1
|
Li Q, Lin J, Luo S, Schmitz‐Abe K, Agrawal R, Meng M, Moghadaszadeh B, Beggs AH, Liu X, Perrella MA, Agrawal PB. Integrated multi-omics approach reveals the role of striated muscle preferentially expressed protein kinase in skeletal muscle including its relationship with myospryn complex. J Cachexia Sarcopenia Muscle 2024; 15:1003-1015. [PMID: 38725372 PMCID: PMC11154751 DOI: 10.1002/jcsm.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.
Collapse
Affiliation(s)
- Qifei Li
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Jasmine Lin
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Shiyu Luo
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Klaus Schmitz‐Abe
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Rohan Agrawal
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Melissa Meng
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Behzad Moghadaszadeh
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Alan H. Beggs
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Pankaj B. Agrawal
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
2
|
Wakeley ME, Denning NL, Jiang J, De Paepe ME, Chung CS, Wang P, Ayala A. Herpes virus entry mediator signaling blockade produces mortality in neonatal sepsis through induced cardiac dysfunction. Front Immunol 2024; 15:1365174. [PMID: 38774873 PMCID: PMC11106455 DOI: 10.3389/fimmu.2024.1365174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Sepsis remains a major source of morbidity and mortality in neonates, and characterization of immune regulation in the neonatal septic response remains limited. HVEM is a checkpoint regulator which can both stimulate or inhibit immune responses and demonstrates altered expression after sepsis. We hypothesized that signaling via HVEM would be essential for the neonatal response to sepsis, and that therefore blockade of this pathway would improve survival to septic challenge. Methods To explore this, neonatal mice were treated with cecal slurry (CS), CS with Anti-HVEM antibody (CS-Ab) or CS with isotype (CS-IT) and followed for 7-day survival. Mice from all treatment groups had thymus, lung, kidney and peritoneal fluid harvested, weighed, and stained for histologic evaluation, and changes in cardiac function were assessed with echocardiography. Results Mortality was significantly higher for CS-Ab mice (72.2%) than for CS-IT mice (22.2%). CS resulted in dysregulated alveolar remodeling, but CS-Ab lungs demonstrated significantly less dysfunctional alveolar remodeling than CS alone (MCL 121.0 CS vs. 87.6 CS-Ab), as well as increased renal tubular vacuolization. No morphologic differences in alveolar septation or thymic karyorrhexis were found between CS-Ab and CS-IT. CS-Ab pups exhibited a marked decrease in heart rate (390.3 Sh vs. 342.1 CS-Ab), stroke volume (13.08 CS-IT vs. 8.83 CS-Ab) and ultimately cardiac output (4.90 Sh vs. 3.02 CS-Ab) as well as a significant increase in ejection fraction (73.74 Sh vs. 83.75 CS-Ab) and cardiac strain (40.74 Sh vs. 51.16 CS-Ab) as compared to CS-IT or Sham animals. Discussion While receptor ligation of aspects of HVEM signaling, via antibody blockade, appears to mitigate aspects of lung injury and thymic involution, stimulatory signaling via HVEM still seems to be necessary for vascular and hemodynamic resilience and overall neonatal mouse survival in response to this experimental polymicrobial septic insult. This dissonance in the activity of anti-HVEM neutralizing antibody in neonatal animals speaks to the differences in how septic cardiac dysfunction should be considered and approached in the neonatal population.
Collapse
Affiliation(s)
- Michelle E. Wakeley
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Naomi-Liza Denning
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jihong Jiang
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Monique E. De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
3
|
Han W, Wang W, Wang Q, Maduray K, Hao L, Zhong J. A review on regulation of DNA methylation during post-myocardial infarction. Front Pharmacol 2024; 15:1267585. [PMID: 38414735 PMCID: PMC10896928 DOI: 10.3389/fphar.2024.1267585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Myocardial infarction (MI) imposes a huge medical and economic burden on society, and cardiac repair after MI involves a complex series of processes. Understanding the key mechanisms (such as apoptosis, autophagy, inflammation, and fibrosis) will facilitate further drug development and patient treatment. Presently, a substantial body of evidence suggests that the regulation of epigenetic processes contributes to cardiac repair following MI, with DNA methylation being among the notable epigenetic factors involved. This article will review the research on the mechanism of DNA methylation regulation after MI to provide some insights for future research and development of related drugs.
Collapse
Affiliation(s)
- Wenqiang Han
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenxin Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qinhong Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Kellina Maduray
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Li G, Huang H, Wu Y, Shu C, Hwang N, Li Q, Zhao R, Lam HC, Oldham WM, Ei-Chemaly S, Agrawal PB, Tian J, Liu X, Perrella MA. Striated preferentially expressed gene deficiency leads to mitochondrial dysfunction in developing cardiomyocytes. Basic Res Cardiol 2024; 119:151-168. [PMID: 38145999 PMCID: PMC10837246 DOI: 10.1007/s00395-023-01029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023]
Abstract
A deficiency of striated preferentially expressed gene (Speg), a member of the myosin light chain kinase family, results in abnormal myofibril structure and function of immature cardiomyocytes (CMs), corresponding with a dilated cardiomyopathy, heart failure and perinatal death. Mitochondrial development plays a role in cardiomyocyte maturation. Therefore, this study investigated whether Speg deficiency ( - / - ) in CMs would result in mitochondrial abnormalities. Speg wild-type and Speg-/- C57BL/6 littermate mice were utilized for assessment of mitochondrial structure by transmission electron and confocal microscopies. Speg was expressed in the first and second heart fields at embryonic (E) day 7.5, prior to the expression of mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) at E8.5. Decreases in NCLX expression (E11.5) and the mitochondrial-to-nuclear DNA ratio (E13.5) were observed in Speg-/- hearts. Imaging of E18.5 Speg-/- hearts revealed abnormal mitochondrial cristae, corresponding with decreased ATP production in cells fed glucose or palmitate, increased levels of mitochondrial superoxide and depolarization of mitochondrial membrane potential. Interestingly, phosphorylated (p) PGC-1α, a key mediator of mitochondrial development, was significantly reduced in Speg-/- hearts during screening for targeted genes. Besides Z-line expression, Speg partially co-localized with PGC-1α in the sarcomeric region and was found in the same complex by co-immunoprecipitation. Overexpression of a Speg internal serine/threonine kinase domain in Speg-/- CMs promoted translocation of pPGC-1α into the nucleus, and restored ATP production that was abolished by siRNA-mediated silencing of PGC-1α. Our results demonstrate a critical role of Speg in mitochondrial development and energy metabolism in CMs, mediated in part by phosphorylation of PGC-1α.
