1
|
Hosseini Y, Niknejad A, Sabbagh Kashani A, Gholami M, Roustaie M, Mohammadi M, Momtaz S, Atkin SL, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. NLRP3 inflammasomes pathway: a key target for Metformin. Inflammopharmacology 2025; 33:1729-1760. [PMID: 40042723 DOI: 10.1007/s10787-025-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/31/2025] [Indexed: 04/13/2025]
Abstract
Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 (NLRP3) is a signaling pathway that is involved in inflammatory cascades, cell survival and the immune response. NLRP3 is activated by cellular damage, oxidative stress, and other factors that stimulate the immune system. Stimulation of NLRP3 induces inflammatory reactions and the production of inflammatory cytokines. These inflammatory mediators are implicated in several diseases. Metformin (MET) is an anti-hyperglycemia agent that is extensively used in clinical practice worldwide due to its high efficiency, safety profile, and affordable price. MET is the only member of biguanide class that is used in clinical practice and a potent AMP-activated protein kinase (AMPK) agonist with proven anti-inflammatory characteristics. Due to its anti-inflammatory properties, MET is considered to be effective against diseases that have an inflammatory background, and the NLRP3 pathway is involved in the pathophysiology of these disorders. In this review, we have evaluated the evidence if MET can affect this pathway and its utility for future therapeutic approaches.
Collapse
Affiliation(s)
- Yasamin Hosseini
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ayeh Sabbagh Kashani
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Gholami
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahtab Roustaie
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Sun L, Yuan J, Wang T, Ning B, Yuan Q. Association between Hemoglobin Glycation Index and In-Hospital all-cause mortality of patients with Congestive Heart Failure: a retrospective study utilizing the MIMIC-IV database. Front Endocrinol (Lausanne) 2025; 16:1475063. [PMID: 40225324 PMCID: PMC11986639 DOI: 10.3389/fendo.2025.1475063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/03/2025] [Indexed: 04/15/2025] Open
Abstract
Background The aim of this study was to explore the relationship between the hemoglobin glycation index (HGI) of Congestive Heart Failure (CHF) patients and their risk of mortality within 365 days. Patients and methods The Medical Information Mart for Intensive Care (MIMIC-IV) database supplied the patient data for this study, which was categorized into quartiles based on the HGI. The primary endpoint was all-cause mortality within a 365-day period. Kaplan-Meier (K-M) analysis was utilized to compare this primary endpoint across the four aforementioned groups. The relationship between the HGI and the endpoint was examined using restricted cubic splines (RCS) and a Cox proportional hazards analysis. Results A total of 985 patients were included in this study. HGI was significantly associated with 30 days mortality (15.9%; HR, 0.79; 95% CI, (0.67~0.92); P=0.003) and 60 days mortality (19.3%; HR, 0.83; 95% CI, (0.72~0.96); P=0.011) and 90 days mortality (22.1%; HR, 0.86; 95% CI, (0.75~0.99); P=0.031) and 365 days mortality (30.7%; HR, 0.97; 95% CI, (0.86~1.09); P=0.611) in patients with critical CHF in the completely adjusted Cox proportional risk model. RCS analysis revealed a U-shaped relationship between HGI and outcome events. KM curves survival analysis suggests a correlation between 30 days and 365 days mortality in HGI and CHF patients. Conclusions A higher HGI has a more protective effect than a low HGI for patients with CHF and was directly associated with short-term mortality rates. These findings may be helpful in the management of patients with CHF.
Collapse
Affiliation(s)
- Ling Sun
- Department of Cardiology, Fuyang Tumor Hospital, Fuyang, China
- Department of Cardiology, Fuyang People’s Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Jie Yuan
- Consultancy Department, Hanyi Data Technology (Shenzhen) Co., Ltd, Shenzhen, China
| | - Tao Wang
- Department of Cardiology, Fuyang Tumor Hospital, Fuyang, China
| | - Bin Ning
- Department of Cardiology, Fuyang People’s Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Qinghua Yuan
- Department of Cardiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Qiu H, Li F, Prachyl H, Patino-Guerrero A, Rubart M, Zhu W. Insulin mitigates acute ischemia-induced atrial fibrillation and sinoatrial node dysfunction ex vivo. JCI Insight 2024; 10:e185961. [PMID: 39541171 PMCID: PMC11721304 DOI: 10.1172/jci.insight.185961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Acute atrial ischemia is a well-known cause of postoperative atrial fibrillation (POAF). However, mechanisms through which ischemia contributes to the development of POAF are not well understood. In this study, ex vivo Langendorff perfusion was used to induce acute ischemia/reperfusion in the heart to mimic POAF. Inducibility of atrial fibrillation (AF) was evaluated using programmed electrical stimulation and verified with open-atrium optical mapping. Compared with the control group without ischemia, 25 minutes of ischemia substantially increased the incidence of AF. The right atrium was more susceptible to AF than the left atrium. Administering insulin for 30 minutes before ischemia and during reperfusion with 25 minutes of ischemia greatly reduced the vulnerability to AF. However, insulin treatment during reperfusion only did not show substantial benefits against AF. Optical mapping studies showed that insulin mitigated ischemia-induced abnormal electrophysiology, including shortened action potential duration and effective refractory period, slowed conduction velocity, increased conduction heterogeneity, and altered calcium transients. In conclusion, insulin reduced the risk of acute ischemia/reperfusion-induced AF via improving the electrophysiology and calcium handling of atrial cardiomyocytes, which provides a potential therapy for POAF.
Collapse
Affiliation(s)
- Huiliang Qiu
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering and Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Fan Li
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering and Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Hannah Prachyl
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering and Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Alejandra Patino-Guerrero
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering and Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Michael Rubart
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wuqiang Zhu
- Departments of Cardiovascular Medicine and Physiology and Biomedical Engineering and Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
4
|
Zhu XF, Mo YT, Hu YQ, Feng YX, Liu EH. Association between single-point insulin sensitivity estimator and heart failure in older adults: A cross-sectional study. Exp Gerontol 2024; 196:112578. [PMID: 39245081 DOI: 10.1016/j.exger.2024.112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Heart failure (HF) is a condition caused by a malfunction of the heart's pumping function. The single-point insulin sensitivity estimator (SPISE) index is a novel indicator for assessing insulin resistance in humans. However, the connection between the SPISE index and the risk of HF in the elderly is unknown. Therefore, our study aims to evaluate the connection between the SPISE index and HF in older adults. METHODS The study was based on data collected from the 1999-2020 National Health and Nutrition Examination Survey database and included 6165 participants aged ≥60 years. The multivariable linear regression model and the smooth fitting curve model were applied to investigate the connection between the SPISE index and HF in the elderly. Furthermore, the subgroup analysis was performed to investigate the interactive factors. RESULTS In this study, the mean age of the population was 69.38 years. After adjusting for all covariates, we observed that the SPISE index was inversely related to the prevalence of HF (OR = 0.87, 95 % CI = 0.80-0.94, P < 0.001) in older adults. The interaction analysis showed that the association might be affected by diabetes mellitus and smoking status. Additionally, an inflection point between the SPISE index and HF was found among older women. CONCLUSIONS An inverse correlation was detected between the SPISE index and HF in the elderly. This could provide new insight into the prevention and management of HF in the elderly population.
Collapse
Affiliation(s)
- Xiao-Feng Zhu
- Department of Clinical Medicine, The Nanshan School of Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ye-Tong Mo
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Qi Hu
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Xue Feng
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - En-Hui Liu
- Department of Pediatrics, Pediatrics School, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
5
|
Riemma MA, Mele E, Donniacuo M, Telesca M, Bellocchio G, Castaldo G, Rossi F, De Angelis A, Cappetta D, Urbanek K, Berrino L. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors, anti-diabetic drugs in heart failure and cognitive impairment: potential mechanisms of the protective effects. Front Pharmacol 2024; 15:1422740. [PMID: 38948473 PMCID: PMC11212466 DOI: 10.3389/fphar.2024.1422740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Heart failure and cognitive impairment emerge as public health problems that need to be addressed due to the aging global population. The conditions that often coexist are strongly related to advancing age and multimorbidity. Epidemiological evidence indicates that cardiovascular disease and neurodegenerative processes shares similar aspects, in term of prevalence, age distribution, and mortality. Type 2 diabetes increasingly represents a risk factor associated not only to cardiometabolic pathologies but also to neurological conditions. The pathophysiological features of type 2 diabetes and its metabolic complications (hyperglycemia, hyperinsulinemia, and insulin resistance) play a crucial role in the development and progression of both heart failure and cognitive dysfunction. This connection has opened to a potential new strategy, in which new classes of anti-diabetic medications, such as glucagon-like peptide-1 receptor (GLP-1R) agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors, are able to reduce the overall risk of cardiovascular events and neuronal damage, showing additional protective effects beyond glycemic control. The pleiotropic effects of GLP-1R agonists and SGLT2 inhibitors have been extensively investigated. They exert direct and indirect cardioprotective and neuroprotective actions, by reducing inflammation, oxidative stress, ions overload, and restoring insulin signaling. Nonetheless, the specificity of pathways and their contribution has not been fully elucidated, and this underlines the urgency for more comprehensive research.
Collapse
Affiliation(s)
- Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Donniacuo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
6
|
Dattani A, Joshi S, Yeo JL, Singh A, Brady EM, Parke KS, Arnold JR, Singh T, Kershaw LE, Spath NB, Reynolds RM, Forbes S, Gibb FW, Semple SI, Dweck MR, Newby DE, McCann GP, Gulsin GS. Impaired Myocardial Calcium Uptake in Patients With Diabetes Mellitus: A Manganese-Enhanced Cardiac Magnetic Resonance Study. JACC Cardiovasc Imaging 2023; 16:1623-1625. [PMID: 37389510 DOI: 10.1016/j.jcmg.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 05/10/2023] [Indexed: 07/01/2023]
|
7
|
Dou J, Guo C, Wang Y, Peng Z, Wu R, Li Q, Zhao H, Song S, Sun X, Wei J. Association between triglyceride glucose-body mass and one-year all-cause mortality of patients with heart failure: a retrospective study utilizing the MIMIC-IV database. Cardiovasc Diabetol 2023; 22:309. [PMID: 37940979 PMCID: PMC10634170 DOI: 10.1186/s12933-023-02047-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The triglyceride glucose-body mass (TyG-BMI) index is acknowledged as both a reliable indicator of the risk of cardiovascular disease and an accurate surrogate biomarker for evaluating insulin resistance (IR). The importance of the TyG-BMI index among people with heart failure (HF), however, requires more investigation. The objective of this study was to inquire about the relationship between HF patients' TyG-BMI index and their risk of 360-day mortality. METHODS The Medical Information Mart for Intensive Care (MIMIC-IV) database provided the study's patient data, which were divided into quartiles according to their TyG-BMI index. The endpoint was mortality from all causes within 360 days. Kaplan-Meier analysis was used to compare this primary endpoint amongst the four groups indicated above. The association between the TyG-BMI index and the endpoint was investigated using restricted cubic splines and Cox proportional hazards analysis. RESULTS The study enrolled a total of 423 patients with HF (59.2% male), of whom 70 patients (16.9%) died within 360 days. Patients with higher TyG-BMI indexes had significantly lower mortality risks, according to the Kaplan-Meier analysis (log-rank P = 0.003). Furthermore, the restricted cubic spline analysis illustrated a decrease in the risk of all-cause mortality with an increasing TyG-BMI index. Additionally, multivariable Cox proportional hazards analyses showed that the risk of 360-day death from all causes was considerably higher in the lowest quartile of TyG-BMI. In comparison to the lowest TyG-BMI group, the fully adjusted Cox model yielded a hazard ratio (HR) of 0.24 (95% CI: 0.10, 0.59; p = 0.002) for 360-day mortality. CONCLUSIONS In patients diagnosed with HF, a lower TyG-BMI index is strongly related to a higher risk of 360-day mortality. This index can be employed to categorize the risk levels of patients with HF and predict their one-year all-cause mortality .
