1
|
Slatni T, Zorrig W, Razzegui A, Antonio Hernández J, Barba-Espín G, Ben Hamed K, Díaz-Vivancos P. Halophilic Bacillus improve barley growth on calcareous soil via enhanced photosynthetic performance and metabolomic re-programing. JOURNAL OF PLANT PHYSIOLOGY 2025; 309:154495. [PMID: 40295149 DOI: 10.1016/j.jplph.2025.154495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Plant Growth Promoting Rhizobacteria are a sustainable biological alternative to agrochemicals to improve plant growth and stress tolerance. In this work we used two Bacillus strains native to the saline rhizosphere of halophytic plants in order to improve the growth of barley on a calcareous soil (CS). This soil negatively affected plant development; however, the inoculation of barley with the halophytic Bacillus strains enhanced barley growth and photosynthesis performance. In fact, a significant increase of the maximum photochemical yield of PSII and PSI was observed following inoculation, leading to improved protection of these photosystems against photoinhibition. Moreover, a pairwise metabolomic pathway analysis in barley leaves and roots was performed. Compared to barley grown on non-calcareous soil (NCS), CS led to a downregulation of sugar-related metabolic pathways, which can be correlated with lower photosynthesis performance. Furthermore, the abundance of metabolites related to amino acids in leaves and phenylpropanoids and lipids in roots was also reduced by CS. This negative effect was reverted by the inoculation of the bacteria strains. In conclusion, halophilic Bacillus native to the saline rhizosphere of halophyte plants induced metabolic changes leading to an enhanced photosynthesis activity, and hence, alleviating the deleterious effect of CS on barley development.
Collapse
Affiliation(s)
- Tarek Slatni
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC) BP 901, 2050, Hammam-Lif, Tunisia; Faculty of Sciences of Tunis (FST), University of Tunis El Manar (UTM) 1060, Tunis, 2092, Tunisia.
| | - Walid Zorrig
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC) BP 901, 2050, Hammam-Lif, Tunisia
| | - Amal Razzegui
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC) BP 901, 2050, Hammam-Lif, Tunisia
| | - José Antonio Hernández
- Group of Fruit Trees Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Murcia, Spain
| | - Gregorio Barba-Espín
- Group of Fruit Trees Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Murcia, Spain
| | - Karim Ben Hamed
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC) BP 901, 2050, Hammam-Lif, Tunisia; Manouba School of Engineering, University of Manouba, Manouba 2010, Tunisia
| | - Pedro Díaz-Vivancos
- Group of Fruit Trees Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
2
|
Hiraoka N, Imai S, Shioyama S, Yoneyama F, Mase A, Makita Y. Unveiling the effects of metabolites on the material properties of natural rubber by the integration of metabolomics and material characteristics. Sci Rep 2025; 15:11341. [PMID: 40234483 PMCID: PMC12000568 DOI: 10.1038/s41598-025-91631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Natural rubber (NR) is an important material with excellent physical properties. Unlike synthetic rubber from petroleum, NR contains non-rubber components such as proteins, lipids, and metal ions. The non-rubber components are known to affect the properties of NR. In this study, latex samples of Hevea brasiliensis were collected for nine months and their metabolites were comprehensively analyzed by mass spectrometry. NR was made from the same latex samples used for the mass spectrometry, and their vulcanization, tensile and thermal-aging properties were assessed. By using this approach of integrating metabolite and property data, we aim to clarify the influence of metabolites on the physical properties of NR. These results suggest that the metabolite composition in the latex and the NR properties changed seasonally. Correlation analysis between the metabolites and the properties of NR indicated that different metabolites affected different properties. A regression model of NR properties using metabolites as the explanatory variables suggests that about five metabolites need to be considered when examining the relationship between properties and metabolites. This method, which combines comprehensive analysis and characterization of NR, contributes to studies aimed at elucidating how the superior properties of NR are brought about.
Collapse
Affiliation(s)
- Nobuyuki Hiraoka
- Fundamental Material Development Laboratory, Sumitomo Riko Company Ltd, Aichi, 485- 8550, Japan
- Graduate School of Engineering, Maebashi Institute of Technology, Maebashi, Gunma, 371-0816, Japan
| | - Shunsuke Imai
- Fundamental Material Development Laboratory, Sumitomo Riko Company Ltd, Aichi, 485- 8550, Japan
| | - Shintaro Shioyama
- Fundamental Material Development Laboratory, Sumitomo Riko Company Ltd, Aichi, 485- 8550, Japan
| | - Fuminori Yoneyama
- Fundamental Material Development Laboratory, Sumitomo Riko Company Ltd, Aichi, 485- 8550, Japan
| | - Akio Mase
- Fundamental Material Development Laboratory, Sumitomo Riko Company Ltd, Aichi, 485- 8550, Japan
| | - Yuko Makita
- Graduate School of Engineering, Maebashi Institute of Technology, Maebashi, Gunma, 371-0816, Japan.
| |
Collapse
|
3
|
Shoaib S, Iqbal RK, Ashraf H, Younis U, Rasool MA, Ansari MJ, Alarfaj AA, Alharbi SA. Mitigating effect of γ-aminobutyric acid and gibberellic acid on tomato plant cultivated in Pb-polluted soil. Sci Rep 2025; 15:12469. [PMID: 40216907 PMCID: PMC11992259 DOI: 10.1038/s41598-025-96450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Soil heavy metal pollution poses a significant environmental risk to human health and plant growth. Gibberellic acid (GA) and γ-aminobutyric acid (GABA) are effective methods for resolving this issue. GA regulates growth mechanisms such as seed germination, flowering, and stem elongation. Plants use GABA, a signaling molecule, to control physiological processes, growth, and responses to stress. This substance plays a crucial role in the interactions between hormones and plant defense, as evidenced by its effects on photosynthesis, food absorption, and stomatal behavior. The study aimed to determine how GABA and GA amendments affected tomato plants under no toxicity and Pb toxicity. The study included four treatments (0, GA, GABA, and GA + GABA) in four replications following a completely randomized design. Notably, the GA + GABA treatment led to considerable enhancements in fresh weight (88.98%), dry weight (68.28%), shoot length (39.98%), and root length (115.43%) compared to the control under Pb toxicity. Moreover, GA + GABA treatment significantly increased tomato chlorophyll a (161.72%), chlorophyll b (93.33%), and total chlorophyll content (112.45%) under Pb stress toxicity, confirming the effectiveness of GA + GABA treatment. In conclusion, GA + GABA is recommended as the best amendment to mitigate Pb stress in tomato plants. Our findings have broader implications for GA + GABA application, offering a potential technology to enhance sustainable crop production by improving plant growth and yield in Pb-contaminated soils. More investigations are suggested at field levels under different agroclimates on different crops for the declaration of GA + GABA as the best amendment for alleviating different heavy metal pollutions and sustainable agriculture productions.
Collapse
Affiliation(s)
- Saniha Shoaib
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | | | - Hina Ashraf
- Department of Botany, The Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| | - Uzma Younis
- Botany Department, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Rahim Yar Khan, Punjab, Pakistan.
| | - Muhammad Ayaz Rasool
- Botany Department, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Rahim Yar Khan, Punjab, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, (Guru Jambheshwar University, Moradabad), Uttar Pradesh, 244001, India
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Wang X, Li X, Sun H, Li Y, Ma L, Li Y, Wang L, Zhang L, Li X. Integrated transcriptomics and metabolomics reveal the role of soluble sugars and GABA in rice leaf response to Pb stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109595. [PMID: 39913984 DOI: 10.1016/j.plaphy.2025.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 03/11/2025]
Abstract
Heavy metals as environmental pollutants pose a major threat to agroecosystems and crop quality. Among them, Pb is one of the most common heavy metal pollutants, which not only inhibits plant growth and nutrient uptake, but also disrupts the expression of genes, affects the accumulation of metabolites, and even causes plant death. We investigated a joint transcriptomics and metabolomics analysis to study the response of rice seedlings to Pb stress. Our results showed that Pb stress inhibited the growth of rice seedlings. Meanwhile, Pb stress decreased SPAD values, chlorophyll fluorescence parameters, antioxidant enzyme activities, and GSH and TGSH contents, but increased ASC and TASC contents and reactive oxygen species levels in rice leaves. Using the MetaboAnalyst website for metabolites enrichment analysis, 7 metabolic pathways involving 36 differentially expressed metabolites (DAMs) were affected. Transcriptomics analysis revealed that 1873 differentially expressed genes (DEGs) identified were mainly involved in 16 metabolic pathways. Comprehensive enrichment analysis of DAMs and DEGs showed that alanine, aspartate and glutamate metabolism as well as starch and sucrose metabolism were the co-enriched pathways and were upregulated under Pb stress. The main metabolites involving soluble sugars (cellobiose, D-glucose, trehalose and maltose) and gamma-aminobutyric acid (GABA). These findings suggest that rice leaves enhance tolerance to Pb by upregulating the expression of genes involved in carbohydrate and amino acid metabolism, increasing accumulation of soluble sugars and GABA. The results of this study will contribute to understanding the molecular mechanisms of rice response to Pb stress and provide a basis for screening rice varieties with high resistance to heavy metals.
Collapse
Affiliation(s)
- Xinnan Wang
- College of Life Science, Shenyang Normal University, Shenyang, 110034, PR China
| | - Xin Li
- College of Life Science, Shenyang Normal University, Shenyang, 110034, PR China
| | - Hefei Sun
- College of Life Science, Shenyang Normal University, Shenyang, 110034, PR China
| | - Yanan Li
- College of Life Science, Shenyang Normal University, Shenyang, 110034, PR China
| | - Lianju Ma
- College of Life Science, Shenyang Normal University, Shenyang, 110034, PR China
| | - Yueying Li
- College of Life Science, Shenyang Normal University, Shenyang, 110034, PR China
| | - Lanlan Wang
- College of Life Science, Shenyang Normal University, Shenyang, 110034, PR China
| | - Lihong Zhang
- School of Environmental Science, Liaoning University, Shenyang, 110036, PR China.
| | - Xuemei Li
- College of Life Science, Shenyang Normal University, Shenyang, 110034, PR China.
| |
Collapse
|
5
|
Sun Z, Qu Z, He Y, Han Y, Xing Y, Liu S, Hu Y, Jiang Y, Yu Y, Liu Y, Sun W, Yang L. Extracellular vesicle GABA responds to cadmium stress, and GAD overexpression alleviates cadmium damage in duckweed. FRONTIERS IN PLANT SCIENCE 2025; 16:1536786. [PMID: 40171484 PMCID: PMC11959025 DOI: 10.3389/fpls.2025.1536786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025]
Abstract
Introduction Cadmium (Cd) pollution lead to ecological problems and cause severe damages to plants. Investigating the signal response to Cd is crucial for improving Cd resistance during phytoremediation. While γ-aminobutyric acid (GABA) is known to accumulate rapidly under environmental stress, the real-time dynamics of GABA signaling and its mechanistic link to stress adaptation remain poorly understood. Methods In this study, a sensitive GABA biosensor, iGABASnFR, was introduced into plants for the first time to monitor GABA signaling. Additionally, glutamate decarboxylase (GAD), a key enzyme catalyzing the conversion of glutamate (Glu) to GABA, was overexpressed in duckweed. The responses of GABA in extracellular vesicles (EVs) under Cd stress were analyzed using iGABASnFR transgenic duckweed. Cd accumulation, photosynthesis, and antioxidant activity were evaluated in GAD-overexpressing duckweed. Results (1) GABA in extracellular vesicles of duckweed exhibited a dynamic response to Cd stress, as visualized by iGABASnFR transgenic duckweed. GABA content in EVs was significantly enhanced under Cd treatment. (2) GAD-overexpressing duckweed demonstrated improved photosynthetic efficiency and enhanced antioxidant capacity during Cd stress. (3) Cd accumulation was significantly increased in GAD transgenic duckweed, as evidenced by Cd2+ flux measurements, total Cd content, and Cd staining in protoplasts using FlowSight imaging. Discussion This study provides novel insights into the role of GABA in extracellular vesicles during Cd stress and establishes a direct link between GABA signal and Cd stress adaptation. The findings demonstrate that GAD overexpression enhances Cd resistance and accumulation in duckweed, offering a potential strategy for improving phytoremediation efficiency. This work advances our understanding of GABA signaling dynamics and its application in Cd stress.