Collapse
Affiliation(s)
- Gu Li
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Cardiology, and Department of Pulmonary, Children's Hospital, Chongqing Medical University, Chongqing, 400015, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Yanshuang Wu
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Chang Shu
- Department of Cardiology, and Department of Pulmonary, Children's Hospital, Chongqing Medical University, Chongqing, 400015, China
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Qifei Li
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Neonatology, Department of Pediatrics and Jackson Health System, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rose Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Hilaire C Lam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Souheil Ei-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Neonatology, Department of Pediatrics and Jackson Health System, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jie Tian
- Department of Cardiology, and Department of Pulmonary, Children's Hospital, Chongqing Medical University, Chongqing, 400015, China
| | - Xiaoli Liu
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| | - Mark A Perrella
- Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Chaubey S, Bhandari V. Stem cells in neonatal diseases: An overview. Semin Fetal Neonatal Med 2022; 27:101325. [PMID: 35367186 DOI: 10.1016/j.siny.2022.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Preterm birth and its common complications are major causes of infant mortality and long-term morbidity. Despite great advances in understanding the pathogenesis of neonatal diseases and improvements in neonatal intensive care, effective therapies for the prevention or treatment for these conditions are still lacking. Stem cell (SC) therapy is rapidly emerging as a novel therapeutic tool for several diseases of the newborn with encouraging pre-clinical results that hold promise for translation to the bedside. The utility of different types of SCs in neonatal diseases is being explored. SC therapeutic efficacy is closely associated with its secretome-conditioned media and SC-derived extracellular vesicles, and a subsequent paracrine action in response to tissue injuries. In the current review, we summarize the pre-clinical and clinical studies of SCs and its secretome in diverse preterm and term birth-related diseases, thereby providing new insights for future therapies in neonatal medicine.
Collapse
Affiliation(s)
- Sushma Chaubey
- Department of Biomedical Engineering, Widener University, Chester, PA, 19013, USA.
| | - Vineet Bhandari
- Neonatology Research Laboratory, Department of Pediatrics, The Children's Regional Hospital at Cooper, Cooper Medical School of Rowan University, Suite Dorrance 755, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
6
|
Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease. Int J Mol Sci 2021; 22:ijms22115732. [PMID: 34072258 PMCID: PMC8199188 DOI: 10.3390/ijms22115732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and function of skeletal and cardiac muscles. Here we review the genotype-phenotype relationships and the molecular mechanisms of SPEG-related diseases. This review will focus on the progress made toward characterizing SPEG and its interacting partners, and its multifaceted functions in muscle regeneration, triad development and maintenance, and excitation-contraction coupling. We will also discuss future directions that are yet to be investigated including understanding of its tissue-specific roles, finding additional interacting proteins and their relationships. Understanding the basic mechanisms by which SPEG regulates muscle development and function will provide critical insights into these essential processes and help identify therapeutic targets in SPEG-related disorders.
Collapse
|
7
|
A Novel Recessive Mutation in SPEG Causes Early Onset Dilated Cardiomyopathy. PLoS Genet 2020; 16:e1009000. [PMID: 32925938 PMCID: PMC7571691 DOI: 10.1371/journal.pgen.1009000] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/19/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure and sudden cardiac death. It has been estimated that up to half of DCM cases are hereditary. Mutations in more than 50 genes, primarily autosomal dominant, have been reported. Although rare, recessive mutations are thought to contribute considerably to DCM, especially in young children. Here we identified a novel recessive mutation in the striated muscle enriched protein kinase (SPEG, p. E1680K) gene in a family with nonsyndromic, early onset DCM. To ascertain the pathogenicity of this mutation, we generated SPEG E1680K homozygous mutant human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) using CRISPR/Cas9-mediated genome editing. Functional studies in mutant iPSC-CMs showed aberrant calcium homeostasis, impaired contractility, and sarcomeric disorganization, recapitulating the hallmarks of DCM. By combining genetic analysis with human iPSCs, genome editing, and functional assays, we identified SPEG E1680K as a novel mutation associated with early onset DCM and provide evidence for its pathogenicity in vitro. Our study provides a conceptual paradigm for establishing genotype-phenotype associations in DCM with autosomal recessive inheritance.
Collapse
|
8
|
Li Q, Lin J, Rosen SM, Zhang T, Kazerounian S, Luo S, Agrawal PB. Striated Preferentially Expressed Protein Kinase (SPEG)-Deficient Skeletal Muscles Display Fewer Satellite Cells with Reduced Proliferation and Delayed Differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2453-2463. [PMID: 32919980 DOI: 10.1016/j.ajpath.2020.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Centronuclear myopathies (CNMs) are a subtype of congenital myopathies characterized by skeletal muscle weakness and an increase in the number of central myonuclei. SPEG (striated preferentially expressed protein kinase) has been identified as the sixth gene associated with CNM, and it has been shown that striated muscle-specific Speg-knockout (KO) mice have defective triad formation, abnormal excitation-contraction coupling, and calcium mishandling. The impact of SPEG deficiency on the survival and function of myogenic cells remains to be deciphered. In this study, the authors examined the overall population, proliferation, and differentiation of myogenic cells obtained from striated muscle-specific Speg-KO mice and compared them with wild-type (WT) controls. SPEG-deficient skeletal muscles contained fewer myogenic cells, which on further study demonstrated reduced proliferation and delayed differentiation compared with those from WT muscles. Regenerative response to skeletal muscle injury in Speg-KO mice was compared with that of WT mice, leading to the identification of similar abnormalities including fewer satellite cells, fewer dividing cells, and an increase in apoptotic cells in KO mice. Overall, these results reveal specific abnormalities in myogenic cell number and behavior associated with SPEG deficiency. Similar satellite cell defects have been reported in mouse models of MTM1- and DNM2-associated CNM, suggestive of shared underlying pathways.
