1
|
Kalbfleisch TS, Smith ML, Ciosek JL, Li K, Doris PA. Three decades of rat genomics: approaching the finish(ed) line. Physiol Genomics 2024; 56:807-818. [PMID: 39348459 PMCID: PMC11573253 DOI: 10.1152/physiolgenomics.00110.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024] Open
Abstract
The rat, Rattus norvegicus, has provided an important model for investigation of a range of characteristics of biomedical importance. Here we survey the origins of this species, its introduction into laboratory research, and the emergence of genetic and genomic methods that utilize this model organism. Genomic studies have yielded important progress and provided new insight into several biologically important traits. However, some studies have been impeded by the lack of a complete and accurate reference genome for this species. New sequencing and genome assembly methods applied to the rat have resulted in a new reference genome assembly, GRCr8, which is a near telomere-to-telomere assembly of high base-level accuracy that incorporates several elements not captured in prior assemblies. As genome assembly methods continue to advance and production costs become a less significant obstacle, genome assemblies for multiple inbred rat strains are emerging. These assemblies will allow a rat pangenome assembly to be constructed that captures all the genetic variations in strains selected for their utility in research and will overcome reference bias, a limitation associated with reliance on a single reference assembly. By this means, the full utility of this model organism to genomic studies will begin to be revealed.
Collapse
Affiliation(s)
- Theodore S Kalbfleisch
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Melissa L Smith
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Julia L Ciosek
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Kai Li
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Peter A Doris
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States
| |
Collapse
|
2
|
Simats A, Zhang S, Messerer D, Chong F, Beşkardeş S, Chivukula AS, Cao J, Besson-Girard S, Montellano FA, Morbach C, Carofiglio O, Ricci A, Roth S, Llovera G, Singh R, Chen Y, Filser S, Plesnila N, Braun C, Spitzer H, Gokce O, Dichgans M, Heuschmann PU, Hatakeyama K, Beltrán E, Clauss S, Bonev B, Schulz C, Liesz A. Innate immune memory after brain injury drives inflammatory cardiac dysfunction. Cell 2024; 187:4637-4655.e26. [PMID: 39043180 DOI: 10.1016/j.cell.2024.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1β was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1β or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1β-mediated comorbidities, offering a framework for secondary prevention immunotherapy.
Collapse
Affiliation(s)
- Alba Simats
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Cerebrovascular Research Laboratory, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Sijia Zhang
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Denise Messerer
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany
| | - Faye Chong
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sude Beşkardeş
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Jiayu Cao
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Felipe A Montellano
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany; Institute of Clinical Epidemiology and Biometry, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Caroline Morbach
- Department Clinical Research & Epidemiology, Comprehensive Heart Failure Center, and Department Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Olga Carofiglio
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Alessio Ricci
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Rashween Singh
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Yiming Chen
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Severin Filser
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Braun
- Institute of Legal Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Hannah Spitzer
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Partner Sites Munich and Bonn, Germany; Department of Old Age Psychiatry and cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Partner Sites Munich and Bonn, Germany
| | - Peter U Heuschmann
- Institute of Clinical Epidemiology and Biometry, Julius-Maximilian-University Würzburg, Würzburg, Germany; Institute for Medical Data Sciences, University Hospital Würzburg, Würzburg, Germany; Clinical Trial Centre Würzburg, University Hospital Würzburg, Würzburg, Germany
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Eduardo Beltrán
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Sebastian Clauss
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
3
|
Fu T, Wang X, Zhao X, Jiang Y, Liu X, Zhang H, Ren Y, Li Z, Hu X. Single-cell transcriptomic analysis of decidual immune cell landscape in the occurrence of adverse pregnancy outcomes induced by Toxoplasma gondii infection. Parasit Vectors 2024; 17:213. [PMID: 38730500 PMCID: PMC11088043 DOI: 10.1186/s13071-024-06266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/29/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular parasite that can lead to adverse pregnancy outcomes, particularly in early pregnancy. Previous studies have illustrated the landscape of decidual immune cells. However, the landscape of decidual immune cells in the maternal-fetal microenvironment during T. gondii infection remains unknown. METHODS In this study, we employed single-cell RNA sequencing to analyze the changes in human decidual immune cells following T. gondii infection. The results of scRNA-seq were further validated with flow cytometry, reverse transcription-polymerase chain reaction, western blot, and immunofluorescence staining. RESULTS Our results showed that the proportion of 17 decidual immune cell clusters and the expression levels of 21 genes were changed after T. gondii infection. Differential gene analysis demonstrated that T. gondii infection induced the differential expression of 279, 312, and 380 genes in decidual NK cells (dNK), decidual macrophages (dMφ), and decidual T cells (dT), respectively. Our results revealed for the first time that several previously unknown molecules in decidual immune cells changed following infection. This result revealed that the function of maternal-fetal immune tolerance declined, whereas the killing ability of decidual immune cells enhanced, eventually contributing to the occurrence of adverse pregnancy outcomes. CONCLUSIONS This study provides valuable resource for uncovering several novel molecules that play an important role in the occurrence of abnormal pregnancy outcomes induced by T. gondii infection.
Collapse
Affiliation(s)
- Tianyi Fu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xiaohui Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xiaoyue Zhao
- Department of Clinical Psychology, Yantai Affiliated Hospital of Binzhou Medial University, Yantai, 264100, Shandong, People's Republic of China
| | - Yuzhu Jiang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xianbing Liu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Haixia Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yushan Ren
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Zhidan Li
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Yang H, Xiao T, Deng Y, Ding C, Zhang M, Li J, Lv Z. JunD functions as a transcription factor of IL-10 to regulate bacterial infectious inflammation in grass carp (Ctenopharyngodon idella). Int J Biol Macromol 2024; 258:129045. [PMID: 38159700 DOI: 10.1016/j.ijbiomac.2023.129045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
IL-10 is a key anti-inflammatory mediator ensuring the protection of a host from excessive inflammation in response to pathogen infections, whose transcription or expression levels are tightly linked to the onset and progression of infectious diseases. An AP-1 family member called CiJunD was shown to be a transcription factor of IL-10 in grass carp (Ctenopharyngodon idella) in the current study. CiJunD protein harbored the conserved Jun and bZIP domains. Mutant experiments demonstrated that CiJunD bound to three specific sites on IL-10 promoter, i.e., 5'-ATTATTCATA-3', 5'-AGATGAGACATCT-3', and 5'-ATTATTCATC-3', mainly relying on the bZIP domain, and initiated IL-10 transcription. Expression data from the grass carp spleen infected by Aeromonas hydrophila and lipopolysaccharide (LPS) challenged spleen leukocytes indicated that the expressions of CiJunD and IL-10 were positively correlated, while the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-8, IFN-γ, and TNF-α, showed an overall downward trend when CiJunD and IL-10 peaked. The ability of CiJunD to down-regulate the production of pro-inflammatory cytokines and up-regulate the expression of IL-10, both with and without LPS stimulation, was confirmed by overexpression experiments. Meanwhile, the subcellular fractionation assay revealed that the nuclear translocation of CiJunD was significantly enhanced after the LPS challenge. Moreover, in vivo administration of grass carp with Oxamflatin, a potent agonist of JunD activity, could promote IL-10 but suppress the expression of pro-inflammatory cytokines. Intriguingly, tissue inflammation lesions and the survival rates of grass carp infected with A. hydrophila were also significantly improved by Oxamflatin administration. This work sheds light on the regulation mechanism by JunD of IL-10 expression and bacterial infectious inflammation for the first time, and it may present a viable method for preventing infectious diseases in fish by regulating IL-10 expression and inflammatory response.
Collapse
Affiliation(s)
- Hong Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| | - Yadong Deng
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Mengyuan Zhang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Junhua Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Shi W, Ye J, Shi Z, Pan C, Zhang Q, Lin Y, Liang D, Liu Y, Lin X, Zheng Y. Single-cell chromatin accessibility and transcriptomic characterization of Behcet's disease. Commun Biol 2023; 6:1048. [PMID: 37848613 PMCID: PMC10582193 DOI: 10.1038/s42003-023-05420-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Behect's disease is a chronic vasculitis characterized by complex multi-organ immune aberrations. However, a comprehensive understanding of the gene-regulatory profile of peripheral autoimmunity and the diverse immune responses across distinct cell types in Behcet's disease (BD) is still lacking. Here, we present a multi-omic single-cell study of 424,817 cells in BD patients and non-BD individuals. This study maps chromatin accessibility and gene expression in the same biological samples, unraveling vast cellular heterogeneity. We identify widespread cell-type-specific, disease-associated active and pro-inflammatory immunity in both transcript and epigenomic aspects. Notably, integrative multi-omic analysis reveals putative TF regulators that might contribute to chromatin accessibility and gene expression in BD. Moreover, we predicted gene-regulatory networks within nominated TF activators, including AP-1, NF-kB, and ETS transcript factor families, which may regulate cellular interaction and govern inflammation. Our study illustrates the epigenetic and transcriptional landscape in BD peripheral blood and expands understanding of potential epigenomic immunopathology in this disease.
Collapse
Affiliation(s)
- Wen Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 510060, Guangzhou, China.
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, 100085, Beijing, China.
| |
Collapse
|
6
|
Kalbfleisch TS, Hussien AbouEl Ela NA, Li K, Brashear WA, Kochan KJ, Hillhouse AE, Zhu Y, Dhande IS, Kline EJ, Hudson EA, Murphy TD, Thibaud-Nissen F, Smith ML, Doris PA. The Assembled Genome of the Stroke-Prone Spontaneously Hypertensive Rat. Hypertension 2023; 80:138-146. [PMID: 36330812 PMCID: PMC9814308 DOI: 10.1161/hypertensionaha.122.20140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND We report the creation and evaluation of a de novo assembly of the genome of the spontaneously hypertensive rat, the most widely used model of human cardiovascular disease. METHODS The genome is assembled from long read sequencing (PacBio HiFi and continuous long read data [CLR]) and scaffolded with long-range structural information obtained from Bionano optical maps and proximity ligation sequencing proximity analysis of the genome. The genome assembly was polished with Illumina short reads. Completeness of the assembly was investigated using Benchmarking Universal Single Copy Orthologs analysis. The genome assembly was also evaluated with the rat reference gene set, using NCBI automated protocols. We also generated orthogonal single molecule transcript sequence reads (Iso-Seq) from 8 tissues and used them to validate the coding assembly, to annotate the assembly with RNA transcripts representing unique full length transcript isoforms for each gene and to determine whether divergences between RefSeq sequences and the assembly were attributable to assembly errors or polymorphisms. RESULTS The assembly analysis indicates that this assembly is comparable in contiguity and completeness to the current rat reference assembly, while the use of HiFi sequencing yields an assembly that is more correct at the single base level. Synteny analysis was performed to uncover the extent of synteny and the presence and distribution of chromosomal rearrangements between the reference and this assembly. CONCLUSION The resulting genome assembly is reference quality and captures significant structural variation.
Collapse
Affiliation(s)
- Theodore S Kalbfleisch
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY (T.S.K., N.A.H., K.L.)
| | - Nahla A Hussien AbouEl Ela
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY (T.S.K., N.A.H., K.L.)
| | - Kai Li
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY (T.S.K., N.A.H., K.L.)
| | - Wesley A Brashear
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX (W.A.B., K.J.K., A.E.H.)
| | - Kelli J Kochan
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX (W.A.B., K.J.K., A.E.H.)
| | - Andrew E Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX (W.A.B., K.J.K., A.E.H.)
| | - Yaming Zhu
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, TX (Y.Z., I.S.D., P.A.D.)
| | - Isha S Dhande
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, TX (Y.Z., I.S.D., P.A.D.)
| | - Eric J Kline
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY (E.J.K., E.A.H, M.L.S.)
| | - Elizabeth A Hudson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY (E.J.K., E.A.H, M.L.S.)
