1
|
Yoneyama Y, Zhang RR, Maezawa M, Masaki H, Kimura M, Cai Y, Adam M, Parameswaran S, Mizuno N, Bhadury J, Maezawa S, Ochiai H, Nakauchi H, Potter SS, Weirauch MT, Takebe T. Intercellular mRNA transfer alters the human pluripotent stem cell state. Proc Natl Acad Sci U S A 2025; 122:e2413351122. [PMID: 39841146 PMCID: PMC11789055 DOI: 10.1073/pnas.2413351122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/07/2024] [Indexed: 01/23/2025] Open
Abstract
Intercellular transmission of messenger RNA (mRNA) is being explored in mammalian species using immortal cell lines. Here, we uncover an intercellular mRNA transfer phenomenon that allows for the adaptation and reprogramming of human primed pluripotent stem cells (hPSCs). This process is induced by the direct cell contact-mediated coculture with mouse embryonic stem cells under the condition impermissible for primed hPSC culture. Mouse-derived mRNA contents are transmitted into adapted hPSCs only in the coculture. Transfer-specific mRNA analysis shows the enrichment for divergent biological pathways involving transcription/translational machinery and stress-coping mechanisms, wherein such transfer is diminished when direct cell contacts are lost. After 5 d of coculture with mouse embryonic stem cells, surface marker analysis and global gene profiling confirmed that mRNA transfer-prone hPSC efficiently gains a naïve-like state. Furthermore, transfer-specific knockdown experiments targeting mouse-specific transcription factor-coding mRNAs in hPSC show that mouse-derived Tfcp2l1, Tfap2c, and Klf4 are indispensable for human naïve-like conversion. Thus, interspecies mRNA transfer triggers cellular reprogramming in mammalian cells. Our results support that episodic mRNA transfer can occur in cell cooperative and competitive processes, which provides a fresh perspective on understanding the roles of mRNA mobility for intra- and interspecies cellular communications.
Collapse
Affiliation(s)
- Yosuke Yoneyama
- Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Ran-Ran Zhang
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
| | - Mari Maezawa
- Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
| | - Hideki Masaki
- Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
| | - Yuqi Cai
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
| | - Mike Adam
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
| | - Naoaki Mizuno
- Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
| | - Joydeep Bhadury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba278-8510, Japan
| | - Hiroshi Ochiai
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka812-0054, Japan
| | - Hiromitsu Nakauchi
- Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - S. Steven Potter
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
| | - Matthew T. Weirauch
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229-3039
| | - Takanori Takebe
- Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo113-8510, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229-3039
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229-3039
- World Premier International Research Center Initiative Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
2
|
Wang C, Shen Z, Chen Y, Wang Y, Zhou X, Chen X, Li Y, Zhang P, Zhang Q. Research Progress on Cyclic-Peptide Functionalized Nanoparticles for Tumor-Penetrating Delivery. Int J Nanomedicine 2024; 19:12633-12652. [PMID: 39624118 PMCID: PMC11609414 DOI: 10.2147/ijn.s487303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/14/2024] [Indexed: 01/03/2025] Open
Abstract
A key challenge in cancer treatment is the effective delivery of drugs into deep regions of tumor tissues, which are impermeable due to abnormal vascular network, increased interstitial fluid pressure (IFP), abundant extra cellular matrix (ECM), and heterogeneity of tumor cells. Cyclic peptides have been used for the surface engineering of nanoparticles to enhance the tumor-penetrating efficacy of drugs. Compared with other surface ligands, cyclic peptides are more easily produced by automated chemical synthesis, and they are featured by their higher binding affinity with their targets, tumor selectivity, stability against degradation, and low toxicity. In this review, different types of cyclic peptides, their physicochemical properties and their in vivo pharmacokinetics are introduced. Next, the progress of cyclic peptide-functionalized drug delivery nanodevices is updated, and the mechanism underlying the tumor-penetrating properties of cyclic peptide-functionalized drug delivery nanodevices is discussed.
Collapse
Affiliation(s)
- Chenkai Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Zefan Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yiyang Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yifan Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Xuanyi Zhou
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Xinyi Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yuhang Li
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Qi Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| |
Collapse
|
3
|
Notario Manzano R, Chaze T, Rubinstein E, Penard E, Matondo M, Zurzolo C, Brou C. Proteomic landscape of tunneling nanotubes reveals CD9 and CD81 tetraspanins as key regulators. eLife 2024; 13:RP99172. [PMID: 39250349 PMCID: PMC11383530 DOI: 10.7554/elife.99172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.
Collapse
Affiliation(s)
- Roberto Notario Manzano
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, ED394 - Physiologie, Physiopathologie et Thérapeutique, Paris, France
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Eric Rubinstein
- Centre d'Immunologie et des Maladies Infectieuses, Inserm, CNRS, Sorbonne Université, CIMI-Paris, Paris, France
| | - Esthel Penard
- Ultrastructural BioImaging Core Facility (UBI), C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christel Brou
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Rodríguez-Candela Mateos M, Carpintero-Fernández P, Freijanes PS, Mosquera J, Nebril BA, Mayán MD. Insights into the role of connexins and specialized intercellular communication pathways in breast cancer: Mechanisms and applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189173. [PMID: 39154967 DOI: 10.1016/j.bbcan.2024.189173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Gap junctions, membrane-based channels comprised of connexin proteins (Cxs), facilitate direct communication among neighbouring cells and between cells and the extracellular space through their hemichannels. The normal human breast expresses various Cxs family proteins, such as Cx43, Cx30, Cx32, Cx46, and Cx26, crucial for proper tissue development and function. These proteins play a significant role in breast cancer development, progression, and therapy response. In primary tumours, there is often a reduction and cytoplasmic mislocalization of Cx43 and Cx26, while metastatic lesions show an upregulation of these and other Cxs. Although existing research predominantly supports the tumour-suppressing role of Cxs in primary carcinomas through channel-dependent and independent functions, controversies persist regarding their involvement in the metastatic process. This review aims to provide an updated perspective on Cxs in human breast cancer, with a specific focus on intrinsic subtypes due to the heterogeneous nature of this disease. Additionally, the manuscript will explore the role of Cxs in immune interactions and novel forms of intercellular communication, such as tunneling nanotubes and extracellular vesicles, within the breast tumour context and tumour microenvironment. Recent findings suggest that Cxs hold potential as therapeutic targets for mitigating metastasis and drug resistance. Furthermore, they may serve as novel biomarkers for cancer prognosis, offering promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Marina Rodríguez-Candela Mateos
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernández
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain
| | - Paz Santiago Freijanes
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Anatomic Pathology Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Joaquin Mosquera
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Benigno Acea Nebril
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - María D Mayán
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain.
| |
Collapse
|
5
|
Yoneyama Y, Zhang RR, Kimura M, Cai Y, Adam M, Parameswaran S, Masaki H, Mizuno N, Bhadury J, Maezawa S, Ochiai H, Nakauchi H, Potter SS, Weirauch MT, Takebe T. Inter-cellular mRNA Transfer Alters Human Pluripotent Stem Cell State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600209. [PMID: 38979277 PMCID: PMC11230441 DOI: 10.1101/2024.06.27.600209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Inter-cellular transmission of mRNA is being explored in mammalian species using immortal cell lines (1-3). Here, we uncover an inter-cellular mRNA transfer phenomenon that allows for the adaptation and reprogramming of human primed pluripotent stem cells (hPSCs). This process is induced by the direct cell contact-mediated coculture with mouse embryonic stem cells (mESCs) under the condition impermissible for human primed PSC culture. Mouse-derived mRNA contents are transmitted into adapted hPSCs only in the coculture. Transfer-specific mRNA analysis show the enrichment for divergent biological pathways involving transcription/translational machinery and stress-coping mechanisms, wherein such transfer is diminished when direct cell contacts are lost. After 5 days of mESC culture, surface marker analysis, and global gene profiling confirmed that mRNA transfer-prone hPSC efficiently gains a naïve-like state. Furthermore, transfer-specific knockdown experiments targeting mouse-specific transcription factor-coding mRNAs in hPSC show that mouse-derived Tfcp2l1, Tfap2c, and Klf4 are indispensable for human naïve-like conversion. Thus, inter-species mRNA transfer triggers cellular reprogramming in mammalian cells. Our results support that episodic mRNA transfer can occur in cell cooperative and competitive processes(4), which provides a fresh perspective on understanding the roles of mRNA mobility for intra- and inter-species cellular communications.
Collapse
Affiliation(s)
- Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ran-Ran Zhang
- Divisions of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Masaki Kimura
- Divisions of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Yuqi Cai
- Divisions of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Mike Adam
- Divisions of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Hideki Masaki
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Naoaki Mizuno
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Joydeep Bhadury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - So Maezawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Hiroshi Ochiai
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - S. Steven Potter
- Divisions of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Matthew T. Weirauch
- Divisions of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Takanori Takebe
- Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Divisions of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Namgung B, Dai H, Prathyushaa Vikraman P, Saha T, Sengupta S, Lin Jang H. An inexpensive "do-it-yourself" device for rapid generation of uniform tumor spheroids. DEVICE 2024; 2:100255. [PMID: 38617078 PMCID: PMC11008532 DOI: 10.1016/j.device.2024.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Three-dimensional (3D) cancer cell culture models such as tumor spheroids better recapitulate in vivo tumors than conventional two-dimensional (2D) models. However, two major challenges limit the routine use of 3D tumor spheroids. Firstly, most existing methods of generating tumor spheroids are not high-throughput. Secondly, tumor spheroids generated using current methods are highly variable in dimension. Here, we describe a simple 'Do-It-Yourself (DIY)' device that can be assembled for less than $7 of parts and generate uniform tumor spheroids in a high-throughput manner. We used a simple phone coin vibrating motor to superimpose the vibration for breaking a laminar jet of cell-loaded alginate solution into equally sized spherical beads. We generated 3,970 tumor spheroids/min, which exhibited a hypoxic core recapitulating in vivo tumors and could be used to test the diffusion efficacy of anticancer drugs. Such low-cost, easy-to-fabricate, simple-to-operate systems with high-throughput outcomes are essential to democratize and standardize cancer research.