Collapse
Affiliation(s)
- Qifei Li
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jasmine Lin
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samantha M Rosen
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tian Zhang
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shideh Kazerounian
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shiyu Luo
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Hou M, Han J, Li G, Kwon MY, Jiang J, Emani S, Taglauer ES, Park JA, Choi EB, Vodnala M, Fong YW, Emani SM, Rosas IO, Perrella MA, Liu X. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther 2020; 11:55. [PMID: 32054514 PMCID: PMC7020558 DOI: 10.1186/s13287-020-1567-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In a number of disease processes, the body is unable to repair injured tissue, promoting the need to develop strategies for tissue repair and regeneration, including the use of cellular therapeutics. Trophoblast stem cells (TSCs) are considered putative stem cells as they differentiate into other subtypes of trophoblast cells. To identify cells for future therapeutic strategies, we investigated whether TSCs have properties of stem/progenitor cells including self-renewal and the capacity to differentiate into parenchymal cells of fetal organs, in vitro and in vivo. METHODS TSCs were isolated using anti-CD117 micro-beads, from embryonic day 18.5 placentas. In vitro, CD117+ TSCs were cultured, at a limiting dilution in growth medium for the development of multicellular clones and in specialized medium for differentiation into lung epithelial cells, cardiomyocytes, and retinal photoreceptor cells. CD117+ TSCs were also injected in utero into lung, heart, and the sub-retinal space of embryonic day 13.5 fetuses, and the organs were harvested for histological assessment after a natural delivery. RESULTS We first identified CD117+ cells within the labyrinth zone and chorionic basal plate of murine placentas in late pregnancy, embryonic day 18.5. CD117+ TSCs formed multicellular clones that remained positive for CD117 in vitro, consistent with self-renewal properties. The clonal cells demonstrated multipotency, capable of differentiating into lung epithelial cells (endoderm), cardiomyocytes (mesoderm), and retinal photoreceptor cells (ectoderm). Finally, injection of CD117+ TSCs in utero into lungs, hearts, and the sub-retinal spaces of fetuses resulted in their engraftment on day 1 after birth, and the CD117+ TSCs differentiated into lung alveolar epithelial cells, heart cardiomyocytes, and retina photoreceptor cells, corresponding with the organs in which they were injected. CONCLUSIONS Our findings demonstrate that CD117+ TSCs have the properties of stem cells including clonogenicity, self-renewal, and multipotency. In utero administration of CD117+ TSCs engraft and differentiate into resident cells of the lung, heart, and retina during mouse development.
Collapse
Affiliation(s)
- Minmin Hou
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Junwen Han
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Gu Li
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Min-Young Kwon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Jiani Jiang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Sirisha Emani
- Department of Cardiovascular Surgery, Children's Hospital, Boston, MA, USA
| | | | - Jin-Ah Park
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Eun-Bee Choi
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Munender Vodnala
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Yick W Fong
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Sitaram M Emani
- Department of Cardiovascular Surgery, Children's Hospital, Boston, MA, USA
| | - Ivan O Rosas
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Mark A Perrella
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaoli Liu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Nitkin CR, Rajasingh J, Pisano C, Besner GE, Thébaud B, Sampath V. Stem cell therapy for preventing neonatal diseases in the 21st century: Current understanding and challenges. Pediatr Res 2020; 87:265-276. [PMID: 31086355 PMCID: PMC6854309 DOI: 10.1038/s41390-019-0425-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Diseases of the preterm newborn such as bronchopulmonary dysplasia, necrotizing enterocolitis, cerebral palsy, and hypoxic-ischemic encephalopathy continue to be major causes of infant mortality and long-term morbidity. Effective therapies for the prevention or treatment for these conditions are still lacking as recent clinical trials have shown modest or no benefit. Stem cell therapy is rapidly emerging as a novel therapeutic tool for several neonatal diseases with encouraging pre-clinical results that hold promise for clinical translation. However, there are a number of unanswered questions and facets to the development of stem cell therapy as a clinical intervention. There is much work to be done to fully elucidate the mechanisms by which stem cell therapy is effective (e.g., anti-inflammatory versus pro-angiogenic), identifying important paracrine mediators, and determining the timing and type of therapy (e.g., cellular versus secretomes), as well as patient characteristics that are ideal. Importantly, the interaction between stem cell therapy and current, standard-of-care interventions is nearly completely unknown. In this review, we will focus predominantly on the use of mesenchymal stromal cells for neonatal diseases, highlighting the promises and challenges in clinical translation towards preventing neonatal diseases in the 21st century.
Collapse
Affiliation(s)
- Christopher R Nitkin
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Johnson Rajasingh
- Department of Cardiovascular Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, MO, USA
| | - Courtney Pisano
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Besner
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA.
| |
Collapse
|
11
|
Quan C, Li M, Du Q, Chen Q, Wang H, Campbell D, Fang L, Xue B, MacKintosh C, Gao X, Ouyang K, Wang HY, Chen S. SPEG Controls Calcium Reuptake Into the Sarcoplasmic Reticulum Through Regulating SERCA2a by Its Second Kinase-Domain. Circ Res 2019; 124:712-726. [PMID: 30566039 DOI: 10.1161/circresaha.118.313916] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE SPEG (Striated muscle preferentially expressed protein kinase) has 2 kinase-domains and is critical for cardiac development and function. However, it is not clear how these 2 kinase-domains function to maintain cardiac performance. OBJECTIVE To determine the molecular functions of the 2 kinase-domains of SPEG. METHODS AND RESULTS A proteomics approach identified SERCA2a (sarcoplasmic/endoplasmic reticulum calcium ATPase 2a) as a protein interacting with the second kinase-domain but not the first kinase-domain of SPEG. Furthermore, the second kinase-domain of SPEG could phosphorylate Thr484 on SERCA2a, promote its oligomerization and increase calcium reuptake into the sarcoplasmic/endoplasmic reticulum in culture cells and primary neonatal rat cardiomyocytes. Phosphorylation of SERCA2a by SPEG enhanced its calcium-transporting activity without affecting its ATPase activity. Depletion of Speg in neonatal rat cardiomyocytes inhibited SERCA2a-Thr484 phosphorylation and sarcoplasmic reticulum calcium reuptake. Moreover, overexpression of SERCA2aThr484Ala mutant protein also slowed sarcoplasmic reticulum calcium reuptake in neonatal rat cardiomyocytes. In contrast, domain mapping and phosphorylation analysis revealed that the first kinase-domain of SPEG interacted and phosphorylated its recently identified substrate JPH2 (junctophilin-2). An inducible heart-specific Speg knockout mouse model was generated to further study this SPEG-SERCA2a signal nexus in vivo. Inducible deletion of Speg decreased SERCA2a-Thr484 phosphorylation and its oligomerization in the heart. Importantly, inducible deletion of Speg inhibited SERCA2a calcium-transporting activity and impaired calcium reuptake into the sarcoplasmic reticulum in cardiomyocytes, which preceded morphological and functional alterations of the heart and eventually led to heart failure in adult mice. CONCLUSIONS Our data demonstrate that the 2 kinase-domains of SPEG may play distinct roles to regulate cardiac function. The second kinase-domain of SPEG is a critical regulator for SERCA2a. Our findings suggest that SPEG may serve as a new target to modulate SERCA2a activation for treatment of heart diseases with impaired calcium homeostasis.