Collapse
Affiliation(s)
- Zhanpeng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
- Faculty of Education, Tianjin Normal University, Tianjin, China
| | - Ziyang Qu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yuman He
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yujie Han
- Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing, China
| | - Yun Xing
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Sizheng Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yi Hu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yumeng Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yiqi Yu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yuanyuan Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Weibo Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
6
|
de Oliveira HO, Siqueira JA, Medeiros DB, Fernie AR, Nunes-Nesi A, Araújo WL. Harnessing the dynamics of plant organic acids metabolism following abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109465. [PMID: 39787814 DOI: 10.1016/j.plaphy.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS). They also participate in the biosynthesis of solutes involved in stress signaling and osmoregulation, particularly during stomatal movements. This review explores how OAs regulate plant metabolism in response to specific abiotic stresses, emphasizing the increased production of malate, citrate, and succinate, which enhance resilience to water deficits, metal toxicity, and flooding. Since these mechanisms involve intricate metabolic networks, changes in OA metabolism present promising and underexplored potential for agriculture. Understanding these mechanisms could lead to innovative strategies for developing crops with greater resilience to climate change, whether through genetic manipulation or by selecting varieties with favorable metabolic responses to stress.
Collapse
Affiliation(s)
- Hellen Oliveira de Oliveira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - David B Medeiros
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil; Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
7
|
Chavan S, Phalake S, Tetali S, Barvkar VT, Patil R. Comparative gametogenesis and genomic signatures associated with pollen sterility in the seedless mutant of grapevine. BMC PLANT BIOLOGY 2025; 25:138. [PMID: 39894805 PMCID: PMC11789394 DOI: 10.1186/s12870-025-06075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Seedless grapes are in high demand for fresh and dry fruit consumption. Seedlessness in grapes (Vitis vinifera L.) is triggered by two different mechanisms: stenospermocarpy and parthenocarpy. However, the key regulators of seed development and their targets in grapes are not well characterized. The present study used the seeded grape hybrid ARI 516 and its seedless mutant to understand the molecular mechanisms controlling the seedless phenotype in grapes. RESULTS Gametogenesis studies demonstrated that the seedless mutant exhibits pollen sterility due to abnormal pollen morphology, significantly low viability, and a complete lack of germination ability. The macrogametophyte in the seedless mutant was significantly smaller than in ARI 516. Transcriptomic comparisons were performed during three developmental stages, including pre-flowering stage E-L 15, anthesis stage E-L 23, and berry formation E-L 31, to study altered developmental processes in the seedless mutant and ARI 516. Genes downregulated in the seedless mutant were enriched in the male gametophyte development-related pathways, which may cause pollen sterility. The RNAseq results were validated by qRT-PCR. Genome sequence data was also used to identify induced mutations in the seedless mutant, which revealed three homozygous and 25 heterozygous InDels in the genes related to male gametophyte development. RNAseq and genome sequencing data collectively indicate parthenocarpic seedless phenotype due to aberrant developmental and physiological processes involved in pollen formation, maturation and germination in the seedless mutant of ARI 516. CONCLUSION The study showed the downregulation of transcription factors and their target genes involved in cell division, gibberellin biosynthesis and signalling, cell wall development, organization, and pollen germination. This study represents a comprehensive attempt to identify putative candidate genes associated with parthenocarpic pollen sterility in grapes using genomic approaches.
Collapse
Affiliation(s)
- Siddhi Chavan
- Genetics and Plant Breeding Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, India
- Savitribai Phule Pune University, Ganesh Khind, Pune, 411007, India
| | - Satish Phalake
- Genetics and Plant Breeding Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, India
- Savitribai Phule Pune University, Ganesh Khind, Pune, 411007, India
| | - Sujata Tetali
- Genetics and Plant Breeding Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, India
- Savitribai Phule Pune University, Ganesh Khind, Pune, 411007, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Ganesh Khind, Pune, 411007, India
| | - Ravindra Patil
- Genetics and Plant Breeding Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411004, India.
- Savitribai Phule Pune University, Ganesh Khind, Pune, 411007, India.
| |
Collapse
|
8
|
Geng W, Zhang Y, Li C, Song G, Shi S. Effect of Exogenous γ-Aminobutyric Acid (GABA) on the Growth, Photosynthetic Pigment, Antioxidant and GABA Metabolism of Festuca arundinacea (Tall Fescues) Under Cadmium Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:383. [PMID: 39942945 PMCID: PMC11820632 DOI: 10.3390/plants14030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
γ-Aminobutyric acid (GABA), an endogenous amino acid widely found in living organisms, has important functions in plants such as regulating growth and development, maintaining carbon and nitrogen nutrient balance, and coping with adversity. In this study, we investigated the effects of exogenous 0.5 mmol/L GABA on the growth, antioxidant metabolism, and GABA shunt metabolism of tall fescue under 20 μmol/L Cd stress, using tall fescue (Festuca arundinacea) 'Ruby II' under hydroponics conditions. The results showed that (1) applying GABA for 3, 7, 11, and 15 d under Cd stress inhibited Cd transport from roots to leaves and promoted plant height, alleviating the effects of Cd stress on plant growth. (2) Exogenous 0.5 mmol/L GABA had an interesting regulatory effect on the activation of the antioxidant enzyme system induced by stress at different stages, which was accompanied by a decrease in malondialdehyde (MDA) contents and alleviated the degree of cell membrane lipid peroxidation under cadmium stress. Specifically, peroxidase (POD) enzyme activity reactions initially responded on the 3rd and 7th days of stress, and the changes in catalase (CAT) enzyme activities concentrated on the 11th and 15th days of the later stage. Ascorbate peroxidase (APX) enzyme was active throughout the whole stress period in the roots. Multiple factorial analyses further proved that the antioxidant pathway strongly influenced the survival and growth of tall fescue under stress in the presence of GABA. (3) Application of exogenous GABA activated the branching pathway for GABA synthesis from Glu decarboxylation (GABA shunt) with a higher contribution in the leaves, which induced changes in glutamate content, and plants maintained a higher endogenous GABA content and signal to regulate the plant antioxidant system and reduce cell membrane damage, thus improving the tolerance of plants to Cd stress.
Collapse
Affiliation(s)
- Wan Geng
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China;
| | - Yangyang Zhang
- Beijing Geological and Mineral Exploration and Development Group Co., Ltd., Beijing 100016, China
| | - Caihua Li
- Shijiazhuang Academy of Agriculture and Forestry Science, Shijiazhuang 050040, China
| | - Guilong Song
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China;
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
9
|
Yuan T, Ren W, Zhang J, Mahmood M, Fry EL, Meng R. Combined Transcriptomics and Metabolomics Uncover the Potential Mechanism of Plant Growth-Promoting Rhizobacteria on the Regrowth of Leymus chinensis After Mowing. Int J Mol Sci 2025; 26:565. [PMID: 39859281 PMCID: PMC11766401 DOI: 10.3390/ijms26020565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Mowing significantly influences nutrient cycling and stimulates metabolic adjustments in plants to promote regrowth. Plant growth-promoting rhizobacteria (PGPR) are crucial for enhancing plant growth, nutrient absorption, and stress resilience; however, whether inoculation with PGPR after mowing can enhance plant regrowth capacity further, as well as its specific regulatory mechanisms, remains unexplored. In this study, PGPR Pantoea eucalyptus (B13) was inoculated into mowed Leymus chinensis to evaluate its effects on phenotypic traits, root nutrient contents, and hormone levels during the regrowth process and to further explore its role in the regrowth of L. chinensis after mowing. The results showed that after mowing, root nutrient and sugar contents decreased significantly, while the signal pathways related to stress hormones were activated. This indicates that after mowing, root resources tend to sacrifice a part of growth and prioritize defense. After mowing, B13 inoculation regulated the plant's internal hormone balance by reducing the levels and signal of JA, SA, and ABA and upregulated the signal transduction of growth hormones in the root, thus optimizing growth and defense in a mowing environment. Transcriptomic and metabolomic analyses indicated that B13 promoted nutrient uptake and transport in L. chinensis root, maintained hormone homeostasis, enhanced metabolic pathways related to carbohydrates, energy, and amino acid metabolism to cope with mowing stress, and promoted root growth and regeneration of shoot. This study reveals the regenerative strategy regulated by B13 in perennial forage grasses, helping optimize resource utilization, increase yield, and enhance grassland stability and resilience.
Collapse
Affiliation(s)
- Ting Yuan
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China; (T.Y.); (J.Z.); (M.M.)
| | - Weibo Ren
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China; (T.Y.); (J.Z.); (M.M.)
| | - Jiatao Zhang
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China; (T.Y.); (J.Z.); (M.M.)
| | - Mohsin Mahmood
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China; (T.Y.); (J.Z.); (M.M.)
| | - Ellen L. Fry
- Department of Biology, Edge Hill University, Lancashire L39 4QP, UK
| | - Ru Meng
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China; (T.Y.); (J.Z.); (M.M.)
| |
Collapse
|
10
|
Zhang ZW, Dang TT, Yang XY, Xie LB, Chen YE, Yuan M, Chen GD, Zeng J, Yuan S. γ-Aminobutyric Acid Alleviates Programmed Cell Death in Two Brassica Species Under Cadmium Stress. Int J Mol Sci 2024; 26:129. [PMID: 39795987 PMCID: PMC11720724 DOI: 10.3390/ijms26010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Previous studies have demonstrated that γ-Aminobutyric acid (GABA) effectively alleviates heavy metal stresses by maintaining the redox balance and reducing the accumulation of reactive oxygen species (ROS). However, little is known about the role of GABA on programmed cell death (PCD) under Cd treatments in plants. The present study investigated the effects of GABA on Cd-induced PCD in two Brassica species, oilseed rape (Brassica napus, Bn), and black mustard (Brassica juncea, Bj). We observed that GABA significantly alleviated Cd-induced PCD by enhancing antioxidant systems, inhibiting chromatin condensation in the nucleus, and reducing DNA fragmentation under Cd stress. Moreover, GABA may not only reduce caspase-3-like activity by repressing gene expression, but also regulate transcription of PCD-related genes. Bn showed lower Cd accumulation and lower tolerance, with more pronounced PCD, compared with Bj. Our results provide new insights into the mechanism that GABA enhances Cd tolerance in plants.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Tao-Tao Dang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Lin-Bei Xie
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (T.-T.D.); (X.-Y.Y.); (L.-B.X.); (J.Z.)
| |
Collapse
|
11
|
Sun Z, Ma M, Liu H, Tao D, Salam SA, Han X, Liu Y, Yong JWH. Exogenous GABA-Ca Alleviates Growth Inhibition Induced by a Low-P Environment in Peanuts ( Arachis hypogaea). Antioxidants (Basel) 2024; 13:1414. [PMID: 39594555 PMCID: PMC11590983 DOI: 10.3390/antiox13111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Phosphorus (P) deficiency is a major global factor constraining peanut production. Exogenous γ-aminobutyric acid (GABA) and Ca2+ are essential to improve stress resilience in peanuts growing under low-P conditions. This study therefore examined the detailed physiological effects of GABA-Ca on restoring peanut growth under low-P conditions. These included the root-shoot ratio, leaf nutrients, photochemical activity, reactive oxygen species (ROS), cyclic electron flow (CEF), ATP synthase activity, and the proton gradient (∆pH), all of which were measured under low-P (LP, 0.5 mM) and optimized-P (1 mM) conditions. Specifically, supplying GABA-Ca under LP conditions regulated the ∆pH by causing adjustments in CEF and ATP synthase activities, buffering the photosystems' activities, restoring the antioxidant enzyme system, and lowering ROS production. Interestingly, exogenous GABA-Ca restored peanut growth under low-P conditions, possibly by the putative signaling crosstalk between GABA and Ca2+. The plausible signal amplification between GABA and Ca2+ suggested that the combination of GABA and Ca, may offer an effective strategy for enhancing peanut adaptation to low-P conditions. Moving forward, the strategic supplementation of GABA-Ca, either during cultivation or through the formulation of novel fertilizers, opens up many possibilities for better and more resilient plant production in soils with low P.