Collapse
Affiliation(s)
- Jiahao Dou
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
| | - Chen Guo
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
| | - Yawen Wang
- Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Zihe Peng
- Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Ruiyun Wu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
| | - Qiangqiang Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
| | - Hong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
| | - Shoufang Song
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
| | - Xuelu Sun
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China.
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xiwulu 157#, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
8
|
Saha S, Fang X, Green CD, Das A. mTORC1 and SGLT2 Inhibitors-A Therapeutic Perspective for Diabetic Cardiomyopathy. Int J Mol Sci 2023; 24:15078. [PMID: 37894760 PMCID: PMC10606418 DOI: 10.3390/ijms242015078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetic cardiomyopathy is a critical diabetes-mediated co-morbidity characterized by cardiac dysfunction and heart failure, without predisposing hypertensive or atherosclerotic conditions. Metabolic insulin resistance, promoting hyperglycemia and hyperlipidemia, is the primary cause of diabetes-related disorders, but ambiguous tissue-specific insulin sensitivity has shed light on the importance of identifying a unified target paradigm for both the glycemic and non-glycemic context of type 2 diabetes (T2D). Several studies have indicated hyperactivation of the mammalian target of rapamycin (mTOR), specifically complex 1 (mTORC1), as a critical mediator of T2D pathophysiology by promoting insulin resistance, hyperlipidemia, inflammation, vasoconstriction, and stress. Moreover, mTORC1 inhibitors like rapamycin and their analogs have shown significant benefits in diabetes and related cardiac dysfunction. Recently, FDA-approved anti-hyperglycemic sodium-glucose co-transporter 2 inhibitors (SGLT2is) have gained therapeutic popularity for T2D and diabetic cardiomyopathy, even acknowledging the absence of SGLT2 channels in the heart. Recent studies have proposed SGLT2-independent drug mechanisms to ascertain their cardioprotective benefits by regulating sodium homeostasis and mimicking energy deprivation. In this review, we systematically discuss the role of mTORC1 as a unified, eminent target to treat T2D-mediated cardiac dysfunction and scrutinize whether SGLT2is can target mTORC1 signaling to benefit patients with diabetic cardiomyopathy. Further studies are warranted to establish the underlying cardioprotective mechanisms of SGLT2is under diabetic conditions, with selective inhibition of cardiac mTORC1 but the concomitant activation of mTORC2 (mTOR complex 2) signaling.
Collapse
Affiliation(s)
- Sumit Saha
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Christopher D. Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
9
|
Marassi M, Fadini GP. The cardio-renal-metabolic connection: a review of the evidence. Cardiovasc Diabetol 2023; 22:195. [PMID: 37525273 PMCID: PMC10391899 DOI: 10.1186/s12933-023-01937-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Type 2 diabetes (T2D), cardiovascular disease (CVD) and chronic kidney disease (CKD), are recognized among the most disruptive public health issues of the current century. A large body of evidence from epidemiological and clinical research supports the existence of a strong interconnection between these conditions, such that the unifying term cardio-metabolic-renal (CMR) disease has been defined. This coexistence has remarkable epidemiological, pathophysiologic, and prognostic implications. The mechanisms of hyperglycemia-induced damage to the cardio-renal system are well validated, as are those that tie cardiac and renal disease together. Yet, it remains controversial how and to what extent CVD and CKD can promote metabolic dysregulation. The aim of this review is to recapitulate the epidemiology of the CMR connections; to discuss the well-established, as well as the putative and emerging mechanisms implicated in the interplay among these three entities; and to provide a pathophysiological background for an integrated therapeutic intervention aiming at interrupting this vicious crosstalks.
Collapse
Affiliation(s)
- Marella Marassi
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Gian Paolo Fadini
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani 2, 35128, Padua, Italy.
- Veneto Institute of Molecular Medicine, 35129, Padua, Italy.
| |
Collapse
|
10
|
Roopnarine O, Yuen SL, Thompson AR, Roelike LN, Rebbeck RT, Bidwell PA, Aldrich CC, Cornea RL, Thomas DD. Fluorescence lifetime FRET assay for live-cell high-throughput screening of the cardiac SERCA pump yields multiple classes of small-molecule allosteric modulators. Sci Rep 2023; 13:10673. [PMID: 37393380 PMCID: PMC10314922 DOI: 10.1038/s41598-023-37704-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
We have used FRET-based biosensors in live cells, in a robust high-throughput screening (HTS) platform, to identify small-molecules that alter the structure and activity of the cardiac sarco/endoplasmic reticulum calcium ATPase (SERCA2a). Our primary aim is to discover drug-like small-molecule activators that improve SERCA's function for the treatment of heart failure. We have previously demonstrated the use of an intramolecular FRET biosensor, based on human SERCA2a, by screening two different small validation libraries using novel microplate readers that detect the fluorescence lifetime or emission spectrum with high speed, precision, and resolution. Here we report results from FRET-HTS of 50,000 compounds using the same biosensor, with hit compounds functionally evaluated using assays for Ca2+-ATPase activity and Ca2+-transport. We focused on 18 hit compounds, from which we identified eight structurally unique scaffolds and four scaffold classes as SERCA modulators, approximately half of which are activators and half are inhibitors. Five of these compounds were identified as promising SERCA activators, one of which activates Ca2+-transport even more than Ca2+-ATPase activity thus improving SERCA efficiency. While both activators and inhibitors have therapeutic potential, the activators establish the basis for future testing in heart disease models and lead development, toward pharmaceutical therapy for heart failure.
Collapse
Affiliation(s)
- Osha Roopnarine
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Samantha L Yuen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Lauren N Roelike
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Philip A Bidwell
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Pandey A, Khan MS, Patel KV, Bhatt DL, Verma S. Predicting and preventing heart failure in type 2 diabetes. Lancet Diabetes Endocrinol 2023:S2213-8587(23)00128-6. [PMID: 37385290 DOI: 10.1016/s2213-8587(23)00128-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 07/01/2023]
Abstract
The burden of heart failure among people with type 2 diabetes is increasing globally. People with comorbid type 2 diabetes and heart failure often have worse outcomes than those with only one of these conditions-eg, higher hospitalisation and mortality rates. Therefore, it is essential to implement optimal heart failure prevention strategies for people with type 2 diabetes. A detailed understanding of the pathophysiology underlying the occurrence of heart failure in type 2 diabetes can aid clinicians in identifying relevant risk factors and lead to early interventions that can help prevent heart failure. In this Review, we discuss the pathophysiology and risk factors of heart failure in type 2 diabetes. We also review the risk assessment tools for predicting heart failure incidence in people with type 2 diabetes as well as the data from clinical trials that have assessed the efficacy of lifestyle and pharmacological interventions. Finally, we discuss the potential challenges in implementing new management approaches and offer pragmatic recommendations to help overcome these challenges.
Collapse
Affiliation(s)
- Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Kershaw V Patel
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY, USA
| | - Subodh Verma
- Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Lee JW, Gu HO, Jung Y, Jung Y, Seo SY, Hong JH, Hong IS, Lee DH, Kim OH, Oh BC. Candesartan, an angiotensin-II receptor blocker, ameliorates insulin resistance and hepatosteatosis by reducing intracellular calcium overload and lipid accumulation. Exp Mol Med 2023:10.1038/s12276-023-00982-6. [PMID: 37121975 DOI: 10.1038/s12276-023-00982-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 05/02/2023] Open
Abstract
Insulin resistance is a major contributor to the pathogenesis of several human diseases, including type 2 diabetes, hypertension, and hyperlipidemia. Notably, insulin resistance and hypertension share common abnormalities, including increased oxidative stress, inflammation, and organelle dysfunction. Recently, we showed that excess intracellular Ca2+, a known pathogenic factor in hypertension, acts as a critical negative regulator of insulin signaling by forming Ca2+-phosphoinositides that prevent the membrane localization of AKT, a key serine/threonine kinase signaling molecule. Whether preventing intracellular Ca2+ overload improves insulin sensitivity, however, has not yet been investigated. Here, we show that the antihypertensive agent candesartan, compared with other angiotensin-II receptor blockers, has previously unrecognized beneficial effects on attenuating insulin resistance. We found that candesartan markedly reduced palmitic acid (PA)-induced intracellular Ca2+ overload and lipid accumulation by normalizing dysregulated store-operated channel (SOC)-mediated Ca2+ entry into cells, which alleviated PA-induced insulin resistance by promoting insulin-stimulated AKT membrane localization and increased the phosphorylation of AKT and its downstream substrates. As pharmacological approaches to attenuate intracellular Ca2+ overload in vivo, administering candesartan to obese mice successfully decreased insulin resistance, hepatic steatosis, dyslipidemia, and tissue inflammation by inhibiting dysregulated SOC-mediated Ca2+ entry and ectopic lipid accumulation. The resulting alterations in the phosphorylation of key signaling molecules consequently alleviate impaired insulin signaling by increasing the postprandial membrane localization and phosphorylation of AKT. Thus, our findings provide robust evidence for the pleiotropic contribution of intracellular Ca2+ overload in the pathogenesis of insulin resistance and suggest that there are viable approved drugs that can be repurposed for the treatment of insulin resistance and hypertension.
Collapse
Affiliation(s)
- Jin Wook Lee
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
| | - Hyun-Oh Gu
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
| | - Yunshin Jung
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
| | - YunJae Jung
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, 21936, Republic of Korea
| | - Jeong-Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea
| | - Ok-Hee Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea.
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon College of Medicine, Incheon, 21999, Republic of Korea.