Collapse
Affiliation(s)
- Chao Quan
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center (C.Q., M.L., Q.D., Q.L.C., X.G., H.Y.W., S.C.), Nanjing University, China
| | - Min Li
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center (C.Q., M.L., Q.D., Q.L.C., X.G., H.Y.W., S.C.), Nanjing University, China
| | - Qian Du
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center (C.Q., M.L., Q.D., Q.L.C., X.G., H.Y.W., S.C.), Nanjing University, China
| | - Qiaoli Chen
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center (C.Q., M.L., Q.D., Q.L.C., X.G., H.Y.W., S.C.), Nanjing University, China
| | - Hong Wang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, China (H.W., K.F.O.Y.)
| | - David Campbell
- MRC Protein Phosphorylation and Ubiquitylation Unit (D.C.), School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Lei Fang
- School of Medicine (L.F., B.X.), Nanjing University, China
| | - Bin Xue
- School of Medicine (L.F., B.X.), Nanjing University, China
| | - Carol MacKintosh
- Division of Cell and Developmental Biology (C.M.), School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Xiang Gao
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center (C.Q., M.L., Q.D., Q.L.C., X.G., H.Y.W., S.C.), Nanjing University, China
| | - Kunfu Ouyang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, China (H.W., K.F.O.Y.)
| | - Hong Yu Wang
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center (C.Q., M.L., Q.D., Q.L.C., X.G., H.Y.W., S.C.), Nanjing University, China
| | - Shuai Chen
- From the State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center (C.Q., M.L., Q.D., Q.L.C., X.G., H.Y.W., S.C.), Nanjing University, China
| |
Collapse
|
12
|
Huntoon V, Widrick JJ, Sanchez C, Rosen SM, Kutchukian C, Cao S, Pierson CR, Liu X, Perrella MA, Beggs AH, Jacquemond V, Agrawal PB. SPEG-deficient skeletal muscles exhibit abnormal triad and defective calcium handling. Hum Mol Genet 2019; 27:1608-1617. [PMID: 29474540 DOI: 10.1093/hmg/ddy068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/19/2018] [Indexed: 02/05/2023] Open
Abstract
Centronuclear myopathies (CNM) are a subtype of congenital myopathies (CM) characterized by skeletal muscle weakness and an increase in the number of central myonuclei. We have previously identified three CNM probands, two with associated dilated cardiomyopathy, carrying striated preferentially expressed gene (SPEG) mutations. Currently, the role of SPEG in skeletal muscle function is unclear as constitutive SPEG-deficient mice developed severe dilated cardiomyopathy and died in utero. We have generated a conditional Speg-KO mouse model and excised Speg by crosses with striated muscle-specific cre-expressing mice (MCK-Cre). The resulting litters had a delay in Speg excision consistent with cre expression starting in early postnatal life and, therefore, an extended lifespan up to a few months. KO mice were significantly smaller and weaker than their littermate-matched controls. Histopathological skeletal muscle analysis revealed smaller myofibers, marked fiber-size variability, and poor integrity and low number of triads. Further, SPEG-deficient muscle fibers were weaker by physiological and in vitro studies and exhibited abnormal Ca2+ handling and excitation-contraction (E-C) coupling. Overall, SPEG deficiency in skeletal muscle is associated with fewer and abnormal triads, and defective calcium handling and excitation-contraction coupling, suggesting that therapies targeting calcium signaling may be beneficial in such patients.
Collapse
Affiliation(s)
- Virginia Huntoon
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey J Widrick
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Colline Sanchez
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Samantha M Rosen
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Candice Kutchukian
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Siqi Cao
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and Department of Pathology and Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Xiaoli Liu
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Newborn Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mark A Perrella
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Newborn Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vincent Jacquemond
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69622 Villeurbanne, France
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Affiliation(s)
- Barry London
- From the Division of Cardiovascular Medicine, University of Iowa, Iowa City.
| |
Collapse
|
14
|
Su J, Fang M, Tian B, Luo J, Jin C, Wang X, Ning Z, Li X. Hypoxia induces hypomethylation of the HMGB1 promoter via the MAPK/DNMT1/HMGB1 pathway in cardiac progenitor cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1121-1130. [PMID: 30307477 DOI: 10.1093/abbs/gmy118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 01/09/2023] Open
Abstract
Apoptosis is involved in the death of cardiac progenitor cells (CPCs) after myocardial infarction (MI) in the heart. The loss of CPCs results in infarct scar and further deterioration of the heart function. Though stem cell-based therapy provides an effective approach for heart function recovery after MI, the retention of CPCs in the infarcted area of the heart is the main barrier that limits its promising therapy. Therefore, the underlying mechanisms of CPC apoptosis in hypoxia are important for the development of new therapeutic targets for MI patients. In this work, we found that the expression of high-mobility group box 1(HMGB1) was upregulated in CPCs under hypoxia conditions. Further study demonstrated that HMGB1 was regulated by DNA methyltransferases 1 (DNMT1) via changing the methylation state of CpGs in the promoter of HMGB1 in CPCs during hypoxia process. Additionally, mitogen-activated protein kinase (MAPK) signaling pathway was found to be involved in regulating DNMT1/HMGB1-mediated CPC apoptosis in hypoxia process. In conclusion, our findings demonstrate a novel regulatory mechanism for CPC apoptosis and proliferation under hypoxia conditions, which may provide a new therapeutic approach for MI patients.