Collapse
Affiliation(s)
- Zhiyu Sun
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingzhu Ma
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Huan Liu
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongbing Tao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Shaikh Amjad Salam
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaori Han
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Yifei Liu
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
- Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456 Alnarp, Sweden
| |
Collapse
|
12
|
Dehghanian Z, Ahmadabadi M, Asgari Lajayer B, Bagheri N, Chamani M, Gougerdchi V, Hamedpour-Darabi M, Shu W, Price GW, Dell B. Role of Neurotransmitters (Biomediators) in Plant Responses to Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3134. [PMID: 39599343 PMCID: PMC11597453 DOI: 10.3390/plants13223134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Plants possess a complex signaling system that enables them to sense and adapt to various environmental stressors, including abiotic factors like extreme temperatures, drought, salinity, and toxic heavy metals. While the roles of hormones and signaling molecules in plant stress responses are well established, the involvement of neurotransmitters-traditionally linked to animal nervous systems-in plant stress physiology is a relatively underexplored area. Recent findings indicate that neurotransmitters such as gamma-aminobutyric acid, glutamate, serotonin, and dopamine play crucial roles in several physiological processes within plants. They regulate ion channels, adjust stomatal movements, modulate the production of reactive oxygen species, and influence gene expression. Evidence suggests that these neurotransmitters enhance antioxidant defense mechanisms and regulate stress-responsive pathways vital for plant stress tolerance. Additionally, under stressful conditions, neurotransmitters have been shown to impact plant growth, development, and reproductive activities. This review aims to illuminate the emerging understanding of neurotransmitters as key biomediators in plant responses to abiotic stress.
Collapse
Affiliation(s)
- Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | | | - Nazila Bagheri
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | - Masoud Chamani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Vahideh Gougerdchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Mohsen Hamedpour-Darabi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz 71946-84471, Iran
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - G. W. Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Bernard Dell
- Centre for Crop and Food Innovation, Murdoch University, Murdoch 6150, Australia
| |
Collapse
|
13
|
Liu W, Wang Y, Ji T, Wang C, Shi Q, Li C, Wei JW, Gong B. High-nitrogen-induced γ-aminobutyric acid triggers host immunity and pathogen oxidative stress tolerance in tomato and Ralstonia solanacearum interaction. THE NEW PHYTOLOGIST 2024; 244:1537-1551. [PMID: 39253785 DOI: 10.1111/nph.20102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Soil nitrogen (N) significantly influences the interaction between plants and pathogens, yet its impact on host defenses and pathogen strategies via alterations in plant metabolism remains unclear. Through metabolic and genetic studies, this research demonstrates that high-N-input exacerbates tomato bacterial wilt by altering γ-aminobutyric acid (GABA) metabolism of host plants. Under high-N conditions, the nitrate sensor NIN-like protein 7 (SlNLP7) promotes the glutamate decarboxylase 2/4 (SlGAD2/4) transcription and GABA synthesis by directly binding to the promoters of SlGAD2/4. The tomato plants with enhanced GABA levels showed stronger immune responses but remained susceptible to Ralstonia solanacearum. This led to the discovery that GABA produced by the host actually heightens the pathogen's virulence. We identified the R. solanacearum LysR-type transcriptional regulator OxyR protein, which senses host-derived GABA and, upon interaction, triggers a response involving protein dimerization that enhances the pathogen's oxidative stress tolerance by activating the expression of catalase (katE/katGa). These findings reveal GABA's dual role in activating host immunity and enhancing pathogen tolerance to oxidative stress, highlighting the complex relationship between tomato plants and R. solanacearum, influenced by soil N status.
Collapse
Affiliation(s)
- Wei Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Yushu Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Tuo Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jin-Wei Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
14
|
Tayengwa R. GABA transport: beyond stress? A closer look at AtGAT2. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6195-6198. [PMID: 39475115 PMCID: PMC11523035 DOI: 10.1093/jxb/erae390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/02/2024]
Abstract
This article comments on:
Meier S, Bautzmann R, Komarova NY, Ernst V, Suter Grotemeyer M, Schröder K, Haindrich AC, Vega Fernández A, Robert CAM, Ward JM, Rentsch D. 2024. Stress-regulated Arabidopsis GAT2 is a low affinity γ-aminobutyric acid transporter. Journal of Experimental Botany 75, 6295–6311 https://doi.org/10.1093/jxb/erae321
The amino acid gamma-aminobutyric acid (GABA) is a non-proteinogenic metabolite, distinguishable from the amino acids used for protein synthesis. Many living organisms contain GABA, including vertebrate animals, plants, bacteria, and insects. GABA was first discovered in potato tubers in 1949 ( Steward et al., 1949 ) and its role as a plant metabolite has been investigated ever since. A new study by Meier et al. (2024) sheds light on the function of the GABA transporter AtGAT2 in Arabidopsis.
Collapse
Affiliation(s)
- Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
15
|
Abdelsattar M, Soliman MS, Mohamed RA, Radwan KH, El-Mahdy MM, Mousa KH, Khalil SRM, Osman E, Alameldin HF, Hussein A, Hassanein SE, Abdallah NA, Alsamman AM, Osama O. Transcriptomic insights into mycorrhizal interactions with tomato root: a comparative study of short- and long-term post-inoculation responses. Front Genet 2024; 15:1434761. [PMID: 39440244 PMCID: PMC11493745 DOI: 10.3389/fgene.2024.1434761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/29/2024] [Indexed: 10/25/2024] Open
Abstract
Background Arbuscular mycorrhiza (AM) refers to a symbiotic association between plant roots and fungi that enhances the uptake of mineral nutrients from the soil and enables the plant to tolerate abiotic and biotic stresses. Although previously reported RNA-seq analyses have identified large numbers of AM-responsive genes in model plants, such as Solanum lycopersicum L., further studies are underway to comprehensively understand the complex interactions between plant roots and AM, especially in terms of the short- and long-term responses after inoculation. Results Herein, we used RNA-seq technology to obtain the transcriptomes of tomato roots inoculated with the fungus Rhizophagus irregularis at 7 and 30 days post inoculation (dpi). Of the 1,019 differentially expressed genes (DEGs) in tomato roots, 635 genes showed differential expressions between mycorrhizal and non-mycorrhizal associations at the two time points. The number of upregulated DEGs far exceeded the number of downregulated ones at 7 dpi, and this difference decreased at 30 dpi. Several notable genes were particularly involved in the plant defense, plant growth and development, ion transport, and biological processes, namely, GABAT, AGP, POD, NQO1, MT4, MTA, and AROGP3. In addition, the Kyoto encyclopedia of genes and genomes pathway enrichment analysis revealed that some of the genes were involved in different pathways, including those of ascorbic acid (AFRR, GME1, and APX), metabolism (CYP, GAPC2, and CAM2), and sterols (CYC1 and HMGR), as well as genes related to cell division and cell cycle (CDKB2 and PCNA). Conclusion These findings provide valuable new data on AM-responsive genes in tomato roots at both short- and long-term postinoculation stages, enabling the deciphering of biological interactions between tomato roots and symbiotic fungi.
Collapse
Affiliation(s)
- Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Maali S. Soliman
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
- The Central Laboratory for Phytosanitary and Food Safety, United Integrated Laboratories, Barka, Oman
| | - Rasha A. Mohamed
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- National Biotechnology Network of Expertise, ASRT, Cairo, Egypt
| | - Mohamed M. El-Mahdy
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Khaled H. Mousa
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Shaimaa R. M. Khalil
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Engy Osman
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hussien F. Alameldin
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- Sugarbeet and Bean Research Unit, U.S. Department of Agriculture - Agriculture Research Service (USDA-ARS), East Lansing, MI, United States
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Sameh E. Hassanein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Naglaa A. Abdallah
- National Biotechnology Network of Expertise, ASRT, Cairo, Egypt
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agriculture Research in the Dry Areas (ICARD), Giza, Egypt
| | - Omnia Osama
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
16
|
Qian D, Chai Y, Li W, Cui B, Lin S, Wang Z, Wang C, Qu LQ, Gong D. Structural insight into the Arabidopsis vacuolar anion channel ALMT9 shows clade specificity. Cell Rep 2024; 43:114731. [PMID: 39269901 DOI: 10.1016/j.celrep.2024.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/26/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The Arabidopsis thaliana aluminum-activated malate transporter 9 (AtALMT9) functions as a vacuolar chloride channel that regulates the stomatal aperture. Here, we present the cryoelectron microscopy (cryo-EM) structures of AtALMT9 in three distinct states. AtALMT9 forms a dimer, and the pore is lined with four positively charged rings. The apo-AtALMT9 state shows a putative endogenous citrate obstructing the pore, where two W120 constriction residues enclose a gate with a pore radius of approximately 1.8 Å, representing an open state. Interestingly, channel closure is solely controlled by W120. Compared to wild-type plants, the W120A mutant exhibits more sensitivity to drought stress and is unable to restore the visual phenotype on leaves upon water recovery, reflecting persistent stomatal opening. Furthermore, notable variations are noted in channel gating and substrate recognition of Glycine max ALMT12, AtALMT9, and AtALMT1. In summary, our investigation enhances comprehension of the interplay between structure and function within the ALMT family.
Collapse
Affiliation(s)
- Dandan Qian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
| | - Yaru Chai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiping Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Bin Cui
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shaoquan Lin
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 581055, China
| | - Zhibin Wang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 581055, China
| | - Chongyuan Wang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 581055, China.
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Deshun Gong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Seregin IV, Kozhevnikova AD. The Role of Low-Molecular-Weight Organic Acids in Metal Homeostasis in Plants. Int J Mol Sci 2024; 25:9542. [PMID: 39273488 PMCID: PMC11394999 DOI: 10.3390/ijms25179542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Low-molecular-weight organic acids (LMWOAs) are essential O-containing metal-binding ligands involved in maintaining metal homeostasis, various metabolic processes, and plant responses to biotic and abiotic stress. Malate, citrate, and oxalate play a crucial role in metal detoxification and transport throughout the plant. This review provides a comparative analysis of the accumulation of LMWOAs in excluders, which store metals mainly in roots, and hyperaccumulators, which accumulate metals mainly in shoots. Modern concepts of the mechanisms of LMWOA secretion by the roots of excluders and hyperaccumulators are summarized, and the formation of various metal complexes with LMWOAs in the vacuole and conducting tissues, playing an important role in the mechanisms of metal detoxification and transport, is discussed. Molecular mechanisms of transport of LMWOAs and their complexes with metals across cell membranes are reviewed. It is discussed whether different endogenous levels of LMWOAs in plants determine their metal tolerance. While playing an important role in maintaining metal homeostasis, LMWOAs apparently make a minor contribution to the mechanisms of metal hyperaccumulation, which is associated mainly with root exudates increasing metal bioavailability and enhanced xylem loading of LMWOAs. The studies of metal-binding compounds may also contribute to the development of approaches used in biofortification, phytoremediation, and phytomining.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st., 35, Moscow 127276, Russia
| |
Collapse
|
18
|
Ji LJ, Yang TY, Feng GQ, Li S, Li W, Bu XH. Liquid-Phase Exfoliation of 3D Metal-Organic Frameworks into Nanosheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404756. [PMID: 39119851 DOI: 10.1002/adma.202404756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Traditionally, the acquisition of 2D materials involved the exfoliation of layered crystals. However, the anisotropic bonding arrangements within 3D crystals indicate they are mechanically reminiscent of 2D counterparts and could also be exfoliated into nanosheets. This report delineates the preparation of 2D nanosheets from six representative 3D metal-organic frameworks (MOFs) through liquid-phase exfoliation. Notably, the cleavage planes of exfoliated nanosheets align perpendicular to the direction of the minimum elastic modulus (Emin) within the pristine 3D frameworks. The findings suggest that the in-plane and out-of-plane bonding forces of the exfoliated nanosheets can be correlated with the maximum elastic modulus (Emax) and Emin of the 3D frameworks, respectively. Emax influences the ease of cleaving adjacent layers, while Emin governs the ability to resist cracking of layers. Hence, a combination of large Emax and small Emin indicates an efficient exfoliation process, and vice versa. The ratio of Emax/Emin, denoted as Amax/min, is adopted as a universal index to quantify the ease of mechanical exfoliation for 3D MOFs. This ratio, readily accessible through mechanical experiments and computation, serves as a valuable metric for selecting appropriate exfoliation methods to produce surfactant-free 2D nanosheets from various 3D materials.