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD (T.D.M., F.T.-N.)
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD (T.D.M., F.T.-N.)
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY (E.J.K., E.A.H, M.L.S.)
| | - Peter A Doris
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, TX (Y.Z., I.S.D., P.A.D.)
| |
Collapse
|
7
|
Yang X, Liu X, Li J, Zhang P, Li H, Chen G, Zhang W, Wang T, Frazer I, Ni G. Caerin 1.1/1.9 Enhances Antitumour Immunity by Activating the IFN-α Response Signalling Pathway of Tumour Macrophages. Cancers (Basel) 2022; 14:cancers14235785. [PMID: 36497272 PMCID: PMC9738106 DOI: 10.3390/cancers14235785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Macrophages are one of the essential components of the tumour microenvironment (TME) of many cancers and show complex heterogeneity and functions. More recent research has been focusing on the characterisation of tumour-associated macrophages (TAMs). Previously, our study demonstrated that caerin 1.1/1.9 peptides significantly improve the therapeutic efficacy of combined specific immunotherapy and immune checkpoint blockade in a murine transplantable tumour model (TC-1). In this study, the mice inoculated with TC-1 tumour were immunised differently. The TAMs were isolated using flow cytometry and characterised by cytokine ELISA. The survival rates of mice with different treatments containing caerin 1.1/19 were assessed comparatively, including those with/without macrophage depletion. The single-cell RNA sequencing (scRNA-seq) data of previous studies were integrated to further reveal the functions of TAMs with the treatments containing caerin 1.1/1.9. As a comparison, the TAMs of stage I and II cervical cancer patients were analysed using scRNA-seq analysis. We demonstrate that caerin induced tumour clearance is associated with infiltration of tumours by IL-12 secreting Ly6C+F4/80+ macrophages exhibiting enhanced IFN-α response signalling, renders animals resistant to further tumour challenge, which is lost after macrophage depletion. Our results indicate that caerin 1.1/1.9 treatment has great potential in improving current immunotherapy efficacy.
Collapse
Affiliation(s)
- Xiaodan Yang
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Xiaosong Liu
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
| | - Junjie Li
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Pingping Zhang
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
| | - Hejie Li
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia
| | - Guoqiang Chen
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
| | - Wei Zhang
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Tianfang Wang
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia
| | - Ian Frazer
- Faculty of Medicine, University of Queensland Diamantina Institute, Translational Research Institute, the University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence: (I.F.); (G.N.)
| | - Guoying Ni
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
- Correspondence: (I.F.); (G.N.)
| |
Collapse
|
8
|
Borgenheimer E, Hamel K, Sheeler C, Moncada FL, Sbrocco K, Zhang Y, Cvetanovic M. Single nuclei RNA sequencing investigation of the Purkinje cell and glial changes in the cerebellum of transgenic Spinocerebellar ataxia type 1 mice. Front Cell Neurosci 2022; 16:998408. [PMID: 36457352 PMCID: PMC9706545 DOI: 10.3389/fncel.2022.998408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells constitute half the population of the human brain and are essential for normal brain function. Most, if not all, brain diseases are characterized by reactive gliosis, a process by which glial cells respond and contribute to neuronal pathology. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease characterized by a severe degeneration of cerebellar Purkinje cells (PCs) and cerebellar gliosis. SCA1 is caused by an abnormal expansion of CAG repeats in the gene Ataxin1 (ATXN1). While several studies reported the effects of mutant ATXN1 in Purkinje cells, it remains unclear how cerebellar glia respond to dysfunctional Purkinje cells in SCA1. To address this question, we performed single nuclei RNA sequencing (snRNA seq) on cerebella of early stage Pcp2-ATXN1[82Q] mice, a transgenic SCA1 mouse model expressing mutant ATXN1 only in Purkinje cells. We found no changes in neuronal and glial proportions in the SCA1 cerebellum at this early disease stage compared to wild-type controls. Importantly, we observed profound non-cell autonomous and potentially neuroprotective reactive gene and pathway alterations in Bergmann glia, velate astrocytes, and oligodendrocytes in response to Purkinje cell dysfunction.
Collapse
Affiliation(s)
- Ella Borgenheimer
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
de Jong TV, Chen H, Brashear WA, Kochan KJ, Hillhouse AE, Zhu Y, Dhande IS, Hudson EA, Sumlut MH, Smith ML, Kalbfleisch TS, Doris PA. mRatBN7.2: familiar and unfamiliar features of a new rat genome reference assembly. Physiol Genomics 2022; 54:251-260. [PMID: 35543507 PMCID: PMC9236863 DOI: 10.1152/physiolgenomics.00017.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rat genomic tools have been slower to emerge than for those of humans and mice and have remained less thorough and comprehensive. The arrival of a new and improved rat reference genome, mRatBN7.2, in late 2020 is a welcome event. This assembly, like predecessor rat reference assemblies, is derived from an inbred Brown Norway rat. In this "user" survey we hope to provide other users of this assembly some insight into its characteristics and some assessment of its improvements as well as a few caveats that arise from the unique aspects of this assembly. mRatBN7.2 was generated by the Wellcome Sanger Institute as part of the large Vertebrate Genomes Project. This rat assembly has now joined human, mouse, chicken, and zebrafish in the National Center for Biotechnology Information (NCBI)'s Genome Reference Consortium, which provides ongoing curation of the assembly. Here we examine the technical procedures by which the assembly was created and assess how this assembly constitutes an improvement over its predecessor. We also indicate the technical limitations affecting the assembly, providing illustrations of how these limitations arise and the impact that results for this reference assembly.
Collapse
Affiliation(s)
- Tristan V. de Jong
- 1Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- 1Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wesley A. Brashear
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Kelli J. Kochan
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Andrew E. Hillhouse
- 2Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas
| | - Yaming Zhu
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| | - Isha S. Dhande
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| | - Elizabeth A. Hudson
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Mary H. Sumlut
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Melissa L. Smith
- 4Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky
| | - Theodore S. Kalbfleisch
- 5Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky
| | - Peter A. Doris
- 3Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern School of Medicine, Houston, Texas
| |
Collapse
|
10
|
Yu F, Li W, Wang L, Que S, Lu L. Characterization of grass carp FosB, Fosl2, JunD transcription factors in response to GCRV infection. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individuals convalescing from COVID-19. Nat Cell Biol 2021; 23:620-630. [PMID: 34108657 PMCID: PMC9105401 DOI: 10.1038/s41556-021-00690-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection often causes severe complications and even death. However, asymptomatic infection has also been reported, highlighting the difference in immune responses among individuals. Here we performed single-cell chromatin accessibility and T cell-receptor analyses of peripheral blood mononuclear cells collected from individuals convalescing from COVID-19 and healthy donors. Chromatin remodelling was observed in both innate and adaptive immune cells in the individuals convalescing from COVID-19. Compared with healthy donors, recovered individuals contained abundant TBET-enriched CD16+ and IRF1-enriched CD14+ monocytes with sequential trained and activated epigenomic states. The B-cell lineage in recovered individuals exhibited an accelerated developmental programme from immature B cells to antibody-producing plasma cells. Finally, an integrated analysis of single-cell T cell-receptor clonality with the chromatin accessibility landscape revealed the expansion of putative SARS-CoV-2-specific CD8+ T cells with epigenomic profiles that promote the differentiation of effector or memory cells. Overall, our data suggest that immune cells of individuals convalescing from COVID-19 exhibit global remodelling of the chromatin accessibility landscape, indicative of the establishment of immunological memory.
Collapse
|
12
|
Identification of New, Functionally Relevant Mutations in the Coding Regions of the Human Fos and Jun Proto-Oncogenes in Rheumatoid Arthritis Synovial Tissue. Life (Basel) 2020; 11:life11010005. [PMID: 33374881 PMCID: PMC7823737 DOI: 10.3390/life11010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
In rheumatoid arthritis (RA), the expression of many pro-destructive/pro-inflammatory proteins depends on the transcription factor AP-1. Therefore, our aim was to analyze the presence and functional relevance of mutations in the coding regions of the AP-1 subunits of the fos and jun family in peripheral blood (PB) and synovial membranes (SM) of RA and osteoarthritis patients (OA, disease control), as well as normal controls (NC). Using the non-isotopic RNAse cleavage assay, one known polymorphism (T252C: silent; rs1046117; present in RA, OA, and NC) and three novel germline mutations of the cfos gene were detected: (i) C361G/A367G: Gln121Glu/Ile123Val, denoted as “fos121/123”; present only in one OA sample; (ii) G374A: Arg125Lys, “fos125”; and (iii) C217A/G374A: Leu73Met/Arg125Lys, “fos73/125”, the latter two exclusively present in RA. In addition, three novel somatic cjun mutations (604–606ΔCAG: ΔGln202, “jun202”; C706T: Pro236Ser, “jun236”; G750A: silent) were found exclusively in the RA SM. Tansgenic expression of fos125 and fos73/125 mutants in NIH-3T3 cells induced an activation of reporter constructs containing either the MMP-1 (matrix metalloproteinase) promoter (3- and 4-fold, respectively) or a pentameric AP-1 site (approximately 5-fold). Combined expression of these two cfos mutants with cjun wildtype or mutants (jun202, jun236) further enhanced reporter expression of the pentameric AP-1 construct. Finally, genotyping for the novel functionally relevant germline mutations in 298 RA, 288 OA, and 484 NC samples revealed no association with RA. Thus, functional cfos/cjun mutants may contribute to local joint inflammation/destruction in selected patients with RA by altering the transactivation capacity of AP-1 complexes.
Collapse
|
13
|
Costantino S, Akhmedov A, Melina G, Mohammed SA, Othman A, Ambrosini S, Wijnen WJ, Sada L, Ciavarella GM, Liberale L, Tanner FC, Matter CM, Hornemann T, Volpe M, Mechta-Grigoriou F, Camici GG, Sinatra R, Lüscher TF, Paneni F. Obesity-induced activation of JunD promotes myocardial lipid accumulation and metabolic cardiomyopathy. Eur Heart J 2020; 40:997-1008. [PMID: 30629164 DOI: 10.1093/eurheartj/ehy903] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/24/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
AIMS Metabolic cardiomyopathy (MC)-characterized by intra-myocardial triglyceride (TG) accumulation and lipotoxic damage-is an emerging cause of heart failure in obese patients. Yet, its mechanisms remain poorly understood. The Activator Protein 1 (AP-1) member JunD was recently identified as a key modulator of hepatic lipid metabolism in obese mice. The present study investigates the role of JunD in obesity-induced MC. METHODS AND RESULTS JunD transcriptional activity was increased in hearts from diet-induced obese (DIO) mice and was associated with myocardial TG accumulation and left ventricular (LV) dysfunction. Obese mice lacking JunD were protected against MC. In DIO hearts, JunD directly binds PPARγ promoter thus enabling transcription of genes involved in TG synthesis, uptake, hydrolysis, and storage (i.e. Fas, Cd36, Lpl, Plin5). Cardiac-specific overexpression of JunD in lean mice led to PPARγ activation, cardiac steatosis, and dysfunction, thereby mimicking the MC phenotype. In DIO hearts as well as in neonatal rat ventricular myocytes exposed to palmitic acid, Ago2 immunoprecipitation, and luciferase assays revealed JunD as a direct target of miR-494-3p. Indeed, miR-494-3p was down-regulated in hearts from obese mice, while its overexpression prevented lipotoxic damage by suppressing JunD/PPARγ signalling. JunD and miR-494-3p were also dysregulated in myocardial specimens from obese patients as compared with non-obese controls, and correlated with myocardial TG content, expression of PPARγ-dependent genes, and echocardiographic indices of LV dysfunction. CONCLUSION miR-494-3p/JunD is a novel molecular axis involved in obesity-related MC. These results pave the way for approaches to prevent or treat LV dysfunction in obese patients.