- Department of Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
13
|
Dhat R, Mongad D, Raji S, Arkat S, Mahapatra NR, Singhal N, Sitasawad SL. Epigenetic modifier alpha-ketoglutarate modulates aberrant gene body methylation and hydroxymethylation marks in diabetic heart. Epigenetics Chromatin 2023; 16:12. [PMID: 37101286 PMCID: PMC10134649 DOI: 10.1186/s13072-023-00489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a leading cause of death in diabetic patients. Hyperglycemic myocardial microenvironment significantly alters chromatin architecture and the transcriptome, resulting in aberrant activation of signaling pathways in a diabetic heart. Epigenetic marks play vital roles in transcriptional reprogramming during the development of DCM. The current study is aimed to profile genome-wide DNA (hydroxy)methylation patterns in the hearts of control and streptozotocin (STZ)-induced diabetic rats and decipher the effect of modulation of DNA methylation by alpha-ketoglutarate (AKG), a TET enzyme cofactor, on the progression of DCM. METHODS Diabetes was induced in male adult Wistar rats with an intraperitoneal injection of STZ. Diabetic and vehicle control animals were randomly divided into groups with/without AKG treatment. Cardiac function was monitored by performing cardiac catheterization. Global methylation (5mC) and hydroxymethylation (5hmC) patterns were mapped in the Left ventricular tissue of control and diabetic rats with the help of an enrichment-based (h)MEDIP-sequencing technique by using antibodies specific for 5mC and 5hmC. Sequencing data were validated by performing (h)MEDIP-qPCR analysis at the gene-specific level, and gene expression was analyzed by qPCR. The mRNA and protein expression of enzymes involved in the DNA methylation and demethylation cycle were analyzed by qPCR and western blotting. Global 5mC and 5hmC levels were also assessed in high glucose-treated DNMT3B knockdown H9c2 cells. RESULTS We found the increased expression of DNMT3B, MBD2, and MeCP2 with a concomitant accumulation of 5mC and 5hmC, specifically in gene body regions of diabetic rat hearts compared to the control. Calcium signaling was the most significantly affected pathway by cytosine modifications in the diabetic heart. Additionally, hypermethylated gene body regions were associated with Rap1, apelin, and phosphatidyl inositol signaling, while metabolic pathways were most affected by hyperhydroxymethylation. AKG supplementation in diabetic rats reversed aberrant methylation patterns and restored cardiac function. Hyperglycemia also increased 5mC and 5hmC levels in H9c2 cells, which was normalized by DNMT3B knockdown or AKG supplementation. CONCLUSION This study demonstrates that reverting hyperglycemic damage to cardiac tissue might be possible by erasing adverse epigenetic signatures by supplementing epigenetic modulators such as AKG along with an existing antidiabetic treatment regimen.
Collapse
Affiliation(s)
- Rohini Dhat
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Dattatray Mongad
- NCMR-National Centre for Cell Science (NCCS), Pune, Maharashtra, 411007, India
| | - Sivarupa Raji
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Silpa Arkat
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Nishant Singhal
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Sandhya L Sitasawad
- National Centre for Cell Science, NCCS Complex, S. P. Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
14
|
Roopnarine O, Yuen SL, Thompson AR, Roelike LN, Rebbeck RT, Bidwell PA, Aldrich CC, Cornea RL, Thomas DD. FRET assay for live-cell high-throughput screening of the cardiac SERCA pump yields multiple classes of small-molecule allosteric modulators. RESEARCH SQUARE 2023:rs.3.rs-2596384. [PMID: 36909610 PMCID: PMC10002828 DOI: 10.21203/rs.3.rs-2596384/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
We have used FRET-based biosensors in live cells, in a robust high-throughput screening (HTS) platform, to identify small-molecules that alter the structure and activity of the cardiac sarco/endoplasmic reticulum calcium ATPase (SERCA2a). Our primary aim is to discover drug-like small-molecule activators that improve SERCA’s function for the treatment of heart failure. We have previously demonstrated the use of an intramolecular FRET biosensor, based on human SERCA2a, by screening a small validation library using novel microplate readers that can detect the fluorescence lifetime or emission spectrum with high speed, precision, and resolution. Here we report results from a 50,000-compound screen using the same biosensor, with hit compounds functionally evaluated using Ca 2+ -ATPase and Ca 2+ -transport assays. We focused on 18 hit compounds, from which we identified eight structurally unique compounds and four compound classes as SERCA modulators, approximately half of which are activators and half are inhibitors. While both activators and inhibitors have therapeutic potential, the activators establish the basis for future testing in heart disease models and lead development, toward pharmaceutical therapy for heart failure.
Collapse
|
15
|
Roopnarine O, Yuen SL, Thompson AR, Roelike LN, Rebbeck RT, Bidwell PA, Aldrich CC, Cornea RL, Thomas DD. FRET assay for live-cell high-throughput screening of the cardiac SERCA pump yields multiple classes of small-molecule allosteric modulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529557. [PMID: 36865289 PMCID: PMC9980093 DOI: 10.1101/2023.02.22.529557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We have used FRET-based biosensors in live cells, in a robust high-throughput screening (HTS) platform, to identify small-molecules that alter the structure and activity of the cardiac sarco/endoplasmic reticulum calcium ATPase (SERCA2a). Our primary aim is to discover drug-like small-molecule activators that improve SERCA’s function for the treatment of heart failure. We have previously demonstrated the use of an intramolecular FRET biosensor, based on human SERCA2a, by screening a small validation library using novel microplate readers that can detect the fluorescence lifetime or emission spectrum with high speed, precision, and resolution. Here we report results from a 50,000-compound screen using the same biosensor, with hit compounds functionally evaluated using Ca 2+ -ATPase and Ca 2+ -transport assays. We focused on 18 hit compounds, from which we identified eight structurally unique compounds and four compound classes as SERCA modulators, approximately half of which are activators and half are inhibitors. While both activators and inhibitors have therapeutic potential, the activators establish the basis for future testing in heart disease models and lead development, toward pharmaceutical therapy for heart failure.
Collapse
|
16
|
Aroor A, DeMarco VG, Whaley-Connell AT, Jia G, Yang Y, Sharma N, Naz H, Hans C, Hayden MR, Hill MA, Sowers JR, Manrique-Acevedo C, Lastra G. Endothelial cell-specific mineralocorticoid receptor activation promotes diastolic dysfunction in diet-induced obese male mice. Am J Physiol Regul Integr Comp Physiol 2023; 324:R90-R101. [PMID: 36440901 PMCID: PMC9799154 DOI: 10.1152/ajpregu.00274.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Widespread consumption of diets high in fat and fructose (Western diet, WD) has led to increased prevalence of obesity and diastolic dysfunction (DD). DD is a prominent feature of heart failure with preserved ejection fraction (HFpEF). However, the underlying mechanisms of DD are poorly understood, and treatment options are still limited. We have previously shown that deletion of the cell-specific mineralocorticoid receptor in endothelial cells (ECMR) abrogates DD induced by WD feeding in female mice. However, the specific role of ECMR activation in the pathogenesis of DD in male mice has not been clarified. Therefore, we fed 4-wk-old ECMR knockout (ECMRKO) male mice and littermates (LM) with either a WD or chow diet (CD) for 16 wk. WD feeding resulted in DD characterized by increased left ventricle (LV) filling pressure (E/e') and diastolic stiffness [E/e'/LV inner diameter at end diastole (LVIDd)]. Compared with CD, WD in LM resulted in increased myocardial macrophage infiltration, oxidative stress, and increased myocardial phosphorylation of Akt, in concert with decreased phospholamban phosphorylation. WD also resulted in focal cardiomyocyte remodeling, characterized by areas of sarcomeric disorganization, loss of mitochondrial electron density, and mitochondrial fragmentation. Conversely, WD-induced DD and associated biochemical and structural abnormalities were prevented by ECMR deletion. In contrast with our previously reported observations in females, WD-fed male mice exhibited enhanced Akt signaling and a lower magnitude of cardiac injury. Collectively, our data support a critical role for ECMR in obesity-induced DD and suggest critical mechanistic differences in the genesis of DD between males and females.
Collapse
Affiliation(s)
- Annayya Aroor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, Missouri
| | - Vincent G DeMarco
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, Missouri
| | - Adam T Whaley-Connell
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, Missouri
- Division of Nephrology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Guanghong Jia
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Neekun Sharma
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Huma Naz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, Missouri
| | - Chetan Hans
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Melvin R Hayden
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - James R Sowers
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Guido Lastra
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, Missouri
| |
Collapse
|
17
|
Dhar A, Venkadakrishnan J, Roy U, Vedam S, Lalwani N, Ramos KS, Pandita TK, Bhat A. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Ther Adv Cardiovasc Dis 2023; 17:17539447231210170. [PMID: 38069578 PMCID: PMC10710750 DOI: 10.1177/17539447231210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by structural and functional abnormalities in the myocardium affecting people with diabetes. Treatment of DCM focuses on glucose control, blood pressure management, lipid-lowering, and lifestyle changes. Due to limited therapeutic options, DCM remains a significant cause of morbidity and mortality in patients with diabetes, thus emphasizing the need to develop new therapeutic strategies. Ongoing research is aimed at understanding the underlying molecular mechanism(s) involved in the development and progression of DCM, including oxidative stress, inflammation, and metabolic dysregulation. The goal is to develope innovative pharmaceutical therapeutics, offering significant improvements in the clinical management of DCM. Some of these approaches include the effective targeting of impaired insulin signaling, cardiac stiffness, glucotoxicity, lipotoxicity, inflammation, oxidative stress, cardiac hypertrophy, and fibrosis. This review focuses on the latest developments in understanding the underlying causes of DCM and the therapeutic landscape of DCM treatment.
Collapse
Affiliation(s)
- Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | | | - Utsa Roy
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Sahithi Vedam
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Nikita Lalwani
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT) 184311, India
| |
Collapse
|
18
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Prakoso D, De Blasio MJ, Tate M, Ritchie RH. Current landscape of preclinical models of diabetic cardiomyopathy. Trends Pharmacol Sci 2022; 43:940-956. [PMID: 35779966 DOI: 10.1016/j.tips.2022.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
Abstract
Patients with diabetes have an increased risk of developing heart failure, preceded by (often asymptomatic) cardiac abnormalities, collectively called diabetic cardiomyopathy (DC). Diabetic heart failure lacks effective treatment, remaining an urgent, unmet clinical need. Although structural and functional characteristics of the diabetic human heart are well defined, clinical studies lack the ability to pinpoint the specific mechanisms responsible for DC. Preclinical animal models represent a vital component for understanding disease aetiology, which is essential for the discovery of new targeted treatments for diabetes-induced heart failure. In this review, we describe the current landscape of preclinical DC models (genetic, pharmacologically induced, and diet-induced models), highlighting their strengths and weaknesses and alignment to features of the human disease. Finally, we provide tools, resources, and recommendations to assist future preclinical translation addressing this knowledge gap.