Collapse
Affiliation(s)
- Bumseok Namgung
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongqing Dai
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Contributed equally
| | - Pooja Prathyushaa Vikraman
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Contributed equally
| | - Tanmoy Saha
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Shiladitya Sengupta
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Hae Lin Jang
- Center for Engineered Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Melwani PK, Pandey BN. Tunneling nanotubes: The intercellular conduits contributing to cancer pathogenesis and its therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189028. [PMID: 37993000 DOI: 10.1016/j.bbcan.2023.189028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Tunneling nanotubes (TNTs) are intercellular conduits which meet the communication needs of non-adjacent cells situated in the same tissue but at distances up to a few hundred microns. TNTs are unique type of membrane protrusion which contain F-actin and freely hover over substratum in the extracellular space to connect the distant cells. TNTs, known to form through actin remodeling mechanisms, are intercellular bridges that connect cytoplasm of two cells, and facilitate the transfer of organelles, molecules, and pathogens among the cells. In tumor microenvironment, TNTs act as communication channel among cancer, normal, and immune cells to facilitate the transfer of calcium waves, mitochondria, lysosomes, and proteins, which in turn contribute to the survival, metastasis, and chemo-resistance in cancer cells. Recently, TNTs were shown to mediate the transfer of nanoparticles, drugs, and viruses between cells, suggesting that TNTs could be exploited as a potential route for delivery of anti-cancer agents and oncolytic viruses to the target cells. The present review discusses the emerging concepts and role of TNTs in the context of chemo- and radio-resistance with implications in the cancer therapy.
Collapse
Affiliation(s)
- Pooja Kamal Melwani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Badri Narain Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
8
|
Mallick AM, Biswas A, Mishra S, Jadhav S, Chakraborty K, Tripathi A, Mukherjee A, Roy RS. Engineered vitamin E-tethered non-immunogenic facial lipopeptide for developing improved siRNA based combination therapy against metastatic breast cancer. Chem Sci 2023; 14:7842-7866. [PMID: 37502330 PMCID: PMC10370593 DOI: 10.1039/d3sc01071f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
RNA interference based therapeutic gene silencing is an emerging platform for managing highly metastatic breast cancer. Cytosolic delivery of functional siRNA remains the key obstacle for efficient RNAi therapy. To overcome the challenges of siRNA delivery, we have engineered a vitamin E-tethered, short, optimum protease stabilized facial lipopeptide based non-immunogenic, biocompatible siRNA transporter to facilitate the clinical translation in future. Our designed lipopeptide has an Arginine-Sarcosine-Arginine segment for providing optimum protease-stability, minimizing adjacent arginine-arginine repulsion and reducing intermolecular aggregation and α-tocopherol as the lipidic moiety for facilitating cellular permeabilization. Interestingly, our designed non-immunogenic siRNA transporter has exhibited significantly better long term transfection efficiency than HiPerFect and can transfect hard to transfect primary cell line, HUVEC. Our engineered siRNA therapeutics demonstrated high efficacy in managing metastasis against triple negative breast cancer by disrupting the crosstalk of endothelial cells and MDA-MB-231 and reduced stemness and metastatic markers, as evidenced by downregulating critical oncogenic pathways. Our study aimed at silencing Notch1 signalling to achieve "multi-targeted" therapy with a single putative molecular medicine. We have further developed mechanistically rational combination therapy combining Notch1 silencing with a repurposed drug m-TOR inhibitor, metformin, which demonstrated synergistic interaction and enhanced antitumor efficacy against cancer metastasis.
Collapse
Affiliation(s)
- Argha Mario Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Abhijit Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Sonali Jadhav
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411008 India
| | - Kasturee Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Pune Pune 411008 India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| |
Collapse
|
9
|
Gondaliya P, Sayyed AA, Driscoll J, Patel K, Patel T. Extracellular vesicle RNA signaling in the liver tumor microenvironment. Cancer Lett 2023; 558:216089. [PMID: 36758739 PMCID: PMC9992346 DOI: 10.1016/j.canlet.2023.216089] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
The tumor microenvironment (TME) in liver cancers such as hepatocellular cancer (HCC) consists of a complex milieu of liver tissue-resident cells, infiltrated immune cells, and secreted factors that collectively serve to promote tumor growth and progression. Intercellular crosstalk contributes to tissue homeostasis, and perturbations during injury, inflammation and tumorigenesis that are important for tumor progression. Extracellular vesicle (EV)-mediated transfer of a payload of RNA molecules that serve as an intercellular signaling is an important contributor to tissue homeostasis within the TME. Several types of RNA have been implicated in EV-mediated signaling. Biological processes that can be modulated by EV RNA signaling within the liver include tumor growth, invasion, metastasis, angiogenesis, and modulation of the immune cell activities. This mini-review describes the liver TME, and the biological effects of EV RNA-mediated signaling within the liver to highlight the role of EV RNA in intercellular communication.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Adil Ali Sayyed
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Julia Driscoll
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Krishna Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
10
|
Chakraborty K, Biswas A, Mishra S, Mallick AM, Tripathi A, Jan S, Sinha Roy R. Harnessing Peptide-Functionalized Multivalent Gold Nanorods for Promoting Enhanced Gene Silencing and Managing Breast Cancer Metastasis. ACS APPLIED BIO MATERIALS 2023; 6:458-472. [PMID: 36651932 DOI: 10.1021/acsabm.2c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Small interfering RNA (siRNA) has become the cornerstone against undruggable targets and for managing metastatic breast cancer. However, an effective gene silencing approach is faced with a major challenge due to the delivery problem. In our present study, we have demonstrated efficient siRNA delivery, superior gene silencing, and inhibition of metastasis in triple-negative breast cancer cells (MDA-MB-231) using rod-shaped (aspect ratio: 4) multivalent peptide-functionalized gold nanoparticles and compared them to monovalent free peptide doses. Multivalency is a new concept in biology, and tuning the physical parameters of multivalent nanoparticles can enhance gene silencing and antitumor efficacy. We explored the effect of the multivalency of shape- and size-dependent peptide-functionalized gold nanoparticles in siRNA delivery. Our study demonstrates that peptide functionalization leads to reduced toxicity of the nanoparticles. Such designed peptide-functionalized nanorods also demonstrate antimetastatic efficacy in Notch1-silenced cells by preventing EMT progression in vitro. We have shown siRNA delivery in the hard-to-transfect primary cell line HUVEC and also demonstrated that the Notch1-silenced MDA-MB-231 cell line has failed to form nanobridge-mediated foci with the HUVEC in the co-culture of HUVEC and MDA-MB-231, which promote metastasis. This antimetastatic effect is further checked in a xenotransplant in vivo zebrafish model. In vivo studies also suggest that our designed nanoparticles mediated inhibition of micrometastasis due to silencing of the Notch1 gene. The outcome of our study highlights that the structure-activity relationship of multifunctional nanoparticles can be harnessed to modulate their biological activity.
Collapse
Affiliation(s)
- Kasturee Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Abhijit Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Argha Mario Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Somnath Jan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
11
|
Laboria M, Lozano R. [And for a few mitochondria more: When the use of nanotubes promotes cancer proliferation]. Med Sci (Paris) 2022; 38:960-962. [PMID: 36448906 DOI: 10.1051/medsci/2022142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Mélanie Laboria
- M2 Infectiologie, Immunité, Vaccinologie et Biomédicaments, université de Tours, 37000 Tours, France
| | - Romain Lozano
- M2 Infectiologie, Immunité, Vaccinologie et Biomédicaments, université de Tours, 37000 Tours, France
| |
Collapse
|
12
|
Jang G, Oh J, Jun E, Lee J, Kwon JY, Kim J, Lee SH, Kim SC, Cho SY, Lee C. Direct cell-to-cell transfer in stressed tumor microenvironment aggravates tumorigenic or metastatic potential in pancreatic cancer. NPJ Genom Med 2022; 7:63. [PMID: 36302783 PMCID: PMC9613679 DOI: 10.1038/s41525-022-00333-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic cancer exhibits a characteristic tumor microenvironment (TME) due to enhanced fibrosis and hypoxia and is particularly resistant to conventional chemotherapy. However, the molecular mechanisms underlying TME-associated treatment resistance in pancreatic cancer are not fully understood. Here, we developed an in vitro TME mimic system comprising pancreatic cancer cells, fibroblasts and immune cells, and a stress condition, including hypoxia and gemcitabine. Cells with high viability under stress showed evidence of increased direct cell-to-cell transfer of biomolecules. The resulting derivative cells (CD44high/SLC16A1high) were similar to cancer stem cell-like-cells (CSCs) with enhanced anchorage-independent growth or invasiveness and acquired metabolic reprogramming. Furthermore, CD24 was a determinant for transition between the tumorsphere formation or invasive properties. Pancreatic cancer patients with CD44low/SLC16A1low expression exhibited better prognoses compared to other groups. Our results suggest that crosstalk via direct cell-to-cell transfer of cellular components foster chemotherapy-induced tumor evolution and that targeting of CD44 and MCT1(encoded by SLC16A1) may be useful strategy to prevent recurrence of gemcitabine-exposed pancreatic cancers.