Collapse
Affiliation(s)
- Jinwen Su
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Ming Fang
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Bei Tian
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jun Luo
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Can Jin
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xuejun Wang
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xinming Li
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
15
|
Li L, Wang Q, Yuan Z, Chen A, Liu Z, Li H, Wang Z. Long non-coding RNA H19 contributes to hypoxia-induced CPC injury by suppressing Sirt1 through miR-200a-3p. Acta Biochim Biophys Sin (Shanghai) 2018; 50:950-959. [PMID: 30137188 DOI: 10.1093/abbs/gmy093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 12/28/2022] Open
Abstract
Cardiomyocyte death is the chief obstacle that prevents the heart function recovery in myocardial infarction (MI)-induced heart failure (HF). Cardiac progenitor cells (CPCs)-based myocardial regeneration has provided a promising method for heart function recovery after MI. However, CPCs can easily lose their proliferation ability due to oxygen deficiency in infarcted myocardium. Revealing the underlying molecular mechanism for CPC proliferation is critical for effective MI therapy. In the present study, we set up a CoCl2-induced hypoxia model in CPCs. We found that the expression of long non-coding RNA H19 was significantly down-regulated in CPCs after hypoxia stimuli. In addition, H19 suppression attenuated the proliferation and migration of CPCs under hypoxia stress. Furthermore, we discovered that H19 regulated the proliferation and migration of CPCs through mediating the expression of Sirt1 which is a target of miR-200a-3p under hypoxia. In conclusion, our findings demonstrate a novel regulatory mechanism for the proliferation and migration of CPCs under hypoxia condition, which provides useful information for the development of new therapeutic targets for MI therapy.
Collapse
Affiliation(s)
- Linlin Li
- College of Life Sciences, Peking University, Beijing, China
| | - Qiuyun Wang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Zhize Yuan
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Anqing Chen
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Zuyun Liu
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| | - Zhe Wang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai, China
| |
Collapse
|
16
|
Shu C, Huang H, Xu Y, Rota M, Sorrentino A, Peng Y, Padera RF, Huntoon V, Agrawal PB, Liu X, Perrella MA. Pressure Overload in Mice With Haploinsufficiency of Striated Preferentially Expressed Gene Leads to Decompensated Heart Failure. Front Physiol 2018; 9:863. [PMID: 30042693 PMCID: PMC6048438 DOI: 10.3389/fphys.2018.00863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/18/2018] [Indexed: 01/20/2023] Open
Abstract
Striated preferentially expressed gene (Speg) is a member of the myosin light chain kinase family of proteins. Constitutive Speg deficient (Speg−/−) mice develop a dilated cardiomyopathy, and the majority of these mice die in utero or shortly after birth. In the present study we assessed the importance of Speg in adult mice. Speg−/− mice that survived to adulthood, or adult striated muscle-specific Speg knockout mice (Speg-KO), demonstrated cardiac dysfunction and evidence of increased left ventricular (LV) internal diameter and heart to body weight ratio. To determine whether heterozygosity of Speg interferes with the response of the heart to pathophysiologic stress, Speg+/− mice were exposed to pressure overload induced by transverse aortic constriction (TAC). At baseline, Speg+/+ and Speg+/− hearts showed no difference in cardiac function. However, 4 weeks after TAC, Speg+/− mice had a marked reduction in LV function. This defect was associated with an increase in LV internal diameter and enhanced heart weight to body weight ratio, compared with Speg+/+ mice after TAC. The response of Speg+/− mice to pressure overload also included increased fibrotic deposition in the myocardium, disruption of transverse tubules, and attenuation in cell contractility, compared with Speg+/+ mice. Taken together, these data demonstrate that Speg is necessary for normal cardiac function and is involved in the complex adaptation of the heart in response to TAC. Haploinsufficiency of Speg results in decompensated heart failure when exposed to pressure overload.
Collapse
Affiliation(s)
- Chang Shu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Respiratory Center, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - He Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Anesthesiology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Marcello Rota
- Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Physiology, New York Medical College, Valhalla, NY, United States.,Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrea Sorrentino
- Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert F Padera
- Division of Health Sciences and Technology, Harvard-MIT Health Sciences and Technology, Cambridge, MA, United States.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Virginia Huntoon
- Divisions of Newborn Medicine and Genetics & Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Pankaj B Agrawal
- Divisions of Newborn Medicine and Genetics & Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Yuan Y, Du W, Liu J, Ma W, Zhang L, Du Z, Cai B. Stem Cell-Derived Exosome in Cardiovascular Diseases: Macro Roles of Micro Particles. Front Pharmacol 2018; 9:547. [PMID: 29904347 PMCID: PMC5991072 DOI: 10.3389/fphar.2018.00547] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022] Open
Abstract
The stem cell-based therapy has emerged as the promising therapeutic strategies for cardiovascular diseases (CVDs). Recently, increasing evidence suggest stem cell-derived active exosomes are important communicators among cells in the heart via delivering specific substances to the adjacent/distant target cells. These exosomes and their contents such as certain proteins, miRNAs and lncRNAs exhibit huge beneficial effects on preventing heart damage and promoting cardiac repair. More importantly, stem cell-derived exosomes are more effective and safer than stem cell transplantation. Therefore, administration of stem cell-derived exosomes will expectantly be an alternative stem cell-based therapy for the treatment of CVDs. Furthermore, modification of stem cell-derived exosomes or artificial synthesis of exosomes will be the new therapeutic tools for CVDs in the future. In addition, stem cell-derived exosomes also have been implicated in the diagnosis and prognosis of CVDs. In this review, we summarize the current advances of stem cell-derived exosome-based treatment and prognosis for CVDs, including their potential benefits, underlying mechanisms and limitations, which will provide novel insights of exosomes as a new tool in clinical therapeutic translation in the future.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weijie Du
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaqi Liu
- Department of Pharmacology, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China
| | - Wenya Ma
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lai Zhang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhimin Du
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Li L, Wang Q, Yuan Z, Chen A, Liu Z, Wang Z, Li H. LncRNA-MALAT1 promotes CPC proliferation and migration in hypoxia by up-regulation of JMJD6 via sponging miR-125. Biochem Biophys Res Commun 2018; 499:711-718. [PMID: 29605300 DOI: 10.1016/j.bbrc.2018.03.216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 02/08/2023]
Abstract
The death of cardiomyocytes after myocardial infarction (MI) often leads to ventricular remodeling as well as heart failure (HF). The cardiac progenitor cells (CPCs) have the ability to regenerate functional heart muscle in patients after MI, which provides a promising method for MI-induced HF therapy. However, to date, CPCs can easily lose their proliferation ability in the infarcted myocardium. Therefore, exploring the mechanism for CPC proliferation is essential for CPC-based therapy in MI-induced HF. A previous study indicated that a hypoxic environment is essential for CPC proliferation, but the mechanism is not yet clear. In this work, we discovered that CoCl2-induced hypoxia can promote CPC proliferation and migration. Additionally, long non-coding RNA MALAT1 expression was significantly up-regulated in the CoCl2-induced hypoxia CPC model. MALAT1 suppression inhibited CPC proliferation and migration under hypoxic conditions. In addition, MALAT1 acted as a sponge for miR-125. The miR-125 inhibitor restored the proliferation and migration potentials of CPCs after a MALAT1 knockdown in hypoxia. A further study demonstrated that JMJD6 was a target of miR-125 whose expression was negatively regulated by miR-125. JMJD6 knockdown blocked miR-125 inhibitor's protective effect on CPC function in hypoxia. Ultimately, our finding demonstrated that MALAT1 can modulate CPC proliferation and migration potential through the miR-125/JMJD6 axis in hypoxia. Our finding provided a new regulatory mechanism for CPC proliferation in hypoxia, which provided a new target for MI-induced HF therapy.