Collapse
Affiliation(s)
- Darnel Prakoso
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Miles J De Blasio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Mitchel Tate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Diabetes, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
20
|
Liu J, Hu X. Impact of insulin therapy on outcomes of diabetic patients with heart failure: A systematic review and meta-analysis. Diab Vasc Dis Res 2022; 19:14791641221093175. [PMID: 35543342 PMCID: PMC9102182 DOI: 10.1177/14791641221093175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To compare clinical outcomes in diabetic patients with heart failure managed by insulin with those managed by non-insulin (oral hypoglycemic agents and/or lifestyle modification) based therapy. METHODS PubMed and Scopus databases were searched for studies conducted on diabetic patients with heart failure. Studies were to compare outcomes of patients managed by insulin versus non-insulin therapies. RESULTS 15 studies were included. Compared to those who were managed using non-insulin therapy, insulin-treated patients had increased risk of all-cause mortality (RR 1.46, 95% CI: 1.14, 1.88) and cardiovascular specific mortality (RR 1.62, 95% CI: 1.33, 1.96). Those managed using insulin also had increased risk of hospitalization (RR 1.45, 95% CI: 1.09, 1.93) and readmission (RR 1.49, 95% CI: 1.32, 1.67). There was no additional risk for stroke (RR 1.07, 95% CI: 0.91, 1.27) or myocardial infarction (MI) (RR 1.10, 95% CI: 0.96, 1.27) between the two groups of patients. CONCLUSIONS Receipt of insulin among diabetic patients with heart failure was associated with an increased risk of mortality, hospitalization and readmission compared to management using oral hypoglycemic agents and/or lifestyle modification. Such patients should be closely monitored for any adverse events.
Collapse
Affiliation(s)
- Jingxing Liu
- Department of Emergency Intensive Care Medicine, Changxing People’s Hospital, Changxing County, Huzhou City, Zhejiang Province, China
| | - Xinhua Hu
- Department of Cardiology, Changxing People’s Hospital, Changxing County, Huzhou City, Zhejiang Province, China
- Xinhua Hu, Department of Cardiology, Changxing People’s Hospital, 66 Taihu Middle Road, Changxing County, Huzhou City, Zhejiang Province 313100, China.
| |
Collapse
|
21
|
Sakhrani N, Lee AJ, Murphy LA, Kenawy HM, Visco CJ, Ateshian GA, Shah RP, Hung CT. Toward Development of a Diabetic Synovium Culture Model. Front Bioeng Biotechnol 2022; 10:825046. [PMID: 35265601 PMCID: PMC8899218 DOI: 10.3389/fbioe.2022.825046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation and inflammation of synovium, the specialized connective tissue that envelops the diarthrodial joint. Type 2 diabetes mellitus (DM) is often found in OA patients, with nearly double the incidence of arthritis reported in patients with diabetes (52%) than those without it (27%). The correlation between OA and DM has been attributed to similar risk factors, namely increasing age and joint loading due to obesity. However, a potential causative link is not well understood due to comorbidities involved with treating diabetic patients, such as high infection rates and poor healing response caused by hyperglycemia and insulin resistance. The purpose of this study was to investigate the effect of hyperglycemic and insulin culture conditions on synovium properties. It was hypothesized that modeling hyperglycemia-induced insulin resistance in synovium would provide novel insights of OA pathogenesis in DM patients. To simulate DM in the synovial joint, healthy synovium was preconditioned in either euglycemic (EG) or hyperglycemic (HG) glucose concentrations with insulin in order to induce the biological response of the diseased phenotype. Synovium biochemical composition was evaluated to determine ECM remodeling under hyperglycemic culture conditions. Concurrent changes in AKT phosphorylation, a signaling pathway implicated in insulin resistance, were measured along with gene expression data for insulin receptors, glucose transporters, and specific glycolysis markers involved in glucose regulation. Since fluid shear stress arising during joint articulation is a relevant upstream stimulus for fibroblast-like synoviocytes (FLS), the predominant cell type in synovium, FLS mechanotransduction was evaluated via intracellular calcium ([Ca2+]i). Incidence and length of primary cilia, a critical effector of cell mechanosensing, were measured as potential mechanisms to support differences in [Ca2+]i responses. Hyperglycemic culture conditions decreased collagen and GAG content compared to EG groups, while insulin recovered ECM constituents. FLS mechanosensitivity was significantly greater in EG and insulin conditions compared to HG and non-insulin treated groups. Hyperglycemic treatment led to decreased incidence and length of primary cilia and decreased AKT phosphorylation, providing possible links to the mechanosensing response and suggesting a potential correlation between glycemic culture conditions, diabetic insulin resistance, and OA development.
Collapse
Affiliation(s)
- Neeraj Sakhrani
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andy J Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Lance A Murphy
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Hagar M Kenawy
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Christopher J Visco
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, United States
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - Roshan P Shah
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
22
|
Smeir E, Kintscher U, Foryst-Ludwig A. Adipose tissue-heart crosstalk as a novel target for treatment of cardiometabolic diseases. Curr Opin Pharmacol 2021; 60:249-254. [PMID: 34482212 DOI: 10.1016/j.coph.2021.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022]
Abstract
Cardiometabolic disorders, such as diabetes, obesity, or metabolic syndrome, are often considered as key comorbidities, leading to the development of different forms of cardiovascular diseases such as heart failure or diabetic cardiomyopathy. Although the causal relationship between the pathophysiological status of white adipose tissue (WAT) and cardiac lipotoxicity is still elusive, elevated lipolytic rate in WAT has been demonstrated to participate in the overall augmentation of plasma lipid levels, as observed in most of the patients suffering from heart failure. In the present overview, we discuss current therapeutic approaches, as well as new treatment options targeting lipolysis and cardiac lipid metabolism in different forms of heart failure and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Elia Smeir
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10115, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10115, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10115, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| |
Collapse
|
23
|
Salvatore T, Pafundi PC, Galiero R, Albanese G, Di Martino A, Caturano A, Vetrano E, Rinaldi L, Sasso FC. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front Med (Lausanne) 2021; 8:695792. [PMID: 34277669 PMCID: PMC8279779 DOI: 10.3389/fmed.2021.695792] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with diabetes mellitus (DM) disclose a higher incidence and a poorer prognosis of heart failure (HF) than non-diabetic people, even in the absence of other HF risk factors. The adverse impact of diabetes on HF likely reflects an underlying “diabetic cardiomyopathy” (DM–CMP), which may by exacerbated by left ventricular hypertrophy and coronary artery disease (CAD). The pathogenesis of DM-CMP has been a hot topic of research since its first description and is still under active investigation, as a complex interplay among multiple mechanisms may play a role at systemic, myocardial, and cellular/molecular levels. Among these, metabolic abnormalities such as lipotoxicity and glucotoxicity, mitochondrial damage and dysfunction, oxidative stress, abnormal calcium signaling, inflammation, epigenetic factors, and others. These disturbances predispose the diabetic heart to extracellular remodeling and hypertrophy, thus leading to left ventricular diastolic and systolic dysfunction. This Review aims to outline the major pathophysiological changes and the underlying mechanisms leading to myocardial remodeling and cardiac functional derangement in DM-CMP.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
24
|
Torre E, Arici M, Lodrini AM, Ferrandi M, Barassi P, Hsu SC, Chang GJ, Boz E, Sala E, Vagni S, Altomare C, Mostacciuolo G, Bussadori C, Ferrari P, Bianchi G, Rocchetti M. SERCA2a stimulation by istaroxime improves intracellular Ca2+ handling and diastolic dysfunction in a model of diabetic cardiomyopathy. Cardiovasc Res 2021; 118:1020-1032. [PMID: 33792692 PMCID: PMC8930067 DOI: 10.1093/cvr/cvab123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
Aims Diabetic cardiomyopathy is a multifactorial disease characterized by an early onset of diastolic dysfunction (DD) that precedes the development of systolic impairment. Mechanisms that can restore cardiac relaxation improving intracellular Ca2+ dynamics represent a promising therapeutic approach for cardiovascular diseases associated to DD. Istaroxime has the dual properties to accelerate Ca2+ uptake into sarcoplasmic reticulum (SR) through the SR Ca2+ pump (SERCA2a) stimulation and to inhibit Na+/K+ ATPase (NKA). This project aims to characterize istaroxime effects at a concentration (100 nmol/L) marginally affecting NKA, in order to highlight its effects dependent on the stimulation of SERCA2a in an animal model of mild diabetes. Methods and results Streptozotocin (STZ) treated diabetic rats were studied at 9 weeks after STZ injection in comparison to controls (CTR). Istaroxime effects were evaluated in vivo and in left ventricular (LV) preparations. STZ animals showed (i) marked DD not associated to cardiac fibrosis, (ii) LV mass reduction associated to reduced LV cell dimension and T-tubules loss, (iii) reduced LV SERCA2 protein level and activity and (iv) slower SR Ca2+ uptake rate, (v) LV action potential (AP) prolongation and increased short-term variability (STV) of AP duration, (vi) increased diastolic Ca2+, and (vii) unaltered SR Ca2+ content and stability in intact cells. Acute istaroxime infusion (0.11 mg/kg/min for 15 min) reduced DD in STZ rats. Accordingly, in STZ myocytes istaroxime (100 nmol/L) stimulated SERCA2a activity and blunted STZ-induced abnormalities in LV Ca2+ dynamics. In CTR myocytes, istaroxime increased diastolic Ca2+ level due to NKA blockade albeit minimal, while its effects on SERCA2a were almost absent. Conclusions SERCA2a stimulation by istaroxime improved STZ-induced DD and intracellular Ca2+ handling anomalies. Thus, SERCA2a stimulation can be considered a promising therapeutic approach for DD treatment.
Collapse
Affiliation(s)
- Eleonora Torre
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Martina Arici
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Mara Ferrandi
- Windtree Therapeutics Inc., Warrington, Pennsylvania, USA
| | - Paolo Barassi
- Windtree Therapeutics Inc., Warrington, Pennsylvania, USA
| | | | | | | | - Emanuela Sala
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Sara Vagni
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy
| | | | - Gaspare Mostacciuolo
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy
| | | | | | | | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
25
|
Jia X, Yu T, Xiao C, Sheng D, Yang M, Cheng Q, Wu J, Lian T, Zhao Y, Zhang S. Expression of transient receptor potential vanilloid genes and proteins in diabetic rat heart. Mol Biol Rep 2021; 48:1217-1223. [PMID: 33523372 DOI: 10.1007/s11033-021-06182-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 11/27/2022]
Abstract
Cardiac complications are leading causes of death in diabetic patients. Imbalance of Ca2+ homeostasis is a hallmark of cardiac dysfunction in diabetes, while TRPV channels are non-selective for cations and are permeable to Ca2+. Our aim was to evaluate the expression levels of TRPV1, TRPV2, TRPV3, TRPV4, TRPV5, and TRPV6 genes and proteins in cardiac tissue at 3 days and 4, 8, and 12 weeks after induction of diabetes. Sprague-Dawley rats were assigned to control and DM groups. DM was induced by intraperitoneal injection of streptozotocin (60 mg/kg). The expression levels of TRPV genes were analyzed by the quantitative reverse transcription polymerase chain reaction, and TRPV proteins were determined by western blotting. Compared to controls, the expression levels of TRPV2, TRPV3, and TRPV6 in diabetic myocardium did not change, while TRPV1 decreased at 4, 8, and 12 weeks, TRPV4 was upregulated at 3 days and 4, 8, and 12 weeks, TRPV5 mRNA increased at 8 and 12 weeks, and TRPV5 protein increased at 4, 8, and 12 weeks. Our findings showed that TRPV1, TRPV4, and TRPV5 are associated with the diabetic heart.