Collapse
Affiliation(s)
- Giyong Jang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Eunsung Jun
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jieun Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi-do, 13620, Republic of Korea
| | - Jee Young Kwon
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Bio-Information Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sung-Yup Cho
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Charles Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea. .,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea. .,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
| |
Collapse
|
13
|
Actin dynamics in protein homeostasis. Biosci Rep 2022; 42:231720. [PMID: 36043949 PMCID: PMC9469105 DOI: 10.1042/bsr20210848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cell homeostasis is maintained in all organisms by the constant adjustment of cell constituents and organisation to account for environmental context. Fine-tuning of the optimal balance of proteins for the conditions, or protein homeostasis, is critical to maintaining cell homeostasis. Actin, a major constituent of the cytoskeleton, forms many different structures which are acutely sensitive to the cell environment. Furthermore, actin structures interact with and are critically important for the function and regulation of multiple factors involved with mRNA and protein production and degradation, and protein regulation. Altogether, actin is a key, if often overlooked, regulator of protein homeostasis across eukaryotes. In this review, we highlight these roles and how they are altered following cell stress, from mRNA transcription to protein degradation.
Collapse
|
14
|
Wang X, Liang J, Sun H. The Network of Tumor Microtubes: An Improperly Reactivated Neural Cell Network With Stemness Feature for Resistance and Recurrence in Gliomas. Front Oncol 2022; 12:921975. [PMID: 35847909 PMCID: PMC9277150 DOI: 10.3389/fonc.2022.921975] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are known as an incurable brain tumor for the poor prognosis and robust recurrence. In recent years, a cellular subpopulation with tumor microtubes (TMs) was identified in brain tumors, which may provide a new angle to explain the invasion, resistance, recurrence, and heterogeneity of gliomas. Recently, it was demonstrated that the cell subpopulation also expresses neural stem cell markers and shares a lot of features with both immature neurons and cancer stem cells and may be seen as an improperly reactivated neural cell network with a stemness feature at later time points of life. TMs may also provide a new angle to understand the resistance and recurrence mechanisms of glioma stem cells. In this review, we innovatively focus on the common features between TMs and sprouting axons in morphology, formation, and function. Additionally, we summarized the recent progress in the resistance and recurrence mechanisms of gliomas with TMs and explained the incurability and heterogeneity in gliomas with TMs. Moreover, we discussed the recently discovered overlap between cancer stem cells and TM-positive glioma cells, which may contribute to the understanding of resistant glioma cell subpopulation and the exploration of the new potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Xinyue Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhao Liang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Cardoso TC, Rocha MA, Monteiro MMLV, Alves VS, Savio LEB, Silva CLM. The blockage of downstream P2Y 2 receptor signaling inhibits the prostate cancer cell adhesion to endothelial cells. Life Sci 2022; 306:120793. [PMID: 35850244 DOI: 10.1016/j.lfs.2022.120793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
AIMS Prostate cancer is the second most frequently malignancy in men worldwide. Most deaths are caused by metastasis, and tumor cell dissemination involves the interaction with endothelial cells. However, the endothelial cell signaling involved in such interaction is not entirely understood. The tumor microenvironment contains extracellular ATP, an endogenous agonist of the purinergic P2Y2 receptor (P2Y2R). P2Y2R signaling changes endothelial cell phenotype, which may be relevant to cancer pathophysiology. Therefore, we hypothesized that P2Y2R activation could favor the metastatic prostate cancer cells adhesion to endothelial cells. MAIN METHODS For adhesion assays, confluent endothelial cells EA.hy926 were treated with P2Y2R agonists before adding and imaging stained DU-145 cells. Alternatively, fluorescent probes and antibodies were used to determine intracellular endothelial Ca2+, nitric oxide (NO), and flow cytometry assays. KEY FINDINGS Endothelial P2Y2R activation with ATP, UTP, or the selective agonist 2-thio-UTP increased DU-145 cell adhesion to EA.hy926 cells. This effect required endothelial cell Ca2+ mobilization and relied on the endothelial expression of VCAM-1 and ICAM-1. Conversely, inhibiting this proadhesive endothelial phenotype could impair DU-145 cell adhesion. To evaluate this, we chose atorvastatin based on its notable improvement of endothelial cell dysfunction. Atorvastatin blocked UTP-induced DU-145 cell adhesion to endothelial cell monolayer in a NO-dependent manner, unveiling a P2Y2R and NO signaling crosstalk. SIGNIFICANCE Endothelial P2Y2R signaling contributes to the adhesion of metastatic prostate cancer cells suggesting that the downstream signaling blockade by statins could be a putative mechanism to reduce prostate cancer metastasis.
Collapse
Affiliation(s)
- Tassya Cataldi Cardoso
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Marianna Araujo Rocha
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Matheus M L V Monteiro
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Fu Z, Yuan Y. The role of tumor neogenesis pipelines in tumor progression and their therapeutic potential. Cancer Med 2022; 12:1558-1571. [PMID: 35832030 PMCID: PMC9883577 DOI: 10.1002/cam4.4979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 02/02/2023] Open
Abstract
Pipeline formation between tumor cells and the tumor microenvironment (TME) is a key event leading to tumor progression. These pipelines include blood vessels, lymphatics, and membranous vessels (the former two can be collectively referred to as vasculature). Pipeline regeneration is a feature of all solid tumors; it delivers nutrients to tumors and promotes tumor invasion and metastasis such that cancer cells grow rapidly, escape unfavorable TME, spread to secondary sites, generate tumor drug resistance, and promote postoperative tumor recurrence. Novel tumor therapy strategies must exploit the molecular mechanisms underpinning these pipelines to facilitate more targeted drug therapies. In this review, pipeline generation, influencing factors, pipeline functions during tumor progression, and pipeline potential as drug targets are systematically summarized.
Collapse
Affiliation(s)
- Zhanqi Fu
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
17
|
Jing H, Saed B, Pálmai M, Gunasekara H, Snee PT, Hu YS. Fluorescent Artificial Antigens Revealed Extended Membrane Networks Utilized by Live Dendritic Cells for Antigen Uptake. NANO LETTERS 2022; 22:4020-4027. [PMID: 35499493 DOI: 10.1021/acs.nanolett.2c00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dendritic cells (DCs) can infiltrate tight junctions of the epithelium to collect remote antigens during immune surveillance. While elongated membrane structures represent a plausible structure to perform this task, their functional mechanisms remain elusive owing to the lack of high-resolution characterizations in live DCs. Here, we developed fluorescent artificial antigens (FAAs) based on quantum dots coated with polyacrylic acid. Single-particle tracking of FAAs enables us to superresolve the membrane fiber network responsible for the antigen uptake. Using the DC2.4 cell line as a model system, we discovered the extensive membrane network approaching 200 μm in length with tunnel-like cavities about 150 nm in width. The membrane fiber network also contained heterogeneous circular migrasomes. Disconnecting the membrane network from the cell body decreased the intracellular FAA density. Our study enables mechanistic investigations of DC membrane networks and nanocarriers that target this mechanism.
Collapse
Affiliation(s)
- Haoran Jing
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Marcell Pálmai
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Preston T Snee
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
18
|
Driscoll J, Gondaliya P, Patel T. Tunneling Nanotube-Mediated Communication: A Mechanism of Intercellular Nucleic Acid Transfer. Int J Mol Sci 2022; 23:5487. [PMID: 35628298 PMCID: PMC9143920 DOI: 10.3390/ijms23105487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/19/2022] Open
Abstract
Tunneling nanotubes (TNTs) are thin, F-actin-based membranous protrusions that connect distant cells and can provide e a novel mechanism for intercellular communication. By establishing cytoplasmic continuity between interconnected cells, TNTs enable the bidirectional transfer of nuclear and cytoplasmic cargo, including organelles, nucleic acids, drugs, and pathogenic molecules. TNT-mediated nucleic acid transfer provides a unique opportunity for donor cells to directly alter the genome, transcriptome, and metabolome of recipient cells. TNTs have been reported to transport DNA, mitochondrial DNA, mRNA, viral RNA, and non-coding RNAs, such as miRNA and siRNA. This mechanism of transfer is observed in physiological as well as pathological conditions, and has been implicated in the progression of disease. Herein, we provide a concise overview of TNTs' structure, mechanisms of biogenesis, and the functional effects of TNT-mediated intercellular transfer of nucleic acid cargo. Furthermore, we highlight the potential translational applications of TNT-mediated nucleic acid transfer in cancer, immunity, and neurological diseases.
Collapse
Affiliation(s)
| | | | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (J.D.); (P.G.)
| |
Collapse
|
19
|
Niu D, Wu Y, Lei Z, Zhang M, Xie Z, Tang S. Lactic acid, a driver of tumor-stroma interactions. Int Immunopharmacol 2022; 106:108597. [DOI: 10.1016/j.intimp.2022.108597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
|
20
|
Abstract
Over the years, the engineering aspect of nanotechnology has been significantly exploited. Medical intervention strategies have been developed by leveraging existing molecular biology knowledge and combining it with nanotechnology tools to improve outcomes. However, little attention has been paid to harnessing the strengths of nanotechnology as a biological discovery tool. Fundamental understanding of controlling dynamic biological processes at the subcellular level is key to developing personalized therapeutic and diagnostic interventions. Single-cell analyses using intravital microscopy, expansion microscopy, and microfluidic-based platforms have been helping to better understand cell heterogeneity in healthy and diseased cells, a major challenge in oncology. Also, single-cell analysis has revealed critical signaling pathways and biological intracellular components with key biological functions. The physical manipulation enabled by nanotools can allow real-time monitoring of biological changes at a single-cell level by sampling intracellular fluid from the same cell. The formation of intercellular highways by nanotube-like structures has important clinical implications such as metastasis development. The integration of nanomaterials into optical and molecular imaging techniques has rendered valuable morphological, structural, and biological information. Nanoscale imaging unravels mechanisms of temporality by enabling the visualization of nanoscale dynamics never observed or measured between individual cells with standard biological techniques. The exceptional sensitivity of nanozymes, artificial enzymes, make them perfect components of the next-generation mobile diagnostics devices. Here, we highlight these impactful cancer-related biological discoveries enabled by nanotechnology and producing a paradigm shift in cancer research and oncology.
