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Dhruvi Shah
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
31
|
Chen B, Mu C, Zhang Z, He X, Liu X. The Love-Hate Relationship Between TGF-β Signaling and the Immune System During Development and Tumorigenesis. Front Immunol 2022; 13:891268. [PMID: 35720407 PMCID: PMC9204485 DOI: 10.3389/fimmu.2022.891268] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Since TGF-β was recognized as an essential secreted cytokine in embryogenesis and adult tissue homeostasis a decade ago, our knowledge of the role of TGF-β in mammalian development and disease, particularly cancer, has constantly been updated. Mounting evidence has confirmed that TGF-β is the principal regulator of the immune system, as deprivation of TGF-β signaling completely abrogates adaptive immunity. However, enhancing TGF-β signaling constrains the immune response through multiple mechanisms, including boosting Treg cell differentiation and inducing CD8+ T-cell apoptosis in the disease context. The love-hate relationship between TGF-β signaling and the immune system makes it challenging to develop effective monotherapies targeting TGF-β, especially for cancer treatment. Nonetheless, recent work on combination therapies of TGF-β inhibition and immunotherapy have provide insights into the development of TGF-β-targeted therapies, with favorable outcomes in patients with advanced cancer. Hence, we summarize the entanglement between TGF-β and the immune system in the developmental and tumor contexts and recent progress on hijacking crucial TGF-β signaling pathways as an emerging area of cancer therapy.
Collapse
Affiliation(s)
- Baode Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenglin Mu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhiwei Zhang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
32
|
Zhang Z, Bu L, Luo J, Guo J. Targeting protein kinases benefits cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188738. [PMID: 35660645 DOI: 10.1016/j.bbcan.2022.188738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
Abstract
Small-molecule kinase inhibitors have been well established and successfully developed in the last decades for cancer target therapies. However, intrinsic or acquired drug resistance is becoming the major barrier for their clinical application. With the development of immunotherapies, in particular the discovery of immune checkpoint inhibitors (ICIs), the combination of ICIs with other therapies have recently been extensively explored, among which combination of ICIs with kinase inhibitors achieves promising clinical outcome in a plethora of cancer types. Here we comprehensively summarize the potent roles of protein kinases in modulating immune checkpoints both in tumor and immune cells, and reshaping tumor immune microenvironments by evoking innate immune response and neoantigen generation or presentation. Moreover, the clinical trial and approval of combined administration of kinase inhibitors with ICIs are collected, highlighting the precise strategies to benefit cancer immune therapies.
Collapse
Affiliation(s)
- Zhengkun Zhang
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lang Bu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junhang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
33
|
Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol (Dordr) 2022; 45:333-353. [PMID: 35587857 DOI: 10.1007/s13402-022-00667-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant and one of the most critical cells of tumor immunity. They provide a bridge between innate and adaptive immunity through releasing cytokines into the tumor microenvironment (TME). A number of interleukin (IL) cytokine family members is involved in shaping the final phenotype of macrophages toward either a classically-activated pro-inflammatory M1 state with anti-tumor activity or an alternatively-activated anti-inflammatory M2 state with pro-tumor activity. Shaping TME macrophages toward the M1 phenotype or recovering this phenotypic state may offer a promising therapeutic approach in patients with cancer. Here, we focus on the impact of macrophage-polarizing ILs on immune cells and IL-mediated cellular cross-interactions within the TME. The key aim of this review is to define therapeutic schedules for addressing ILs in cancer immunotherapy based on their multi-directional impacts in such a milieu. Gathering more knowledge on this area is also important for defining adverse effects related to cytokine therapy and addressing them for reinforcing the efficacy of immunotherapy against cancer.