Collapse
Affiliation(s)
- Xiaoli Jia
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Tao Yu
- Renhe Hospital of China Three Gorges University, Yichang, China
| | - Chao Xiao
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Deqiao Sheng
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Mengcheng Yang
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Quanyi Cheng
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Jing Wu
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Ting Lian
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Yun Zhao
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China.
| | - Shizhong Zhang
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China.
| |
Collapse
|
26
|
Paiman EHM, de Mutsert R, Widya RL, Rosendaal FR, Jukema JW, Lamb HJ. The role of insulin resistance in the relation of visceral, abdominal subcutaneous and total body fat to cardiovascular function. Nutr Metab Cardiovasc Dis 2020; 30:2230-2241. [PMID: 32912791 DOI: 10.1016/j.numecd.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The separate cardiovascular effects of type 2 diabetes and adiposity remain to be examined. This study aimed to investigate the role of insulin resistance in the relations of visceral (VAT), abdominal subcutaneous (aSAT) adipose tissue and total body fat (TBF) to cardiovascular remodeling. METHODS AND RESULTS In this cross-sectional analysis of the population-based Netherlands Epidemiology of Obesity study, 914 middle-aged individuals (46% men) were included. Participants underwent magnetic resonance imaging. Standardized linear regression coefficients (95%CI) were calculated, adjusted for potential confounding factors. All fat depots and insulin resistance (HOMA-IR), separate from VAT and TBF, were associated with lower mitral early and late peak filling rate ratios (E/A): -0.04 (-0.09;0.01) per SD (54 cm2) VAT; -0.05 (-0.10;0.00) per SD (94 cm2) aSAT; -0.09 (-0.16;-0.02) per SD (8%) TBF; -0.11 (-0.17;-0.05) per 10-fold increase in HOMA-IR, whereas VAT and TBF were differently associated with left ventricular (LV) end-diastolic volume: -8.9 (-11.7;-6.1) mL per SD VAT; +5.4 (1.1;9.7) mL per SD TBF. After adding HOMA-IR to the model to evaluate the mediating role of insulin resistance, change in E/A was -0.02 (-0.07;0.04) per SD VAT; -0.03 (-0.08;0.02) per SD aSAT; -0.06 (-0.13;0.01) per SD TBF, and change in LV end-diastolic volume was -7.0 (-9.7;-4.3) mL per SD VAT. In women, adiposity but not HOMA-IR was related to higher aortic arch pulse wave velocity. CONCLUSION Insulin resistance was associated with reduced diastolic function, separately from VAT and TBF, and partly mediated the associations between adiposity depots and lower diastolic function.
Collapse
Affiliation(s)
- Elisabeth H M Paiman
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ralph L Widya
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
27
|
Abstract
The presence of comorbidities significantly influences long-term morbidity and mortality of symptomatic and asymptomatic heart failure (HF) patients. Metabolic syndrome and diabetic cardiomyopathy are two clinical conditions that share multiple pathophysiological mechanisms and that might be both responsible for cardiac dysfunction. However, it is argued whether metabolic syndrome (MS) independently increases HF risk or the association between MS and HF merely reflects the impact of individual risk factors included in its definition on HF development. Similarly, in the context of diabetic cardiomyopathy, many aspects are still challenging starting from the definition up to the therapeutic management. In this clinical review, we focused the attention on molecular pathways, myocyte alterations, and specific patterns of metabolic syndrome and diabetic cardiomyopathy in order to better define the potential diagnostic and therapeutic approaches of these two pathological conditions.
Collapse
|
28
|
Birkeland KI, Bodegard J, Eriksson JW, Norhammar A, Haller H, Linssen GC, Banerjee A, Thuresson M, Okami S, Garal‐Pantaler E, Overbeek J, Mamza JB, Zhang R, Yajima T, Komuro I, Kadowaki T. Heart failure and chronic kidney disease manifestation and mortality risk associations in type 2 diabetes: A large multinational cohort study. Diabetes Obes Metab 2020; 22:1607-1618. [PMID: 32363737 PMCID: PMC7496468 DOI: 10.1111/dom.14074] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
AIMS To examine the manifestation of cardiovascular or renal disease (CVRD) in patients with type 2 diabetes (T2D) initially free from CVRD as well as the mortality risks associated with these diseases. METHODS Patients free from CVRD were identified from healthcare records in England, Germany, Japan, the Netherlands, Norway and Sweden at a fixed date. CVRD manifestation was defined by first diagnosis of cardiorenal disease, or a stroke, myocardial infarction (MI) or peripheral artery disease (PAD) event. The mortality risk associated with single CVRD history of heart failure (HF), chronic kidney disease (CKD), MI, stroke or PAD was compared with that associated with CVRD-free status. RESULTS Of 1 177 896 patients with T2D, 772 336 (66%) were CVRD-free and followed for a mean of 4.5 years. A total of 137 081 patients (18%) developed a first CVRD manifestation, represented by CKD (36%), HF (24%), stroke (16%), MI (14%) and PAD (10%). HF or CKD was associated with increased cardiovascular and all-cause mortality risk: hazard ratio (HR) 2.02 (95% confidence interval [CI] 1.75-2.33) and HR 2.05 (95% CI 1.82-2.32), respectively. HF and CKD were separately associated with significantly increased mortality risks, and the combination was associated with the highest cardiovascular and all-cause mortality risk: HRs 3.91 (95% CI 3.02-5.07) and 3.14 (95% CI 2.90-3.40), respectively. CONCLUSION In a large multinational study of >750 000 CVRD-free patients with T2D, HF and CKD were consistently the most frequent first cardiovascular disease manifestations and were also associated with increased mortality risks. These novel findings show these cardiorenal diseases to be important and serious complications requiring improved preventive strategies.
Collapse
Affiliation(s)
| | | | - Jan W. Eriksson
- Department of Medical Sciences, Clinical Diabetes and MetabolismUppsala UniversityUppsalaSweden
| | - Anna Norhammar
- Cardiology Unit, Department of Medicine, SolnaKarolinska Institute, Stockholm, Sweden and Capio S:t Görans HospitalStockholmSweden
| | - Hermann Haller
- Division of NephrologyHannover Medical SchoolHannoverGermany
| | | | - Amitava Banerjee
- Institute of Health InformaticsUniversity College LondonLondonUK
- Department of CardiologyUniversity College London HospitalsLondonUK
| | | | | | | | - Jetty Overbeek
- PHARMO Institute for Drug Outcomes Research CRSUtrechtThe Netherlands
| | | | | | | | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of MedicineUniversity of TokyoTokyoJapan
| | - Takashi Kadowaki
- Department of Prevention of Diabetes and Lifestyle‐Related Diseases, Graduate School of MedicineUniversity of TokyoTokyoJapan
- Department of Metabolism and Nutrition, Mizonokuchi HospitalTeikyo UniversityKanagawaJapan
| |
Collapse
|
29
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 2020; 17:585-607. [PMID: 32080423 PMCID: PMC7849055 DOI: 10.1038/s41569-020-0339-2] [Citation(s) in RCA: 446] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and clinical features of diabetic cardiomyopathy have been well-studied in the past decade, but effective approaches to prevent and treat this disease are limited. Diabetic cardiomyopathy occurs as a result of the dysregulated glucose and lipid metabolism associated with diabetes mellitus, which leads to increased oxidative stress and the activation of multiple inflammatory pathways that mediate cellular and extracellular injury, pathological cardiac remodelling, and diastolic and systolic dysfunction. Preclinical studies in animal models of diabetes have identified multiple intracellular pathways involved in the pathogenesis of diabetic cardiomyopathy and potential cardioprotective strategies to prevent and treat the disease, including antifibrotic agents, anti-inflammatory agents and antioxidants. Some of these interventions have been tested in clinical trials and have shown favourable initial results. In this Review, we discuss the mechanisms underlying the development of diabetic cardiomyopathy and heart failure in type 1 and type 2 diabetes mellitus, and we summarize the evidence from preclinical and clinical studies that might provide guidance for the development of targeted strategies. We also highlight some of the novel pharmacological therapeutic strategies for the treatment and prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- The Second Affiliated Hospital Center of Chinese-American Research Institute for Diabetic Complications, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
30
|
Fatima N, Rana S. Metabolic implications of circadian disruption. Pflugers Arch 2020; 472:513-526. [PMID: 32363530 DOI: 10.1007/s00424-020-02381-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/20/2023]
Abstract
Circadian rhythms are generated by the circadian clock, a self-sustained internal timing system that exhibits 24-h rhythms in the body. In mammals, circadian rhythms are driven by a central clock located in suprachiasmatic nucleus and various peripheral clocks located in different tissues and organs of the body. Many cellular, behavioral, and physiological processes are regulated by the circadian clock in coordination with environmental cues. The process of metabolism is also under circadian regulation. Loss of synchronization between the internal clock and environmental zeitgebers results in disruption of the circadian rhythms that seriously impacts metabolic homeostasis leading to changed eating behavior, altered glucose and lipid metabolism, and weight gain. This in turn augments the risk of having various cardio-metabolic disorders such as obesity, diabetes, metabolic syndrome, and cardiovascular disease. This review sheds light on circadian rhythms and their role in metabolism with the identification of gaps in the current knowledge that remain to be explored in these fields. In this review, the molecular mechanisms underlying circadian rhythms have been elaborated first. Then, the focus has been kept on explaining the physiological significance of circadian rhythms in regulating metabolism. Finally, the implications for metabolism when these rhythms are disrupted due to genetic mutations or social and occupational needs enforced by modern lifestyle have been discussed.
Collapse
Affiliation(s)
- Narjis Fatima
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
31
|
Federico M, Valverde CA, Mattiazzi A, Palomeque J. Unbalance Between Sarcoplasmic Reticulum Ca 2 + Uptake and Release: A First Step Toward Ca 2 + Triggered Arrhythmias and Cardiac Damage. Front Physiol 2020; 10:1630. [PMID: 32038301 PMCID: PMC6989610 DOI: 10.3389/fphys.2019.01630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The present review focusses on the regulation and interplay of cardiac SR Ca2+ handling proteins involved in SR Ca2+ uptake and release, i.e., SERCa2/PLN and RyR2. Both RyR2 and SERCA2a/PLN are highly regulated by post-translational modifications and/or different partners' proteins. These control mechanisms guarantee a precise equilibrium between SR Ca2+ reuptake and release. The review then discusses how disruption of this balance alters SR Ca2+ handling and may constitute a first step toward cardiac damage and malignant arrhythmias. In the last part of the review, this concept is exemplified in different cardiac diseases, like prediabetic and diabetic cardiomyopathy, digitalis intoxication and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Marilén Federico
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina.,Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Buenos Aires, Argentina
| |
Collapse
|
32
|
Koliaki C, Katsilambros N. Important Considerations for the Treatment of Patients with Diabetes Mellitus and Heart Failure from a Diabetologist's Perspective: Lessons Learned from Cardiovascular Outcome Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010155. [PMID: 31878281 PMCID: PMC6981424 DOI: 10.3390/ijerph17010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
Heart failure (HF) represents an important cardiovascular complication of type 2 diabetes mellitus (T2DM) associated with substantial morbidity and mortality, and is emphasized in recent cardiovascular outcome trials (CVOTs) as a critical outcome for patients with T2DM. Treatment of T2DM in patients with HF can be challenging, considering that these patients are usually elderly, frail and have extensive comorbidities, most importantly chronic kidney disease. The complexity of medical regimens, the high risk clinical characteristics of patients and the potential of HF therapies to interfere with glucose metabolism, and conversely the emerging potential of some antidiabetic agents to modulate HF outcomes, are only some of the challenges that need to be addressed in the framework of a team-based personalized approach. The presence of established HF or the high risk of developing HF in the future has influenced recent guideline recommendations and can guide therapeutic decision making. Metformin remains first-line treatment for overweight T2DM patients at moderate cardiovascular risk. Although not contraindicated, metformin is no longer considered as first-line therapy for patients with established HF or at risk for HF, since there is robust scientific evidence that treatment with other glucose-lowering agents such as sodium-glucose cotransporter 2 inhibitors (SGLT2i) should be prioritized in this population due to their strong and remarkably consistent beneficial effects on HF outcomes.