Collapse
Affiliation(s)
- Li-Jun Ji
- Department of Physics and Mechanical and Electrical Engineering & Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education, Wuhan, 430074, China
| | - Tian-Yi Yang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin, 300350, China
| | - Guo-Qiang Feng
- Department of Physics and Mechanical and Electrical Engineering & Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education, Wuhan, 430074, China
| | - Sha Li
- Department of Physics and Mechanical and Electrical Engineering & Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, Hubei University of Education, Wuhan, 430074, China
| | - Wei Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin, 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin, 300350, China
| |
Collapse
|
19
|
Islam SNU, Kouser S, Hassan P, Asgher M, Shah AA, Khan NA. Gamma-aminobutyric acid interactions with phytohormones and its role in modulating abiotic and biotic stress in plants. STRESS BIOLOGY 2024; 4:36. [PMID: 39158750 PMCID: PMC11333426 DOI: 10.1007/s44154-024-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024]
Abstract
Gamma-aminobutyric acid (GABA), a ubiquitous non-protein 4-carbon amino acid present in both prokaryotic and eukaryotic organisms. It is conventionally recognized as a neurotransmitter in mammals and plays a crucial role in plants. The context of this review centers on the impact of GABA in mitigating abiotic stresses induced by climate change, such as drought, salinity, heat, and heavy metal exposure. Beyond its neurotransmitter role, GABA emerges as a key player in diverse metabolic processes, safeguarding plants against multifaceted abiotic as well as biotic challenges. This comprehensive exploration delves into the GABA biosynthetic pathway, its transport mechanisms, and its intricate interplay with various abiotic stresses. The discussion extends to the nuanced relationship between GABA and phytohormones during abiotic stress acclimation, offering insights into the strategic development of mitigation strategies against these stresses. The delineation of GABA's crosstalk with phytohormones underscores its pivotal role in formulating crucial strategies for abiotic stress alleviation in plants.
Collapse
Affiliation(s)
- Syed Nazar Ul Islam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Shaista Kouser
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Parveena Hassan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India.
| | - Ali Asghar Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
20
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
21
|
Zhou M, Huang C, Lin J, Yuan Y, Lin L, Zhou J, Li Z. γ-Aminobutyric acid (GABA) priming alleviates acid-aluminum toxicity to roots of creeping bentgrass via enhancements in antioxidant defense and organic metabolites remodeling. PLANTA 2024; 260:33. [PMID: 38896325 DOI: 10.1007/s00425-024-04461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
MAIN CONCLUSION γ-Aminobutyric acid alleviates acid-aluminum toxicity to roots associated with enhanced antioxidant metabolism as well as accumulation and transportation of citric and malic acids. Aluminum (Al) toxicity has become the main limiting factor for crop growth and development in acidic soils and is further being aggravated worldwide due to continuous industrial pollution. The current study was designed to examine effects of GABA priming on alleviating acid-Al toxicity in terms of root growth, antioxidant defense, citrate and malate metabolisms, and extensive metabolites remodeling in roots under acidic conditions. Thirty-seven-day-old creeping bentgrass (Agrostis stolonifera) plants were used as test materials. Roots priming with or without 0.5 mM GABA for 3 days were cultivated in standard nutrient solution for 15 days as control or subjected to nutrient solution containing 5 mM AlCl3·6H2O for 15 days as acid-Al stress treatment. Roots were sampled for determinations of root characteristics, physiological and biochemical parameters, and metabolomics. GABA priming significantly alleviated acid-Al-induced root growth inhibition and oxidative damage, despite it promoted the accumulation of Al in roots. Analysis of metabolomics showed that GABA priming significantly increased accumulations of organic acids, amino acids, carbohydrates, and other metabolites in roots under acid-Al stress. In addition, GABA priming also significantly up-regulated key genes related to accumulation and transportation of malic and citric acids in roots under acid-Al stress. GABA-regulated metabolites participated in tricarboxylic acid cycle, GABA shunt, antioxidant defense system, and lipid metabolism, which played positive roles in reactive oxygen species scavenging, energy conversion, osmotic adjustment, and Al ion chelation in roots.
Collapse
Affiliation(s)
- Min Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Cheng Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Junnan Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Yan Yuan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Long Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Jianzhen Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China.
| |
Collapse
|
22
|
Khan Z, Jan R, Asif S, Farooq M, Kim KM. Exogenous GABA Enhances Copper Stress Resilience in Rice Plants via Antioxidant Defense Mechanisms, Gene Regulation, Mineral Uptake, and Copper Homeostasis. Antioxidants (Basel) 2024; 13:700. [PMID: 38929139 PMCID: PMC11200589 DOI: 10.3390/antiox13060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of gamma-aminobutyric acid (GABA) in plants has been highlighted due to its critical role in mitigating metal toxicity, specifically countering the inhibitory effects of copper stress on rice plants. This study involved pre-treating rice plants with 1 mM GABA for one week, followed by exposure to varying concentrations of copper at 50 μM, 100 μM, and 200 μM. Under copper stress, particularly at 100 μM and 200 μM, plant height, biomass, chlorophyll content, relative water content, mineral content, and antioxidant activity decreased significantly compared to control conditions. However, GABA treatment significantly alleviated the adverse effects of copper stress. It increased plant height by 13%, 18%, and 32%; plant biomass by 28%, 52%, and 60%; chlorophyll content by 12%, 30%, and 24%; and relative water content by 10%, 24%, and 26% in comparison to the C50, C100, and C200 treatments. Furthermore, GABA treatment effectively reduced electrolyte leakage by 11%, 34%, and 39%, and the concentration of reactive oxygen species, such as malondialdehyde (MDA), by 9%, 22%, and 27%, hydrogen peroxide (H2O2) by 12%, 38%, and 30%, and superoxide anion content by 8%, 33, and 39% in comparison to C50, C100, and C200 treatments. Additionally, GABA supplementation led to elevated levels of glutathione by 69% and 80%, superoxide dismutase by 22% and 125%, ascorbate peroxidase by 12% and 125%, and catalase by 75% and 100% in the C100+G and C200+G groups as compared to the C100 and C200 treatments. Similarly, GABA application upregulated the expression of GABA shunt pathway-related genes, including gamma-aminobutyric transaminase (OsGABA-T) by 38% and 80% and succinic semialdehyde dehydrogenase (OsSSADH) by 60% and 94% in the C100+G and C200+G groups, respectively, as compared to the C100 and C200 treatments. Conversely, the expression of gamma-aminobutyric acid dehydrogenase (OsGAD) was downregulated. GABA application reduced the absorption of Cu2+ by 54% and 47% in C100+G and C200+G groups as compared to C100, and C200 treatments. Moreover, GABA treatment enhanced the uptake of Ca2+ by 26% and 82%, Mg2+ by 12% and 67%, and K+ by 28% and 128% in the C100+G and C200+G groups as compared to C100, and C200 treatments. These findings underscore the pivotal role of GABA-induced enhancements in various physiological and molecular processes, such as plant growth, chlorophyll content, water content, antioxidant capacity, gene regulation, mineral uptake, and copper sequestration, in enhancing plant tolerance to copper stress. Such mechanistic insights offer promising implications for the advancement of safe and sustainable food production practices.
Collapse
Affiliation(s)
- Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Muhammad Farooq
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
23
|
Liu M, Cao B, Wei JW, Gong B. Redesigning a S-nitrosylated pyruvate-dependent GABA transaminase 1 to generate high-malate and saline-alkali-tolerant tomato. THE NEW PHYTOLOGIST 2024; 242:2148-2162. [PMID: 38501546 DOI: 10.1111/nph.19693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Although saline-alkali stress can improve tomato quality, the detailed molecular processes that balance stress tolerance and quality are not well-understood. Our research links nitric oxide (NO) and γ-aminobutyric acid (GABA) with the control of root malate exudation and fruit malate storage, mediated by aluminium-activated malate transporter 9/14 (SlALMT9/14). By modifying a specific S-nitrosylated site on pyruvate-dependent GABA transaminase 1 (SlGABA-TP1), we have found a way to enhance both plant's saline-alkali tolerance and fruit quality. Under saline-alkali stress, NO levels vary in tomato roots and fruits. High NO in roots leads to S-nitrosylation of SlGABA-TP1/2/3 at Cys316/258/316, reducing their activity and increasing GABA. This GABA then reduces malate exudation from roots and affects saline-alkali tolerance by interacting with SlALMT14. In fruits, a moderate NO level boosts SlGABA-TP1 expression and GABA breakdown, easing GABA's block on SlALMT9 and increasing malate storage. Mutants of SlGABA-TP1C316S that do not undergo S-nitrosylation maintain high activity, supporting malate movement in both roots and fruits under stress. This study suggests targeting SlGABA-TP1Cys316 in tomato breeding could significantly improve plant's saline-alkali tolerance and fruit quality, offering a promising strategy for agricultural development.
Collapse
Affiliation(s)
- Minghui Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jin-Wei Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
24
|
Wang J, Zhang Y, Wang J, Khan A, Kang Z, Ma Y, Zhang J, Dang H, Li T, Hu X. SlGAD2 is the target of SlTHM27, positively regulates cold tolerance by mediating anthocyanin biosynthesis in tomato. HORTICULTURE RESEARCH 2024; 11:uhae096. [PMID: 38855415 PMCID: PMC11161262 DOI: 10.1093/hr/uhae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/25/2024] [Indexed: 06/11/2024]
Abstract
Cold stress significantly limits the yield and quality of tomato. Deciphering the key genes related to cold tolerance is important for selecting and breeding superior cold-tolerant varieties. γ-aminobutyric acid (GABA) responds to various types of stress by rapidly accumulating in plant. In this study, glutamic acid decarboxylase (GAD2) was a positive regulator to enhance cold stress tolerance of tomato. Overexpression of SlGAD2 decreased the extent of cytoplasmic membrane damage and increased the endogenous GABA content, antioxidant enzyme activities, and reactive oxygen species (ROS) scavenging capacity in response to cold stress, whereas Slgad2 mutant plants showed the opposite trend. In addition, SlGAD2 induced anthocyanin biosynthesis in response to cold stress by increasing the content of endogenous GABA. Further study revealed that SlGAD2 expression was negatively regulated by the transcription factor SlTHM27. However, the transcript levels of SlTHM27 were repressed under cold stress. Antioxidant enzyme activities, SlGAD2 transcript levels, GABA and anthocyanin contents were significantly increased in Slthm27 mutant plants. Further, our study demonstrated that SlTHM27 decreases SlGAD2-promoted cold resistance in tomato by repressing SlGAD2 transcription. Overall, our results showed that the SlTHM27-SlGAD2 model regulates the cold tolerance in tomato by regulating GABA and anthocyanin.