Collapse
|
34
|
Matute JD, Finander B, Pepin D, Ai X, Smith NP, Li JZ, Edlow AG, Villani AC, Lerou PH, Kalish BT. Single-cell immunophenotyping of the fetal immune response to maternal SARS-CoV-2 infection in late gestation. Pediatr Res 2022; 91:1090-1098. [PMID: 34750520 PMCID: PMC8573077 DOI: 10.1038/s41390-021-01793-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND During the COVID-19 pandemic, thousands of pregnant women have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The implications of maternal SARS-CoV-2 infection on fetal and childhood well-being need to be characterized. We aimed to characterize the fetal immune response to maternal SARS-CoV-2 infection. METHODS We performed single-cell RNA-sequencing and T cell receptor sequencing on cord blood mononuclear cells (CBMCs) from newborns of mothers infected with SARS-CoV-2 in the third trimester (cases) or without SARS-CoV-2 infection (controls). RESULTS We identified widespread gene expression changes in CBMCs from cases, including upregulation of interferon-stimulated genes and major histocompatibility complex genes in CD14+ monocytes, transcriptional changes suggestive of activation of plasmacytoid dendritic cells, and activation and exhaustion of natural killer cells. Lastly, we observed fetal T cell clonal expansion in cases compared to controls. CONCLUSIONS As none of the infants were infected with SARS-CoV-2, our results suggest that maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. IMPACT The implications of maternal SARS-CoV-2 infection in the absence of vertical transmission on fetal and childhood well-being are poorly understood. Maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. This study raises important questions about the untoward effects of maternal SARS-CoV-2 on the fetus, even in the absence of vertical transmission.
Collapse
Affiliation(s)
- Juan D Matute
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital (MGH), Boston, MA, USA.
| | - Benjamin Finander
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - David Pepin
- Department of Pediatric Surgery, MGH, Boston, MA, USA
| | - Xingbin Ai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital (MGH), Boston, MA, USA
| | | | - Jonathan Z Li
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, MGH, Boston, MA, USA
| | | | - Paul H Lerou
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Brian T Kalish
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Li X, Zhong J, Deng X, Guo X, Lu Y, Lin J, Huang X, Wang C. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy. Front Immunol 2022; 12:754196. [PMID: 35003065 PMCID: PMC8727744 DOI: 10.3389/fimmu.2021.754196] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are activated under pathological conditions, such as cancer, or mature myeloid cells that are converted immune-suppressive cells via tumor-derived exosomes, and potently support the tumor processes at different levels. Currently, multiple studies have demonstrated that MDSCs induce immune checkpoint blockade (ICB) therapy resistance through their contribution to the immunosuppressive network in the tumor microenvironment. In addition, non-immunosuppressive mechanisms of MDSCs such as promotion of angiogenesis and induction of cancer stem cells also exert a powerful role in tumor progression. Thus, MDSCs are potential therapeutic targets to enhance the antitumor efficacy of ICB therapy in cases of multiple cancers. This review focuses on the tumor-promoting mechanism of MDSCs and provides an overview of current strategies that target MDSCs with the objective of enhancing the antitumor efficacy of ICB therapy.
Collapse
Affiliation(s)
- Xueyan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Jiahui Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuan Guo
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yantong Lu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juze Lin
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Xuhui Huang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| | - Changjun Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, China
| |
Collapse
|
36
|
Mortezaee K, Majidpoor J. (Im)maturity in Tumor Ecosystem. Front Oncol 2022; 11:813897. [PMID: 35145911 PMCID: PMC8821092 DOI: 10.3389/fonc.2021.813897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Tumors have special features that make them distinct from their normal counterparts. Immature cells in a tumor mass and their critical contributions to the tumorigenesis will open new windows toward cancer therapy. Incomplete cellular development brings versatile and unique functionality in the cellular tumor ecosystem, such as what is seen for highly potential embryonic cells. There is evidence that maturation of certain types of cells in this ecosystem can recover the sensitivity of the tumor. Therefore, understanding more about the mechanisms that contributed to this immaturity will render new therapeutic approaches in cancer therapy. Targeting such mechanisms can be exploited as a supplementary to the current immunotherapeutic treatment schedules, such as immune checkpoint inhibitor (ICI) therapy. The key focus of this review is to discuss the impact of (im)maturity in cellular tumor ecosystems on cancer progression, focusing mainly on immaturity in the immune cell compartment of the tumor, as well as on the stemness of tumor cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