Collapse
Affiliation(s)
- Carolina Salvador-Morales
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
21
|
Chang M, Lee OC, Bu G, Oh J, Yunn NO, Ryu SH, Kwon HB, Kolomeisky AB, Shim SH, Doh J, Jeon JH, Lee JB. Formation of cellular close-ended tunneling nanotubes through mechanical deformation. SCIENCE ADVANCES 2022; 8:eabj3995. [PMID: 35353579 PMCID: PMC8967236 DOI: 10.1126/sciadv.abj3995] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Membrane nanotubes or tunneling nanotubes (TNTs) that connect cells have been recognized as a previously unidentified pathway for intercellular transport between distant cells. However, it is unknown how this delicate structure, which extends over tens of micrometers and remains robust for hours, is formed. Here, we found that a TNT develops from a double filopodial bridge (DFB) created by the physical contact of two filopodia through helical deformation of the DFB. The transition of a DFB to a close-ended TNT is most likely triggered by disruption of the adhesion of two filopodia by mechanical energy accumulated in a twisted DFB when one of the DFB ends is firmly attached through intercellular cadherin-cadherin interactions. These studies pinpoint the mechanistic questions about TNTs and elucidate a formation mechanism.
Collapse
Affiliation(s)
- Minhyeok Chang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - O-chul Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Gayun Bu
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jaeho Oh
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Na-Oh Yunn
- POSTECH Biotech Center, Pohang 37673, Korea
| | - Sung Ho Ryu
- Department of Life Sciences, POSTECH, Pohang 37673, Korea
| | - Hyung-Bae Kwon
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Sang-Hee Shim
- Department of Chemistry, Korea University, Seoul 02481, Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Jae-Hyung Jeon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Asia Pacific Center for Theoretical Physics (APCTP), Pohang 37673, Korea
- Corresponding author. (J.-B.L.); (J.-H.J.)
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Asia Pacific Center for Theoretical Physics (APCTP), Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea
- Corresponding author. (J.-B.L.); (J.-H.J.)
| |
Collapse
|
22
|
Hönigova K, Navratil J, Peltanova B, Polanska HH, Raudenska M, Masarik M. Metabolic tricks of cancer cells. Biochim Biophys Acta Rev Cancer 2022; 1877:188705. [PMID: 35276232 DOI: 10.1016/j.bbcan.2022.188705] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022]
Abstract
One of the characteristics of cancer cells important for tumorigenesis is their metabolic plasticity. Indeed, in various stress conditions, cancer cells can reshape their metabolic pathways to support the increased energy request due to continuous growth and rapid proliferation. Moreover, selective pressures in the tumor microenvironment, such as hypoxia, acidosis, and competition for resources, force cancer cells to adapt by complete reorganization of their metabolism. In this review, we highlight the characteristics of cancer metabolism and discuss its clinical significance, since overcoming metabolic plasticity of cancer cells is a key objective of modern cancer therapeutics and a better understanding of metabolic reprogramming may lead to the identification of possible targets for cancer therapy.
Collapse
Affiliation(s)
- Katerina Hönigova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Barbora Peltanova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
23
|
Specialized Intercellular Communications via Tunnelling Nanotubes in Acute and Chronic Leukemia. Cancers (Basel) 2022; 14:cancers14030659. [PMID: 35158927 PMCID: PMC8833474 DOI: 10.3390/cancers14030659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are cytoplasmic channels which regulate the contacts between cells and allow the transfer of several elements, including ions, mitochondria, microvesicles, exosomes, lysosomes, proteins, and microRNAs. Through this transport, TNTs are implicated in different physiological and pathological phenomena, such as immune response, cell proliferation and differentiation, embryogenesis, programmed cell death, and angiogenesis. TNTs can promote cancer progression, transferring substances capable of altering apoptotic dynamics, modifying the metabolism and energy balance, inducing changes in immunosurveillance, or affecting the response to chemotherapy. In this review, we evaluated their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Abstract Effectual cell-to-cell communication is essential to the development and differentiation of organisms, the preservation of tissue tasks, and the synchronization of their different physiological actions, but also to the proliferation and metastasis of tumor cells. Tunneling nanotubes (TNTs) are membrane-enclosed tubular connections between cells that carry a multiplicity of cellular loads, such as exosomes, non-coding RNAs, mitochondria, and proteins, and they have been identified as the main participants in healthy and tumoral cell communication. TNTs have been described in numerous tumors in in vitro, ex vivo, and in vivo models favoring the onset and progression of tumors. Tumor cells utilize TNT-like membranous channels to transfer information between themselves or with the tumoral milieu. As a result, tumor cells attain novel capabilities, such as the increased capacity of metastasis, metabolic plasticity, angiogenic aptitude, and chemoresistance, promoting tumor severity. Here, we review the morphological and operational characteristics of TNTs and their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Finally, we examine the prospects and challenges for TNTs as a therapeutic approach for hematologic diseases by examining the development of efficient and safe drugs targeting TNTs.
Collapse
|
24
|
Lagonegro P, Rossi S, Salvarani N, Lo Muzio FP, Rozzi G, Modica J, Bigi F, Quaretti M, Salviati G, Pinelli S, Alinovi R, Catalucci D, D'Autilia F, Gazza F, Condorelli G, Rossi F, Miragoli M. Synthetic recovery of impulse propagation in myocardial infarction via silicon carbide semiconductive nanowires. Nat Commun 2022; 13:6. [PMID: 35013167 PMCID: PMC8748722 DOI: 10.1038/s41467-021-27637-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/02/2021] [Indexed: 01/30/2023] Open
Abstract
Myocardial infarction causes 7.3 million deaths worldwide, mostly for fibrillation that electrically originates from the damaged areas of the left ventricle. Conventional cardiac bypass graft and percutaneous coronary interventions allow reperfusion of the downstream tissue but do not counteract the bioelectrical alteration originated from the infarct area. Genetic, cellular, and tissue engineering therapies are promising avenues but require days/months for permitting proper functional tissue regeneration. Here we engineered biocompatible silicon carbide semiconductive nanowires that synthetically couple, via membrane nanobridge formations, isolated beating cardiomyocytes over distance, restoring physiological cell-cell conductance, thereby permitting the synchronization of bioelectrical activity in otherwise uncoupled cells. Local in-situ multiple injections of nanowires in the left ventricular infarcted regions allow rapid reinstatement of impulse propagation across damaged areas and recover electrogram parameters and conduction velocity. Here we propose this nanomedical intervention as a strategy for reducing ventricular arrhythmia after acute myocardial infarction. Silicon-based materials have the ability to support bioelectrical activity. Here the authors show how injectable silicon carbide nanowires reduce arrhythmias and rapidly restore conduction in a myocardial infarction model.
Collapse
Affiliation(s)
- Paola Lagonegro
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy.,Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via A. Corti 12, 20133, Milan, IT, Italy
| | - Stefano Rossi
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy
| | - Nicolò Salvarani
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Istituto di Ricerca Genetica Biomedica (IRGB), National Research Council CNR, UOS Milan Via Fantoli 16/15, 20138, Milan, IT, Italy
| | - Francesco Paolo Lo Muzio
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy.,Dipartimento di Scienze Chirurgiche Odontostomatologiche e Materno-Infantili, Università di Verona, Policlinico G.B. Rossi, - P.le L.A. Scuro 10, 37134, Verona, IT, Italy
| | - Giacomo Rozzi
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy.,Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy
| | - Jessica Modica
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Istituto di Ricerca Genetica Biomedica (IRGB), National Research Council CNR, UOS Milan Via Fantoli 16/15, 20138, Milan, IT, Italy
| | - Franca Bigi
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy.,Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze, 11/a - 43124, Parma, IT, Italy
| | - Martina Quaretti
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy.,Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze, 11/a - 43124, Parma, IT, Italy
| | - Giancarlo Salviati
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy
| | - Silvana Pinelli
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy
| | - Rossella Alinovi
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy
| | - Daniele Catalucci
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Istituto di Ricerca Genetica Biomedica (IRGB), National Research Council CNR, UOS Milan Via Fantoli 16/15, 20138, Milan, IT, Italy
| | - Francesca D'Autilia
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy
| | - Ferdinando Gazza
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, via del Taglio 10, 43126, Parma, IT, Italy
| | - Gianluigi Condorelli
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Department of Biomedical Sciences Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele Milan, IT, Italy
| | - Francesca Rossi
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy
| | - Michele Miragoli
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy. .,Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.
| |
Collapse
|
25
|
Saha T, Dash C, Jayabalan R, Khiste S, Kulkarni A, Kurmi K, Mondal J, Majumder PK, Bardia A, Jang HL, Sengupta S. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. NATURE NANOTECHNOLOGY 2022; 17:98-106. [PMID: 34795441 PMCID: PMC10071558 DOI: 10.1038/s41565-021-01000-4] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/07/2021] [Indexed: 05/27/2023]
Abstract
Cancer progresses by evading the immune system. Elucidating diverse immune evasion strategies is a critical step in the search for next-generation immunotherapies for cancer. Here we report that cancer cells can hijack the mitochondria from immune cells via physical nanotubes. Mitochondria are essential for metabolism and activation of immune cells. By using field-emission scanning electron microscopy, fluorophore-tagged mitochondrial transfer tracing and metabolic quantification, we demonstrate that the nanotube-mediated transfer of mitochondria from immune cells to cancer cells metabolically empowers the cancer cells and depletes the immune cells. Inhibiting the nanotube assembly machinery significantly reduced mitochondrial transfer and prevented the depletion of immune cells. Combining a farnesyltransferase and geranylgeranyltransferase 1 inhibitor, namely, L-778123, which partially inhibited nanotube formation and mitochondrial transfer, with a programmed cell death protein 1 immune checkpoint inhibitor improved the antitumour outcomes in an aggressive immunocompetent breast cancer model. Nanotube-mediated mitochondrial hijacking can emerge as a novel target for developing next-generation immunotherapy agents for cancer.