Collapse
Affiliation(s)
- Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Giovanni Melina
- Department of Cardiac Surgery, Sant'Andrea Hospital, "Sapienza" University, Via di Grottarossa, 1035, Rome, Italy
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Winandus J Wijnen
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland
| | - Lidia Sada
- Department of Clinical and Molecular Medicine, Cardiology Unit, Faculty of Medicine and Psychology, "Sapienza" University, Via di Grottarossa, 1035, Rome, Italy
| | - Giuseppino M Ciavarella
- Department of Clinical and Molecular Medicine, Cardiology Unit, Faculty of Medicine and Psychology, "Sapienza" University, Via di Grottarossa, 1035, Rome, Italy
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, Genoa, Italy
| | - Felix C Tanner
- University Heart Center, Cardiology, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Cardiology Unit, Faculty of Medicine and Psychology, "Sapienza" University, Via di Grottarossa, 1035, Rome, Italy.,IRCCS Neuromed, Pozzilli, Via Atinense, 18, Pozzilli (IS), Italy
| | - Fatima Mechta-Grigoriou
- Institut Curie, Stress and Cancer Laboratory, Equipe Labelisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, Paris, France.,Inserm, U830, 26, rue d'Ulm, Paris, France
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| | - Riccardo Sinatra
- Department of Cardiac Surgery, Sant'Andrea Hospital, "Sapienza" University, Via di Grottarossa, 1035, Rome, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland.,Cardiology, Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zürich, Ramistrasse 100, Zurich, Switzerland
| |
Collapse
|
14
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
15
|
McAdoo SP, Prendecki M, Tanna A, Bhatt T, Bhangal G, McDaid J, Masuda ES, Cook HT, Tam FWK, Pusey CD. Spleen tyrosine kinase inhibition is an effective treatment for established vasculitis in a pre-clinical model. Kidney Int 2020; 97:1196-1207. [PMID: 32305129 PMCID: PMC7242903 DOI: 10.1016/j.kint.2019.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/25/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAV) are a group of life-threatening multi-system diseases characterized by necrotising inflammation of small blood vessels and crescentic glomerulonephritis. ANCA are thought to play a direct pathogenic role. Previous studies have shown that spleen tyrosine kinase (SYK) is phosphorylated during ANCA-induced neutrophil activation in vitro. However, the role of SYK in vivo is unknown. Here, we studied its role in the pathogenesis of experimental autoimmune vasculitis, a pre-clinical model of myeloperoxidase-ANCA-induced pauci-immune systemic vasculitis in the Wistar Kyoto rat. Up-regulation of SYK expression in inflamed renal and pulmonary tissue during early autoimmune vasculitis was confirmed by immunohistochemical and transcript analysis. R406, the active metabolite of fostamatinib, a small molecule kinase inhibitor with high selectivity for SYK, inhibited ANCA-induced pro-inflammatory responses in rat leucocytes in vitro. In an in vivo study, treatment with fostamatinib for 14 days after disease onset resulted in rapid resolution of urinary abnormalities, significantly improved renal and pulmonary pathology, and preserved renal function. Short-term exposure to fostamatinib did not significantly affect circulating myeloperoxidase-ANCA levels, suggesting inhibition of ANCA-induced inflammatory mechanisms in vivo. Finally, SYK expression was demonstrated within inflammatory glomerular lesions in ANCA-associated glomerulonephritis in patients, particularly within CD68+ve monocytes/macrophages. Thus, our data indicate that SYK inhibition warrants clinical investigation in the treatment of AAV.
Collapse
Affiliation(s)
- Stephen P McAdoo
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK.
| | - Maria Prendecki
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - Anisha Tanna
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - Tejal Bhatt
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - Gurjeet Bhangal
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - John McDaid
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | | | - H Terence Cook
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - Frederick W K Tam
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Medicine, Imperial College London, London UK
| |
Collapse
|
16
|
Simmonds RE. Transient up-regulation of miR-155-3p by lipopolysaccharide in primary human monocyte-derived macrophages results in RISC incorporation but does not alter TNF expression. Wellcome Open Res 2019; 4:43. [PMID: 31641696 PMCID: PMC6790912 DOI: 10.12688/wellcomeopenres.15065.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The innate immune response is a tightly regulated process that reacts rapidly in response to pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS). Evidence is accumulating that microRNAs contribute to this, although few studies have examined the early events that constitute the “primary” response. Methods: LPS-dependent changes to miRNA expression were studied in primary human monocyte-derived macrophages (1°MDMs). An unbiased screen by microarray was validated by qPCR and a method for the absolute quantitation of miRNAs was also developed, utilising 5’ phosphorylated RNA oligonucleotide templates. RNA immunoprecipitation was performed to explore incorporation of miRNAs into the RNA-induced silencing complex (RISC). The effect of miRNA functional inhibition on TNF expression (mRNA and secretion) was investigated. Results: Of the 197 miRNAs expressed in 1°MDMs, only five were induced >1.5-fold. The most strongly induced was miR-155-3p, the partner strand to miR-155-5p, which are both derived from the MIR155HG/BIC gene (pri-miR-155). The abundance of miR-155-3p was induced transiently ~250-fold at 2-4hrs and then returned towards baseline, mirroring pri-miR-155. Other PAMPs, IL-1β, and TNF caused similar responses. IL-10, NF-κB, and JNK inhibition reduced these responses, unlike cytokine-suppressing mycolactone. Absolute quantitation revealed that miRNA abundance varies widely from donor-to-donor, and showed that miR-155-3p abundance is substantially less than miR-155-5p in unstimulated cells. However, at its peak there were 446-1,113 copies/cell, and miR-155-3p was incorporated into the RISC with an efficiency similar to miR-16-5p and miR-155-5p. Inhibition of neither miRNA affected TNF secretion after 2hrs in 1°MDMs, but technical challenges here are noted. Conclusions: Dynamic regulation of miRNAs during the primary response is rare, with the exception of miR-155-3p. Further work is required to establish whether its low abundance, even at the transient peak, is sufficient for biological activity and to determine whether there are specific mechanisms determining its biogenesis from miR-155 precursors
Collapse
Affiliation(s)
- Rachel E Simmonds
- Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK.,Cytokine and Signal Transduction Laboratory, Kennedy Institute of Rheumatology, London, W6 8LH, UK
| |
Collapse
|
17
|
Simmonds RE. Transient up-regulation of miR-155-3p by lipopolysaccharide in primary human monocyte-derived macrophages results in RISC incorporation but does not alter TNF expression. Wellcome Open Res 2019; 4:43. [DOI: 10.12688/wellcomeopenres.15065.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Background: The innate immune response is a tightly regulated process that reacts rapidly in response to pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS). Evidence is accumulating that microRNAs contribute to this, although few studies have examined the early events that constitute the “primary” response. Methods: LPS-dependent changes to miRNA expression were studied in primary human monocyte-derived macrophages (1°MDMs). An unbiased screen by microarray was validated by qPCR and a method for the absolute quantitation of miRNAs was also developed, utilising 5’ phosphorylated RNA oligonucleotide templates. RNA immunoprecipitation was performed to explore incorporation of miRNAs into the RNA-induced silencing complex (RISC). The effect of miRNA functional inhibition on TNF expression (mRNA and secretion) was investigated. Results: Of the 197 miRNAs expressed in 1°MDMs, only five were induced >1.5-fold. The most strongly induced was miR-155-3p, the partner strand to miR-155-5p, which are both derived from the BIC gene (B cell integration cluster, MIR155HG). The abundance of miR-155-3p was induced transiently ~250-fold at 2-4hrs and then returned towards baseline, mirroring the BIC mRNA. Other PAMPs, IL-1β, and TNF caused similar responses. IL-10, NF-κB, and JNK inhibition suppressed these responses, unlike cytokine-suppressing mycolactone. Absolute quantitation showed that miRNA abundance varies widely from donor-to-donor, and showed that miR-155-3p abundance is substantially less than miR-155-5p in unstimulated cells. However, at its peak there were 446-1,113 copies/cell, and miR-155-3p was incorporated into the RISC with an efficiency similar to miR-16-5p and miR-155-5p. Inhibition of neither miRNA affected TNF expression in 1°MDMs, but technical challenges here are noted. Conclusions: Dynamic regulation of miRNAs during the primary response is rare, with the exception of miR-155-3p, which transiently achieves levels that might have a biological effect. Further work on this candidate would need to overcome the technical challenges of the broad-ranging effects of liposomes on 1°MDMs.
Collapse
|
18
|
Carrillo-de-Santa-Pau E, Juan D, Pancaldi V, Were F, Martin-Subero I, Rico D, Valencia A. Automatic identification of informative regions with epigenomic changes associated to hematopoiesis. Nucleic Acids Res 2017; 45:9244-9259. [PMID: 28934481 PMCID: PMC5716146 DOI: 10.1093/nar/gkx618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis is one of the best characterized biological systems but the connection between chromatin changes and lineage differentiation is not yet well understood. We have developed a bioinformatic workflow to generate a chromatin space that allows to classify 42 human healthy blood epigenomes from the BLUEPRINT, NIH ROADMAP and ENCODE consortia by their cell type. This approach let us to distinguish different cells types based on their epigenomic profiles, thus recapitulating important aspects of human hematopoiesis. The analysis of the orthogonal dimension of the chromatin space identify 32,662 chromatin determinant regions (CDRs), genomic regions with different epigenetic characteristics between the cell types. Functional analysis revealed that these regions are linked with cell identities. The inclusion of leukemia epigenomes in the healthy hematological chromatin sample space gives us insights on the healthy cell types that are more epigenetically similar to the disease samples. Further analysis of tumoral epigenetic alterations in hematopoietic CDRs points to sets of genes that are tightly regulated in leukemic transformations and commonly mutated in other tumors. Our method provides an analytical approach to study the relationship between epigenomic changes and cell lineage differentiation. Method availability: https://github.com/david-juan/ChromDet.
Collapse
Affiliation(s)
| | - David Juan
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, 08003, Spain
| | - Vera Pancaldi
- Barcelona Supercomputing Centre (BSC), Barcelona, 08034, Spain
| | - Felipe Were
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Ignacio Martin-Subero
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, 08036, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alfonso Valencia
- Barcelona Supercomputing Centre (BSC), Barcelona, 08034, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | | |
Collapse
|
19
|
Papathanassiu AE, Ko JH, Imprialou M, Bagnati M, Srivastava PK, Vu HA, Cucchi D, McAdoo SP, Ananieva EA, Mauro C, Behmoaras J. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nat Commun 2017; 8:16040. [PMID: 28699638 PMCID: PMC5510229 DOI: 10.1038/ncomms16040] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Branched-chain aminotransferases (BCAT) are enzymes that initiate the catabolism of branched-chain amino acids (BCAA), such as leucine, thereby providing macromolecule precursors; however, the function of BCATs in macrophages is unknown. Here we show that BCAT1 is the predominant BCAT isoform in human primary macrophages. We identify ERG240 as a leucine analogue that blocks BCAT1 activity. Selective inhibition of BCAT1 activity results in decreased oxygen consumption and glycolysis. This decrease is associated with reduced IRG1 levels and itaconate synthesis, suggesting involvement of BCAA catabolism through the IRG1/itaconate axis within the tricarboxylic acid cycle in activated macrophages. ERG240 suppresses production of IRG1 and itaconate in mice and contributes to a less proinflammatory transcriptome signature. Oral administration of ERG240 reduces the severity of collagen-induced arthritis in mice and crescentic glomerulonephritis in rats, in part by decreasing macrophage infiltration. These results establish a regulatory role for BCAT1 in macrophage function with therapeutic implications for inflammatory conditions.