Collapse
Affiliation(s)
- Jingrong Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Junzheng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Zheng Kang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Yongbo Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Jiarui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Haoran Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| |
Collapse
|
25
|
Li J, Liu X, Chang S, Chu W, Lin J, Zhou H, Hu Z, Zhang M, Xin M, Yao Y, Guo W, Xie X, Peng H, Ni Z, Sun Q, Long Y, Hu Z. The potassium transporter TaNHX2 interacts with TaGAD1 to promote drought tolerance via modulating stomatal aperture in wheat. SCIENCE ADVANCES 2024; 10:eadk4027. [PMID: 38608020 PMCID: PMC11014451 DOI: 10.1126/sciadv.adk4027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Drought is a major global challenge in agriculture that decreases crop production. γ-Aminobutyric acid (GABA) interfaces with drought stress in plants; however, a mechanistic understanding of the interaction between GABA accumulation and drought response remains to be established. Here we showed the potassium/proton exchanger TaNHX2 functions as a positive regulator in drought resistance in wheat by mediating cross-talk between the stomatal aperture and GABA accumulation. TaNHX2 interacted with glutamate decarboxylase TaGAD1, a key enzyme that synthesizes GABA from glutamate. Furthermore, TaNHX2 targeted the C-terminal auto-inhibitory domain of TaGAD1, enhanced its activity, and promoted GABA accumulation under drought stress. Consistent with this, the tanhx2 and tagad1 mutants showed reduced drought tolerance, and transgenic wheat with enhanced TaNHX2 expression had a yield advantage under water deficit without growth penalty. These results shed light on the plant stomatal movement mechanism under drought stress and the TaNHX2-TaGAD1 module may be harnessed for amelioration of negative environmental effects in wheat as well as other crops.
Collapse
Affiliation(s)
- Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Shumin Chang
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Wei Chu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Hui Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhuoran Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Mancang Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Xiaodong Xie
- International Joint Center for the Mechanismic Dissection and Genetic Improvement of Crop Stress Tolerance, College of Agriculture & Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin 300392, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Yu Long
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (MOE)/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
26
|
Ahmad S, Fariduddin Q. "Deciphering the enigmatic role of gamma-aminobutyric acid (GABA) in plants: Synthesis, transport, regulation, signaling, and biological roles in interaction with growth regulators and abiotic stresses.". PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108502. [PMID: 38492486 DOI: 10.1016/j.plaphy.2024.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
Gamma-aminobutyric acid (GABA) is an amino acid with a four-carbon structure, widely distributed in various organisms. It exists as a zwitterion, possessing both positive and negative charges, enabling it to interact with other molecules and participate in numerous physiological processes. GABA is widely distributed in various plant cell compartments such as cytoplasm mitochondria, vacuoles, peroxisomes, and plastids. GABA is primarily synthesized from glutamate using glutamate decarboxylase and participates in the GABA shunt within mitochondria, regulating carbon and nitrogen metabolism in plants The transport of GABA is regulated by several intracellular and intercellular transporters such as aluminium-activated malate transporters (ALMTs), GABA transporters (GATs), bidirectional amino acid transporters (BATs), and cationic amino acid transporters (CATs). GABA plays a vital role in cellular transformations, gene expression, cell wall modifications, and signal transduction in plants. Recent research has unveiled the role of GABA as a signaling molecule in plants, regulating stomatal movement and pollen tube growth. This review provides insights into multifaceted impact of GABA on physiological and biochemical traits in plants, including cellular communication, pH regulation, Krebs cycle circumvention, and carbon and nitrogen equilibrium. The review highlights involvement of GABA in improving the antioxidant defense system of plants, mitigating levels of reactive oxygen species under normal and stressed conditions. Moreover, the interplay of GABA with other plant growth regulators (PGRs) have also been explored.
Collapse
Affiliation(s)
- Saif Ahmad
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
27
|
Chakravorty M, Jaiswal KK, Bhatnagar P, Parveen A, Upadhyay S, Vlaskin MS, Alajmi MF, Chauhan PK, Nanda M, Kumar V. Exogenous GABA supplementation to facilitate Cr (III) tolerance and lipid biosynthesis in Chlorella sorokiniana. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120441. [PMID: 38430879 DOI: 10.1016/j.jenvman.2024.120441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Microalgae possess the prospective to be efficiently involved in bioremediation and biodiesel generation. However, conditions of stress often restrict their growth and diminish different metabolic processes. The current study evaluates the potential of GABA to improve the growth of the microalga Chlorella sorokiniana under Cr (III) stress through the exogenous administration of GABA. The research also investigates the concurrent impact of GABA and Cr (III) stress on various metabolic and biochemical pathways of the microalgae. In addition to the control, cultures treated with Cr (III), GABA, and both Cr (III) and GABA treated were assessed for accurately analysing the influence of GABA. The outcomes illustrated that GABA significantly promoted growth of the microalgae, resulting in higher biomass productivity (19.14 mg/L/day), lipid productivity (3.445 mg/L/day) and lipid content (18%) when compared with the cultures under Cr (III) treatment only. GABA also enhanced Chl a content (5.992 μg/ml) and percentage of protein (23.75%). FAMEs analysis by GC-MS and total lipid profile revealed that GABA treatment can boost the production of SFA and lower the level of PUFA, a distribution ideal for improving biodiesel quality. ICP-MS analysis revealed that GABA supplementation could extend Cr (III) mitigation level up to 97.7%, suggesting a potential strategy for bioremediation. This novel study demonstrates the merits of incorporating GABA in C. sorokiniana cultures under Cr (III) stress, in terms of its potential in bioremediation and biodiesel production without disrupting the pathways of photosynthesis and protein production.
Collapse
Affiliation(s)
- Manami Chakravorty
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, United Kingdom
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Pooja Bhatnagar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Afreen Parveen
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India
| | - Shuchi Upadhyay
- Department of Allied Health Sciences, School of Health Sciences and Technology SoHST, University of Petroleum and Energy Studies UPES, Bidholi, Dehradun, 248007, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Mohamed Fahad Alajmi
- Department of Pharmacognosy College of Pharmacy King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, HP, India
| | - Manisha Nanda
- Department of Microbiology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship, University of Russia (RUDN University), Moscow, 117198, Russian Federation; Graphic Era Hill University, Dehradun, Uttarakhand 248002, India.
| |
Collapse
|
28
|
Dolphen R, Thiravetyan P. Exogenous γ-aminobutyric acid and Bacillus pumilus reduce arsenic uptake and toxicity in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10609-10620. [PMID: 38198091 DOI: 10.1007/s11356-024-31893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
In this study, the addition of γ-aminobutyric acid (GABA), Bacillus pumilus, or both, was found to enhance rice growth and yield while significantly decreasing arsenic (As) accumulation in Oryza sativa rice tissues. GABA emerged as a regulator of iron (Fe) homeostasis, acting as a signaling modulator that influenced phytosiderophore secretions in the plant. Meanwhile, B. pumilus directly increased Fe levels through siderophore production, promoting the development of Fe-rich rice plants. Subsequently, Fe competed with As uptake at the root surface, leading to decreased As levels and translocation to the grains. Furthermore, the addition of GABA and B. pumilus optimized rice indole-3 acetic acid (IAA) contents, thereby adjusting cell metabolite balance under As stress. This adjustment results in low malondialdehyde (MDA) contents in the leaves and roots during the early and late vegetative phases, effectively reducing oxidative stress. When added to As-contaminated soil, GABA and B. pumilus effectively maintained endogenous GABA levels and exhibited low ROS generation, similar to normal soil. Concurrently, GABA and B. pumilus significantly downregulated the activity of OsLsi1, OsLsi2, and OsABCC1 in roots, reducing As uptake through roots, shoots, and grains, respectively. These findings suggest that GABA and B. pumilus additions impede As translocation through grains, ultimately enhancing rice productivity under As stress.
Collapse
Affiliation(s)
- Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| |
Collapse
|
29
|
Cao Y, Chen Y, Cheng N, Zhang K, Duan Y, Fang S, Shen Q, Yang X, Fang W, Zhu X. CsCuAO1 Associated with CsAMADH1 Confers Drought Tolerance by Modulating GABA Levels in Tea Plants. Int J Mol Sci 2024; 25:992. [PMID: 38256065 PMCID: PMC10815580 DOI: 10.3390/ijms25020992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Our previous study showed that COPPER-CONTAINING AMINE OXIDASE (CuAO) and AMINOALDEHYDE DEHYDROGENASE (AMADH) could regulate the accumulation of γ-aminobutyric acid (GABA) in tea through the polyamine degradation pathway. However, their biological function in drought tolerance has not been determined. In this study, Camellia sinensis (Cs) CsCuAO1 associated with CsAMADH1 conferred drought tolerance, which modulated GABA levels in tea plants. The results showed that exogenous GABA spraying effectively alleviated the drought-induced physical damage. Arabidopsis lines overexpressing CsCuAO1 and CsAMADH1 exhibited enhanced resistance to drought, which promoted the synthesis of GABA and putrescine by stimulating reactive oxygen species' scavenging capacity and stomatal movement. However, the suppression of CsCuAO1 or CsAMADH1 in tea plants resulted in increased sensitivity to drought treatment. Moreover, co-overexpressing plants increased GABA accumulation both in an Agrobacterium-mediated Nicotiana benthamiana transient assay and transgenic Arabidopsis plants. In addition, a GABA transporter gene, CsGAT1, was identified, whose expression was strongly correlated with GABA accumulation levels in different tissues under drought stress. Taken together, CsCuAO1 and CsAMADH1 were involved in the response to drought stress through a dynamic GABA-putrescine balance. Our data will contribute to the characterization of GABA's biological functions in response to environmental stresses in plants.
Collapse
Affiliation(s)
- Yu Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Yiwen Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Nuo Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Kexin Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Shimao Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Qiang Shen
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Xiaowei Yang
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| |
Collapse
|
30
|
Gutiérrez-Mireles ER, Páez-Franco JC, Rodríguez-Ruíz R, Germán-Acacio JM, López-Aquino MC, Gutiérrez-Aguilar M. An Arabidopsis mutant line lacking the mitochondrial calcium transport regulator MICU shows an altered metabolite profile. PLANT SIGNALING & BEHAVIOR 2023; 18:2271799. [PMID: 37879964 PMCID: PMC10601504 DOI: 10.1080/15592324.2023.2271799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Plant metabolism is constantly changing and requires input signals for efficient regulation. The mitochondrial calcium uniporter (MCU) couples organellar and cytoplasmic calcium oscillations leading to oxidative metabolism regulation in a vast array of species. In Arabidopsis thaliana, genetic deletion of AtMICU leads to altered mitochondrial calcium handling and ultrastructure. Here we aimed to further assess the consequences upon genetic deletion of AtMICU. Our results confirm that AtMICU safeguards intracellular calcium transport associated with carbohydrate, amino acid, and phytol metabolism modifications. The implications of such alterations are discussed.
Collapse
Affiliation(s)
- Emilia R. Gutiérrez-Mireles
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Carlos Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Raúl Rodríguez-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Juan Manuel Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - M. Casandra López-Aquino
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Manuel Gutiérrez-Aguilar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
31
|
Dawood MFA, Tahjib-Ul-Arif M, Sohag AAM, Abdel Latef AAH. Role of Acetic Acid and Nitric Oxide against Salinity and Lithium Stress in Canola ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2023; 13:51. [PMID: 38202358 PMCID: PMC10781170 DOI: 10.3390/plants13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
In this study, canola (Brassica napus L.) seedlings were treated with individual and combined salinity and lithium (Li) stress, with and without acetic acid (AA) or nitric acid (NO), to investigate their possible roles against these stresses. Salinity intensified Li-induced damage, and the principal component analysis revealed that this was primarily driven by increased oxidative stress, deregulation of sodium and potassium accumulation, and an imbalance in tissue water content. However, pretreatment with AA and NO prompted growth, re-established sodium and potassium homeostasis, and enhanced the defense system against oxidative and nitrosative damage by triggering the antioxidant capacity. Combined stress negatively impacted phenylalanine ammonia lyase activity, affecting flavonoids, carotenoids, and anthocyanin levels, which were then restored in canola plants primed with AA and NO. Additionally, AA and NO helped to maintain osmotic balance by increasing trehalose and proline levels and upregulating signaling molecules such as hydrogen sulfide, γ-aminobutyric acid, and salicylic acid. Both AA and NO improved Li detoxification by increasing phytochelatins and metallothioneins, and reducing glutathione contents. Comparatively, AA exerted more effective protection against the detrimental effects of combined stress than NO. Our findings offer novel perspectives on the impacts of combining salt and Li stress.