37
|
Abstract
Transforming growth factor-β (TGFβ) signalling controls multiple cell fate decisions during development and tissue homeostasis; hence, dysregulation of this pathway can drive several diseases, including cancer. Here we discuss the influence that TGFβ exerts on the composition and behaviour of different cell populations present in the tumour immune microenvironment, and the context-dependent functions of this cytokine in suppressing or promoting cancer. During homeostasis, TGFβ controls inflammatory responses triggered by exposure to the outside milieu in barrier tissues. Lack of TGFβ exacerbates inflammation, leading to tissue damage and cellular transformation. In contrast, as tumours progress, they leverage TGFβ to drive an unrestrained wound-healing programme in cancer-associated fibroblasts, as well as to suppress the adaptive immune system and the innate immune system. In consonance with this key role in reprogramming the tumour microenvironment, emerging data demonstrate that TGFβ-inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize with other immunotherapies - including immune checkpoint blockade - to unleash robust antitumour immune responses in preclinical cancer models. Despite initial challenges in clinical translation, these findings have sparked the development of multiple therapeutic strategies that inhibit the TGFβ pathway, many of which are currently in clinical evaluation.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
38
|
Hao Z, Li R, Wang Y, Li S, Hong Z, Han Z. Landscape of Myeloid-derived Suppressor Cell in Tumor Immunotherapy. Biomark Res 2021; 9:77. [PMID: 34689842 PMCID: PMC8543853 DOI: 10.1186/s40364-021-00333-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/26/2021] [Indexed: 02/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a group of immature cells that produced by emergency myelopoiesis. Emerging evidences have identified the vital role of MDSC in cancer microenvironment, in which MDSC exerts both immunological and non-immunological activities to assist the progression of cancer. Advances in pre-clinical research have provided us the understanding of MDSC in cancer context from the perspective of molecular mechanism. In clinical scenario, MDSC and its subsets have been discovered to exist in peripheral blood and tumor site of patients from various types of cancers. In this review, we highlight the clinical value of MDSC in predicting prognosis of cancer patients and the responses of immunotherapies, therefore to propose the MDSC-inhibiting strategy in the scenario of cancer immunotherapies. Phenotypes and biological functions of MDSC in cancer microenvironment are comprehensively summarized to provide potential targets of MDSC-inhibiting strategy from the aspect of molecular mechanisms.
Collapse
Affiliation(s)
- Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Ruyuan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Gynecology and Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
39
|
Wang D, Wang D, Huang M, Zheng X, Shen Y, Fu B, Zhao H, Chen X, Peng P, Zhu Q, Zhou Y, Zhang J, Tian Z, Guan W, Wang G, Wei H. Transcriptomic characteristics and impaired immune function of patients who retest positive for SARS-CoV-2 RNA. J Mol Cell Biol 2021; 13:748-759. [PMID: 34687295 PMCID: PMC8574305 DOI: 10.1093/jmcb/mjab067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 11/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global public health crisis. Some patients who have recovered from COVID-19 subsequently test positive again for SARS-CoV-2 RNA after discharge from hospital. How such retest-positive (RTP) patients become infected again is not known. In this study, 30 RTP patients, 20 convalescent patients, and 20 healthy controls were enrolled for the analysis of immunological characteristics of their peripheral blood mononuclear cells. We found that absolute numbers of CD4+ T cells, CD8+ T cells, and natural killer cells were not substantially decreased in RTP patients, but the expression of activation markers on these cells was significantly reduced. The percentage of granzyme B-producing T cells was also lower in RTP patients than in convalescent patients. Through transcriptome sequencing, we demonstrated that high expression of inhibitor of differentiation 1 (ID1) and low expression of interferon-induced transmembrane protein 10 (IFITM10) were associated with insufficient activation of immune cells and the occurrence of RTP. These findings provide insight into the impaired immune function associated with COVID-19 and the pathogenesis of RTP, which may contribute to a better understanding of the mechanisms underlying RTP.