Collapse
Affiliation(s)
- Tanmoy Saha
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Chinmayee Dash
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Ruparoshni Jayabalan
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Sachin Khiste
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Arpita Kulkarni
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jayanta Mondal
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | | | - Aditya Bardia
- Mass General Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Hae Lin Jang
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shiladitya Sengupta
- Center for Engineered Therapeutics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
26
|
Substrate stiffening promotes VEGF-A functions via the PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun 2022; 586:27-33. [PMID: 34823219 PMCID: PMC8785232 DOI: 10.1016/j.bbrc.2021.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
While it is now well-established that substrate stiffness regulates vascular endothelial growth factor-A (VEGF-A) mediated signaling and functions, causal mechanisms remain poorly understood. Here, we report an underlying role for the PI3K/Akt/mTOR signaling pathway. This pathway is activated on stiffer substrates, is amplified by VEGF-A stimulation, and correlates with enhanced endothelial cell (EC) proliferation, contraction, pro-angiogenic secretion, and capillary-like tube formation. In the settings of advanced age-related macular degeneration, characterized by EC and retinal pigment epithelial (RPE)-mediated angiogenesis, these data implicate substrate stiffness as a novel causative mechanism and Akt/mTOR inhibition as a novel therapeutic pathway.
Collapse
|
27
|
Secretome and Tunneling Nanotubes: A Multilevel Network for Long Range Intercellular Communication between Endothelial Cells and Distant Cells. Int J Mol Sci 2021; 22:ijms22157971. [PMID: 34360735 PMCID: PMC8347715 DOI: 10.3390/ijms22157971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs). WPBs and secretory granules allow both immediate release and regulated exocytosis of messengers such as cytokines, chemokines, extracellular membrane proteins, coagulation or growth factors. The ectodomain shedding of transmembrane protein further provide the release of both receptor and ligands with key regulatory activities on target cells. Thin tubular membranous channels termed tunneling nanotubes (TNTs) may also connect EC with distant cells. EVs, in particular exosomes, and TNTs may contain and transfer different biomolecules (e.g., signaling mediators, proteins, lipids, and microRNAs) or pathogens and have emerged as a major triggers of horizontal intercellular transfer of information.
Collapse
|
28
|
Cui C, Zhang Y, Liu G, Zhang S, Zhang J, Wang X. Advances in the study of cancer metastasis and calcium signaling as potential therapeutic targets. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:266-291. [PMID: 36046433 PMCID: PMC9400724 DOI: 10.37349/etat.2021.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
Metastasis is still the primary cause of cancer-related mortality. However, the underlying mechanisms of cancer metastasis are not yet fully understood. Currently, the epithelial-mesenchymal transition, metabolic remodeling, cancer cell intercommunication and the tumor microenvironment including diverse stromal cells, are reported to affect the metastatic process of cancer cells. Calcium ions (Ca2+) are ubiquitous second messengers that manipulate cancer metastasis by affecting signaling pathways. Diverse transporter/pump/channel-mediated Ca2+ currents form Ca2+ oscillations that can be decoded by Ca2+-binding proteins, which are promising prognostic biomarkers and therapeutic targets of cancer metastasis. This paper presents a review of the advances in research on the mechanisms underlying cancer metastasis and the roles of Ca2+-related signals in these events.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shuhong Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
29
|
Inhibition of Tunneling Nanotubes between Cancer Cell and the Endothelium Alters the Metastatic Phenotype. Int J Mol Sci 2021; 22:ijms22116161. [PMID: 34200503 PMCID: PMC8200952 DOI: 10.3390/ijms22116161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
The interaction of tumor cells with blood vessels is one of the key steps during cancer metastasis. Metastatic cancer cells exhibit phenotypic state changes during this interaction: (1) they form tunneling nanotubes (TNTs) with endothelial cells, which act as a conduit for intercellular communication; and (2) metastatic cancer cells change in order to acquire an elongated phenotype, instead of the classical cellular aggregates or mammosphere-like structures, which it forms in three-dimensional cultures. Here, we demonstrate mechanistically that a siRNA-based knockdown of the exocyst complex protein Sec3 inhibits TNT formation. Furthermore, a set of pharmacological inhibitors for Rho GTPase–exocyst complex-mediated cytoskeletal remodeling is introduced, which inhibits TNT formation, and induces the reversal of the more invasive phenotype of cancer cell (spindle-like) into a less invasive phenotype (cellular aggregates or mammosphere). Our results offer mechanistic insights into this nanoscale communication and shift of phenotypic state during cancer–endothelial interactions.
Collapse
|
30
|
Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochem J 2021; 478:21-39. [PMID: 33245115 PMCID: PMC7800365 DOI: 10.1042/bcj20200710] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive brain cancer and its relapse after surgery, chemo and radiotherapy appears to be led by GBM stem cells (GSCs). Also, tumor networking and intercellular communication play a major role in driving GBM therapy-resistance. Tunneling Nanotubes (TNTs), thin membranous open-ended channels connecting distant cells, have been observed in several types of cancer, where they emerge to drive a more malignant phenotype. Here, we investigated whether GBM cells are capable to intercommunicate by TNTs. Two GBM stem-like cells (GSLCs) were obtained from the external and infiltrative zone of one GBM from one patient. We show, for the first time, that both GSLCs, grown in classical 2D culture and in 3D-tumor organoids, formed functional TNTs which allowed mitochondria transfer. In the organoid model, recapitulative of several tumor's features, we observed the formation of a network between cells constituted of both Tumor Microtubes (TMs), previously observed in vivo, and TNTs. In addition, the two GSLCs exhibited different responses to irradiation in terms of TNT induction and mitochondria transfer, although the correlation with the disease progression and therapy-resistance needs to be further addressed. Thus, TNT-based communication is active in different GSLCs derived from the external tumoral areas associated to GBM relapse, and we propose that they participate together with TMs in tumor networking.
Collapse
|
31
|
Cordero Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021; 40:e105789. [PMID: 33646572 PMCID: PMC8047439 DOI: 10.15252/embj.2020105789] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
The identification of Tunneling Nanotubes (TNTs) and TNT-like structures signified a critical turning point in the field of cell-cell communication. With hypothesized roles in development and disease progression, TNTs' ability to transport biological cargo between distant cells has elevated these structures to a unique and privileged position among other mechanisms of intercellular communication. However, the field faces numerous challenges-some of the most pressing issues being the demonstration of TNTs in vivo and understanding how they form and function. Another stumbling block is represented by the vast disparity in structures classified as TNTs. In order to address this ambiguity, we propose a clear nomenclature and provide a comprehensive overview of the existing knowledge concerning TNTs. We also discuss their structure, formation-related pathways, biological function, as well as their proposed role in disease. Furthermore, we pinpoint gaps and dichotomies found across the field and highlight unexplored research avenues. Lastly, we review the methods employed to date and suggest the application of new technologies to better understand these elusive biological structures.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Institut PasteurMembrane Traffic and PathogenesisParisFrance
| |
Collapse
|
32
|
Opportunities and Challenges in Tunneling Nanotubes Research: How Far from Clinical Application? Int J Mol Sci 2021; 22:ijms22052306. [PMID: 33669068 PMCID: PMC7956326 DOI: 10.3390/ijms22052306] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023] Open
Abstract
Tunneling nanotubes (TNTs) are recognized long membrane nanotubes connecting distance cells. In the last decade, growing evidence has shown that these subcellular structures mediate the specific transfer of cellular materials, pathogens, and electrical signals between cells. As intercellular bridges, they play a unique role in embryonic development, collective cell migration, injured cell recovery, cancer treatment resistance, and pathogen propagation. Although TNTs have been considered as potential drug targets for treatment, there is still a long way to go to translate the research findings into clinical practice. Herein, we emphasize the heterogeneous nature of TNTs by systemically summarizing the current knowledge on their morphology, structure, and biogenesis in different types of cells. Furthermore, we address the communication efficiency and biological outcomes of TNT-dependent transport related to diseases. Finally, we discuss the opportunities and challenges of TNTs as an exciting therapeutic approach by focusing on the development of efficient and safe drugs targeting TNTs.
Collapse
|
33
|
RNA transfer through tunneling nanotubes. Biochem Soc Trans 2020; 49:145-160. [PMID: 33367488 DOI: 10.1042/bst20200113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
It was already suggested in the early '70's that RNA molecules might transfer between mammalian cells in culture. Yet, more direct evidence for RNA transfer in animal and plant cells was only provided decades later, as this field became established. In this mini-review, we will describe evidence for the transfer of different types of RNA between cells through tunneling nanotubes (TNTs). TNTs are long, yet thin, open-ended cellular protrusions that are structurally distinct from filopodia. TNTs connect cells and can transfer many types of cargo, including small molecules, proteins, vesicles, pathogens, and organelles. Recent work has shown that TNTs can also transfer mRNAs, viral RNAs and non-coding RNAs. Here, we will review the evidence for TNT-mediated RNA transfer, discuss the technical challenges in this field, and conjecture about the possible significance of this pathway in health and disease.