Collapse
Affiliation(s)
- Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | | |
Collapse
|
32
|
Liu M, Bai M, Yue J, Fei X, Xia X. Integrating transcriptome and metabolome to explore the growth-promoting mechanisms of GABA in blueberry plantlets. FRONTIERS IN PLANT SCIENCE 2023; 14:1319700. [PMID: 38186593 PMCID: PMC10768180 DOI: 10.3389/fpls.2023.1319700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
Tissue culture technology is the main method for the commercial propagation of blueberry plants, but blueberry plantlets grow slowly and have long growth cycles under in vitro propagation, resulting in low propagation efficiency. In addition, the long culturing time can also result in reduced nutrient content in the culture medium, and the accumulation of toxic and harmful substances that can lead to weak growth for the plantlets or browning and vitrification, which ultimately can seriously reduce the quality of the plantlets. Gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that can improve plant resistance to various stresses and promote plant growth, but the effects of its application and mechanism in tissue culture are still unclear. In this study, the effects of GABA on the growth of in vitro blueberry plantlets were analyzed following the treatment of the plantlets with GABA. In addition, the GABA-treated plantlets were also subjected to a comparative transcriptomic and metabolomic analysis. The exogenous application of GABA significantly promoted growth and improved the quality of the blueberry plantlets. In total, 2,626 differentially expressed genes (DEGs) and 377 differentially accumulated metabolites (DAMs) were detected by comparison of the control and GABA-treated plantlets. Most of the DEGs and DAMs were involved in carbohydrate metabolism and biosynthesis of secondary metabolites. The comprehensive analysis results indicated that GABA may promote the growth of blueberry plantlets by promoting carbon metabolism and nitrogen assimilation, as well as increasing the accumulation of secondary metabolites such as flavonoids, steroids and terpenes.
Collapse
Affiliation(s)
| | | | | | | | - Xiuying Xia
- Plant Cell and Genetic Engineering Laboratory, School of Biological Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
33
|
Asif A, Ali M, Qadir M, Karthikeyan R, Singh Z, Khangura R, Di Gioia F, Ahmed ZFR. Enhancing crop resilience by harnessing the synergistic effects of biostimulants against abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1276117. [PMID: 38173926 PMCID: PMC10764035 DOI: 10.3389/fpls.2023.1276117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Plants experience constant exposed to diverse abiotic stresses throughout their growth and development stages. Given the burgeoning world population, abiotic stresses pose significant challenges to food and nutritional security. These stresses are complex and influenced by both genetic networks and environmental factors, often resulting in significant crop losses, which can reach as high as fifty percent. To mitigate the effects of abiotic stresses on crops, various strategies rooted in crop improvement and genomics are being explored. In particular, the utilization of biostimulants, including bio-based compounds derived from plants and beneficial microbes, has garnered considerable attention. Biostimulants offer the potential to reduce reliance on artificial chemical agents while enhancing nutritional efficiency and promoting plant growth under abiotic stress condition. Commonly used biostimulants, which are friendly to ecology and human health, encompass inorganic substances (e.g., zinc oxide and silicon) and natural substances (e.g., seaweed extracts, humic substances, chitosan, exudates, and microbes). Notably, prioritizing environmentally friendly biostimulants is crucial to prevent issues such as soil degradation, air and water pollution. In recent years, several studies have explored the biological role of biostimulants in plant production, focusing particularly on their mechanisms of effectiveness in horticulture. In this context, we conducted a comprehensive review of the existing scientific literature to analyze the current status and future research directions concerning the use of various biostimulants, such as plant-based zinc oxide, silicon, selenium and aminobutyric acid, seaweed extracts, humic acids, and chitosan for enhancing abiotic stress tolerance in crop plants. Furthermore, we correlated the molecular modifications induced by these biostimulants with different physiological pathways and assessed their impact on plant performance in response to abiotic stresses, which can provide valuable insights.
Collapse
Affiliation(s)
- Anam Asif
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Muslim Qadir
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences, Lasbela, Balochistan, Pakistan
| | - Rajmohan Karthikeyan
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Zora Singh
- Horticulture, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Ravjit Khangura
- Department of Primary Industries and Regional Development, Government of Western Australia, Kensington, WA, Australia
| | - Francesco Di Gioia
- Department of Plant Science, College of Agricultural Sciences, The Pennsylvania State University, College State, PA, United States
| | - Zienab F. R. Ahmed
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
34
|
Beaulieu JC, Boue SM, Goufo P. Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Crit Rev Food Sci Nutr 2023; 63:11570-11603. [PMID: 35816149 DOI: 10.1080/10408398.2022.2094887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 30 years, thousands of articles have appeared examining the effects of soaking and germinating brown rice (BR). Variable germination conditions and methods have been employed to measure different health-beneficial parameters in a diverse germplasm of BR. Research results may therefore appear inconsistent with occasional anomalies, and it may be difficult to reach consensus concerning expected trends. Herein, we amassed a comprehensive review on germinated brown rice (GBR), attempting to codify 133 peer-reviewed articles regarding the effects on 164 chemical parameters related to health and nutrition in BR and in value-added food products. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-2020) approach was used to direct the flow of the literature search. A pair-wise comparison t-test was performed to deliver an overall approach indicating when a given compound has been found to significantly increase or decrease through germination, which was grouped into GABA and polyamines, γ-Oryzanol and phytosterols, phenolic compounds, vitamins, proteins and amino acids, starchy carbohydrates, free sugars, lipids, minerals and phytic acid. This resource will stimulate interest in germinating rice and optimistically help increase both production and consumption of highly nutritious, health-beneficial rice with pigmented bran.
Collapse
Affiliation(s)
- John C Beaulieu
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Stephen M Boue
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Piebiep Goufo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
35
|
Tyagi A, Ali S, Park S, Bae H. Deciphering the role of mechanosensitive channels in plant root biology: perception, signaling, and adaptive responses. PLANTA 2023; 258:105. [PMID: 37878056 DOI: 10.1007/s00425-023-04261-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
MAIN CONCLUSION Mechanosensitive channels are integral membrane proteins that rapidly translate extrinsic or intrinsic mechanical tensions into biological responses. They can serve as potential candidates for developing smart-resilient crops with efficient root systems. Mechanosensitive (MS) calcium channels are molecular switches for mechanoperception and signal transduction in all living organisms. Although tremendous progress has been made in understanding mechanoperception and signal transduction in bacteria and animals, this remains largely unknown in plants. However, identification and validation of MS channels such as Mid1-complementing activity channels (MCAs), mechanosensitive-like channels (MSLs), and Piezo channels (PIEZO) has been the most significant discovery in plant mechanobiology, providing novel insights into plant mechanoperception. This review summarizes recent advances in root mechanobiology, focusing on MS channels and their related signaling players, such as calcium ions (Ca2+), reactive oxygen species (ROS), and phytohormones. Despite significant advances in understanding the role of Ca2+ signaling in root biology, little is known about the involvement of MS channel-driven Ca2+ and ROS signaling. Additionally, the hotspots connecting the upstream and downstream signaling of MS channels remain unclear. In light of this, we discuss the present knowledge of MS channels in root biology and their role in root developmental and adaptive traits. We also provide a model highlighting upstream (cell wall sensors) and downstream signaling players, viz., Ca2+, ROS, and hormones, connected with MS channels. Furthermore, we highlighted the importance of emerging signaling molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), and neurotransmitters (NTs), and their association with root mechanoperception. Finally, we conclude with future directions and knowledge gaps that warrant further research to decipher the complexity of root mechanosensing.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
36
|
Caldana C, Carrari F, Fernie AR, Sampathkumar A. How metabolism and development are intertwined in space and time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:347-359. [PMID: 37433681 DOI: 10.1111/tpj.16391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Developmental transitions, occurring throughout the life cycle of plants, require precise regulation of metabolic processes to generate the energy and resources necessary for the committed growth processes. In parallel, the establishment of new cells, tissues, and even organs, alongside their differentiation provoke profound changes in metabolism. It is increasingly being recognized that there is a certain degree of feedback regulation between the components and products of metabolic pathways and developmental regulators. The generation of large-scale metabolomics datasets during developmental transitions, in combination with molecular genetic approaches has helped to further our knowledge on the functional importance of metabolic regulation of development. In this perspective article, we provide insights into studies that elucidate interactions between metabolism and development at the temporal and spatial scales. We additionally discuss how this influences cell growth-related processes. We also highlight how metabolic intermediates function as signaling molecules to direct plant development in response to changing internal and external conditions.
Collapse
Affiliation(s)
- Camila Caldana
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Fernando Carrari
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
37
|
Sun Z, Bai C, Liu Y, Ma M, Zhang S, Liu H, Bai R, Han X, Yong JWH. Resilient and sustainable production of peanut (Arachis hypogaea) in phosphorus-limited environment by using exogenous gamma-aminobutyric acid to sustain photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115388. [PMID: 37611478 DOI: 10.1016/j.ecoenv.2023.115388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Globally, many low to medium yielding peanut fields have the potential for further yield improvement. Low phosphorus (P) limitation is one of the significant factors curtailing Arachis hypogaea productivity in many regions. In order to demonstrate the effects of gamma-aminobutyric acid (GABA) on peanuts growing under P deficiency, we used a pot-based experiment to examine the effects of exogenous GABA on alleviating P deficiency-induced physiological changes and growth inhibition in peanuts. The key physiological parameters examined were foliar gas exchange, photochemical efficiency, proton motive force, reactive oxygen species (ROS), and adenosine triphosphate (ATP) synthase activity of peanuts under cultivation with low P (LP, 0.5 mM P) and control conditions. During low P, the cyclic electron flow (CEF) maintained the high proton gradient (∆pH) induced by low ATP synthetic activity. Applying GABA during low P conditions stimulated CEF and reduced the concomitant ROS generation and thereby protecting the foliar photosystem II (PSII) from photoinhibition. Specifically, GABA enhanced the rate of electronic transmission of PSII (ETRII) by pausing the photoprotection mechanisms including non-photochemical quenching (NPQ) and ∆pH regulation. Thus, GABA was shown to be effective in restoring peanut growth when encountering P deficiency. Exogenous GABA alleviated two symptoms (increased root-shoot ratio and photoinhibition) of P-deficient peanuts. This is possibly the first report of using exogenous GABA to restore photosynthesis and growth under low P availability. Therefore, foliar applications of GABA could be a simple, safe and effective approach to overcome low yield imposed by limited P resources (low P in soils or P-fertilizers are unavailable) for sustainable peanut cultivation and especially in low to medium yielding fields.