Collapse
Affiliation(s)
- Dongyao Wang
- Department of Hematology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.,Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Dong Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Min Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohu Zheng
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Yiqing Shen
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Binqing Fu
- Department of Hematology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.,Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Hong Zhao
- Department of Infectious Diseases, Peking University First Hospital, Beijing 100034, China
| | - Xianxiang Chen
- Department of Tuberculosis, Wuhan Pulmonary Hospital, Wuhan 430030, China
| | - Peng Peng
- Department of Tuberculosis, Wuhan Pulmonary Hospital, Wuhan 430030, China
| | - Qi Zhu
- Department of Tuberculosis, Wuhan Pulmonary Hospital, Wuhan 430030, China
| | - Yonggang Zhou
- Department of Hematology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.,Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Jinghe Zhang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Zhigang Tian
- Department of Hematology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.,Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230001, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Guiqiang Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing 100034, China.,Peking University International Hospital, Beijing 100034, China
| | - Haiming Wei
- Department of Hematology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.,Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
40
|
Subtil B, Cambi A, Tauriello DVF, de Vries IJM. The Therapeutic Potential of Tackling Tumor-Induced Dendritic Cell Dysfunction in Colorectal Cancer. Front Immunol 2021; 12:724883. [PMID: 34691029 PMCID: PMC8527179 DOI: 10.3389/fimmu.2021.724883] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and the second leading cause of cancer-related deaths worldwide. Locally advanced and metastatic disease exhibit resistance to therapy and are prone to recurrence. Despite significant advances in standard of care and targeted (immuno)therapies, the treatment effects in metastatic CRC patients have been modest. Untreatable cancer metastasis accounts for poor prognosis and most CRC deaths. The generation of a strong immunosuppressive tumor microenvironment (TME) by CRC constitutes a major hurdle for tumor clearance by the immune system. Dendritic cells (DCs), often impaired in the TME, play a critical role in the initiation and amplification of anti-tumor immune responses. Evidence suggests that tumor-mediated DC dysfunction is decisive for tumor growth and metastasis initiation, as well as for the success of immunotherapies. Unravelling and understanding the complex crosstalk between CRC and DCs holds promise for identifying key mechanisms involved in tumor progression and spread that can be exploited for therapy. The main goal of this review is to provide an overview of the current knowledge on the impact of CRC-driven immunosuppression on DCs phenotype and functionality, and its significance for disease progression, patient prognosis, and treatment response. Moreover, present knowledge gaps will be highlighted as promising opportunities to further understand and therapeutically target DC dysfunction in CRC. Given the complexity and heterogeneity of CRC, future research will benefit from the use of patient-derived material and the development of in vitro organoid-based co-culture systems to model and study DCs within the CRC TME.
Collapse
Affiliation(s)
- Beatriz Subtil
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daniele V. F. Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
41
|
Zheng Q, Zheng T, Zhang A, Yan B, Li B, Zhang Z, Zhang Y. Hearing Loss in Id1 -/-; Id3 +/- and Id1 +/-; Id3 -/- Mice Is Associated With a High Incidence of Middle Ear Infection (Otitis Media). Front Genet 2021; 12:508750. [PMID: 34434211 PMCID: PMC8381378 DOI: 10.3389/fgene.2021.508750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Inhibitors of differentiation/DNA binding (Id) proteins are crucial for inner ear development, but whether Id mutations affect middle ear function remains unknown. In this study, we obtained Id1-/-; Id3+/- mice and Id1+/-; Id3-/- mice and carefully examined their middle ear morphology and auditory function. Our study revealed a high incidence (>50%) of middle ear infection in the compound mutant mice. These mutant mice demonstrated hearing impairment starting around 30 days of age, as the mutant mice presented elevated auditory brainstem response (ABR) thresholds compared to those of the littermate controls. The distortion product of otoacoustic emission (DPOAE) was also used to evaluate the conductive function of the middle ear, and we found much lower DPOAE amplitudes in the mutant mice, suggesting sound transduction in the mutant middle ear is compromised. This is the first study of the middle ears of Id compound mutant mice, and high incidence of middle ear infection determined by otoscopy and histological analysis of middle ear suggests that Id1/Id3 compound mutant mice are a novel model for human otitis media (OM).