Collapse
Affiliation(s)
- Linlin Li
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiuyun Wang
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Zhize Yuan
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Anqing Chen
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Zuyun Liu
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Zhe Wang
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China.
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, No. 197, Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
19
|
Zhong J, Wang S, Shen WB, Kaushal S, Yang P. The current status and future of cardiac stem/progenitor cell therapy for congenital heart defects from diabetic pregnancy. Pediatr Res 2018; 83:275-282. [PMID: 29016556 PMCID: PMC5876137 DOI: 10.1038/pr.2017.259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
Pregestational maternal diabetes induces congenital heart defects (CHDs). Cardiac dysfunction after palliative surgical procedures contributes to the high mortality of CHD patients. Autologous or allogeneic stem cell therapies are effective for improving cardiac function in animal models and clinical trials. c-kit+ cardiac progenitor cells (CPCs), the most recognized CPCs, have the following basic properties of stem cells: self-renewal, multicellular clone formation, and differentiation into multiple cardiac lineages. However, there is ongoing debate regarding whether c-kit+ CPCs can give rise to sufficient cardiomyocytes. A new hypothesis to address the beneficial effect of c-kit+ CPCs is that these cells stimulate endogenous cardiac cells through a paracrine function in producing a robust secretome and exosomes. The values of other cardiac CPCs, including Sca1+ CPCs and cardiosphere-derived cells, are beginning to be revealed. These cells may be better choices than c-kit+ CPCs for generating cardiomyocytes. Adult mesenchymal stem cells are considered immune-incompetent and effective for improving cardiac function. Autologous CPC therapy may be limited by the observation that maternal diabetes adversely affects the biological function of embryonic stem cells and CPCs. Future studies should focus on determining the mechanistic action of these cells, identifying new CPC markers, selecting highly effective CPCs, and engineering cell-free products.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shengbing Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sunjay Kaushal
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Darbellay J, Cox B, Lai K, Delgado-Ortega M, Wheler C, Wilson D, Walker S, Starrak G, Hockley D, Huang Y, Mutwiri G, Potter A, Gilmour M, Safronetz D, Gerdts V, Karniychuk U. Zika Virus Causes Persistent Infection in Porcine Conceptuses and may Impair Health in Offspring. EBioMedicine 2017; 25:73-86. [PMID: 29097124 PMCID: PMC5704061 DOI: 10.1016/j.ebiom.2017.09.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
Outcomes of Zika virus (ZIKV) infection in pregnant women vary from the birth of asymptomatic offspring to abnormal development and severe brain lesions in fetuses and infants. There are concerns that offspring affected in utero and born without apparent symptoms may develop mental illnesses. Therefore, animal models are important to test interventions against in utero infection and health sequelae in symptomatic and likely more widespread asymptomatic offspring. To partially reproduce in utero infection in humans, we directly inoculated selected porcine conceptuses with ZIKV. Inoculation resulted in rapid trans-fetal infections, persistent infection in conceptuses, molecular pathology in fetal brains, fetal antibody and type I interferon responses. Offspring infected in utero showed ZIKV in their fetal membranes collected after birth. Some in utero affected piglets were small, depressed, had undersized brains, and showed seizures. Some piglets showed potentially increased activity. Our data suggest that porcine model of persistent in utero ZIKV infection has a strong potential for translational research and can be used to test therapeutic interventions in vivo.
Collapse
Affiliation(s)
- Joseph Darbellay
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Brian Cox
- Department of Physiology, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kenneth Lai
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Mario Delgado-Ortega
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Colette Wheler
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Donald Wilson
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Stewart Walker
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Gregory Starrak
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Duncan Hockley
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Yanyun Huang
- Prairie Diagnostic Services, Saskatoon, SK S7N 5B4, Canada
| | - George Mutwiri
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Matthew Gilmour
- Canada National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - David Safronetz
- Canada National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Uladzimir Karniychuk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
21
|
Single-cell analysis of the fate of c-kit-positive bone marrow cells. NPJ Regen Med 2017; 2:27. [PMID: 29302361 PMCID: PMC5678002 DOI: 10.1038/s41536-017-0032-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 01/14/2023] Open
Abstract
The plasticity of c-kit-positive bone marrow cells (c-kit-BMCs) in tissues different from their organ of origin remains unclear. We tested the hypothesis that c-kit-BMCs are functionally heterogeneous and only a subgroup of these cells possesses cardiomyogenic potential. Population-based assays fall short of identifying the properties of individual stem cells, imposing on us the introduction of single cell-based approaches to track the fate of c-kit-BMCs in the injured heart; they included viral gene-tagging, multicolor clonal-marking and transcriptional profiling. Based on these strategies, we report that single mouse c-kit-BMCs expand clonally within the infarcted myocardium and differentiate into specialized cardiac cells. Newly-formed cardiomyocytes, endothelial cells, fibroblasts and c-kit-BMCs showed in their genome common sites of viral integration, providing strong evidence in favor of the plasticity of a subset of BMCs expressing the c-kit receptor. Similarly, individual c-kit-BMCs, which were infected with multicolor reporters and injected in infarcted hearts, formed cardiomyocytes and vascular cells organized in clusters of similarly colored cells. The uniform distribution of fluorescent proteins in groups of specialized cells documented the polyclonal nature of myocardial regeneration. The transcriptional profile of myogenic c-kit-BMCs and whole c-kit-BMCs was defined by RNA sequencing. Genes relevant for engraftment, survival, migration, and differentiation were enriched in myogenic c-kit-BMCs, a cell subtype which could not be assigned to a specific hematopoietic lineage. Collectively, our findings demonstrate that the bone marrow comprises a category of cardiomyogenic, vasculogenic and/or fibrogenic c-kit-positive cells and a category of c-kit-positive cells that retains an undifferentiated state within the damaged heart.