Collapse
|
34
|
Swaminathan S, Clyne AM. Direct Bioprinting of 3D Multicellular Breast Spheroids onto Endothelial Networks. J Vis Exp 2020:10.3791/61791. [PMID: 33191938 PMCID: PMC7737489 DOI: 10.3791/61791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bioprinting is emerging as a promising tool to fabricate 3D human cancer models that better recapitulate critical hallmarks of in vivo tissue architecture. In current layer-by-layer extrusion bioprinting, individual cells are extruded in a bioink together with complex spatial and temporal cues to promote hierarchical tissue self-assembly. However, this biofabrication technique relies on complex interactions among cells, bioinks and biochemical and biophysical cues. Thus, self-assembly may take days or even weeks, may require specific bioinks, and may not always occur when there is more than one cell type involved. We therefore developed a technique to directly bioprint pre-formed 3D breast epithelial spheroids in a variety of bioinks. Bioprinted pre-formed 3D breast epithelial spheroids sustained their viability and polarized architecture after printing. We additionally printed the 3D spheroids onto vascular endothelial cell networks to create a co-culture model. Thus, the novel bioprinting technique rapidly creates a more physiologically relevant 3D human breast model at lower cost and with higher flexibility than traditional bioprinting techniques. This versatile bioprinting technique can be extrapolated to create 3D models of other tissues in additional bioinks.
Collapse
|
35
|
Tunneling Nanotubes: The Fuel of Tumor Progression? Trends Cancer 2020; 6:874-888. [DOI: 10.1016/j.trecan.2020.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
|
36
|
How Does a Tumor Get Its Shape? MicroRNAs Act as Morphogens at the Cancer Invasion Front. Noncoding RNA 2020; 6:ncrna6020023. [PMID: 32532109 PMCID: PMC7344607 DOI: 10.3390/ncrna6020023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022] Open
Abstract
The generation and organization of the invasion front shape of neoplasms is an intriguing problem. The intimate mechanism is not yet understood, but the prevailing theory is that it represents an example of morphogenesis. Morphogenesis requires the presence of specific molecules, known as morphogens (activators and inhibitors), which can diffuse and elicit dose-dependent responses in their target cells. Due to their ability to modulate most of the coding transcriptome, their well-established role in embryogenesis, and their capacity to rapidly move between neighboring and distant cells, we propose microRNAs as inhibitors that could shape the cancer invasion front. In order to explain the genesis of the tumor border, we use Alan Turing’s reaction diffusion model, refined by Meinhardt and Gierer. This assumes the existence of an activator called a, and an inhibitor called h, which we hypothesize could be a freely moving microRNA. We used the fractal dimension as a measure of tumor border irregularity. We observed that the change in fractal dimension associates with variations in the diffusion coefficient of the activator (Da) or the inhibitor (Dh). We determined that the fractal dimension remains constant (i.e., the irregularity of the tumor border does not change) across a Dh interval, which becomes narrower as Da rises. We therefore conclude that a change in fractal dimension occurs when the balance between Da and Dh is disrupted. Biologically, this could be explained by a faulty distribution of the inhibitor caused by an abnormal density of the intercellular connection network. From a translational perspective, if experimentally confirmed, our observations can be used for a better diagnosis of cancer aggressiveness.
Collapse
|
37
|
Tunneling Nanotubes and Tumor Microtubes in Cancer. Cancers (Basel) 2020; 12:cancers12040857. [PMID: 32244839 PMCID: PMC7226329 DOI: 10.3390/cancers12040857] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Intercellular communication among cancer cells and their microenvironment is crucial to disease progression. The mechanisms by which communication occurs between distant cells in a tumor matrix remain poorly understood. In the last two decades, experimental evidence from different groups proved the existence of thin membranous tubes that interconnect cells, named tunneling nanotubes, tumor microtubes, cytonemes or membrane bridges. These highly dynamic membrane protrusions are conduits for direct cell-to-cell communication, particularly for intercellular signaling and transport of cellular cargo over long distances. Tunneling nanotubes and tumor microtubes may play an important role in the pathogenesis of cancer. They may contribute to the resistance of tumor cells against treatments such as surgery, radio- and chemotherapy. In this review, we present the current knowledge about the structure and function of tunneling nanotubes and tumor microtubes in cancer and discuss the therapeutic potential of membrane tubes in cancer treatment.
Collapse
|
38
|
Tiwari A, Hadley JA, Ramachandran R. Characterization of ascites-derived aldehyde dehydrogenase-positive ovarian cancer stem cells isolated from Leghorn chickens. Poult Sci 2020; 99:2203-2214. [PMID: 32241506 PMCID: PMC7587724 DOI: 10.1016/j.psj.2019.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 11/06/2022] Open
Abstract
Leghorn chickens are used as a preclinical model of ovarian cancer as they develop epithelial ovarian adenocarcinoma spontaneously at a very high frequency. Ovarian cancer is the most lethal disease among all gynecological malignancies in women. A small proportion of ovarian cancer stem cells are responsible for drug resistance and relapse of ovarian cancer. The objectives of this study are to isolate ovarian cancer stem cells from ascites of Leghorn chickens that spontaneously developed ovarian cancer and to determine their invasiveness, spheroid formation in three-dimensional culture devoid of extracellular matrix over several months. Ovarian cancer cells obtained from ascites were subjected to ALDEFLOUR assay that measures aldehyde dehydrogenase (ALDH) activity to separate ALDH1+ and ALDH1- cells by fluorescence-activated cell sorting. The cells were cultured using serum-free media for up to 6 mo in ultra-low attachment plates. Invasiveness of ALDH1+ and ALDH1- cells was determined by Matrigel invasion assay. Cellular uptake of acetylated low-density lipoprotein was evaluated. A small proportion (<4.75%) of ovarian cancer cells isolated from ascites were found to be ALDH1+ cells. ALDH1+ cells formed a greater number of spheroids and were also highly invasive in extracellular matrix compared to ALDH1- cells. Several spheroids developed 0.1- to 1-mm-long capillary-like tubules connecting other spheroids, thus forming a complex network that underwent remodeling over several months. Cells in the spheroids incorporated acetylated low-density lipoprotein suggestive of scavenger receptor activity. In summary, ALDH1+ ovarian cancer stem cells isolated from ascites of chickens appear to be invasive and form spheroids with complex networks of tubules reminiscent of vascular mimicry. Understanding the structure and function of spheroids and tubular network would provide valuable insight into the biology of ovarian cancer and improve poultry health.
Collapse
Affiliation(s)
- Anupama Tiwari
- Center for Reproductive Biology and Health, Department of Animal Science, The Pennsylvania State University, University Park, PA
| | - Jill A Hadley
- Center for Reproductive Biology and Health, Department of Animal Science, The Pennsylvania State University, University Park, PA
| | - Ramesh Ramachandran
- Center for Reproductive Biology and Health, Department of Animal Science, The Pennsylvania State University, University Park, PA.
| |
Collapse
|
39
|
Valenzuela JI, Perez F. Localized Intercellular Transfer of Ephrin-As by Trans-endocytosis Enables Long-Term Signaling. Dev Cell 2019; 52:104-117.e5. [PMID: 31866204 DOI: 10.1016/j.devcel.2019.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/02/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Ephrins can elicit either contact-mediated cell-cell adhesion or repulsion, depending on the efficiency of the removal of their ligand-receptor complexes from the cell surface, thus controlling tissue morphogenesis and oncogenic development. However, the dynamic of the turnover of newly assembled ephrin-Eph complexes during cell-cell interactions remains mostly unexplored. Here, we show that ephrin-A1-EphA2 complexes are locally formed at the tip of the filopodia, at cell-to-cell contacts. Clusters of ephrin-A1 from donor cells surf on filopodia associated to EphA2-bearing subdomains of acceptor cells. Full-length ephrin-A1 is transferred to acceptor cells by trans-endocytosis through a proteolysis-independent mechanism. Trans-endocytosed ephrin-A1 bound to its receptor enables signaling to be emitted from endo-lysosomes of acceptor cells. Localized trans-endocytosis of ephrin-A1 sustains contact-mediated repulsion on cancer cells. Our results uncover the essential role played by local concentration at the tip of filopodia and the trans-endocytosis of full-length ephrin to maintain long-lasting ephrin signaling.
Collapse
Affiliation(s)
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
40
|
Fereres S, Hatori R, Hatori M, Kornberg TB. Cytoneme-mediated signaling essential for tumorigenesis. PLoS Genet 2019; 15:e1008415. [PMID: 31568500 PMCID: PMC6786653 DOI: 10.1371/journal.pgen.1008415] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/10/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Communication between neoplastic cells and cells of their microenvironment is critical to cancer progression. To investigate the role of cytoneme-mediated signaling as a mechanism for distributing growth factor signaling proteins between tumor and tumor-associated cells, we analyzed EGFR and RET Drosophila tumor models and tested several genetic loss-of-function conditions that impair cytoneme-mediated signaling. Neuroglian, capricious, Irk2, SCAR, and diaphanous are genes that cytonemes require during normal development. Neuroglian and Capricious are cell adhesion proteins, Irk2 is a potassium channel, and SCAR and Diaphanous are actin-binding proteins, and the only process to which they are known to contribute jointly is cytoneme-mediated signaling. We observed that diminished function of any one of these genes suppressed tumor growth and increased organism survival. We also noted that EGFR-expressing tumor discs have abnormally extensive tracheation (respiratory tubes) and ectopically express Branchless (Bnl, a FGF) and FGFR. Bnl is a known inducer of tracheation that signals by a cytoneme-mediated process in other contexts, and we determined that exogenous over-expression of dominant negative FGFR suppressed tumor growth. Our results are consistent with the idea that cytonemes move signaling proteins between tumor and stromal cells and that cytoneme-mediated signaling is required for tumor growth and malignancy. The growth of many types of tumors depend on productive interactions with stromal, non-tumor neighbors, and although there is evidence that tumor and stromal cells exchange signaling proteins and growth factors that they produce, the mechanism by which these proteins move between the signaling cells has not been investigated and is not known. Our previous work has shown that normal cells make transient chemical synapses at sites where specialized filopodia called cytonemes contact signaling partners, and in this work we explore the possibility that tumors use the same mechanism to communicate with stromal cells. We show that cytoneme-mediated signaling is essential for growth of Drosophila tumors that model human EGFR over-expression and RET-driven disease. Remarkably, inhibition of cytonemes cures flies of lethal tumors.