Collapse
Affiliation(s)
- Qingyin Zheng
- Department of Otolaryngology – Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, China
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Tihua Zheng
- Department of Otolaryngology – Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, China
- College of Special Education, Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Aizhen Zhang
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Bin Yan
- College of Special Education, Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Bo Li
- College of Special Education, Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Zhaoqiang Zhang
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Yan Zhang
- Department of Otolaryngology – Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, China
| |
Collapse
|
42
|
Therapeutic targeting of TGF-β in cancer: hacking a master switch of immune suppression. Clin Sci (Lond) 2021; 135:35-52. [PMID: 33399850 PMCID: PMC7796313 DOI: 10.1042/cs20201236] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Cancers may escape elimination by the host immune system by rewiring the tumour microenvironment towards an immune suppressive state. Transforming growth factor-β (TGF-β) is a secreted multifunctional cytokine that strongly regulates the activity of immune cells while, in parallel, can promote malignant features such as cancer cell invasion and migration, angiogenesis, and the emergence of cancer-associated fibroblasts. TGF-β is abundantly expressed in cancers and, most often, its abundance associated with poor clinical outcomes. Immunotherapeutic strategies, particularly T cell checkpoint blockade therapies, so far, only produce clinical benefit in a minority of cancer patients. The inhibition of TGF-β activity is a promising approach to increase the efficacy of T cell checkpoint blockade therapies. In this review, we briefly outline the immunoregulatory functions of TGF-β in physiological and malignant contexts. We then deliberate on how the therapeutic targeting of TGF-β may lead to a broadened applicability and success of state-of-the-art immunotherapies.
Collapse
|
43
|
Yang Y, Ye WL, Zhang RN, He XS, Wang JR, Liu YX, Wang Y, Yang XM, Zhang YJ, Gan WJ. The Role of TGF- β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6675208. [PMID: 34335834 PMCID: PMC8321733 DOI: 10.1155/2021/6675208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway mediates various biological functions, and its dysregulation is closely related to the occurrence of malignant tumors. However, the role of TGF-β signaling in tumorigenesis and development is complex and contradictory. On the one hand, TGF-β signaling can exert antitumor effects by inhibiting proliferation or inducing apoptosis of cancer cells. On the other hand, TGF-β signaling may mediate oncogene effects by promoting metastasis, angiogenesis, and immune escape. This review summarizes the recent findings on molecular mechanisms of TGF-β signaling. Specifically, this review evaluates TGF-β's therapeutic potential as a target by the following perspectives: ligands, receptors, and downstream signaling. We hope this review can trigger new ideas to improve the current clinical strategies to treat tumors related to the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yun Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Long Ye
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Ruo-Nan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jing-Ru Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Xuan Liu
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Yi Wang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Xue-Mei Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Juan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou 215124, China
| |
Collapse
|
44
|
Wang M, Zhai X, Li J, Guan J, Xu S, Li Y, Zhu H. The Role of Cytokines in Predicting the Response and Adverse Events Related to Immune Checkpoint Inhibitors. Front Immunol 2021; 12:670391. [PMID: 34367136 PMCID: PMC8339552 DOI: 10.3389/fimmu.2021.670391] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the overall survival (OS) and progression-free survival (PFS) of patients with advanced cancer has been significantly improved due to the application of immune checkpoint inhibitors (ICIs). Low response rate and high occurrence of immune-related adverse events (irAEs) make urgently need for ideal predictive biomarkers to identity efficient population and guide treatment strategies. Cytokines are small soluble proteins with a wide range of biological activity that are secreted by activated immune cells or tumor cells and act as a bridge between innate immunity, infection, inflammation and cancer. Cytokines can be detected in peripheral blood and suitable for dynamic detection. During the era of ICIs, many studies investigated the role of cytokines in prediction of the efficiency and toxicity of ICIs. Herein, we review the relevant studies on TNF-α, IFN-γ, IL-6, IL-8, TGF-β and other cytokines as biomarkers for predicting ICI-related reactions and adverse events, and explore the immunomodulatory mechanisms. Finally, the most important purpose of this review is to help identify predictors of ICI to screen patients who are most likely to benefit from immunotherapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingyuan Guan
- Department of Cardiology, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Shuhui Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - YuYing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
45
|
Rowlands M, Segal F, Hartl D. Myeloid-Derived Suppressor Cells as a Potential Biomarker and Therapeutic Target in COVID-19. Front Immunol 2021; 12:697405. [PMID: 34220859 PMCID: PMC8250151 DOI: 10.3389/fimmu.2021.697405] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical presentations of COVID-19 are highly variable, yet the precise mechanisms that govern the pathophysiology of different disease courses remain poorly defined. Across the spectrum of disease severity, COVID-19 impairs both innate and adaptive host immune responses by activating innate immune cell recruitment, while resulting in low lymphocyte counts. Recently, several reports have shown that patients with severe COVID-19 exhibit a dysregulated myeloid cell compartment, with increased myeloid-derived suppressor cells (MDSCs) correlating with disease severity. MDSCs, in turn, promote virus survival by suppressing T-cell responses and driving a highly pro-inflammatory state through the secretion of various mediators of immune activation. Here, we summarize the evidence on MDSCs and myeloid cell dysregulation in COVID-19 infection and discuss the potential of MDSCs as biomarkers and therapeutic targets in COVID-19 pneumonia and associated disease.