Collapse
Affiliation(s)
| | - Jeong-Hun Ko
- Centre for Complement and Inflammation Research, Imperial College London, London W12 0NN, UK
| | - Martha Imprialou
- Centre for Complement and Inflammation Research, Imperial College London, London W12 0NN, UK
| | - Marta Bagnati
- Centre for Complement and Inflammation Research, Imperial College London, London W12 0NN, UK
| | | | - Hong A. Vu
- Ergon Pharmaceuticals, LLC, P.O. Box 1001, Silver Spring, Maryland 20910, USA
| | - Danilo Cucchi
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Institute Pasteur, Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Stephen P. McAdoo
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Elitsa A. Ananieva
- Biochemistry and Nutrition, Des Moines University, Des Moines, Iowa 50312, USA
| | - Claudio Mauro
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research, Imperial College London, London W12 0NN, UK
| |
Collapse
|
20
|
Identification of Ceruloplasmin as a Gene that Affects Susceptibility to Glomerulonephritis Through Macrophage Function. Genetics 2017; 206:1139-1151. [PMID: 28450461 PMCID: PMC5499168 DOI: 10.1534/genetics.116.197376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Crescentic glomerulonephritis (Crgn) is a complex disorder where macrophage activity and infiltration are significant effector causes. In previous linkage studies using the uniquely susceptible Wistar Kyoto (WKY) rat strain, we have identified multiple crescentic glomerulonephritis QTL (Crgn) and positionally cloned genes underlying Crgn1 and Crgn2, which accounted for 40% of total variance in glomerular inflammation. Here, we have generated a backcross (BC) population (n = 166) where Crgn1 and Crgn2 were genetically fixed and found significant linkage to glomerular crescents on chromosome 2 (Crgn8, LOD = 3.8). Fine mapping analysis by integration with genome-wide expression QTLs (eQTLs) from the same BC population identified ceruloplasmin (Cp) as a positional eQTL in macrophages but not in serum. Liquid chromatography-tandem mass spectrometry confirmed Cp as a protein QTL in rat macrophages. WKY macrophages overexpress Cp and its downregulation by RNA interference decreases markers of glomerular proinflammatory macrophage activation. Similarly, short incubation with Cp results in a strain-dependent macrophage polarization in the rat. These results suggest that genetically determined Cp levels can alter susceptibility to Crgn through macrophage function and propose a new role for Cp in early macrophage activation.
Collapse
|
21
|
Hannemann N, Jordan J, Paul S, Reid S, Baenkler HW, Sonnewald S, Bäuerle T, Vera J, Schett G, Bozec A. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages. THE JOURNAL OF IMMUNOLOGY 2017; 198:3605-3614. [PMID: 28298526 DOI: 10.4049/jimmunol.1601330] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/17/2017] [Indexed: 11/19/2022]
Abstract
Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels.
Collapse
Affiliation(s)
- Nicole Hannemann
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Jutta Jordan
- Preclinical Imaging Platform Erlangen, Institute of Radiology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sushmita Paul
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; and
| | - Stephen Reid
- Division of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Hanns-Wolf Baenkler
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; and
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany;
| |
Collapse
|
22
|
A Bayesian Approach for Analysis of Whole-Genome Bisulfite Sequencing Data Identifies Disease-Associated Changes in DNA Methylation. Genetics 2017; 205:1443-1458. [PMID: 28213474 PMCID: PMC5378105 DOI: 10.1534/genetics.116.195008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/03/2017] [Indexed: 12/13/2022] Open
Abstract
Whole-genome bisulphite sequencing (WGBS) can identify important methylation differences between diseased and healthy samples. However, results from... DNA methylation is a key epigenetic modification involved in gene regulation whose contribution to disease susceptibility remains to be fully understood. Here, we present a novel Bayesian smoothing approach (called ABBA) to detect differentially methylated regions (DMRs) from whole-genome bisulfite sequencing (WGBS). We also show how this approach can be leveraged to identify disease-associated changes in DNA methylation, suggesting mechanisms through which these alterations might affect disease. From a data modeling perspective, ABBA has the distinctive feature of automatically adapting to different correlation structures in CpG methylation levels across the genome while taking into account the distance between CpG sites as a covariate. Our simulation study shows that ABBA has greater power to detect DMRs than existing methods, providing an accurate identification of DMRs in the large majority of simulated cases. To empirically demonstrate the method’s efficacy in generating biological hypotheses, we performed WGBS of primary macrophages derived from an experimental rat system of glomerulonephritis and used ABBA to identify >1000 disease-associated DMRs. Investigation of these DMRs revealed differential DNA methylation localized to a 600 bp region in the promoter of the Ifitm3 gene. This was confirmed by ChIP-seq and RNA-seq analyses, showing differential transcription factor binding at the Ifitm3 promoter by JunD (an established determinant of glomerulonephritis), and a consistent change in Ifitm3 expression. Our ABBA analysis allowed us to propose a new role for Ifitm3 in the pathogenesis of glomerulonephritis via a mechanism involving promoter hypermethylation that is associated with Ifitm3 repression in the rat strain susceptible to glomerulonephritis.
Collapse
|
23
|
Xu Y, Chen J, Xiao L, Chung HK, Zhang Y, Robinson JC, Rao JN, Wang JY. Transcriptional regulation of importin-α1 by JunD modulates subcellular localization of RNA-binding protein HuR in intestinal epithelial cells. Am J Physiol Cell Physiol 2016; 311:C874-C883. [PMID: 27733365 DOI: 10.1152/ajpcell.00209.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/10/2016] [Indexed: 01/23/2023]
Abstract
The RNA-binding protein HuR is crucial for normal intestinal mucosal regeneration by modulating the stability and translation of target mRNAs, but the exact mechanism underlying HuR trafficking between the cytoplasm and nucleus remains largely unknown. Here we report a novel function of transcription factor JunD in the regulation of HuR subcellular localization through the control of importin-α1 expression in intestinal epithelial cells (IECs). Ectopically expressed JunD specifically inhibited importin-α1 at the transcription level, and this repression is mediated via interaction with CREB-binding site that was located at the proximal region of importin-α1 promoter. Reduction in the levels of importin-α1 by JunD increased cytoplasmic levels of HuR, although it failed to alter whole cell HuR levels. Increased levels of endogenous JunD by depleting cellular polyamines also inhibited importin-α1 expression and increased cytoplasmic HuR levels, whereas JunD silencing rescued importin-α1 expression and enhanced HuR nuclear translocation in polyamine-deficient cells. Moreover, importin-α1 silencing protected IECs against apoptosis, which was prevented by HuR silencing. These results indicate that JunD regulates HuR subcellular distribution by downregulating importin-α1, thus contributing to the maintenance of gut epithelium homeostasis.
Collapse
Affiliation(s)
- Yan Xu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jie Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Yuan Zhang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Joseph C Robinson
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; .,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
24
|
Moreno-Moral A, Petretto E. From integrative genomics to systems genetics in the rat to link genotypes to phenotypes. Dis Model Mech 2016; 9:1097-1110. [PMID: 27736746 PMCID: PMC5087832 DOI: 10.1242/dmm.026104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Complementary to traditional gene mapping approaches used to identify the hereditary components of complex diseases, integrative genomics and systems genetics have emerged as powerful strategies to decipher the key genetic drivers of molecular pathways that underlie disease. Broadly speaking, integrative genomics aims to link cellular-level traits (such as mRNA expression) to the genome to identify their genetic determinants. With the characterization of several cellular-level traits within the same system, the integrative genomics approach evolved into a more comprehensive study design, called systems genetics, which aims to unravel the complex biological networks and pathways involved in disease, and in turn map their genetic control points. The first fully integrated systems genetics study was carried out in rats, and the results, which revealed conserved trans-acting genetic regulation of a pro-inflammatory network relevant to type 1 diabetes, were translated to humans. Many studies using different organisms subsequently stemmed from this example. The aim of this Review is to describe the most recent advances in the fields of integrative genomics and systems genetics applied in the rat, with a focus on studies of complex diseases ranging from inflammatory to cardiometabolic disorders. We aim to provide the genetics community with a comprehensive insight into how the systems genetics approach came to life, starting from the first integrative genomics strategies [such as expression quantitative trait loci (eQTLs) mapping] and concluding with the most sophisticated gene network-based analyses in multiple systems and disease states. Although not limited to studies that have been directly translated to humans, we will focus particularly on the successful investigations in the rat that have led to primary discoveries of genes and pathways relevant to human disease.
Collapse
Affiliation(s)
- Aida Moreno-Moral
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Enrico Petretto
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore
| |
Collapse
|
25
|
Martínez-Micaelo N, González-Abuín N, Terra X, Ardévol A, Pinent M, Petretto E, Behmoaras J, Blay M. Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet. Dis Model Mech 2016; 9:1231-1239. [PMID: 27483348 PMCID: PMC5087837 DOI: 10.1242/dmm.025528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/04/2016] [Indexed: 01/21/2023] Open
Abstract
Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF) diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY) and Lewis (LEW) show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2) as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA) levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-diet-induced obesity. Summary: Feeding with a cafeteria diet (CAF) is a reproducible model of human metabolic syndrome in the rat. By using inbred rat models of nutrigenomics, we have studied the effect of CAF on monocyte transcriptome.
Collapse
Affiliation(s)
- Neus Martínez-Micaelo
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Noemi González-Abuín
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Ximena Terra
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Ana Ardévol
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Montserrat Pinent
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Enrico Petretto
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Republic of Singapore
| | - Jacques Behmoaras
- Centre of Complement and Inflammation Research, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Mayte Blay
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43003 Tarragona, Spain
| |
Collapse
|
26
|
Garcia Diaz AI, Moyon B, Coan PM, Alfazema N, Venda L, Woollard K, Aitman T. New Wistar Kyoto and spontaneously hypertensive rat transgenic models with ubiquitous expression of green fluorescent protein. Dis Model Mech 2016; 9:463-71. [PMID: 26769799 PMCID: PMC4852507 DOI: 10.1242/dmm.024208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/13/2016] [Indexed: 11/20/2022] Open
Abstract
The Wistar Kyoto (WKY) rat and the spontaneously hypertensive (SHR) rat inbred strains are well-established models for human crescentic glomerulonephritis (CRGN) and metabolic syndrome, respectively. Novel transgenic (Tg) strains add research opportunities and increase scientific value to well-established rat models. We have created two novel Tg strains using Sleeping Beauty transposon germline transgenesis, ubiquitously expressing green fluorescent protein (GFP) under the rat elongation factor 1 alpha (EF1a) promoter on the WKY and SHR genetic backgrounds. The Sleeping Beauty system functioned with high transgenesis efficiency; 75% of new rats born after embryo microinjections were transgene positive. By ligation-mediated PCR, we located the genome integration sites, confirming no exonic disruption and defining a single or low copy number of the transgenes in the new WKY-GFP and SHR-GFP Tg lines. We report GFP-bright expression in embryos, tissues and organs in both lines and show preliminaryin vitroandin vivoimaging data that demonstrate the utility of the new GFP-expressing lines for adoptive transfer, transplantation and fate mapping studies of CRGN, metabolic syndrome and other traits for which these strains have been extensively studied over the past four decades.