Collapse
Affiliation(s)
- Sol Fereres
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Ryo Hatori
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Makiko Hatori
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Thomas B. Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Lin A, Yan W. Intercellular transfer of HLA-G: its potential in cancer immunology. Clin Transl Immunology 2019; 8:e1077. [PMID: 31489189 PMCID: PMC6716982 DOI: 10.1002/cti2.1077] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
Intercellular protein transfer between cancer cells and immune cells is a very common phenomenon that can affect different stages of host antitumor immune responses. HLA-G, a non-classical HLA class I antigen, has been observed to be widely expressed in various malignancies, and its immune-suppressive functions have been well recognised. HLA-G expression in cancer cells can directly mediate immune tolerance by interacting with inhibitory receptors such as ILT2 and ILT4 expressed on immune cells. Moreover, a network of multiple directional intercellular transfers of HLA-G among cancer cells and immune cells through trogocytosis, exosomes and tunnelling nanotubes provides malignant cells with an alternative ploy for antigen sharing and induces more complex heterogeneity, to modulate immune responses, ultimately leading to immune evasion, therapy resistance, disease progression and poor clinical outcome. Herein, we discuss the relative aspects of the intercellular transfer of HLA-G between tumor cells and immune cells and its potential use in tumor immunology research and translational cancer therapy.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource CenterTaizhou Hospital of Zhejiang ProvinceWenzhou Medical UniversityLinhaiZhejiangChina
| | - Wei‐Hua Yan
- Medical Research CenterTaizhou Hospital of Zhejiang ProvinceWenzhou Medical UniversityLinhaiZhejiangChina
| |
Collapse
|
42
|
Möckl L, Pedram K, Roy AR, Krishnan V, Gustavsson AK, Dorigo O, Bertozzi CR, Moerner WE. Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx. Dev Cell 2019; 50:57-72.e6. [PMID: 31105009 PMCID: PMC6675415 DOI: 10.1016/j.devcel.2019.04.035] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/11/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
The mammalian glycocalyx is a heavily glycosylated extramembrane compartment found on nearly every cell. Despite its relevance in both health and disease, studies of the glycocalyx remain hampered by a paucity of methods to spatially classify its components. We combine metabolic labeling, bioorthogonal chemistry, and super-resolution localization microscopy to image two constituents of cell-surface glycans, N-acetylgalactosamine (GalNAc) and sialic acid, with 10-20 nm precision in 2D and 3D. This approach enables two measurements: glycocalyx height and the distribution of individual sugars distal from the membrane. These measurements show that the glycocalyx exhibits nanoscale organization on both cell lines and primary human tumor cells. Additionally, we observe enhanced glycocalyx height in response to epithelial-to-mesenchymal transition and to oncogenic KRAS activation. In the latter case, we trace increased height to an effector gene, GALNT7. These data highlight the power of advanced imaging methods to provide molecular and functional insights into glycocalyx biology.
Collapse
Affiliation(s)
- Leonhard Möckl
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Anish R Roy
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Venkatesh Krishnan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna-Karin Gustavsson
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Oliver Dorigo
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Connor Y, Tekleab Y, Tekleab S, Nandakumar S, Bharat D, Sengupta S. A mathematical model of tumor-endothelial interactions in a 3D co-culture. Sci Rep 2019; 9:8429. [PMID: 31182723 PMCID: PMC6557844 DOI: 10.1038/s41598-019-44713-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/23/2019] [Indexed: 11/09/2022] Open
Abstract
Intravasation and extravasation of cancer cells through blood/lymph vessel endothelium are essential steps during metastasis. Successful invasion requires coordinated tumor-endothelial crosstalk, utilizing mechanochemical signaling to direct cytoskeletal rearrangement for transmigration of cancer cells. However, mechanisms underlying physical interactions are difficult to observe due to the lack of experimental models easily combined with theoretical models that better elucidate these pathways. We have previously demonstrated that an engineered 3D in vitro endothelial-epithelial co-culture system can be used to isolate both molecular and physical tumor-endothelial interactions in a platform that is easily modeled, quantified, and probed for experimental investigation. Using this platform with mathematical modeling, we show that breast metastatic cells display unique behavior with the endothelium, exhibiting a 3.2-fold increase in interaction with the endothelium and a 61-fold increase in elongation compared to normal breast epithelial cells. Our mathematical model suggests energetic favorability for cellular deformation prior to breeching endothelial junctions, expending less energy as compared to undeformed cells, which is consistent with the observed phenotype. Finally, we show experimentally that pharmacological inhibition of the cytoskeleton can disrupt the elongatation and alignment of metastatic cells with endothelial tubes, reverting to a less invasive phenotype.
Collapse
Affiliation(s)
- Yamicia Connor
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.,Brigham and Women's Hospital, Department of Medicine, Boston, MA, 02115, USA.,Harvard Medical School, Health Sciences & Technology, Boston, MA, 02115, USA.,Beth Israel Deaconess Medical Center, Department of Medicine, Boston, MA, 02215, USA
| | - Yonatan Tekleab
- Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Cambridge, MA, 02139, USA
| | - Sarah Tekleab
- Brigham and Women's Hospital, Department of Medicine, Boston, MA, 02115, USA
| | - Shyama Nandakumar
- Brigham and Women's Hospital, Department of Medicine, Boston, MA, 02115, USA
| | - Divya Bharat
- Brigham and Women's Hospital, Department of Medicine, Boston, MA, 02115, USA
| | - Shiladitya Sengupta
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA. .,Brigham and Women's Hospital, Department of Medicine, Boston, MA, 02115, USA. .,Harvard Medical School, Health Sciences & Technology, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Pergu R, Dagar S, Kumar H, Kumar R, Bhattacharya J, Mylavarapu SVS. The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec. J Biol Chem 2019; 294:7177-7193. [PMID: 30877198 DOI: 10.1074/jbc.ra118.005659] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/14/2019] [Indexed: 01/23/2023] Open
Abstract
Tunneling nanotubes (TNTs) are membrane conduits that mediate long-distance intercellular cross-talk in several organisms and play vital roles during development, pathogenic transmission, and cancer metastasis. However, the molecular mechanisms of TNT formation and function remain poorly understood. The protein MSec (also known as TNFα-induced protein 2 (TNFAIP2) and B94) is essential for TNT formation in multiple cell types. Here, using affinity protein purification, mass spectrometric identification, and confocal immunofluorescence microscopy assays, we found that MSec interacts with the endoplasmic reticulum (ER) chaperone ERp29. siRNA-mediated ERp29 depletion in mammalian cells significantly reduces TNT formation, whereas its overexpression induces TNT formation, but in a strictly MSec-dependent manner. ERp29 stabilized MSec protein levels, but not its mRNA levels, and the chaperone activity of ERp29 was required for maintaining MSec protein stability. Subcellular ER fractionation and subsequent limited proteolytic treatment suggested that MSec is associated with the outer surface of the ER. The ERp29-MSec interaction appeared to require the presence of other bridging protein(s), perhaps triggered by post-translational modification of ERp29. Our study implicates MSec as a target of ERp29 and reveals an indispensable role for the ER in TNT formation, suggesting new modalities for regulating TNT numbers in cells and tissues.
Collapse
Affiliation(s)
- Rajaiah Pergu
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and
| | - Sunayana Dagar
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Kalinga Institute of Industrial Technology, Bhubaneswar Odisha 751024, India
| | - Harsh Kumar
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and
| | - Rajesh Kumar
- the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad Haryana 121001
| | - Jayanta Bhattacharya
- the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad Haryana 121001
| | - Sivaram V S Mylavarapu
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and .,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and.,the Kalinga Institute of Industrial Technology, Bhubaneswar Odisha 751024, India
| |
Collapse
|
45
|
Jash E, Prasad P, Kumar N, Sharma T, Goldman A, Sehrawat S. Perspective on nanochannels as cellular mediators in different disease conditions. Cell Commun Signal 2018; 16:76. [PMID: 30409198 PMCID: PMC6222982 DOI: 10.1186/s12964-018-0281-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 01/05/2023] Open
Abstract
Tunnelling nanotubes (TNTs), also known as membrane nanochannels, are actin-based structures that facilitate cytoplasmic connections for rapid intercellular transfer of signals, organelles and membrane components. These dynamic TNTs can form de novo in animal cells and establish complex intercellular networks between distant cells up to 150 μm apart. Within the last decade, TNTs have been discovered in different cell types including tumor cells, macrophages, monocytes, endothelial cells and T cells. It has also been further elucidated that these nanotubes play a vital role in diseased conditions such as cancer, where TNT formation occurs at a higher pace and is used for rapid intercellular modulation of chemo-resistance. Viruses such as HIV, HSV and prions also hijack the existing TNT connections between host cells for rapid transmission and evasion of the host immune responses. The following review aims to describe the heterogeneity of TNTs, their role in different tissues and disease conditions in order to enhance our understanding on how these nanotubes can be used as a target for therapies.