Collapse
Affiliation(s)
- Marianna Rowlands
- Novartis Institutes for BioMedical Research (NIBR) Translational Medicine, Cambridge, MA, United States
| | - Florencia Segal
- Novartis Institutes for BioMedical Research (NIBR) Translational Medicine, Cambridge, MA, United States
| | - Dominik Hartl
- Novartis Institutes for BioMedical Research (NIBR), Translational Medicine, Basel, Switzerland.,Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| |
Collapse
|
46
|
He Y, Liu H, Luo S, Amos CI, Lee JE, Yang K, Qureshi AA, Han J, Wei Q. Genetic variants of EML1 and HIST1H4E in myeloid cell-related pathway genes independently predict cutaneous melanoma-specific survival. Am J Cancer Res 2021; 11:3252-3262. [PMID: 34249459 PMCID: PMC8263692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 06/13/2023] Open
Abstract
Both in vivo and in vitro evidence has supported a key role of myeloid cells in immune suppression in melanoma and in promoting melanocytic metastases. Some single-nucleotide polymorphisms (SNPs) have been shown to predict cutaneous melanoma-specific survival (CMSS), but the association between genetic variation in myeloid cell-related genes and cutaneous melanoma (CM) patient survival remains unknown. METHODS we investigated associations between SNPs in myeloid cell-related pathway genes and CMSS in a discovery dataset of 850 CM patients and replicated the findings in another dataset of 409 CM patients. RESULTS we identified two SNPs (EML1 rs10151787 A>G and HIST1H4E rs2069018 T>C) as independent prognostic factors for CMSS, with adjusted allelic hazards ratios of 1.56 (95% confidence interval =1.19-2.05, P=0.001) and 1.66 (1.22-2.26, P=0.001), respectively; so were their combined unfavorable alleles in a dose-response manner in both discovery and replication datasets (P trend<0.001 and 0.002, respectively). Additional functional analysis revealed that both EML1 rs10151787 G and HIST1H4E rs2069018 C alleles were associated with elevated mRNA expression levels in normal tissues. CONCLUSIONS Our findings suggest that EML1 rs10151787 A>G and HIST1H4E rs2069018 T>C are independent prognostic biomarkers for CMSS.