Collapse
Affiliation(s)
- Ana Isabel Garcia Diaz
- Division of Immunology and Inflammation, Imperial College London, London W2 1PG, UK MRC Clinical Sciences Centre and Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Ben Moyon
- Embryonic Stem Cell and Transgenics Facility, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Philip M Coan
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neza Alfazema
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lara Venda
- MRC Clinical Sciences Centre and Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Kevin Woollard
- Division of Immunology and Inflammation, Imperial College London, London W2 1PG, UK
| | - Tim Aitman
- MRC Clinical Sciences Centre and Department of Medicine, Imperial College London, London W12 0NN, UK Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
27
|
Abstract
The genetic basis of type 2 diabetes remains incompletely defined despite the use of multiple genetic strategies. Multiparental populations such as heterogeneous stocks (HS) facilitate gene discovery by allowing fine mapping to only a few megabases, significantly decreasing the number of potential candidate genes compared to traditional mapping strategies. In the present work, we employed expression and sequence analysis in HS rats (Rattus norvegicus) to identify Tpcn2 as a likely causal gene underlying a 3.1-Mb locus for glucose and insulin levels. Global gene expression analysis on liver identified Tpcn2 as the only gene in the region that is differentially expressed between HS rats with glucose intolerance and those with normal glucose regulation. Tpcn2 also maps as a cis-regulating expression QTL and is negatively correlated with fasting glucose levels. We used founder sequence to identify variants within this region and assessed association between 18 variants and diabetic traits by conducting a mixed-model analysis, accounting for the complex family structure of the HS. We found that two variants were significantly associated with fasting glucose levels, including a nonsynonymous coding variant within Tpcn2. Studies in Tpcn2 knockout mice demonstrated a significant decrease in fasting glucose levels and insulin response to a glucose challenge relative to those in wild-type mice. Finally, we identified variants within Tpcn2 that are associated with fasting insulin in humans. These studies indicate that Tpcn2 is a likely causal gene that may play a role in human diabetes and demonstrate the utility of multiparental populations for positionally cloning genes within complex loci.
Collapse
|
28
|
Behmoaras J, Diaz AG, Venda L, Ko JH, Srivastava P, Montoya A, Faull P, Webster Z, Moyon B, Pusey CD, Abraham DJ, Petretto E, Cook TH, Aitman TJ. Macrophage epoxygenase determines a profibrotic transcriptome signature. THE JOURNAL OF IMMUNOLOGY 2015; 194:4705-4716. [PMID: 25840911 DOI: 10.4049/jimmunol.1402979] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022]
Abstract
Epoxygenases belong to the cytochrome P450 family. They generate epoxyeicosatrienoic acids, which are known to have anti-inflammatory effects, but little is known about their role in macrophage function. By high-throughput sequencing of RNA in primary macrophages derived from rodents and humans, we establish the relative expression of epoxygenases in these cells. Zinc-finger nuclease-mediated targeted gene deletion of the major rat macrophage epoxygenase Cyp2j4 (ortholog of human CYP2J2) resulted in reduced epoxyeicosatrienoic acid synthesis. Cyp2j4(-/-) macrophages have relatively increased peroxisome proliferator-activated receptor-γ levels and show a profibrotic transcriptome, displaying overexpression of a specific subset of genes (260 transcripts) primarily involved in extracellular matrix, with fibronectin being the most abundantly expressed transcript. Fibronectin expression is under the control of epoxygenase activity in human and rat primary macrophages. In keeping with the in vitro findings, Cyp2j4(-/-) rats show upregulation of type I collagen following unilateral ureter obstruction of the kidney, and quantitative proteomics analysis (liquid chromatography-tandem mass spectrometry) showed increased renal type I collagen and fibronectin protein abundance resulting from experimentally induced crescentic glomerulonephritis in these rats. Taken together, these results identify the rat epoxygenase Cyp2j4 as a determinant of a profibrotic macrophage transcriptome that could have implications in various inflammatory conditions, depending on macrophage function.
Collapse
Affiliation(s)
- Jacques Behmoaras
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, W12 0NN, London, UK
| | - Ana Garcia Diaz
- Physiological Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Lara Venda
- Physiological Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Jeong-Hun Ko
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, W12 0NN, London, UK
| | - Prashant Srivastava
- Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK and Duke-NUS Graduate Medical School Singapore. 8 College Road, 169857 Singapore, Republic of Singapore
| | - Alex Montoya
- Biological Mass Spectrometry and Proteomics Laboratory, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Peter Faull
- Biological Mass Spectrometry and Proteomics Laboratory, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Zoe Webster
- ES Cell and Transgenics Facility, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Ben Moyon
- ES Cell and Transgenics Facility, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK
| | - Charles D Pusey
- Renal Section, Department of Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - David J Abraham
- Centre for Rheumatology & Connective Tissue Diseases, University College London Medical School, London, UK
| | - Enrico Petretto
- Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK and Duke-NUS Graduate Medical School Singapore. 8 College Road, 169857 Singapore, Republic of Singapore
| | - Terence H Cook
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, W12 0NN, London, UK
| | - Timothy J Aitman
- Physiological Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, W12 0NN, UK.,Institute of Genetics & Molecular Medicine, University of Edinburgh, EH4 2XU, UK
| |
Collapse
|
29
|
Reynolds J, Preston GA, Pressler BM, Hewins P, Brown M, Roth A, Alderman E, Bunch D, Jennette JC, Cook HT, Falk RJ, Pusey CD. Autoimmunity to the alpha 3 chain of type IV collagen in glomerulonephritis is triggered by 'autoantigen complementarity'. J Autoimmun 2015; 59:8-18. [PMID: 25841937 DOI: 10.1016/j.jaut.2015.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/30/2014] [Accepted: 01/05/2015] [Indexed: 01/06/2023]
Abstract
'Autoantigen complementarity' is a theory proposing that the initiator of an autoimmune response is not necessarily the autoantigen or its molecular mimic, but may instead be a peptide that is 'antisense/complementary' to the autoantigen. We investigated whether such complementary proteins play a role in the immunopathogenesis of autoimmune glomerulonephritis. Experimental autoimmune glomerulonephritis, a model of anti-glomerular basement membrane (GBM) disease, can be induced in Wistar Kyoto (WKY) rats by immunization with the α3 chain of type IV collagen. In this study, WKY rats were immunized with a complementary α3 peptide (c-α3-Gly) comprised of amino acids that 'complement' the well characterized epitope on α3(IV)NC1, pCol(24-38). Within 8 weeks post-immunization, these animals developed cresentic glomerulonephritis, similar to pCol(24-38)-immunized rats, while animals immunized with scrambled peptide were normal. Anti-idiotypic antibodies to epitopes from c-α3-Gly-immunized animals were shown to be specific for α3 protein, binding in a region containing sense pCol(24-38) sequence. Interestingly, anti-complementary α3 antibodies were identified in sera from patients with anti-GBM disease, suggesting a role for 'autoantigen complementarity' in immunopathogenesis of the human disease. This work supports the idea that autoimmune glomerulonephritis can be initiated through an immune response against a peptide that is anti-sense or complementary to the autoantigen. The implications of this discovery may be far reaching, and other autoimmune diseases could be due to responses to these once unsuspected 'complementary' antigens.
Collapse
Affiliation(s)
- John Reynolds
- Renal Section, Department of Medicine, Imperial College London, Hammersmith Campus, London, UK; Institute of Biomedical and Environmental Science and Technology, Department of Life Sciences, University of Bedfordshire, Luton, UK.
| | - Gloria A Preston
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barrak M Pressler
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter Hewins
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Brown
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aleeza Roth
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth Alderman
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Donna Bunch
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Charles Jennette
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - H Terence Cook
- Renal Section, Department of Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - Ronald J Falk
- UNC Kidney Center, Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles D Pusey
- Renal Section, Department of Medicine, Imperial College London, Hammersmith Campus, London, UK
| |
Collapse
|
30
|
Ortiz A, Sanchez-Niño MD, Izquierdo MC, Martin-Cleary C, Garcia-Bermejo L, Moreno JA, Ruiz-Ortega M, Draibe J, Cruzado JM, Garcia-Gonzalez MA, Lopez-Novoa JM, Soler MJ, Sanz AB. Translational value of animal models of kidney failure. Eur J Pharmacol 2015; 759:205-20. [PMID: 25814248 DOI: 10.1016/j.ejphar.2015.03.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/08/2015] [Accepted: 03/12/2015] [Indexed: 11/28/2022]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with decreased renal function and increased mortality risk, while the therapeutic armamentarium is unsatisfactory. The availability of adequate animal models may speed up the discovery of biomarkers for disease staging and therapy individualization as well as design and testing of novel therapeutic strategies. Some longstanding animal models have failed to result in therapeutic advances in the clinical setting, such as kidney ischemia-reperfusion injury and diabetic nephropathy models. In this regard, most models for diabetic nephropathy are unsatisfactory in that they do not evolve to renal failure. Satisfactory models for additional nephropathies are needed. These include anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, IgA nephropathy, anti-phospholipase-A2-receptor (PLA2R) membranous nephropathy and Fabry nephropathy. However, recent novel models hold promise for clinical translation. Thus, the AKI to CKD translation has been modeled, in some cases with toxins of interest for human CKD such as aristolochic acid. Genetically modified mice provide models for Alport syndrome evolving to renal failure that have resulted in clinical recommendations, polycystic kidney disease models that have provided clues for the development of tolvaptan, that was recently approved for the human disease in Japan; and animal models also contributed to target C5 with eculizumab in hemolytic uremic syndrome. Some ongoing trials explore novel concepts derived from models, such TWEAK targeting as tissue protection for lupus nephritis. We now review animal models reproducing diverse, genetic and acquired, causes of AKI and CKD evolving to kidney failure and discuss the contribution to clinical translation and prospects for the future.
Collapse
Affiliation(s)
- Alberto Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDinREN, Madrid, Spain; Universidad Autonoma de Madrid, Madrid, Spain; IRSIN, Madrid, Spain
| | | | - Maria C Izquierdo
- Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDinREN, Madrid, Spain
| | | | - Laura Garcia-Bermejo
- REDinREN, Madrid, Spain; Dpt. of Pathology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, Spain
| | - Juan A Moreno
- Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Marta Ruiz-Ortega
- Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDinREN, Madrid, Spain; Universidad Autonoma de Madrid, Madrid, Spain
| | - Juliana Draibe
- REDinREN, Madrid, Spain; Nephrology Department, Hospital Universitari de Bellvitge, IDIBELL, L׳Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Cruzado
- REDinREN, Madrid, Spain; Nephrology Department, Hospital Universitari de Bellvitge, IDIBELL, L׳Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel A Garcia-Gonzalez
- REDinREN, Madrid, Spain; Laboratorio de Nefrología, Complexo Hospitalario de Santiago de Compostela (CHUS), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Jose M Lopez-Novoa
- REDinREN, Madrid, Spain; Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamnca, Spain
| | - Maria J Soler
- REDinREN, Madrid, Spain; Nephrology Department, Hospital del Mar, Barcelona, Spain
| | - Ana B Sanz
- Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDinREN, Madrid, Spain.
| | | |
Collapse
|
31
|
Zou T, Rao JN, Liu L, Xiao L, Chung HK, Li Y, Chen G, Gorospe M, Wang JY. JunD enhances miR-29b levels transcriptionally and posttranscriptionally to inhibit proliferation of intestinal epithelial cells. Am J Physiol Cell Physiol 2015; 308:C813-24. [PMID: 25788572 DOI: 10.1152/ajpcell.00027.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/14/2015] [Indexed: 12/28/2022]
Abstract
Through its actions as component of the activating protein-1 (AP-1) transcription factor, JunD potently represses cell proliferation. Here we report a novel function of JunD in the regulation of microRNA expression in intestinal epithelial cells (IECs). Ectopically expressed JunD specifically increased the expression of primary and mature forms of miR-29b, whereas JunD silencing inhibited miR-29b expression. JunD directly interacted with the miR-29b1 promoter via AP-1-binding sites, whereas mutation of AP-1 sites from the miR-29b1 promoter prevented JunD-mediated transcriptional activation of the miR-29b1 gene. JunD also enhanced formation of the Drosha microprocessor complex, thus further promoting miR-29b biogenesis. Cellular polyamines were found to regulate miR-29b expression by altering JunD abundance, since the increase in miR-29b expression levels in polyamine-deficient cells was abolished by JunD silencing. In addition, miR-29b silencing prevented JunD-induced repression of IEC proliferation. Our findings indicate that JunD activates miR-29b by enhancing its transcription and processing, which contribute to the inhibitory effect of JunD on IEC growth and maintenance of gut epithelium homeostasis.