Collapse
Affiliation(s)
- Eshna Jash
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Peeyush Prasad
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Naveen Kumar
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Taruna Sharma
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Aaron Goldman
- Mitra Biotech, Integrative Immuno-Oncology Center, Woburn, MA, 01801, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA. .,Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Seema Sehrawat
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
Errede M, Mangieri D, Longo G, Girolamo F, de Trizio I, Vimercati A, Serio G, Frei K, Perris R, Virgintino D. Tunneling nanotubes evoke pericyte/endothelial communication during normal and tumoral angiogenesis. Fluids Barriers CNS 2018; 15:28. [PMID: 30290761 PMCID: PMC6173884 DOI: 10.1186/s12987-018-0114-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nanotubular structures, denoted tunneling nanotubes (TNTs) have been described in recent times as involved in cell-to-cell communication between distant cells. Nevertheless, TNT-like, long filopodial processes had already been described in the last century as connecting facing, growing microvessels during the process of cerebral cortex vascularization and collateralization. Here we have investigated the possible presence and the cellular origin of TNTs during normal brain vascularization and also in highly vascularized brain tumors. METHODS We searched for TNTs by high-resolution immunofluorescence confocal microscopy, applied to the analysis of 20-µm, thick sections from lightly fixed, unembedded samples of both developing cerebral cortex and human glioblastoma (GB), immunolabeled for endothelial, pericyte, and astrocyte markers, and vessel basal lamina molecules. RESULTS The results revealed the existence of pericyte-derived TNTs, labeled by proteoglycan NG2/CSPG4 and CD146. In agreement with the described heterogeneity of these nanostructures, ultra-long (> 300 µm) and very thin (< 0.8 µm) TNTs were observed to bridge the gap between the wall of distant vessels, or were detected as short (< 300 µm) bridging cables connecting a vessel sprout with its facing vessel or two apposed vessel sprouts. The pericyte origin of TNTs ex vivo in fetal cortex and GB was confirmed by in vitro analysis of brain pericytes, which were able to form and remained connected by typical TNT structures. CONCLUSIONS None of the multiple roles described for TNTs can be excluded from a possible involvement during the processes of both normal and pathological vessel growth. A possible function, suggested by the pioneering studies made during cerebral cortex vascularization, is in cell searching and cell-to-cell recognition during the processes of vessel collateralization and vascular network formation. According to our results, it is definitely the pericyte-derived TNTs that seem to actively explore the surrounding microenvironment, searching for (site-to-site recognition), and connecting with (pericyte-to-pericyte and/or pericyte-to-endothelial cell communication), the targeted vessels. This idea implies that TNTs may have a primary role in the very early phases of both physiological and tumor angiogenesis in the brain.
Collapse
Affiliation(s)
- Mariella Errede
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Domenica Mangieri
- Department of Medical and Surgical Sciences, Biomedical Unit 'E. Altomare', University of Foggia, Foggia, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Molecular Biology Laboratory, University of Bari School of Medicine, Bari, Italy
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Department of Neurosurgery, Neurocenter of Southern Switzerland, Regional Hospital Lugano, Lugano, Switzerland
| | - Antonella Vimercati
- Department of Biomedical Sciences and Human Oncology, University of Bari School of Medicine, Bari, Italy
| | - Gabriella Serio
- Department of Emergency and Organ Transplantation, Division of Pathology, University of Bari School of Medicine, Bari, Italy
| | - Karl Frei
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Roberto Perris
- COMT-Centre for Molecular and Translational Oncology & Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.
| |
Collapse
|
47
|
Yamashita YM, Inaba M, Buszczak M. Specialized Intercellular Communications via Cytonemes and Nanotubes. Annu Rev Cell Dev Biol 2018; 34:59-84. [PMID: 30074816 DOI: 10.1146/annurev-cellbio-100617-062932] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, thin membrane protrusions such as cytonemes and tunneling nanotubes have emerged as a novel mechanism of intercellular communication. Protrusion-based cellular interactions allow for specific communication between participating cells and have a distinct spectrum of advantages compared to secretion- and diffusion-based intercellular communication. Identification of protrusion-based signaling in diverse systems suggests that this mechanism is a ubiquitous and prevailing means of communication employed by many cell types. Moreover, accumulating evidence indicates that protrusion-based intercellular communication is often involved in pathogenesis, including cancers and infections. Here we review our current understanding of protrusion-based intercellular communication.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology, and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA;
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
48
|
Pedicini L, Miteva KT, Hawley V, Gaunt HJ, Appleby HL, Cubbon RM, Marszalek K, Kearney MT, Beech DJ, McKeown L. Homotypic endothelial nanotubes induced by wheat germ agglutinin and thrombin. Sci Rep 2018; 8:7569. [PMID: 29765077 PMCID: PMC5953990 DOI: 10.1038/s41598-018-25853-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
Endothelial barrier formation is maintained by intercellular communication through junctional proteins. The mechanisms involved in maintaining endothelial communication subsequent to barrier disruption remain unclear. It is known that low numbers of endothelial cells can be interconnected by homotypic actin-driven tunneling nanotubes (TNTs) which could be important for intercellular transfer of information in vascular physiology. Here we sought insight into the triggers for TNT formation. Wheat germ agglutinin, a C-type lectin and known label for TNTs, unexpectedly caused striking induction of TNTs. A succinylated derivative was by contrast inactive, suggesting mediation by a sialylated protein. Through siRNA-mediated knockdown we identified that this protein was likely to be CD31, an important sialylated membrane protein normally at endothelial cell junctions. We subsequently considered thrombin as a physiological inducer of endothelial TNTs because it reduces junctional contact. Thrombin reduced junctional contact, redistributed CD31 and induced TNTs, but its effect on TNTs was CD31-independent. Thrombin-induced TNTs nevertheless required PKCα, a known mediator of thrombin-dependent junctional remodelling, suggesting a necessity for junctional proteins in TNT formation. Indeed, TNT-inducing effects of wheat germ agglutinin and thrombin were both correlated with cortical actin rearrangement and similarly Ca2+-dependent, suggesting common underlying mechanisms. Once formed, Ca2+ signalling along TNTs was observed.
Collapse
Affiliation(s)
- Lucia Pedicini
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Katarina T Miteva
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Verity Hawley
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hannah J Gaunt
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hollie L Appleby
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Katarzyna Marszalek
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Lynn McKeown
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
49
|
Valdebenito S, Lou E, Baldoni J, Okafo G, Eugenin E. The Novel Roles of Connexin Channels and Tunneling Nanotubes in Cancer Pathogenesis. Int J Mol Sci 2018; 19:E1270. [PMID: 29695070 PMCID: PMC5983846 DOI: 10.3390/ijms19051270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neoplastic growth and cellular differentiation are critical hallmarks of tumor development. It is well established that cell-to-cell communication between tumor cells and "normal" surrounding cells regulates tumor differentiation and proliferation, aggressiveness, and resistance to treatment. Nevertheless, the mechanisms that result in tumor growth and spread as well as the adaptation of healthy surrounding cells to the tumor environment are poorly understood. A major component of these communication systems is composed of connexin (Cx)-containing channels including gap junctions (GJs), tunneling nanotubes (TNTs), and hemichannels (HCs). There are hundreds of reports about the role of Cx-containing channels in the pathogenesis of cancer, and most of them demonstrate a downregulation of these proteins. Nonetheless, new data demonstrate that a localized communication via Cx-containing GJs, HCs, and TNTs plays a key role in tumor growth, differentiation, and resistance to therapies. Moreover, the type and downstream effects of signals communicated between the different populations of tumor cells are still unknown. However, new approaches such as artificial intelligence (AI) and machine learning (ML) could provide new insights into these signals communicated between connected cells. We propose that the identification and characterization of these new communication systems and their associated signaling could provide new targets to prevent or reduce the devastating consequences of cancer.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Public Health Research Institute (PHRI), Newark, NJ 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ 07103, USA.
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - John Baldoni
- GlaxoSmithKline, In-Silico Drug Discovery Unit, 1250 South Collegeville Road, Collegeville, PA 19426, USA.
| | - George Okafo
- GlaxoSmithKline, In-Silico Drug Discovery Unit, Stevenage SG1 2NY, UK.
| | - Eliseo Eugenin
- Public Health Research Institute (PHRI), Newark, NJ 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ 07103, USA.
| |
Collapse
|
50
|
Ghosh D, Peng X, Leal J, Mohanty R. Peptides as drug delivery vehicles across biological barriers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018; 48:89-111. [PMID: 29963321 PMCID: PMC6023411 DOI: 10.1007/s40005-017-0374-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/25/2017] [Indexed: 12/15/2022]
Abstract
Peptides are small biological molecules that are attractive in drug delivery and materials engineering for applications including therapeutics, molecular building blocks and cell-targeting ligands. Peptides are small but can possess complexity and functionality as larger proteins. Due to their intrinsic properties, peptides are able to overcome the physiological and transport barriers presented by diseases. In this review, we discuss the progress of identifying and using peptides to shuttle across biological barriers and facilitate transport of drugs and drug delivery systems for improved therapy. Here, the focus of this review is on rationally designed, phage display peptides, and even endogenous peptides as carriers to penetrate biological barriers, specifically the blood-brain barrier(BBB), the gastrointestinal tract (GI), and the solid tumor microenvironment (T). We will discuss recent advances of peptides as drug carriers in these biological environments. From these findings, challenges and potential opportunities to iterate and improve peptide-based approaches will be discussed to translate their promise towards the clinic to deliver drugs for therapeutic efficacy.
Collapse
Affiliation(s)
- Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Xiujuan Peng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| | - Rashmi Mohanty
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Austin, TX 78712, USA
| |
Collapse
|