Collapse
Affiliation(s)
- Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of MedicineDurham, NC 27710, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of MedicineHouston, TX 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer CenterHouston, TX 77030, USA
| | - Keming Yang
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana UniversityIndianapolis, IN 46202, USA
| | - Abrar A Qureshi
- Department of Dermatology, Rhode Island HospitalProvidence, RI 02901, USA
- Warren Alpert Medical School at Brown UniversityProvidence, RI 02901, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana UniversityIndianapolis, IN 46202, USA
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
- Department of Medicine, Duke University School of MedicineDurham, NC 27710, USA
| |
Collapse
|
47
|
Rad Pour S, Pico de Coaña Y, Demorentin XM, Melief J, Thimma M, Wolodarski M, Gomez-Cabrero D, Hansson J, Kiessling R, Tegner J. Predicting anti-PD-1 responders in malignant melanoma from the frequency of S100A9+ monocytes in the blood. J Immunother Cancer 2021; 9:jitc-2020-002171. [PMID: 33963011 PMCID: PMC8108662 DOI: 10.1136/jitc-2020-002171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
Background While programmed cell death receptor 1 (PD-1) blockade treatment has revolutionized treatment of patients with melanoma, clinical outcomes are highly variable, and only a fraction of patients show durable responses. Therefore, there is a clear need for predictive biomarkers to select patients who will benefit from the treatment. Method To identify potential predictive markers for response to PD-1 checkpoint blockade immunotherapy, we conducted single-cell RNA sequencing analyses of peripheral blood mononuclear cells (PBMC) (n=8), as well as an in-depth immune monitoring study (n=20) by flow cytometry in patients with advanced melanoma undergoing treatment with nivolumab at Karolinska University Hospital. Blood samples were collected before the start of treatment and at the time of the second dose. Results Unbiased single-cell RNA sequencing of PBMC in patients with melanoma uncovered that a higher frequency of monocytes and a lower ratio of CD4+ T cells to monocyte were inversely associated with overall survival. Similarly, S100A9 expression in the monocytic subset was correlated inversely with overall survival. These results were confirmed by a flow cytometry-based analysis in an independent patient cohort. Conclusion Our results suggest that monocytic cell populations can critically determine the outcome of PD-1 blockade, particularly the subset expressing S100A9, which should be further explored as a possible predictive biomarker. Detailed knowledge of the biological role of S100A9+ monocytes is of high translational relevance.
Collapse
Affiliation(s)
- Soudabeh Rad Pour
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Yago Pico de Coaña
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Xavier Martinez Demorentin
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Jeroen Melief
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Manjula Thimma
- Biological and Environmental Sciences and Engineering Division (BESE), KingAbdullah University of Science and Technology KAUST, Thuwal, 23955, Saudi Arabia
| | - Maria Wolodarski
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - David Gomez-Cabrero
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Stockholm, Sweden.,Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.,Biological and Environmental Sciences and Engineering Division (BESE), KingAbdullah University of Science and Technology KAUST, Thuwal, 23955, Saudi Arabia
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Tegner
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Stockholm, Sweden .,Biological and Environmental Sciences and Engineering Division (BESE), KingAbdullah University of Science and Technology KAUST, Thuwal, 23955, Saudi Arabia.,Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), KingAbdullah University of Science and Technology KAUST, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
48
|
Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 2021; 21:298-312. [PMID: 33750922 DOI: 10.1038/s41568-021-00339-z] [Citation(s) in RCA: 783] [Impact Index Per Article: 195.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Immune checkpoint blockade, which blocks inhibitory signals of T cell activation, has shown tremendous success in treating cancer, although success still remains limited to a fraction of patients. To date, clinically effective CD8+ T cell responses appear to target predominantly antigens derived from tumour-specific mutations that accumulate in cancer, also called neoantigens. Tumour antigens are displayed on the surface of cells by class I human leukocyte antigens (HLA-I). To elicit an effective antitumour response, antigen presentation has to be successful at two distinct events: first, cancer antigens have to be taken up by dendritic cells (DCs) and cross-presented for CD8+ T cell priming. Second, the antigens have to be directly presented by the tumour for recognition by primed CD8+ T cells and killing. Tumours exploit multiple escape mechanisms to evade immune recognition at both of these steps. Here, we review the tumour-derived factors modulating DC function, and we summarize evidence of immune evasion by means of quantitative modulation or qualitative alteration of the antigen repertoire presented on tumours. These mechanisms include modulation of antigen expression, HLA-I surface levels, alterations in the antigen processing and presentation machinery in tumour cells. Lastly, as complete abrogation of antigen presentation can lead to natural killer (NK) cell-mediated tumour killing, we also discuss how tumours can harbour antigen presentation defects and still evade NK cell recognition.