Collapse
Affiliation(s)
- Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Yanwu Li
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Gang Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland; and
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Xu X, Prough RA, Samuelson DJ. Differential 12-O-Tetradecanoylphorbol-13-acetate-induced activation of rat mammary carcinoma susceptibility Fbxo10 variant promoters via a PKC-AP1 pathway. Mol Carcinog 2015; 54:134-47. [PMID: 24008983 PMCID: PMC9733134 DOI: 10.1002/mc.22081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/26/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
Rat mammary carcinoma susceptibility 5a1 (Mcs5a1), which is concordant to human MCS5A1 breast cancer risk locus, mediates susceptibility by a non-mammary cell-autonomous mechanism associated with T cell differential expression of F-box protein 10 (Fbxo10). Human FBXO10, an evolutionarily conserved ubiquitin ligase gene, was shown to have a potential role in regulating cell death by controlling the degradation of Bcl-2, a key protein involved in apoptosis. Breast cancer susceptibility is controlled by interactions between environmental and genetic factors; therefore, we sought to determine if breast cancer risk-associated environmental chemicals interact with Mcs5a1 variants using luciferase reporter constructs containing 4.2 kb Fbxo10 promoters based on alleles of mammary cancer susceptible Wistar Furth (WF) and resistant Wistar Kyoto (WKY) rat strains. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced activation of a 4.2 kb WF Fbxo10 promoter region, but lower levels of activation of the homologous WKY Fbxo10 promoter region. Using general and specific protein kinase inhibitors, we identified a protein kinase C (PKC) pathway that mediated TPA activation. We narrowed the possible PKCs to a member of the atypical PKC isoforms, namely PKCµ. We also determined that activator protein 1 (AP1) family member c-Fos mediated TPA activation of the 4.2 kb WF Fbxo10 promoter. TPA was shown to induce endogenous FBXO10 mRNA and FBXO10 protein in Jurkat cells, a human T cell line, with a maximal level of expression from 1.5 to 2.5 h after exposure. These results indicate that FBXO10/Fbxo10 expression is regulated by a PKC-dependent pathway acting through c-Fos, which binds AP1-specific DNA elements in Mcs5a1.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry & Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Russell A. Prough
- Department of Biochemistry & Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky,Center for Genetics & Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - David J. Samuelson
- Department of Biochemistry & Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky,James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky,Center for Genetics & Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky,Correspondence to: Center for Genetics and Molecular Medicine, Department of Biochemistry & Molecular Biology, University of Louisville School of Medicine, 319 Abraham Flexner Way, HSC-A, Room 708, Louisville, KY 40292
| |
Collapse
|
33
|
Schmidt A, Dietrich S, Steuer A, Weltmann KD, von Woedtke T, Masur K, Wende K. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. J Biol Chem 2015; 290:6731-50. [PMID: 25589789 DOI: 10.1074/jbc.m114.603555] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-thermal atmospheric pressure plasma provides a novel therapeutic opportunity to control redox-based processes, e.g. wound healing, cancer, and inflammatory diseases. By spatial and time-resolved delivery of reactive oxygen and nitrogen species, it allows stimulation or inhibition of cellular processes in biological systems. Our data show that both gene and protein expression is highly affected by non-thermal plasma. Nuclear factor erythroid-related factor 2 (NRF2) and phase II enzyme pathway components were found to act as key controllers orchestrating the cellular response in keratinocytes. Additionally, glutathione metabolism, which is a marker for NRF2-related signaling events, was affected. Among the most robustly increased genes and proteins, heme oxygenase 1, NADPH-quinone oxidoreductase 1, and growth factors were found. The roles of NRF2 targets, investigated by siRNA silencing, revealed that NRF2 acts as an important switch for sensing oxidative stress events. Moreover, the influence of non-thermal plasma on the NRF2 pathway prepares cells against exogenic noxae and increases their resilience against oxidative species. Via paracrine mechanisms, distant cells benefit from cell-cell communication. The finding that non-thermal plasma triggers hormesis-like processes in keratinocytes facilitates the understanding of plasma-tissue interaction and its clinical application.
Collapse
Affiliation(s)
- Anke Schmidt
- From the Centre for Innovation Competence (ZIK) plasmatis and Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | | | - Anna Steuer
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | - Kai Masur
- From the Centre for Innovation Competence (ZIK) plasmatis and
| | - Kristian Wende
- From the Centre for Innovation Competence (ZIK) plasmatis and
| |
Collapse
|
34
|
Rotival M, Ko JH, Srivastava PK, Kerloc'h A, Montoya A, Mauro C, Faull P, Cutillas PR, Petretto E, Behmoaras J. Integrating phosphoproteome and transcriptome reveals new determinants of macrophage multinucleation. Mol Cell Proteomics 2014; 14:484-98. [PMID: 25532521 PMCID: PMC4349971 DOI: 10.1074/mcp.m114.043836] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Macrophage multinucleation (MM) is essential for various biological processes such as osteoclast-mediated bone resorption and multinucleated giant cell-associated inflammatory reactions. Here we study the molecular pathways underlying multinucleation in the rat through an integrative approach combining MS-based quantitative phosphoproteomics (LC-MS/MS) and transcriptome (high-throughput RNA-sequencing) to identify new regulators of MM. We show that a strong metabolic shift toward HIF1-mediated glycolysis occurs at transcriptomic level during MM, together with modifications in phosphorylation of over 50 proteins including several ARF GTPase activators and polyphosphate inositol phosphatases. We use shortest-path analysis to link differential phosphorylation with the transcriptomic reprogramming of macrophages and identify LRRFIP1, SMARCA4, and DNMT1 as novel regulators of MM. We experimentally validate these predictions by showing that knock-down of these latter reduce macrophage multinucleation. These results provide a new framework for the combined analysis of transcriptional and post-translational changes during macrophage multinucleation, prioritizing essential genes, and revealing the sequential events leading to the multinucleation of macrophages.
Collapse
Affiliation(s)
- Maxime Rotival
- From the ‡Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, UK
| | - Jeong-Hun Ko
- §Centre for Complement and Inflammation Research (CCIR), Imperial College London, UK
| | - Prashant K Srivastava
- From the ‡Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, UK
| | - Audrey Kerloc'h
- §Centre for Complement and Inflammation Research (CCIR), Imperial College London, UK
| | - Alex Montoya
- ‖Biological Mass Spectrometry and Proteomics Laboratory, MRC Clinical Sciences Centre, Imperial College London, UK
| | - Claudio Mauro
- ¶William Harvey Research Institute, Queen Mary University of London, UK
| | - Peter Faull
- ‖Biological Mass Spectrometry and Proteomics Laboratory, MRC Clinical Sciences Centre, Imperial College London, UK
| | - Pedro R Cutillas
- **Integrative Cell Signaling and Proteomics, Barts Cancer Institute, Queen Mary University of London, UK
| | - Enrico Petretto
- From the ‡Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, UK;
| | - Jacques Behmoaras
- §Centre for Complement and Inflammation Research (CCIR), Imperial College London, UK;
| |
Collapse
|
35
|
Braun MC, Herring SM, Gokul N, Monita M, Bell R, Zhu Y, Gonzalez-Garay ML, Wenderfer SE, Doris PA. Hypertensive renal injury is associated with gene variation affecting immune signaling. ACTA ACUST UNITED AC 2014; 7:903-10. [PMID: 25366137 DOI: 10.1161/circgenetics.114.000533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The spontaneously hypertensive rat (SHR) strain exists in lines that contrast strongly in susceptibility to renal injury in hypertension. These inbred lines share common ancestry, and only 13% of their genomes arise from different ancestors. METHODS AND RESULTS We used next gen sequencing to detect natural allelic variation in 5 genes of the immunoreceptor signaling pathway (IgH, Dok3, Src, Syk, and JunD) that arise from different ancestors in the injury-prone SHR-A3 and the resistant SHR-B2 lines. We created an intercross between these lines, and in the F2 progeny, we observed that the inheritance of haplotype blocks containing the SHR-A3 alleles of these 5 genes correlated with increased albuminuria and histological measures of renal injury. To test whether accumulated genetic variation in this pathway may create a therapeutic target in hypertensive renal injury, rats of both lines were treated with the immunosuppressant mycophenolate mofetil (MMF). MMF reduced proteinuria (albumin to creatinine ratio) from 6.6 to 1.2 mg/mg (P<0.001) in SHR-A3. Glomerular injury scores were reduced in MMF-treated SHR-A3 from 1.6 to 1.4 (P<0.002). Tubulo-interstitial injury was reduced in MMF-treated SHR-A3 from 2.62 to 2.0 (P=0.001). MMF treatment also reduced renal fibrosis in SHR-A3 (3.9 versus 2.0; P<0.001). CONCLUSIONS Polygenic susceptibility to renal injury in hypertension arises in association with genetic variation in genes that participate in immune responses and is dramatically improved by reduction of immune system activity.