Collapse
Affiliation(s)
- Chrysi Koliaki
- First Propaedeutic Department of Internal Medicine and Diabetes Center, National Kapodistrian University of Athens, Laiko University Hospital, 11527 Athens, Greece;
- Correspondence:
| | - Nicholas Katsilambros
- First Propaedeutic Department of Internal Medicine and Diabetes Center, National Kapodistrian University of Athens, Laiko University Hospital, 11527 Athens, Greece;
- Research Laboratory Christeas Hall, Medical School, National Kapodistrian University of Athens, 10679 Athens, Greece
| |
Collapse
|
33
|
Dunlay SM, Givertz MM, Aguilar D, Allen LA, Chan M, Desai AS, Deswal A, Dickson VV, Kosiborod MN, Lekavich CL, McCoy RG, Mentz RJ, Piña IL. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement From the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation 2019; 140:e294-e324. [PMID: 31167558 DOI: 10.1161/cir.0000000000000691] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus is a risk factor for incident heart failure and increases the risk of morbidity and mortality in patients with established disease. Secular trends in the prevalence of diabetes mellitus and heart failure forecast a growing burden of disease and underscore the need for effective therapeutic strategies. Recent clinical trials have demonstrated the shared pathophysiology between diabetes mellitus and heart failure, the synergistic effect of managing both conditions, and the potential for diabetes mellitus therapies to modulate the risk of heart failure outcomes. This scientific statement on diabetes mellitus and heart failure summarizes the epidemiology, pathophysiology, and impact of diabetes mellitus and its control on outcomes in heart failure; reviews the approach to pharmacological therapy and lifestyle modification in patients with diabetes mellitus and heart failure; highlights the value of multidisciplinary interventions to improve clinical outcomes in this population; and outlines priorities for future research.
Collapse
|
34
|
Dunlay SM, Givertz MM, Aguilar D, Allen LA, Chan M, Desai AS, Deswal A, Dickson VV, Kosiborod MN, Lekavich CL, McCoy RG, Mentz RJ, PiÑa IL. Type 2 Diabetes Mellitus and Heart Failure, A Scientific Statement From the American Heart Association and Heart Failure Society of America. J Card Fail 2019; 25:584-619. [PMID: 31174952 DOI: 10.1016/j.cardfail.2019.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus is a risk factor for incident heart failure and increases the risk of morbidity and mortality in patients with established disease. Secular trends in the prevalence of diabetes mellitus and heart failure forecast a growing burden of disease and underscore the need for effective therapeutic strategies. Recent clinical trials have demonstrated the shared pathophysiology between diabetes mellitus and heart failure, the synergistic effect of managing both conditions, and the potential for diabetes mellitus therapies to modulate the risk of heart failure outcomes. This scientific statement on diabetes mellitus and heart failure summarizes the epidemiology, pathophysiology, and impact of diabetes mellitus and its control on outcomes in heart failure; reviews the approach to pharmacological therapy and lifestyle modification in patients with diabetes mellitus and heart failure; highlights the value of multidisciplinary interventions to improve clinical outcomes in this population; and outlines priorities for future research.
Collapse
|
35
|
Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front Physiol 2018; 9:1514. [PMID: 30425649 PMCID: PMC6218509 DOI: 10.3389/fphys.2018.01514] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus and the associated complications represent a global burden on human health and economics. Cardiovascular diseases are the leading cause of death in diabetic patients, who have a 2–5 times higher risk of developing heart failure than age-matched non-diabetic patients, independent of other comorbidities. Diabetic cardiomyopathy is defined as the presence of abnormal cardiac structure and performance in the absence of other cardiac risk factors, such coronary artery disease, hypertension, and significant valvular disease. Hyperglycemia, hyperinsulinemia, and insulin resistance mediate the pathological remodeling of the heart, characterized by left ventricle concentric hypertrophy and perivascular and interstitial fibrosis leading to diastolic dysfunction. A change in the metabolic status, impaired calcium homeostasis and energy production, increased inflammation and oxidative stress, as well as an accumulation of advanced glycation end products are among the mechanisms implicated in the pathogenesis of diabetic cardiomyopathy. Despite a growing interest in the pathophysiology of diabetic cardiomyopathy, there are no specific guidelines for diagnosing patients or structuring a treatment strategy in clinical practice. Anti-hyperglycemic drugs are crucial in the management of diabetes by effectively reducing microvascular complications, preventing renal failure, retinopathy, and nerve damage. Interestingly, several drugs currently in use can improve cardiac health beyond their ability to control glycemia. GLP-1 receptor agonists and sodium-glucose co-transporter 2 inhibitors have been shown to have a beneficial effect on the cardiovascular system through a direct effect on myocardium, beyond their ability to lower blood glucose levels. In recent years, great improvements have been made toward the possibility of modulating the expression of specific cardiac genes or non-coding RNAs in vivo for therapeutic purpose, opening up the possibility to regulate the expression of key players in the development/progression of diabetic cardiomyopathy. This review summarizes the pathogenesis of diabetic cardiomyopathy, with particular focus on structural and molecular abnormalities occurring during its progression, as well as both current and potential future therapies.
Collapse
Affiliation(s)
- Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
36
|
Ng KM, Lau YM, Dhandhania V, Cai ZJ, Lee YK, Lai WH, Tse HF, Siu CW. Empagliflozin Ammeliorates High Glucose Induced-Cardiac Dysfuntion in Human iPSC-Derived Cardiomyocytes. Sci Rep 2018; 8:14872. [PMID: 30291295 PMCID: PMC6173708 DOI: 10.1038/s41598-018-33293-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Empagliflozin, a sodium-glucose co-transporter (SGLT) inhibitor, reduces heart failure and sudden cardiac death but the underlying mechanisms remain elusive. In cardiomyocytes, SGLT1 and SGLT2 expression is upregulated in diabetes mellitus, heart failure, and myocardial infarction. We hypothesise that empagliflozin exerts direct effects on cardiomyocytes that attenuate diabetic cardiomyopathy. To test this hypothesis, cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) were used to test the potential effects of empagliflozin on neutralization of cardiac dysfunction induced by diabetic-like cultures. Our results indicated that insulin-free high glucose culture significantly increased the size of and NPPB, SGLT1 and SGLT2 expression of hiPSC-derived cardiomyocytes. In addition, high glucose-treated hiPSC-derived cardiomyocytes exhibited reduced contractility regardless of the increased calcium transient capacity. Interestingly, application of empagliflozin before or after high glucose treatment effectively reduced the high glucose-induced cardiac abnormalities. Since application of empagliflozin did not significantly alter viability or glycolytic capacity of the hiPSC-derived cardiomyocytes, it is plausible that empagliflozin exerts its effects via the down-regulation of SGLT1, SGLT2 and GLUT1 expression. These observations provide supportive evidence that may help explain its unexpected benefit observed in the EMPA-REG trial.
Collapse
Affiliation(s)
- Kwong-Man Ng
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Yee-Man Lau
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Vidhu Dhandhania
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Zhu-Jun Cai
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Yee-Ki Lee
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Wing-Hon Lai
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Chung-Wah Siu
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, Hong Kong, China.
| |
Collapse
|
37
|
Sarkar A, Shukla SK, Alqatawni A, Kumar A, Addya S, Tsygankov AY, Rafiq K. The Role of Allograft Inflammatory Factor-1 in the Effects of Experimental Diabetes on B Cell Functions in the Heart. Front Cardiovasc Med 2018; 5:126. [PMID: 30258845 PMCID: PMC6145033 DOI: 10.3389/fcvm.2018.00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/21/2018] [Indexed: 01/18/2023] Open
Abstract
Diabetes mellitus (DM) often causes chronic inflammation, hypertrophy, apoptosis and fibrosis in the heart and subsequently leads to myocardial remodeling, deteriorated cardiac function and heart failure. However, the etiology of the cardiac disease is unknown. Therefore, we assessed the gene expression in the left ventricle of diabetic and non-diabetic mice using Affymetrix microarray analysis. Allograft inflammatory factor-1 (AIF-1), one of the top downregulated B cell inflammatory genes, is associated with B cell functions in inflammatory responses. Real-time reverse transcriptase-polymerase chain reaction confirmed the Affymetrix data. The expression of CD19 and AIF-1 were downregulated in diabetic hearts as compared to control hearts. Using in vitro migration assay, we showed for the first time that AIF-1 is responsible for B cell migration as B cells migrated to GFP-AIF-1-transfected H9C2 cells compared to empty vector-transfected cells. Interestingly, overexpression of AIF-1 in diabetic mice prevented streptozotocin-induced cardiac dysfunction, inflammation and promoted B cell homing into the heart. Our results suggest that AIF-1 downregulation inhibited B cell homing into diabetic hearts, thus promoting inflammation that leads to the development of diabetic cardiomyopathy, and that overexpression of AIF-1 could be a novel treatment for this condition.
Collapse
Affiliation(s)
- Amrita Sarkar
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sanket K Shukla
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Aseel Alqatawni
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anil Kumar
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sankar Addya
- Kimmel Cancer Centre, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexander Y Tsygankov
- Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Khadija Rafiq
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
38
|
Biochemical and Ultrastructural Cardiac Changes Induced by High-Fat Diet in Female and Male Prepubertal Rabbits. Anal Cell Pathol (Amst) 2018; 2018:6430696. [PMID: 29850391 PMCID: PMC5904822 DOI: 10.1155/2018/6430696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 11/30/2022] Open
Abstract
Early weight gain induced by high-fat diet has been identified as a predictor for cardiac disease, one of the most serious public health problems. Our goal is to study the influence of a HFD on biochemical, oxidant stress parameters, and the cardiac ultrastructure in both male and female prepubertal models. Experiments were carried on 24 prepubertal New Zealand white rabbits, randomly assigned to male and female control (MC and FC, resp.) or HFD (MHFD and FHFD, resp.) groups (n = 6) for 3 months. Body and heart weights and some biochemical and oxidative stress parameters such as lipids, calcium, CKMB, MDA, uric acid, ascorbic acid, and AOA are evaluated in plasma and the left ventricle. Under HFD effect, plasma parameters, such as lipids (TL, PL, and LDL-C), MDA, and CK-MB, increase more significantly in male than in female groups, when AA decreases. Some cardiac parameters such as TG and UA increase, when AA and AOA decrease; these variations are more significant in FHFD. In both male and female rabbits, HFD caused changes in heart ultrastructure, junctional complexes, mitochondria size and form, and so on. Early HFD feeding induced overweight, oxidative stress, and metabolic alterations in plasma and the heart of prepubertal rabbits, whereas lipotoxicity has especially a negative impact on male plasma but affects more the female heart ultrastructure.