Collapse
|
49
|
Kim BG, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-β pathway. J Hematol Oncol 2021; 14:55. [PMID: 33823905 PMCID: PMC8022551 DOI: 10.1186/s13045-021-01053-x] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
The TGF-β signaling pathway governs key cellular processes under physiologic conditions and is deregulated in many pathologies, including cancer. TGF-β is a multifunctional cytokine that acts in a cell- and context-dependent manner as a tumor promoter or tumor suppressor. As a tumor promoter, the TGF-β pathway enhances cell proliferation, migratory invasion, metastatic spread within the tumor microenvironment and suppresses immunosurveillance. Collectively, the pleiotropic nature of TGF-β signaling contributes to drug resistance, tumor escape and undermines clinical response to therapy. Based upon a wealth of preclinical studies, the TGF-β pathway has been pharmacologically targeted using small molecule inhibitors, TGF-β-directed chimeric monoclonal antibodies, ligand traps, antisense oligonucleotides and vaccines that have been now evaluated in clinical trials. Here, we have assessed the safety and efficacy of TGF-β pathway antagonists from multiple drug classes that have been evaluated in completed and ongoing trials. We highlight Vactosertib, a highly potent small molecule TGF-β type 1 receptor kinase inhibitor that is well-tolerated with an acceptable safety profile that has shown efficacy against multiple types of cancer. The TGF-β ligand traps Bintrafusp alfa (a bifunctional conjugate that binds TGF-β and PD-L1), AVID200 (a computationally designed trap of TGF-β receptor ectodomains fused to an Fc domain) and Luspatercept (a recombinant fusion that links the activin receptor IIb to IgG) offer new ways to fight difficult-to-treat cancers. While TGF-β pathway antagonists are rapidly emerging as highly promising, safe and effective anticancer agents, significant challenges remain. Minimizing the unintentional inhibition of tumor-suppressing activity and inflammatory effects with the desired restraint on tumor-promoting activities has impeded the clinical development of TGF-β pathway antagonists. A better understanding of the mechanistic details of the TGF-β pathway should lead to more effective TGF-β antagonists and uncover biomarkers that better stratify patient selection, improve patient responses and further the clinical development of TGF-β antagonists.
Collapse
Affiliation(s)
- Byung-Gyu Kim
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Ehsan Malek
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sung Hee Choi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - James J Ignatz-Hoover
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - James J Driscoll
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
50
|
Matute J, Finander B, Pepin D, Ai X, Smith N, Li J, Edlow A, Villani A, Lerou P, Kalish B. Single-cell immunophenotyping of the fetal immune response to maternal SARS-CoV-2 infection in late gestation. RESEARCH SQUARE 2021:rs.3.rs-311000. [PMID: 33758834 PMCID: PMC7987103 DOI: 10.21203/rs.3.rs-311000/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During the COVID-19 pandemic, thousands of pregnant women have been infected with SARS-CoV-2. The implications of maternal SARS-CoV-2 infection on fetal and childhood well-being are unknown. We aimed to characterize the fetal immune response to maternal SARS-CoV-2 infection. We performed single-cell RNA sequencing and T-cell receptor (TCR) sequencing on cord blood mononuclear cells (CBMC) from newborns of mothers infected with SARS-CoV-2 in the third-trimester (cases) or without SARS-CoV-2 infection. We identified widespread gene expression changes in CBMC from cases, including upregulation of interferon-stimulated genes and Major Histocompatibility Complex genes in CD14 + monocytes; transcriptional changes suggestive of activation of plasmacytoid dendritic cells, and activation and exhaustion of NK cells and CD8 + T-cells. Lastly, we observed fetal TCR repertoire expansion in cases. As none of the infants were infected with SARS-CoV-2, our results suggest that SARS-CoV-2 maternal infection might modulate the fetal immune system in the absence of vertical transmission.
Collapse
Affiliation(s)
- Juan Matute
- Massachusetts General Hospital and Harvard Medical School
| | | | | | - Xinbin Ai
- Massachusetts General Hospital and Harvard Medical School
| | - Neal Smith
- Massachusetts General Hospital and Harvard Medical School
| | | | - Andrea Edlow
- Massachusetts General Hospital and Harvard Medical School
| | | | - Paul Lerou
- Massachusetts General Hospital and Harvard Medical School
| | - Brian Kalish
- The Hospital for Sick Children and University of Toronto
| |
Collapse
|