Collapse
Affiliation(s)
- Michael C Braun
- From the Department of Pediatrics, Baylor College of Medicine (M.C.B., S.E.W.), and Institute of Molecular Medicine (S.M.H., N.G., M.M., R.B., Y.Z., M.L.G.-G., P.A.D.), University of Texas Health Science Center at Houston
| | - Stacy M Herring
- From the Department of Pediatrics, Baylor College of Medicine (M.C.B., S.E.W.), and Institute of Molecular Medicine (S.M.H., N.G., M.M., R.B., Y.Z., M.L.G.-G., P.A.D.), University of Texas Health Science Center at Houston
| | - Nisha Gokul
- From the Department of Pediatrics, Baylor College of Medicine (M.C.B., S.E.W.), and Institute of Molecular Medicine (S.M.H., N.G., M.M., R.B., Y.Z., M.L.G.-G., P.A.D.), University of Texas Health Science Center at Houston
| | - Monique Monita
- From the Department of Pediatrics, Baylor College of Medicine (M.C.B., S.E.W.), and Institute of Molecular Medicine (S.M.H., N.G., M.M., R.B., Y.Z., M.L.G.-G., P.A.D.), University of Texas Health Science Center at Houston
| | - Rebecca Bell
- From the Department of Pediatrics, Baylor College of Medicine (M.C.B., S.E.W.), and Institute of Molecular Medicine (S.M.H., N.G., M.M., R.B., Y.Z., M.L.G.-G., P.A.D.), University of Texas Health Science Center at Houston
| | - Yaming Zhu
- From the Department of Pediatrics, Baylor College of Medicine (M.C.B., S.E.W.), and Institute of Molecular Medicine (S.M.H., N.G., M.M., R.B., Y.Z., M.L.G.-G., P.A.D.), University of Texas Health Science Center at Houston
| | - Manuel L Gonzalez-Garay
- From the Department of Pediatrics, Baylor College of Medicine (M.C.B., S.E.W.), and Institute of Molecular Medicine (S.M.H., N.G., M.M., R.B., Y.Z., M.L.G.-G., P.A.D.), University of Texas Health Science Center at Houston
| | - Scott E Wenderfer
- From the Department of Pediatrics, Baylor College of Medicine (M.C.B., S.E.W.), and Institute of Molecular Medicine (S.M.H., N.G., M.M., R.B., Y.Z., M.L.G.-G., P.A.D.), University of Texas Health Science Center at Houston
| | - Peter A Doris
- From the Department of Pediatrics, Baylor College of Medicine (M.C.B., S.E.W.), and Institute of Molecular Medicine (S.M.H., N.G., M.M., R.B., Y.Z., M.L.G.-G., P.A.D.), University of Texas Health Science Center at Houston.
| |
Collapse
|
36
|
Lai PC, Chiu LY, Srivastava P, Trento C, Dazzi F, Petretto E, Cook HT, Behmoaras J. Unique regulatory properties of mesangial cells are genetically determined in the rat. PLoS One 2014; 9:e111452. [PMID: 25343449 PMCID: PMC4208843 DOI: 10.1371/journal.pone.0111452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/24/2014] [Indexed: 11/29/2022] Open
Abstract
Mesangial cells are glomerular cells of stromal origin. During immune complex mediated crescentic glomerulonephritis (Crgn), infiltrating and proliferating pro-inflammatory macrophages lead to crescent formation. Here we have hypothesised that mesangial cells, given their mesenchymal stromal origin, show similar immunomodulatory properties as mesenchymal stem cells (MSCs), by regulating macrophage function associated with glomerular crescent formation. We show that rat mesangial cells suppress conA-stimulated splenocyte proliferation in vitro, as previously shown for MSCs. We then investigated mesangial cell-macrophage interaction by using mesangial cells isolated from nephrotoxic nephritis (NTN)-susceptible Wistar Kyoto (WKY) and NTN-resistant Lewis (LEW) rats. We first determined the mesangial cell transcriptome in WKY and LEW rats and showed that this is under marked genetic control. Supernatant transfer results show that WKY mesangial cells shift bone marrow derived macrophage (BMDM) phenotype to M1 or M2 according to the genetic background (WKY or LEW) of the BMDMs. Interestingly, these effects were different when compared to those of MSCs suggesting that mesangial cells can have unique immunomodulatory effects in the kidney. These results demonstrate the importance of the genetic background in the immunosuppressive effects of cells of stromal origin and specifically of mesangial cell-macrophage interactions in the pathophysiology of crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Ping-Chin Lai
- Kidney Institute, Department of Nephrology, School of Medicine, Chang Gung University, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ling-Yin Chiu
- Kidney Institute, Department of Nephrology, School of Medicine, Chang Gung University, Chang Gung Memorial Hospital, Taipei, Taiwan
- Centre for Complement and Inflammation Research (CCIR), Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Prashant Srivastava
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Cristina Trento
- Stem Cells Biology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Francesco Dazzi
- Stem Cells Biology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Enrico Petretto
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - H. Terence Cook
- Centre for Complement and Inflammation Research (CCIR), Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research (CCIR), Hammersmith Hospital, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Kang H, Kerloc'h A, Rotival M, Xu X, Zhang Q, D'Souza Z, Kim M, Scholz JC, Ko JH, Srivastava PK, Genzen JR, Cui W, Aitman TJ, Game L, Melvin JE, Hanidu A, Dimock J, Zheng J, Souza D, Behera AK, Nabozny G, Cook HT, Bassett JHD, Williams GR, Li J, Vignery A, Petretto E, Behmoaras J. Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease. Cell Rep 2014; 8:1210-24. [PMID: 25131209 PMCID: PMC4471813 DOI: 10.1016/j.celrep.2014.07.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/19/2014] [Accepted: 07/20/2014] [Indexed: 12/29/2022] Open
Abstract
Macrophages can fuse to form osteoclasts in bone or multinucleate giant cells (MGCs) as part of the immune response. We use a systems genetics approach in rat macrophages to unravel their genetic determinants of multinucleation and investigate their role in both bone homeostasis and inflammatory disease. We identify a trans-regulated gene network associated with macrophage multinucleation and Kcnn4 as being the most significantly trans-regulated gene in the network and induced at the onset of fusion. Kcnn4 is required for osteoclast and MGC formation in rodents and humans. Genetic deletion of Kcnn4 reduces macrophage multinucleation through modulation of Ca2+ signaling, increases bone mass, and improves clinical outcome in arthritis. Pharmacological blockade of Kcnn4 reduces experimental glomerulonephritis. Our data implicate Kcnn4 in macrophage multinucleation, identifying it as a potential therapeutic target for inhibition of bone resorption and chronic inflammation. We identified a gene network that regulates macrophage multinucleation and includes Kcnn4 Kcnn4 can be targeted in two inflammatory conditions with macrophage multinucleation Kcnn4 regulates bone mass under physiological conditions Kcnn4 is a drug target for which inhibitors reached phase III of clinical trials
Collapse
Affiliation(s)
- Heeseog Kang
- Departments of Orthopaedics and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Audrey Kerloc'h
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, UK
| | - Maxime Rotival
- Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Xiaoqing Xu
- Departments of Orthopaedics and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qing Zhang
- Departments of Orthopaedics and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zelpha D'Souza
- Physiological Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Michael Kim
- Departments of Orthopaedics and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jodi Carlson Scholz
- Section of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeong-Hun Ko
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, UK
| | - Prashant K Srivastava
- Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Jonathan R Genzen
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT 84108, USA
| | - Weiguo Cui
- Blood Center of Wisconsin, Milwaukee, WI 53213, USA
| | - Timothy J Aitman
- Physiological Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Laurence Game
- Genomics Laboratory, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, London, UK
| | - James E Melvin
- National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Health, Bethesda, MD 20892, USA
| | - Adedayo Hanidu
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Janice Dimock
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Jie Zheng
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Donald Souza
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Aruna K Behera
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Gerald Nabozny
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - H Terence Cook
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Graham R Williams
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Jun Li
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Agnès Vignery
- Departments of Orthopaedics and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Enrico Petretto
- Integrative Genomics and Medicine, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK.
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, UK.
| |
Collapse
|
38
|
Maiti AK, Kim-Howard X, Motghare P, Pradhan V, Chua KH, Sun C, Arango-Guerrero MT, Ghosh K, Niewold TB, Harley JB, Anaya JM, Looger LL, Nath SK. Combined protein- and nucleic acid-level effects of rs1143679 (R77H), a lupus-predisposing variant within ITGAM. Hum Mol Genet 2014; 23:4161-76. [PMID: 24608226 PMCID: PMC4082363 DOI: 10.1093/hmg/ddu106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/31/2014] [Accepted: 03/04/2014] [Indexed: 12/21/2022] Open
Abstract
Integrin alpha M (ITGAM; CD11b) is a component of the macrophage-1 antigen complex, which mediates leukocyte adhesion, migration and phagocytosis as part of the immune system. We previously identified a missense polymorphism, rs1143679 (R77H), strongly associated with systemic lupus erythematosus (SLE). However, the molecular mechanisms of this variant are incompletely understood. A meta-analysis of published and novel data on 28 439 individuals with European, African, Hispanic and Asian ancestries reinforces genetic association between rs1143679 and SLE [Pmeta = 3.60 × 10(-90), odds ratio (OR) = 1.76]. Since rs1143679 is in the most active region of chromatin regulation and transcription factor binding in ITGAM, we quantitated ITGAM RNA and surface protein levels in monocytes from patients with each rs1143679 genotype. We observed that transcript levels significantly decreased for the risk allele ('A') relative to the non-risk allele ('G'), in a dose-dependent fashion: ('AA' < 'AG' < 'GG'). CD11b protein levels in patients' monocytes were directly correlated with RNA levels. Strikingly, heterozygous individuals express much lower (average 10- to 15-fold reduction) amounts of the 'A' transcript than 'G' transcript. We found that the non-risk sequence surrounding rs1143679 exhibits transcriptional enhancer activity in vivo and binds to Ku70/80, NFKB1 and EBF1 in vitro, functions that are significantly reduced with the risk allele. Mutant CD11b protein shows significantly reduced binding to fibrinogen and vitronectin, relative to non-risk, both in purified protein and in cellular models. This two-pronged contribution (nucleic acid- and protein-level) of the rs1143679 risk allele to decreasing ITGAM activity provides insight into the molecular mechanisms of its potent association with SLE.
Collapse
MESH Headings
- Alleles
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- CD11b Antigen/genetics
- CD11b Antigen/metabolism
- Chromatin/metabolism
- Chromatin/pathology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Fibrinogen/genetics
- Fibrinogen/metabolism
- Gene Expression Regulation
- Gene Frequency
- Genetic Predisposition to Disease
- Humans
- Ku Autoantigen
- Lupus Erythematosus, Systemic/ethnology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Male
- Monocytes/metabolism
- Monocytes/pathology
- NF-kappa B p50 Subunit/genetics
- NF-kappa B p50 Subunit/metabolism
- Odds Ratio
- Polymorphism, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Racial Groups
- Risk
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Vitronectin/genetics
- Vitronectin/metabolism
Collapse
Affiliation(s)
- Amit K Maiti
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xana Kim-Howard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Prasenjeet Motghare
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Kek Heng Chua
- Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - María Teresa Arango-Guerrero
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Timothy B Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center and the US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Juan-Manual Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Loren L Looger
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
39
|
Westbrook L, Johnson AC, Regner KR, Williams JM, Mattson DL, Kyle PB, Henegar JR, Garrett MR. Genetic susceptibility and loss of Nr4a1 enhances macrophage-mediated renal injury in CKD. J Am Soc Nephrol 2014; 25:2499-510. [PMID: 24722447 DOI: 10.1681/asn.2013070786] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nuclear hormone receptors of the NR4A subgroup have been implicated in cancer, atherosclerosis, and metabolic disease. However, little is known about the role of these receptors in kidney health or disease. Nr4a1-deficient rats (Nr4a1(-/-)) developed on a genetic background susceptible to kidney injury (fawn-hooded hypertensive rat [FHH]) were evaluated for BP, proteinuria, renal function, and metabolic parameters from 4 to 24 weeks-of-age. By week 24, Nr4a1(-/-) rats exhibited significantly higher proteinuria (approximately 4-fold) and decreased GFR compared with FHH controls. The severity of tubular atrophy, tubular casts, and interstitial fibrosis increased significantly in Nr4a1(-/-) rats and was accompanied by a large increase in immune cell infiltration, predominantly macrophages and to a lesser extent T cells and B cells. Global transcriptome and network analyses at weeks 8, 16, and 24 identified several proinflammatory genes and pathways differentially regulated between strains. Bone marrow crosstransplantation studies demonstrated that kidney injury in Nr4a1(-/-) rats was almost completely rescued by bone marrow transplanted from FHH controls. In vitro, macrophages isolated from Nr4a1(-/-) rats demonstrated increased immune activation compared with FHH-derived macrophages. In summary, the loss of Nr4a1 in immune cells appears to cause the increased kidney injury and reduced renal function observed in the Nr4a1(-/-) model.