Collapse
|
39
|
Nellaiappan K, Yerra VG, Kumar A. Role of AMPK in Diabetic Cardiovascular Complications: An Overview. Cardiovasc Hematol Disord Drug Targets 2018; 19:5-13. [PMID: 29737267 DOI: 10.2174/1871529x18666180508104929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/22/2017] [Accepted: 03/28/2018] [Indexed: 12/25/2022]
Abstract
Macrovascular complications of diabetes like cardiovascular diseases appear to be one of the leading causes of mortality. Current therapies aimed at counteracting the adverse effects of diabetes on cardiovascular system are found to be inadequate. Hence, there is a growing need in search of novel targets. Adenosine Monophosphate Activated Protein Kinase (AMPK) is one such promising target, as a plethora of evidences pointing to its cardioprotective role in pathological milieu like cardiac hypertrophy, atherosclerosis and heart failure. AMPK is a serine-threonine kinase, which gets activated in response to a cellular depriving energy status. It orchestrates cellular metabolic response to energy demand and is, therefore, often referred to as "metabolic master switch" of the cell. In this review, we provide an overview of patho-mechanisms of diabetic cardiovascular disease; highlighting the role of AMPK in the regulation of this condition, followed by a description of extrinsic modulators of AMPK as potential therapeutic tools.
Collapse
Affiliation(s)
- Karthika Nellaiappan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Bala Nagar, Hyderabad, TS, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Bala Nagar, Hyderabad, TS, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Bala Nagar, Hyderabad, TS, India
| |
Collapse
|
40
|
Cauwenberghs N, Knez J, Thijs L, Haddad F, Vanassche T, Yang WY, Wei FF, Staessen JA, Kuznetsova T. Relation of Insulin Resistance to Longitudinal Changes in Left Ventricular Structure and Function in a General Population. J Am Heart Assoc 2018; 7:e008315. [PMID: 29574459 PMCID: PMC5907600 DOI: 10.1161/jaha.117.008315] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/14/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Population data on the longitudinal changes of left ventricular (LV) structure and function in relation to insulin resistance are sparse. Therefore, we assessed in a general population whether hyperinsulinemia predicts longitudinal changes in LV and arterial characteristics. METHODS AND RESULTS In 627 participants (mean age 50.7 years, 51.4% women), we assessed echocardiographic indexes of LV structure and function and carotid-femoral pulse wave velocity by applanation tonometry at baseline and after 4.7 years. We regressed longitudinal changes in these indexes on baseline insulin and its change during follow-up, and reported standardized effect sizes as a percentage of the SD of LV changes associated with a doubling of insulin. After adjustment, higher baseline insulin predicted a greater temporal increase in LV mass index (effect size: +15.1%) and E/e' ratio (+22.1%), and a greater decrease in e' peak and longitudinal strain (-11.2% to -17.1%). A greater increase in insulin during follow-up related to a greater increase in LV mass index (+10.7%) and decline in ejection fraction and longitudinal strain (-11.4% to -15.7%). Participants who became or remained insulin resistant during follow-up experienced worse changes in longitudinal strain, E/e', and LV mass index as compared with participants who did not develop or had improved insulin resistance over time (P≤0.033). Moreover, multivariable-adjusted increase in pulse wave velocity was higher in participants with diabetes mellitus than in participants without diabetes mellitus (+1.46 m/s versus +0.71 m/s; P=0.039). CONCLUSIONS Hyperinsulinemia at baseline and during follow-up predicted worsening of LV function and remodeling over time. Our findings underline the importance of management of insulin resistance.
Collapse
Affiliation(s)
- Nicholas Cauwenberghs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Judita Knez
- Division of Internal Medicine, Department of Hypertension, University Medical Centre Ljubljana, Slovenia
| | - Lutgarde Thijs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | | | - Thomas Vanassche
- Centre for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Wen-Yi Yang
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Fang-Fei Wei
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Jan A Staessen
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| |
Collapse
|
41
|
Smail M, Al Kury L, Qureshi MA, Shmygol A, Oz M, Singh J, Howarth FC. Cell shortening and calcium dynamics in epicardial and endocardial myocytes from the left ventricle of Goto-Kakizaki type 2 diabetic rats. Exp Physiol 2018; 103:502-511. [PMID: 29363193 DOI: 10.1113/ep086542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/17/2018] [Indexed: 01/18/2023]
Abstract
NEW FINDINGS What is the central question of this study? To investigate haemodynamic dysfunction in the type 2 diabetic Goto-Kakizaki (GK) rat, we measured shortening and Ca2+ transport in ventricular myocytes from epicardial (EPI) and endocardial (ENDO) regions. What is the main finding and its importance? EPI and ENDO GK myocytes displayed similar hypertrophy. Time to peak (TPK) and time to half (THALF) relaxation were prolonged in EPI GK myocytes. TPK Ca2+ transient was prolonged and THALF decay of the Ca2+ transient was shortened in EPI GK myocytes. Amplitude of shortening, Ca2+ transient and sarcoplasmic reticulum Ca2+ were unaltered in EPI and ENDO myocytes from Goto-Kakizaki compared with control rats. We demostrated regional differences in shortening and Ca2+ transport in Goto-Kakizaki rats. ABSTRACT Diabetic cardiomyopathy is considered to be one of the major diabetes-associated complications, and the pathogenesis of cardiac dysfunction is not well understood. The electromechanical properties of cardiac myocytes vary across the walls of the chambers. The aim of this study was to investigate shortening and Ca2+ transport in epicardial (EPI) and endocardial (ENDO) left ventricular myocytes in the Goto-Kakizaki (GK) type 2 diabetic rat heart. Shortening and intracellular Ca2+ transients were measured by video edge detection and fluorescence photometry. Myocyte surface area was increased in EPI-GK and ENDO-GK compared with control EPI-CON and ENDO-CON myocytes. Time to peak shortening was prolonged in EPI-GK compared with EPI-CON and in ENDO-CON compared with EPI-CON myocytes. Time to half-relaxation of shortening and time to peak Ca2+ transient were prolonged in EPI-GK compared with EPI-CON myocytes. Time to half-decay of the Ca2+ transient was prolonged in EPI-CON compared with EPI-GK and in EPI-CON compared with ENDO-CON myocytes. The amplitude of shortening and the Ca2+ transient were unaltered in EPI-GK and ENDO-GK compared with their respective controls. Sarcoplasmic reticulum Ca2+ and myofilament sensitivity to Ca2+ were unaltered in EPI-GK and ENDO-GK compared with their respective controls. Regional differences in Ca2+ signalling in healthy and diabetic myocytes might account for variation in the dynamics of myocyte shortening. Further studies will be required to clarify the mechanisms underlying regional differences in the time course of shortening and the Ca2+ transient in EPI and ENDO myocytes from diabetic and control hearts.
Collapse
Affiliation(s)
- Manal Smail
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Lina Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Muhammad Anwar Qureshi
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Anatoliy Shmygol
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Murat Oz
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
| | - Jaipaul Singh
- School of Forensic & Applied Sciences, University of Central Lancashire, Preston, UK
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
42
|
Integration of GWAS, pathway and network analyses reveals novel mechanistic insights into the synthesis of milk proteins in dairy cows. Sci Rep 2018; 8:566. [PMID: 29330500 PMCID: PMC5766549 DOI: 10.1038/s41598-017-18916-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/18/2017] [Indexed: 01/30/2023] Open
Abstract
The quantities and proportions of protein fractions have notable effects on the nutritional and technological value of milk. Although much is known about the effects of genetic variants on milk proteins, the complex relationships among the set of genes and pathways regulating the different protein fractions synthesis and secretion into milk in dairy cows are still not completely understood. We conducted genome-wide association studies (GWAS) for milk nitrogen fractions in a cohort of 1,011 Brown Swiss cows, which uncovered 170 significant single nucleotide polymorphism (SNPs), mostly located on BTA6 and BTA11. Gene-set analysis and the network-based Associated Weight Matrix approach revealed that the milk proteins associated genes were involved in several biological functions, particularly ion and cation transmembrane transporter activity and neuronal and hormone signalling, according to the structure and function of casein micelles. Deeper analysis of the transcription factors and their predicted target genes within the network revealed that GFI1B, ZNF407 and NR5A1 might act as master regulators of milk protein synthesis and secretion. The information acquired provides novel insight into the regulatory mechanisms controlling milk protein synthesis and secretion in bovine mammary gland and may be useful in breeding programmes aimed at improving milk nutritional and/or technological properties.
Collapse
|
43
|
Implications of Underlying Mechanisms for the Recognition and Management of Diabetic Cardiomyopathy. J Am Coll Cardiol 2018; 71:339-351. [DOI: 10.1016/j.jacc.2017.11.019] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/05/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
|
44
|
Singh RM, Waqar T, Howarth FC, Adeghate E, Bidasee K, Singh J. Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart. Heart Fail Rev 2017; 23:37-54. [DOI: 10.1007/s10741-017-9663-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Roles and Mechanisms of Herbal Medicine for Diabetic Cardiomyopathy: Current Status and Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8214541. [PMID: 29204251 PMCID: PMC5674516 DOI: 10.1155/2017/8214541] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Diabetic cardiomyopathy is one of the major complications among patients with diabetes mellitus. Diabetic cardiomyopathy (DCM) is featured by left ventricular hypertrophy, myocardial fibrosis, and damaged left ventricular systolic and diastolic functions. The pathophysiological mechanisms include metabolic-altered substrate metabolism, dysfunction of microvascular, renin-angiotensin-aldosterone system (RAAS) activation, oxidative stress, cardiomyocyte apoptosis, mitochondrial dysfunction, and impaired Ca2+ handling. An array of molecules and signaling pathways such as p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), and extracellular-regulated protein kinases (ERK) take roles in the pathogenesis of DCM. Currently, there was no remarkable effect in the treatment of DCM with application of single Western medicine. The myocardial protection actions of herbs have been gearing much attention. We present a review of the progress research of herbal medicine as a potential therapy for diabetic cardiomyopathy and the underlying mechanisms.