Collapse
|
22
|
Chen X, Wang S, Xu H, Pereira JD, Hatzistergos KE, Saur D, Seidler B, Hare JM, Perrella MA, Yin ZQ, Liu X. Evidence for a retinal progenitor cell in the postnatal and adult mouse. Stem Cell Res 2017; 23:20-32. [PMID: 28672156 DOI: 10.1016/j.scr.2017.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Progress in cell therapy for retinal disorders has been challenging. Recognized retinal progenitors are a heterogeneous population of cells that lack surface markers for the isolation of live cells for clinical implementation. In the present application, our objective was to use the stem cell factor receptor c-Kit (CD117), a surface marker, to isolate and evaluate a distinct progenitor cell population from retinas of postnatal and adult mice. Here we report that, by combining traditional methods with fate mapping, we have identified a c-Kit-positive (c-Kit+) retinal progenitor cell (RPC) that is self-renewing and clonogenic in vitro, and capable of generating many cell types in vitro and in vivo. Based on cell lineage tracing, significant subpopulations of photoreceptors in the outer nuclear layer and bipolar, horizontal, amacrine and Müller cells in the inner nuclear layer are the progeny of c-Kit+ cells in vivo. The RPC progeny contributes to retinal neurons and glial cells, which are responsible for the conversion of light into visual signals. The ability to isolate and expand in vitro live c-Kit+ RPCs makes them a future therapeutic option for retinal diseases.
Collapse
Affiliation(s)
- Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shaojun Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
| | - Joao D Pereira
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Dieter Saur
- Medicine II, Technische Universitaet Muenchen, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Seidler
- Medicine II, Technische Universitaet Muenchen, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Kannappan R, Matsuda A, Ferreira-Martins J, Zhang E, Palano G, Czarna A, Cabral-Da-Silva MC, Bastos-Carvalho A, Sanada F, Ide N, Rota M, Blasco MA, Serrano M, Anversa P, Leri A. p53 Modulates the Fate of Cardiac Progenitor Cells Ex Vivo and in the Diabetic Heart In Vivo. EBioMedicine 2017; 16:224-237. [PMID: 28163043 PMCID: PMC5474510 DOI: 10.1016/j.ebiom.2017.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/01/2022] Open
Abstract
p53 is an important modulator of stem cell fate, but its role in cardiac progenitor cells (CPCs) is unknown. Here, we tested the effects of a single extra-copy of p53 on the function of CPCs in the presence of oxidative stress mediated by doxorubicin in vitro and type-1 diabetes in vivo. CPCs were obtained from super-p53 transgenic mice (p53-tg), in which the additional allele is regulated in a manner similar to the endogenous protein. Old CPCs with increased p53 dosage showed a superior ability to sustain oxidative stress, repair DNA damage and restore cell division. With doxorubicin, a larger fraction of CPCs carrying an extra-copy of the p53 allele recruited γH2A.X reestablishing DNA integrity. Enhanced p53 expression resulted in a superior tolerance to oxidative stress in vivo by providing CPCs with defense mechanisms necessary to survive in the milieu of the diabetic heart; they engrafted in regions of tissue injury and in three days acquired the cardiomyocyte phenotype. The biological advantage provided by the increased dosage of p53 in CPCs suggests that this genetic strategy may be translated to humans to increase cellular engraftment and growth, critical determinants of successful cell therapy for the failing heart. p53 improves the ability of CPCs to sustain oxidative stress. p53 promotes the restoration of DNA integrity and cell division. p53 enhances the engraftment of CPCs in the diabetic heart.
Ongoing clinical trials with autologous cardiac stem cells (CSCs) are faced with a critical limitation which is related to the modest amount of retained cells within the damaged myocardium. We have developed a strategy that overcomes in part this problem enhancing the number of CSCs able to engraft within the pathologic organ. Additionally, these genetically modified CSCs can be generated in large number, raising the possibility that multiple temporally distinct deliveries of cells can be introduced to restore the structural and functional integrity of the decompensated heart.
Collapse
Affiliation(s)
- Ramaswamy Kannappan
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Matsuda
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - João Ferreira-Martins
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Zhang
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giorgia Palano
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Czarna
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - Mauricio Castro Cabral-Da-Silva
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adriana Bastos-Carvalho
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fumihiro Sanada
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Noriko Ide
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marcello Rota
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria A Blasco
- Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Manuel Serrano
- Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Piero Anversa
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - Annarosa Leri
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland.