Collapse
Affiliation(s)
- Zhiyu Sun
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Liaoning Academy of Agricultural Sciences, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia.
| | - Mingzhu Ma
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Huan Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
38
|
Dabravolski SA, Isayenkov SV. Recent Updates on ALMT Transporters' Physiology, Regulation, and Molecular Evolution in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3167. [PMID: 37687416 PMCID: PMC10490231 DOI: 10.3390/plants12173167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Aluminium toxicity and phosphorus deficiency in soils are the main interconnected problems of modern agriculture. The aluminium-activated malate transporters (ALMTs) comprise a membrane protein family that demonstrates various physiological functions in plants, such as tolerance to environmental Al3+ and the regulation of stomatal movement. Over the past few decades, the regulation of ALMT family proteins has been intensively studied. In this review, we summarise the current knowledge about this transporter family and assess their involvement in diverse physiological processes and comprehensive regulatory mechanisms. Furthermore, we have conducted a thorough bioinformatic analysis to decipher the functional importance of conserved residues, structural components, and domains. Our phylogenetic analysis has also provided new insights into the molecular evolution of ALMT family proteins, expanding their scope beyond the plant kingdom. Lastly, we have formulated several outstanding questions and research directions to further enhance our understanding of the fundamental role of ALMT proteins and to assess their physiological functions.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Osipovskogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
39
|
Lin HA, Coker HR, Howe JA, Tfaily MM, Nagy EM, Antony-Babu S, Hague S, Smith AP. Progressive drought alters the root exudate metabolome and differentially activates metabolic pathways in cotton ( Gossypium hirsutum). FRONTIERS IN PLANT SCIENCE 2023; 14:1244591. [PMID: 37711297 PMCID: PMC10499043 DOI: 10.3389/fpls.2023.1244591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Root exudates comprise various primary and secondary metabolites that are responsive to plant stressors, including drought. As increasing drought episodes are predicted with climate change, identifying shifts in the metabolome profile of drought-induced root exudation is necessary to understand the molecular interactions that govern the relationships between plants, microbiomes, and the environment, which will ultimately aid in developing strategies for sustainable agriculture management. This study utilized an aeroponic system to simulate progressive drought and recovery while non-destructively collecting cotton (Gossypium hirsutum) root exudates. The molecular composition of the collected root exudates was characterized by untargeted metabolomics using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) and mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Over 700 unique drought-induced metabolites were identified throughout the water-deficit phase. Potential KEGG pathways and KEGG modules associated with the biosynthesis of flavonoid compounds, plant hormones (abscisic acid and jasmonic acid), and other secondary metabolites were highly induced under severe drought, but not at the wilting point. Additionally, the associated precursors of these metabolites, such as amino acids (phenylalanine and tyrosine), phenylpropanoids, and carotenoids, were also mapped. The potential biochemical transformations were further calculated using the data generated by FT-ICR MS. Under severe drought stress, the highest number of potential biochemical transformations, including methylation, ethyl addition, and oxidation/hydroxylation, were identified, many of which are known reactions in some of the mapped pathways. With the application of FT-ICR MS, we revealed the dynamics of drought-induced secondary metabolites in root exudates in response to drought, providing valuable information for drought-tolerance strategies in cotton.
Collapse
Affiliation(s)
- Heng-An Lin
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Harrison R. Coker
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Julie A. Howe
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Malak M. Tfaily
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Elek M. Nagy
- Department of Plant Pathology and Microbiology, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Sanjay Antony-Babu
- Department of Plant Pathology and Microbiology, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - Steve Hague
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| | - A. Peyton Smith
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, United States
| |
Collapse
|
40
|
Page R, Huang S, Ronen M, Sela H, Sharon A, Shrestha S, Poland J, Steffenson BJ. Genome-wide association mapping of rust resistance in Aegilops longissima. FRONTIERS IN PLANT SCIENCE 2023; 14:1196486. [PMID: 37575932 PMCID: PMC10413114 DOI: 10.3389/fpls.2023.1196486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023]
Abstract
The rust diseases, including leaf rust caused by Puccinia triticina (Pt), stem rust caused by P. graminis f. sp. tritici (Pgt), and stripe rust caused by P. striiformis f. sp. tritici (Pst), are major limiting factors in wheat production worldwide. Identification of novel sources of rust resistance genes is key to developing cultivars resistant to rapidly evolving pathogen populations. Aegilops longissima is a diploid wild grass native to the Levant and closely related to the modern bread wheat D subgenome. To explore resistance genes in the species, we evaluated a large panel of Ae. longissima for resistance to several races of Pt, Pgt, and Pst, and conducted a genome-wide association study (GWAS) to map rust resistance loci in the species. A panel of 404 Ae. longissima accessions, mostly collected from Israel, were screened for seedling-stage resistance to four races of Pt, four races of Pgt, and three races of Pst. Out of the 404 accessions screened, two were found that were resistant to all 11 races of the three rust pathogens screened. The percentage of all accessions screened that were resistant to a given rust pathogen race ranged from 18.5% to 99.7%. Genotyping-by-sequencing (GBS) was performed on 381 accessions of the Ae. longissima panel, wherein 125,343 single nucleotide polymorphisms (SNPs) were obtained after alignment to the Ae. longissima reference genome assembly and quality control filtering. Genetic diversity analysis revealed the presence of two distinct subpopulations, which followed a geographic pattern of a northern and a southern subpopulation. Association mapping was performed in the genotyped portion of the collection (n = 381) and in each subpopulation (n = 204 and 174) independently via a single-locus mixed-linear model, and two multi-locus models, FarmCPU, and BLINK. A large number (195) of markers were significantly associated with resistance to at least one of 10 rust pathogen races evaluated, nine of which are key candidate markers for further investigation due to their detection via multiple models and/or their association with resistance to more than one pathogen race. The novel resistance loci identified will provide additional diversity available for use in wheat breeding.
Collapse
Affiliation(s)
- Rae Page
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Shuyi Huang
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Moshe Ronen
- Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Hanan Sela
- Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sharon
- Institute for Cereal Crops Research, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Sandesh Shrestha
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- KAUST Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Brian J. Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
41
|
Ranner JL, Schalk S, Martyniak C, Parniske M, Gutjahr C, Stark TD, Dawid C. Primary and Secondary Metabolites in Lotus japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466334 DOI: 10.1021/acs.jafc.3c02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Lotus japonicus is a leguminous model plant used to gain insight into plant physiology, stress response, and especially symbiotic plant-microbe interactions, such as root nodule symbiosis or arbuscular mycorrhiza. Responses to changing environmental conditions, stress, microbes, or insect pests are generally accompanied by changes in primary and secondary metabolism to account for physiological needs or to produce defensive or signaling compounds. Here we provide an overview of the primary and secondary metabolites identified in L. japonicus to date. Identification of the metabolites is mainly based on mass spectral tags (MSTs) obtained by gas chromatography linked with tandem mass spectrometry (GC-MS/MS) or liquid chromatography-MS/MS (LC-MS/MS). These MSTs contain retention index and mass spectral information, which are compared to databases with MSTs of authentic standards. More than 600 metabolites are grouped into compound classes such as polyphenols, carbohydrates, organic acids and phosphates, lipids, amino acids, nitrogenous compounds, phytohormones, and additional defense compounds. Their physiological effects are briefly discussed, and the detection methods are explained. This review of the exisiting literature on L. japonicus metabolites provides a valuable basis for future metabolomics studies.
Collapse
Affiliation(s)
- Josef L Ranner
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Sabrina Schalk
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Cindy Martyniak
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Martin Parniske
- Faculty of Biology, Genetics, University of Munich (LMU), Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Professorship of Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
42
|
Hajiboland R, Panda CK, Lastochkina O, Gavassi MA, Habermann G, Pereira JF. Aluminum Toxicity in Plants: Present and Future. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:3967-3999. [DOI: 10.1007/s00344-022-10866-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/26/2022] [Indexed: 06/23/2023]
|
43
|
Liu Y, Gao S, Hu Y, Zhang T, Guo J, Shi L, Li M. Comparative study of leaf nutrient reabsorption by two different ecotypes of wild soybean under low-nitrogen stress. PeerJ 2023; 11:e15486. [PMID: 37397019 PMCID: PMC10312162 DOI: 10.7717/peerj.15486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/10/2023] [Indexed: 07/04/2023] Open
Abstract
Wild soybean (Glycine soja), the ancestor of cultivated soybean, has evolved into many ecotypes with different adaptations to adversity under the action of divergent evolution. Barren-tolerant wild soybean has developed adaptation to most nutrient-stress environments, especially with respect to low nitrogen (LN) conditions. This study describes the differences in physiological and metabolomic changes between common wild soybean (GS1) and barren-tolerant wild soybean(GS2) under LN stress. Compared with plants grown under the unstressed control (CK) conditions, the young leaves of barren-tolerant wild soybean under LN conditions maintained relatively stable chlorophyll, concentration and rates of photosynthesis and transpiration, as well as increased carotenoid content, whereas the net photosynthetic rate (PN) of GS1 decreased significantly 0.64-fold (p < 0.05) in the young leaves of GS1. The ratio of internal to atmospheric CO2 concentrations increased significantly 0.07-fold (p < 0.05), 0.09-fold (p < 0.05) in the young leaves of GS1 and GS2, respectively, and increased significantly 0.05-fold (p < 0.05) and 0.07-fold (p < 0.05) in the old leaves of GS1 and GS2, respectively, relative to the CK. The concentration of chlorophylls a and b decreased significantly 0.45-fold (p < 0.05), 0.13-fold (p > 0.05) in the young leaves of GS1 and GS2, respectively, and decreased significantly 0.74-fold (p < 0.01) and 0.60-fold (p < 0.01) in the old leaves of GS1 and GS2, respectively. Under LN stress, nitrate concentration in the young leaves of GS1 and GS2 decreased significantly 0.69- and 0.50-fold (p < 0.01), respectively, relative to CK, and decreased significantly 2.10-fold and 1.77-fold (p < 0.01) in the old leaves of GS1 and GS2, respectively. Barren-tolerant wild soybean increased the concentration of beneficial ion pairs. Under LN stress, Zn2+ significantly increased by 1.06- and 1.35-fold (p < 0.01) in the young and old leaves of GS2 (p < 0.01), but there was no significant change in GS1. The metabolism of amino acids and organic acids was high in GS2 young and old leaves, and the metabolites related to the TCA cycle were significantly increased. The 4-aminobutyric acid (GABA) concertation decreased significantly 0.70-fold (p < 0.05) in the young leaves of GS1 but increased 0.21-fold (p < 0.05) significantly in GS2. The relative concentration of proline increased significantly 1.21-fold (p < 0.01) and 2.85-fold (p < 0.01) in the young and old leaves of GS2. Under LN stress, GS2 could maintain photosynthesis rate and enhance the reabsorption of nitrate and magnesium in young leaves, compared to GS1. More importantly, GS2 exhibited increased amino acid and TCA cycle metabolism in young and old leaves. Adequate reabsorption of mineral and organic nutrients is an important strategy for barren-tolerant wild soybeans to survive under LN stress. Our research provides a new perspective on the exploitation and utilization of wild soybean resources.
Collapse
Affiliation(s)
- Yuan Liu
- Northeast Normal University, Changchun, China
- ChiFeng University, ChiFeng, China
| | - Shujuan Gao
- Northeast Normal University, Changchun, China
| | - Yunan Hu
- Northeast Normal University, Changchun, China
| | - Tao Zhang
- Northeast Normal University, Changchun, China
| | - Jixun Guo
- Northeast Normal University, Changchun, China
| | | | - Mingxia Li
- ChangChun Normal University, Changchun, China
| |
Collapse
|
44
|
Tong A, Liu W, Wang H, Liu X, Xia G, Zhu J. Transcriptome analysis provides insights into the cell wall and aluminum toxicity related to rusty root syndrome of Panax ginseng. FRONTIERS IN PLANT SCIENCE 2023; 14:1142211. [PMID: 37384362 PMCID: PMC10293891 DOI: 10.3389/fpls.2023.1142211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 06/30/2023]
Abstract
Rusty root syndrome is a common and serious disease in the process of Panax ginseng cultivation. This disease greatly decreases the production and quality of P. ginseng and causes a severe threat to the healthy development of the ginseng industry. However, its pathogenic mechanism remains unclear. In this study, Illumina high-throughput sequencing (RNA-seq) technology was used for comparative transcriptome analysis of healthy and rusty root-affected ginseng. The roots of rusty ginseng showed 672 upregulated genes and 526 downregulated genes compared with the healthy ginseng roots. There were significant differences in the expression of genes involved in the biosynthesis of secondary metabolites, plant hormone signal transduction, and plant-pathogen interaction. Further analysis showed that the cell wall synthesis and modification of ginseng has a strong response to rusty root syndrome. Furthermore, the rusty ginseng increased aluminum tolerance by inhibiting Al entering cells through external chelating Al and cell wall-binding Al. The present study establishes a molecular model of the ginseng response to rusty roots. Our findings provide new insights into the occurrence of rusty root syndrome, which will reveal the underlying molecular mechanisms of ginseng response to this disease.