Collapse
|
46
|
Hu X, Xiao RP. MG53 and disordered metabolism in striated muscle. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1984-1990. [PMID: 29017896 DOI: 10.1016/j.bbadis.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022]
Abstract
MG53 is a member of tripartite motif family (TRIM) that expressed most abundantly in striated muscle. Using rodent models, many studies have demonstrated the MG53 not only facilitates membrane repair after ischemia reperfusion injury, but also contributes to the protective effects of both pre- and post-conditioning. Recently, however, it has been shown that MG53 participates in the regulation of many metabolic processes, especially insulin signaling pathway. Thus, sustained overexpression of MG53 may contribute to the development of various metabolic disorders in striated muscle. In this review, using cardiac muscle as an example, we will discuss muscle metabolic disturbances associated with diabetes and the current understanding of the underlying molecular mechanisms; in particular, the pathogenesis of diabetic cardiomyopathy. We will focus on the pathways that MG53 regulates and how the dysregulation of MG53 leads to metabolic disorders, thereby establishing a causal relationship between sustained upregulation of MG53 and the development of muscle insulin resistance and metabolic disorders. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
Affiliation(s)
- Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China.
| |
Collapse
|
47
|
Narciso CE, Contento NM, Storey TJ, Hoelzle DJ, Zartman JJ. Release of Applied Mechanical Loading Stimulates Intercellular Calcium Waves in Drosophila Wing Discs. Biophys J 2017; 113:491-501. [PMID: 28746859 PMCID: PMC5529297 DOI: 10.1016/j.bpj.2017.05.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/14/2023] Open
Abstract
Mechanical forces are critical but poorly understood inputs for organogenesis and wound healing. Calcium ions (Ca2+) are critical second messengers in cells for integrating environmental and mechanical cues, but the regulation of Ca2+ signaling is poorly understood in developing epithelial tissues. Here we report a chip-based regulated environment for microorgans that enables systematic investigations of the crosstalk between an organ's mechanical stress environment and biochemical signaling under genetic and chemical perturbations. This method enabled us to define the essential conditions for generating organ-scale intercellular Ca2+ waves in Drosophila wing discs that are also observed in vivo during organ development. We discovered that mechanically induced intercellular Ca2+ waves require fly extract growth serum as a chemical stimulus. Using the chip-based regulated environment for microorgans, we demonstrate that not the initial application but instead the release of mechanical loading is sufficient, but not necessary, to initiate intercellular Ca2+ waves. The Ca2+ response depends on the prestress intercellular Ca2+ activity and not on the magnitude or duration of the mechanical stimulation applied. Mechanically induced intercellular Ca2+ waves rely on IP3R-mediated Ca2+-induced Ca2+ release and propagation through gap junctions. Thus, intercellular Ca2+ waves in developing epithelia may be a consequence of stress dissipation during organ growth.
Collapse
Affiliation(s)
- Cody E Narciso
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Nicholas M Contento
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Thomas J Storey
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - David J Hoelzle
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana.
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
48
|
Federico M, Portiansky EL, Sommese L, Alvarado FJ, Blanco PG, Zanuzzi CN, Dedman J, Kaetzel M, Wehrens XHT, Mattiazzi A, Palomeque J. Calcium-calmodulin-dependent protein kinase mediates the intracellular signalling pathways of cardiac apoptosis in mice with impaired glucose tolerance. J Physiol 2017; 595:4089-4108. [PMID: 28105734 DOI: 10.1113/jp273714] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Spontaneous sarcoplasmic reticulum (SR) Ca2+ release events increased in fructose-rich diet mouse (FRD) myocytes vs. control diet (CD) mice, in the absence of significant changes in SR Ca2+ load. In HEK293 cells, hyperglycaemia significantly enhanced [3 H]ryanodine binding and Ca2+ /calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2-S2814 residue vs. normoglycaemia. These increases were prevented by CaMKII inhibition. FRD significantly augmented cardiac apoptosis in WT vs. CD-WT mice, which was prevented by co-treatment with the reactive oxygen species scavenger Tempol. Oxidative stress was also increased in FRD-SR-autocamide inhibitory peptide (AIP) mice, expressing the SR-targeted CaMKII inhibitor AIP, without any significant enhancement of apoptosis vs. CD-SR-AIP mice. FRD produced mitochondrial swelling and membrane depolarization in FRD-WT mice but not in FRD-S2814A mice, in which the CaMKII site on ryanodine receptor 2 was ablated. FRD decreased mitochondrial area, mean Feret diameter and the mean distance between SR and the outer mitochondrial membrane vs. CD hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. ABSTRACT The impact of cardiac apoptosis in pre-diabetic stages of diabetic cardiomyopathy is unknown. We show that myocytes from fructose-rich diet (FRD) animals exhibit arrhythmias produced by exacerbated Ca2+ /calmodulin-protein kinase (CaMKII) activity, ryanodine receptor 2 (RyR2) phosphorylation and sarcoplasmic reticulum (SR) Ca2+ leak. We tested the hypothesis that this mechanism also underlies cardiac apoptosis in pre-diabetes. We generated a pre-diabetic model in FRD mice. FRD mice showed an increase in oxidative stress, hypertrophy and systolic dysfunction. FRD myocytes exhibited enhanced SR Ca2+ spontaneous events in the absence of SR Ca2+ load alterations vs. control-diet (CD) myocytes. In HEK293 cells, hyperglycaemia significantly enhanced [3 H]ryanodine binding and CaMKII phosphorylation of RyR2-S2814 residue vs. normoglycaemia. CaMKII inhibition prevented hyperglycaemia-induced alterations. FRD also evoked cardiac apoptosis in WT mice vs. CD-WT mice. Co-treatment with the reactive oxygen species scavenger Tempol prevented FRD-induced apoptosis in WT mice. In contrast, FRD enhanced oxidative stress but not apoptosis in FRD-SR-AIP mice, in which a CaMKII inhibitor is targeted to the SR. FRD produced mitochondrial membrane depolarization in WT mice but not in S2814A mice, in which the CaMKII phosphorylation site on RyR2 was ablated. Furthermore, FRD decreased mitochondrial area, mean Feret diameter and mean SR-mitochondrial distance vs. CD-WT hearts. This remodelling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition. CaMKII phosphorylation of RyR2, SR Ca2+ leak and mitochondrial membrane depolarization are critically involved in the apoptotic pathway of the pre-diabetic heart. The FRD-induced decrease in SR-mitochondrial distance is likely to additionally favour Ca2+ transit between the two organelles.
Collapse
Affiliation(s)
- Marilen Federico
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Enrique L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Cs. Veterinarias, UNLP, La Plata, Argentina
| | - Leandro Sommese
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Francisco J Alvarado
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Paula G Blanco
- Servicio de Ecocardiografía, Facultad de Veterinaria, UNLP, La Plata, Argentina
| | - Carolina N Zanuzzi
- Laboratorio de Análisis de Imágenes, Facultad de Cs. Veterinarias, UNLP, La Plata, Argentina
| | - John Dedman
- Department of Genome Science, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marcia Kaetzel
- Department of Genome Science, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine (in Cardiology), Pediatrics; and Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| |
Collapse
|
49
|
Salem ESB, Fan GC. Pathological Effects of Exosomes in Mediating Diabetic Cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:113-138. [PMID: 28936736 DOI: 10.1007/978-981-10-4397-0_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic subjects are at risk of developing cardiovascular disease, which accounts for 60-80% of diabetes-related mortality. Atherosclerosis is still considered as a leading cause of heart failure in diabetic patients, but it could also be an intrinsic and long-term effect of contractile cardiac cells malfunction, known as diabetic cardiomyopathy (DCM). Pathologically, this cardiac dysfunction is manifested by inflammation, apoptosis, fibrosis, hypertrophy and altered cardiomyocytes metabolism. However, the underlying molecular mechanisms of DCM pathophysiology are not clearly understood. Recent and several studies have suggested that exosomes are contributed to the regulation of cell-to-cell communication. Therefore, their in-depth investigation can interpret the complex pathophysiology of DCM. Structurally, exosomes are membrane-bounded vesicles (10-200 nm in diameter), which are actively released from all types of cells and detected in all biological fluids. They carry a wide array of bioactive molecules, including mRNAs, none-coding RNAs (e.g., microRNAs, lncRNAs, circRNAs, etc), proteins and lipids. Importantly, the abundance and nature of loaded molecules inside exosomes fluctuate with cell types and pathological conditions. This chapter summarizes currently available studies on the exosomes' role in the regulation of diabetic cardiomyopathy. Specifically, the advances on the pathological effects of exosomes in diabetic cardiomyopathy as well as the therapeutic potentials and perspectives are also discussed.
Collapse
Affiliation(s)
- Esam S B Salem
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 5872 Care Mail Loc-0575, Cincinnati, OH, 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 5872 Care Mail Loc-0575, Cincinnati, OH, 45267, USA.
| |
Collapse
|
50
|
Qin CX, Sleaby R, Davidoff AJ, Bell JR, De Blasio MJ, Delbridge LM, Chatham JC, Ritchie RH. Insights into the role of maladaptive hexosamine biosynthesis and O-GlcNAcylation in development of diabetic cardiac complications. Pharmacol Res 2016; 116:45-56. [PMID: 27988387 DOI: 10.1016/j.phrs.2016.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/28/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus significantly increases the risk of heart failure, independent of coronary artery disease. The mechanisms implicated in the development of diabetic heart disease, commonly termed diabetic cardiomyopathy, are complex, but much of the impact of diabetes on the heart can be attributed to impaired glucose handling. It has been shown that the maladaptive nutrient-sensing hexosamine biosynthesis pathway (HBP) contributes to diabetic complications in many non-cardiac tissues. Glucose metabolism by the HBP leads to enzymatically-regulated, O-linked attachment of a sugar moiety molecule, β-N-acetylglucosamine (O-GlcNAc), to proteins, affecting their biological activity (similar to phosphorylation). In normal physiology, transient activation of HBP/O-GlcNAc mechanisms is an adaptive, protective means to enhance cell survival; interventions that acutely suppress this pathway decrease tolerance to stress. Conversely, chronic dysregulation of HBP/O-GlcNAc mechanisms has been shown to be detrimental in certain pathological settings, including diabetes and cancer. Most of our understanding of the impact of sustained maladaptive HBP and O-GlcNAc protein modifications has been derived from adipose tissue, skeletal muscle and other non-cardiac tissues, as a contributing mechanism to insulin resistance and progression of diabetic complications. However, the long-term consequences of persistent activation of cardiac HBP and O-GlcNAc are not well-understood; therefore, the goal of this timely review is to highlight current understanding of the role of the HBP pathway in development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Pharmacology, University of Melbourne, VIC 3010, Australia
| | - Rochelle Sleaby
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Amy J Davidoff
- University of New England, Biddeford, ME, 04072, United States
| | - James R Bell
- Department of Physiology, University of Melbourne, VIC 3010, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; School of BioSciences, University of Melbourne, VIC 3010, Australia
| | | | - John C Chatham
- University of Alabama at Birmingham, Birmingham, AL, 35233, United States
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker IDI Heart & Diabetes Institute, Melbourne VIC 3004, Australia; Department of Pharmacology, University of Melbourne, VIC 3010, Australia; Department of Medicine, Monash University, Clayton 3800, VIC, Australia.
| |
Collapse
|