| |
Collapse
|
24
|
Chen X, Chen Z, Li Z, Zhao C, Zeng Y, Zou T, Fu C, Liu X, Xu H, Yin ZQ. Grafted c-kit +/SSEA1 - eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses. Stem Cell Res Ther 2016; 7:191. [PMID: 28038685 PMCID: PMC5203726 DOI: 10.1186/s13287-016-0451-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background Despite diverse pathogenesis, the common pathological change observed in age-related macular degeneration and in most hereditary retinal degeneration (RD) diseases is photoreceptor loss. Photoreceptor replacement by cell transplantation may be a feasible treatment for RD. The major obstacles to clinical translation of stem cell-based cell therapy in RD remain the difficulty of obtaining sufficient quantities of appropriate and safe donor cells and the poor integration of grafted stem cell-derived photoreceptors into the remaining retinal circuitry. Methods Eye-wall c-kit+/stage-specific embryonic antigen 1 (SSEA1)− cells were isolated via fluorescence-activated cell sorting, and their self-renewal and differentiation potential were detected by immunochemistry and flow cytometry in vitro. After labeling with quantum nanocrystal dots and transplantation into the subretinal space of rd1 RD mice, differentiation and synapse formation by daughter cells of the eye-wall c-kit+/SSEA1− cells were evaluated by immunochemistry and western blotting. Morphological changes of the inner retina of rd1 mice after cell transplantation were demonstrated by immunochemistry. Retinal function of rd1 mice that received cell grafts was tested via flash electroretinograms and the light/dark transition test. Results Eye-wall c-kit+/SSEA1− cells were self-renewing and clonogenic, and they retained their proliferative potential through more than 20 passages. Additionally, eye-wall c-kit+/SSEA1− cells were capable of differentiating into multiple retinal cell types including photoreceptors, bipolar cells, horizontal cells, amacrine cells, Müller cells, and retinal pigment epithelium cells and of transdifferentiating into smooth muscle cells and endothelial cells in vitro. The levels of synaptophysin and postsynaptic density-95 in the retinas of eye-wall c-kit+/SSEA1− cell-transplanted rd1 mice were significantly increased at 4 weeks post transplantation. The c-kit+/SSEA1− cells were capable of differentiating into functional photoreceptors that formed new synaptic connections with recipient retinas in rd1 mice. Transplantation also partially corrected the abnormalities of inner retina of rd1 mice. At 4 and 8 weeks post transplantation, the rd1 mice that received c-kit+/SSEA1− cells showed significant increases in a-wave and b-wave amplitude and the percentage of time spent in the dark area. Conclusions Grafted c-kit+/SSEA1− cells restored the retinal function of rd1 mice via regulating neural plasticity and forming new graft-to-host synapses. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0451-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.,School of Medicine, Nankai University, Tianjin, 300071, China.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zehua Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Zhengya Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Chen Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Caiyun Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
25
|
Cai B, Ma W, Bi C, Yang F, Zhang L, Han Z, Huang Q, Ding F, Li Y, Yan G, Pan Z, Yang B, Lu Y. Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit(+) cardiac progenitor cells by promoting miR-675. J Pineal Res 2016; 61:82-95. [PMID: 27062045 DOI: 10.1111/jpi.12331] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Abstract
Melatonin, a hormone secreted by the pineal gland, possesses multiple biological activities such as antitumor, antioxidant, and anti-ischemia. C-kit(+) cardiac progenitor cells (CPCs) have emerged as a promising tool for the treatment of heart diseases. However, the senescence of CPCs due to pathological stimuli leads to the decline of CPCs' functions and regenerative potential. This study was conducted to demonstrate whether melatonin antagonizes the senescence of CPCs in response to oxidative stress. Here, we found that the melatonin treatment markedly inhibited the senescent characteristics of CPCs after exposed to sublethal concentration of H2 O2 , including the increase in senescence-associated β-galactosidase (SA-β-gal)-positive CPCs, senescence-associated heterochromatin loci (SAHF), secretory IL-6 level, and the upregulation of p53 and p21 proteins. Senescence-associated proliferation reduction was also attenuated by melatonin in CPCs. Luzindole, the melatonin membrane receptor blocker, may block the melatonin-mediated suppression of premature senescence in CPCs. Interestingly, we found that long noncoding RNA H19 and its derived miR-675 were downregulated by H2 O2 in CPCs, but melatonin treatment could counter this alteration. Furthermore, knockdown of H19 or miR-675 blocked antisenescence actions of melatonin on H2 O2 -treated CPCs. It was further verified that H19-derived miR-675 targeted at the 3'UTR of USP10, which resulted in the downregulation of p53 and p21 proteins. In summary, melatonin antagonized premature senescence of CPCs via H19/miR-675/USP10 pathway, which provides new insights into pharmacological actions and potential applications of melatonin on the senescence of CPCs.
Collapse
Affiliation(s)
- Benzhi Cai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Wenya Ma
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Chongwei Bi
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Lai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Zhenbo Han
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Qi Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Fengzhi Ding
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Yuan Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Gege Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Vic., Australia
| | - Yanjie Lu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- The Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, Jiang L, Feng J, Yu XY. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis 2016; 7:e2277. [PMID: 27336721 PMCID: PMC5143405 DOI: 10.1038/cddis.2016.181] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022]
Abstract
Cardiac progenitor cells derived from adult heart have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are known to mediate cell–cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we investigated the cardiac progenitor cell (CPC)-derived exosomal miRNAs on protecting myocardium under oxidative stress. Sca1+CPCs-derived exosomes were purified from conditional medium, and identified by nanoparticle trafficking analysis (NTA), transmission electron microscopy and western blotting using CD63, CD9 and Alix as markers. Exosomes production was measured by NTA, the result showed that oxidative stress-induced CPCs secrete more exosomes compared with normal condition. Although six apoptosis-related miRNAs could be detected in two different treatment-derived exosomes, only miR-21 was significantly upregulated in oxidative stress-induced exosomes compared with normal exosomes. The same oxidative stress could cause low miR-21 and high cleaved caspase-3 expression in H9C2 cardiac cells. But the cleaved caspase-3 was significantly decreased when miR-21 was overexpressed by transfecting miR-21 mimic. Furthermore, miR-21 mimic or inhibitor transfection and luciferase activity assay confirmed that programmed cell death 4 (PDCD4) was a target gene of miR-21, and miR-21/PDCD4 axis has an important role in anti-apoptotic effect of H9C2 cell. Western blotting and Annexin V/PI results demonstrated that exosomes pre-treated H9C2 exhibited increased miR-21 whereas decreased PDCD4, and had more resistant potential to the apoptosis induced by the oxidative stress, compared with non-treated cells. These findings revealed that CPC-derived exosomal miR-21 had an inhibiting role in the apoptosis pathway through downregulating PDCD4. Restored miR-21/PDCD4 pathway using CPC-derived exosomes could protect myocardial cells against oxidative stress-related apoptosis. Therefore, exosomes could be used as a new therapeutic vehicle for ischemic cardiac disease.
Collapse
Affiliation(s)
- J Xiao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Y Pan
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - X H Li
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - X Y Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Y L Feng
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - H H Tan
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - L Jiang
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - J Feng
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - X Y Yu
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|