Collapse
Affiliation(s)
- Aizi Tong
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Wei Liu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Haijiao Wang
- College of Life Science, Changchun Normal University, Changchun, China
| | - Xiaoliang Liu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Guangqing Xia
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Junyi Zhu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| |
Collapse
|
45
|
Wu X, Yuan D, Bian X, Huo R, Lü G, Gong B, Li J, Liu S, Gao H. Transcriptome analysis showed that tomato-rootstock enhanced salt tolerance of grafted seedlings was accompanied by multiple metabolic processes and gene differences. FRONTIERS IN PLANT SCIENCE 2023; 14:1167145. [PMID: 37332726 PMCID: PMC10272605 DOI: 10.3389/fpls.2023.1167145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Grafting is a commonly used cultural practice to counteract salt stress and is especially important for vegetable production. However, it is not clear which metabolic processes and genes are involved in the response of tomato rootstocks to salt stress. Methods To elucidate the regulatory mechanism through which grafting enhances salt tolerance, we first evaluated the salt damage index, electrolyte permeability and Na+ accumulation in tomato (Solanum lycopersicum L.) leaves of grafted seedlings (GSs) and nongrafted seedlings (NGSs) subjected to 175 mmol·L- 1 NaCl for 0-96 h, covering the front, middle and rear ranges. Results Compared with the NGS, the GSs were more salt tolerant, and the Na+ content in the leaves decreased significantly. Through transcriptome sequencing data analysis of 36 samples, we found that GSs exhibited more stable gene expression patterns, with a lower number of DEGs. WRKY and PosF21 transcription factors were significantly upregulated in the GSs compared to the NGSs. Moreover, the GSs presented more amino acids, a higher photosynthetic index and a higher content of growth-promoting hormones. The main differences between GSs and NGSs were in the expression levels of genes involved in the BR signaling pathway, with significant upregulation of XTHs. The above results show that the metabolic pathways of "photosynthetic antenna protein", "amino acid biosynthesis" and "plant hormone signal transduction" participate in the salt tolerance response of grafted seedlings at different stages of salt stress, maintaining the stability of the photosynthetic system and increasing the contents of amino acids and growth-promoting hormones (especially BRs). In this process, the transcription factors WRKYs, PosF21 and XTHs might play an important role at the molecular level. Discussion The results of this study demonstrates that grafting on salt tolerant rootstocks can bring different metabolic processes and transcription levels changes to scion leaves, thereby the scion leaves show stronger salt tolerance. This information provides new insight into the mechanism underlying tolerance to salt stress regulation and provides useful molecular biological basis for improving plant salt resistance.
Collapse
Affiliation(s)
- Xiaolei Wu
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Ding Yuan
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Xinyu Bian
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Ruixiao Huo
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Guiyun Lü
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Binbin Gong
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Jingrui Li
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Sichao Liu
- Chengde Vegetable Technology Promotion Station, Chengde, China
| | - Hongbo Gao
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| |
Collapse
|
46
|
Li Y, Cui Y, Liu B, Xu R, Shi Y, Lv L, Wang H, Shang Y, Liang W, Ma F, Li C. γ-Aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples. MOLECULAR PLANT PATHOLOGY 2023; 24:588-601. [PMID: 36932866 DOI: 10.1111/mpp.13325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 05/18/2023]
Abstract
The fungal disease Glomerella leaf spot (GLS) seriously impacts apple production. As a nonprotein amino acid, γ-aminobutyric acid (GABA) is widely involved in biotic and abiotic stresses. However, it is not clear whether GABA is involved in a plant's response to GLS, nor is its molecular mechanism understood. Here, we found that exogenous GABA could significantly alleviate GLS, reduce lesion lengths, and increase antioxidant capacity. MdGAD1 was identified as a possible key gene for GABA synthesis in apple. Further analysis indicated that MdGAD1 promoted antioxidant capacity to improve apple GLS resistance in transgenic apple calli and leaves. Yeast one-hybrid analysis identified the transcription factor MdWRKY33 upstream of MdGAD1. Electrophoretic mobility shift assay, β-glucuronidase activity, and luciferase activity further supported that MdWRKY33 bound directly to the promoter of MdGAD1. The content of GABA and the transcription level of MdGAD1 in the MdWRKY33 transgenic calli were higher than that of the wild type. When MdWRKY33 transgenic calli and leaves were inoculated with GLS, MdWKRY33 positively regulated resistance to GLS. These results explained the positive regulatory effects of GABA on apple GLS and provided insight into the metabolic regulatory network of GABA.
Collapse
Affiliation(s)
- Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yinglian Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Boyang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Ruixuan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yanjiao Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Lingling Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Hongtao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yueming Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Wei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
47
|
Kim G, Sung J. Transcriptional Expression of Nitrogen Metabolism Genes and Primary Metabolic Variations in Rice Affected by Different Water Status. PLANTS (BASEL, SWITZERLAND) 2023; 12:1649. [PMID: 37111873 PMCID: PMC10140879 DOI: 10.3390/plants12081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The era of climate change strongly requires higher efficiency of energies, such as light, water, nutrients, etc., during crop production. Rice is the world's greatest water-consuming plant, and, thus, water-saving practices such as alternative wetting and drying (AWD) are widely recommended worldwide. However the AWD still has concerns such as lower tillering, shallow rooting, and an unexpected water deficit. The AWD is a possibility to not only save water consumption but also utilize various nitrogen forms from the soil. The current study tried to investigate the transcriptional expression of genes in relation to the acquisition-transportation-assimilation process of nitrogen using qRT-PCR at the tillering and heading stages and to profile tissue-specific primary metabolites. We employed two water supply systems, continuous flooding (CF) and alternative wetting and drying (AWD), during rice growth (seeding to heading). The AWD system is effective at acquiring soil nitrate; however, nitrogen assimilation was predominant in the root during the shift from the vegetative to the reproductive stage. In addition, as a result of the greater amino acids in the shoot, the AWD was likely to rearrange amino acid pools to produce proteins in accordance with phase transition. Accordingly, it is suggested that the AWD 1) actively acquired nitrate from soil and 2) resulted in an abundance of amino acid pools, which are considered a rearrangement under limited N availability. Based on the current study, further steps are necessary to evaluate form-dependent N metabolism and root development under the AWD condition and a possible practice in the rice production system.
Collapse
|
48
|
Huang XJ, Jian SF, Wan S, Miao JH, Zhong C. Exogenous γ-aminobutyric acid (GABA) alleviates nitrogen deficiency by mediating nitrate uptake and assimilation in Andrographis paniculata seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107700. [PMID: 37086691 DOI: 10.1016/j.plaphy.2023.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
γ-Aminobutyric acid (GABA) plays significant metabolic and signaling roles in plant stress responses. Recent studies have proposed that GABA alleviates plant nitrogen (N) deficient stress; however, the mechanism by which GABA mediates plant N deficiency adaptation remains not yet well understood. Herein we found in a medicinal plant Andrographis paniculata that 5 mmol L-1 exogenous GABA promoted plant growth under N deficient (1 mmol L-1 NO3-) condition, with remarkably increments in total N and NO3- concentrations in plants. GABA increased N assimilation and protein synthesis by up-regulating the activities and expression of N metabolic enzymes. GABA also increased the accumulation of α-ketoglutarate and malate, which could facilitate the assimilation of NO3-. Inhibition of NR by Na2WO4 counteracted the promoting effects of GABA on plant growth, and the effects of GABA were not affected by L-DABA and 3-MP, the inhibitors of GABA transaminase (GABA-T) and glutamate decarboxylase (GAD), respectively. These results suggested that the nutritional role of GABA was excluded in promoting plant growth under low N condition. The results of 15N isotopic tracing and NRTs transcription indicated that exogenous GABA could up-regulate NRT2.4 and NRT3.2 to increase plant NO3- uptake under N deficient condition. Interestingly, primidone, an inhibitor of GABA receptor, impeded the effects of GABA on plant growth and N accumulation. Thus, our results revealed that exogenous GABA acted as a signal to up-regulate NRTs via its receptor to increase NO3- uptake, and subsequently promoted NO3- assimilation to alleviate N deficiency in A. paniculata.
Collapse
Affiliation(s)
- Xue-Jing Huang
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Shao-Fen Jian
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Si Wan
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jian-Hua Miao
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Chu Zhong
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
49
|
Samarah NH, Al-Quraan NA, Al-Wraikat BS. Ultrasonic treatment to enhance seed germination and vigour of wheat ( Triticum durum) in association with γ-aminobutyric acid (GABA) shunt pathway. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:277-293. [PMID: 36634915 DOI: 10.1071/fp22211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Treatments of wheat (Triticum durum L.) seeds with sonication or hydropriming may enhance seed germination and vigour in association with γ-aminobutyric acid (GABA). Therefore, the objective of this study is to examine the effect of sonication and hydropriming treatments on seed germination of wheat through the characterisation of seed germination performance, GABA shunt metabolite level (GABA, glutamate, and alanine), and the level of glutamate decarboxylase (GAD) mRNA transcription. Wheat seeds were exposed to three treatments for 0, 5, 10, 15, and 20min: (1) sonication with water; (2) sonication without water; and (3) hydropriming without sonication. Treated seeds were evaluated for germination percentage, mean time to germinate, germination rate index in the warm germination test, and seedling emergence and shoot length in the cold test. GABA shunt metabolites level (GABA, glutamate, and alanine), and the level of GAD mRNA transcription were measured for the seeds after treatments and for seedlings during germination and cold tests. Seeds treated with sonication or hydropriming treatments had a higher germination rate index (faster germination) in the standard germination test, and higher seedling emergence and shoot length in the cold test. Seeds treated with sonication or hydropriming treatments showed an enhancement in GABA shunt and their metabolites (alanine and glutamate), and GAD mRNA transcription level compared to untreated-control seeds. In conclusion, the sonication or hydropriming treatments significantly improved the germination performance of wheat and enhanced GABA metabolism to maintain the C:N metabolic balance, especially under cold stress.
Collapse
Affiliation(s)
- Nezar H Samarah
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Nisreen A Al-Quraan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Batool S Al-Wraikat
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
50
|
Wang Y, Cao H, Wang S, Guo J, Dou H, Qiao J, Yang Q, Shao R, Wang H. Exogenous γ-aminobutyric acid (GABA) improves salt-inhibited nitrogen metabolism and the anaplerotic reaction of the tricarboxylic acid cycle by regulating GABA-shunt metabolism in maize seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114756. [PMID: 36924595 DOI: 10.1016/j.ecoenv.2023.114756] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/10/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Salinity stress hampers the growth of most crop plants and reduces yield considerably. In addition to its role in metabolism, γ-aminobutyric acid (GABA) plays a special role in the regulation of salinity stress tolerance in plants, though the underlying physiological mechanism remains poorly understood. In order to study the physiological mechanism of GABA pathway regulated carbon and nitrogen metabolism and tis relationship with salt resistance of maize seedlings, we supplemented seedlings with exogenous GABA under salt stress. In this study, we showed that supplementation with 0.5 mmol·L-1 (0.052 mg·g-1) GABA alleviated salt toxicity in maize seedling leaves, ameliorated salt-induced oxidative stress, and increased antioxidant enzyme activity. Applying exogenous GABA maintained chloroplast structure and relieved chlorophyll degradation, thus improving the photosynthetic performance of the leaves. Due to the improvement in photosynthesis, sugar accumulation also increased. Endogenous GABA content and GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH) activity were increased, while glutamate decarboxylase (GAD) activity was decreased, via the exogenous application of GABA under salt stress. Meanwhile, nitrogen metabolism and the tricarboxylic acid (TCA) cycle were activated by the supply of GABA. In general, through the regulation of GABA-shunt metabolism, GABA activated enzymes related to nitrogen metabolism and replenished the key substrates of the TCA cycle, thereby improving the balance of carbon and nitrogen metabolism of maize and improving salt tolerance.
Collapse
Affiliation(s)
- Yongchao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China
| | - Hongzhang Cao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Shancong Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiameng Guo
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China
| | - Hangyu Dou
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiangfang Qiao
- Cereal Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450099, China
| | - Qinghua Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China
| | - Ruixin Shao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China.
| | - Hao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China.
| |
Collapse
|