Collapse
Affiliation(s)
| | | | | | - Jan M Williams
- Departments of Pharmacology and Toxicology, Medicine, and
| | - David L Mattson
- Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Patrick B Kyle
- Pathology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jeffery R Henegar
- Pathology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | | |
Collapse
|
40
|
Comparison of small interfering RNA (siRNA) delivery into bovine monocyte-derived macrophages by transfection and electroporation. Vet Immunol Immunopathol 2014; 158:224-32. [PMID: 24598124 PMCID: PMC3988888 DOI: 10.1016/j.vetimm.2014.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 01/20/2014] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
The manipulation of the RNA interference pathway using small interfering RNA (siRNA) has become the most frequently used gene silencing method. However, siRNA delivery into primary cells, especially primary macrophages, is often considered challenging. Here we report the investigation of the suitability of two methodologies: transient transfection and electroporation, to deliver siRNA targeted against the putative immunomodulatory gene Mediterranean fever (MEFV) into primary bovine monocyte-derived macrophages (bMDM). Eleven commercial transfection reagents were investigated with variable results with respect to siRNA uptake, target gene knock-down, cell toxicity and type I interferon (IFN) response induction. Three transfection reagents: Lipofectamine 2000, Lipofectamine RNAiMAX and DharmaFECT 3, were found to consistently give the best results. However, all the transfection reagents tested induced an IFN response in the absence of siRNA, which could be minimized by reducing the transfection reagent incubation period. In addition, optimized siRNA delivery into bMDM by electroporation achieved comparable levels of target gene knock-down as transient transfection, without a detectable IFN response, but with higher levels of cell toxicity. The optimized transient transfection and electroporation methodologies may provide a starting point for optimizing siRNA delivery into macrophages derived from other species or other cells considered difficult to investigate with siRNA.
Collapse
|
41
|
Srivastava PK, Hull RP, Behmoaras J, Petretto E, Aitman TJ. JunD/AP1 regulatory network analysis during macrophage activation in a rat model of crescentic glomerulonephritis. BMC SYSTEMS BIOLOGY 2013; 7:93. [PMID: 24053712 PMCID: PMC3849178 DOI: 10.1186/1752-0509-7-93] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 09/12/2013] [Indexed: 11/23/2022]
Abstract
Background Function and efficiency of a transcription factor (TF) are often modulated by interactions with other proteins or TFs to achieve finely tuned regulation of target genes. However, complex TF interactions are often not taken into account to identify functionally active TF-targets and characterize their regulatory network. Here, we have developed a computational framework for integrated analysis of genome-wide ChIP-seq and gene expression data to identify the functional interacting partners of a TF and characterize the TF-driven regulatory network. We have applied this methodology in a rat model of macrophage dependent crescentic glomerulonephritis (Crgn) where we have previously identified JunD as a TF gene responsible for enhanced macrophage activation associated with susceptibility to Crgn in the Wistar-Kyoto (WKY) strain. Results To evaluate the regulatory effects of JunD on its target genes, we analysed data from two rat strains (WKY and WKY.LCrgn2) that show 20-fold difference in their JunD expression in macrophages. We identified 36 TFs interacting with JunD/Jun and JunD/ATF complexes (i.e., AP1 complex), which resulted in strain-dependent gene expression regulation of 1,274 target genes in macrophages. After lipopolysaccharide (LPS) stimulation we found that 2.4 fold more JunD/ATF-target genes were up-regulated as compared with JunD/Jun-target genes. The enriched 314 genes up-regulated by AP1 complex during LPS stimulation were most significantly enriched for immune response (P = 6.9 × 10-4) and antigen processing and presentation functions (P = 2.4 × 10-5), suggesting a role for these genes in macrophage LPS-stimulated activation driven by JunD interaction with Jun/ATF. Conclusions In summary, our integrated analyses revealed a large network of TFs interacting with JunD and their regulated targets. Our data also suggest a previously unappreciated contribution of the ATF complex to JunD-mediated mechanisms of macrophage activation in a rat model of crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Prashant K Srivastava
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | | | | | | | | |
Collapse
|
42
|
D'Souza Z, McAdoo SP, Smith J, Pusey CD, Cook HT, Behmoaras J, Aitman TJ. Experimental crescentic glomerulonephritis: a new bicongenic rat model. Dis Model Mech 2013; 6:1477-86. [PMID: 24046355 PMCID: PMC3820270 DOI: 10.1242/dmm.012328] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Crescentic glomerulonephritis (CRGN) is a major cause of human kidney failure, but the underlying mechanisms are not fully understood. Wistar Kyoto (WKY) rats are uniquely susceptible to CRGN following injection of nephrotoxic serum, whereas Lewis (LEW) rats are resistant. Our previous genetic studies of nephrotoxic nephritis (NTN), a form of CRGN induced by nephrotoxic serum, identified Fcgr3 and Jund as WKY genes underlying the two strongest quantitative trait loci for NTN phenotypes: Crgn1 and Crgn2, respectively. We also showed that introgression of WKY Crgn1 or Crgn2 individually into a LEW background did not lead to the formation of glomerular crescents. We have now generated a bicongenic strain, LEW.WCrgn1,2, in which WKY Crgn1 and Crgn2 are both introgressed into the LEW genetic background. These rats show development of NTN phenotypes, including glomerular crescents. Furthermore, we characterised macrophage function and glomerular cytokine profiles in this new strain. Additionally, we show that LEW.WCrgn1,2 rats are resistant to the development of glomerular crescents that is usually induced following immunisation with recombinant rat α3(IV)NC1, the specific Goodpasture autoantigen located in the glomerular basement membrane against which the immune response is directed in experimental autoimmune glomerulonephritis. Our results show that the new bicongenic strain responds differently to two distinct experimental triggers of CRGN. This is the first time that CRGN has been induced on a normally resistant rat genetic background and identifies the LEW.WCrgn1,2 strain as a new, potentially valuable model of macrophage-dependent glomerulonephritis.
Collapse
Affiliation(s)
- Zelpha D'Souza
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Thessen Hedreul M, Möller S, Stridh P, Gupta Y, Gillett A, Daniel Beyeen A, Öckinger J, Flytzani S, Diez M, Olsson T, Jagodic M. Combining genetic mapping with genome-wide expression in experimental autoimmune encephalomyelitis highlights a gene network enriched for T cell functions and candidate genes regulating autoimmunity. Hum Mol Genet 2013; 22:4952-66. [PMID: 23900079 PMCID: PMC3836475 DOI: 10.1093/hmg/ddt343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system commonly used to study multiple sclerosis (MS). We combined clinical EAE phenotypes with genome-wide expression profiling in spleens from 150 backcross rats between susceptible DA and resistant PVG rat strains during the chronic EAE phase. This enabled correlation of transcripts with genotypes, other transcripts and clinical EAE phenotypes and implicated potential genetic causes and pathways in EAE. We detected 2285 expression quantitative trait loci (eQTLs). Sixty out of 599 cis-eQTLs overlapped well-known EAE QTLs and constitute positional candidate genes, including Ifit1 (Eae7), Atg7 (Eae20-22), Klrc3 (eEae22) and Mfsd4 (Eae17). A trans-eQTL that overlaps Eae23a regulated a large number of small RNAs and implicates a master regulator of transcription. We defined several disease-correlated networks enriched for pathways involved in cell-mediated immunity. They include C-type lectins, G protein coupled receptors, mitogen-activated protein kinases, transmembrane proteins, suppressors of transcription (Jundp2 and Nr1d1) and STAT transcription factors (Stat4) involved in interferon signaling. The most significant network was enriched for T cell functions, similar to genetic findings in MS, and revealed both established and novel gene interactions. Transcripts in the network have been associated with T cell proliferation and differentiation, the TCR signaling and regulation of regulatory T cells. A number of network genes and their family members have been associated with MS and/or other autoimmune diseases. Combining disease and genome-wide expression phenotypes provides a link between disease risk genes and distinct molecular pathways that are dysregulated during chronic autoimmune inflammation.
Collapse
Affiliation(s)
- Melanie Thessen Hedreul
- Department of Clinical Neuroscience, Neuroimmunology Unit, Center for Molecular Medicine L8:04, Karolinska Institutet, L8:04, 17176 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hull RP, Srivastava PK, D’Souza Z, Atanur SS, Mechta-Grigoriou F, Game L, Petretto E, Cook HT, Aitman TJ, Behmoaras J. Combined ChIP-Seq and transcriptome analysis identifies AP-1/JunD as a primary regulator of oxidative stress and IL-1β synthesis in macrophages. BMC Genomics 2013; 14:92. [PMID: 23398888 PMCID: PMC3608227 DOI: 10.1186/1471-2164-14-92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/01/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The oxidative burst is one of the major antimicrobial mechanisms adopted by macrophages. The WKY rat strain is uniquely susceptible to experimentally induced macrophage-dependent crescentic glomerulonephritis (Crgn). We previously identified the AP-1 transcription factor JunD as a determinant of macrophage activation in WKY bone marrow-derived macrophages (BMDMs). JunD is over-expressed in WKY BMDMs and its silencing reduces Fc receptor-mediated oxidative burst in these cells. RESULTS Here we combined Jund RNA interference with microarray analyses alongside ChIP-sequencing (ChIP-Seq) analyses in WKY BMDMs to investigate JunD-mediated control of macrophage activation in basal and lipopolysaccharide (LPS) stimulated cells. Microarray analysis following Jund silencing showed that Jund activates and represses gene expression with marked differential expression (>3 fold) for genes linked with oxidative stress and IL-1β expression. These results were complemented by comparing whole genome expression in WKY BMDMs with Jund congenic strain (WKY.LCrgn2) BMDMs which express lower levels of JunD. ChIP-Seq analyses demonstrated that the increased expression of JunD resulted in an increased number of binding events in WKY BMDMs compared to WKY.LCrgn2 BMDMs. Combined ChIP-Seq and microarray analysis revealed a set of primary JunD-targets through which JunD exerts its effect on oxidative stress and IL-1β synthesis in basal and LPS-stimulated macrophages. CONCLUSIONS These findings demonstrate how genetically determined levels of a transcription factor affect its binding sites in primary cells and identify JunD as a key regulator of oxidative stress and IL-1β synthesis in primary macrophages, which may play a role in susceptibility to Crgn.
Collapse
Affiliation(s)
- Richard P Hull
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Prashant K Srivastava
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Zelpha D’Souza
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Santosh S Atanur
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | | | - Laurence Game
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Enrico Petretto
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - H Terence Cook
- Centre of Complement and Inflammation Research, Imperial College London, Du Cane Road W12 0NN, London, UK
| | - Timothy J Aitman
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith hospital, Du Cane Road W12 0NN, London, UK
| | - Jacques Behmoaras
- Centre of Complement and Inflammation Research, Imperial College London, Du Cane Road W12 0NN, London, UK
| |
Collapse
|
45
|
Deplano S, Cook HT, Russell R, Franchi L, Schneiter S, Bhangal G, Unwin RJ, Pusey CD, Tam FWK, Behmoaras J. P2X7 receptor-mediated Nlrp3-inflammasome activation is a genetic determinant of macrophage-dependent crescentic glomerulonephritis. J Leukoc Biol 2013; 93:127-34. [DOI: 10.1189/jlb.0612284] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
Transcriptional regulation of the mouse CD11c promoter by AP-1 complex with JunD and Fra2 in dendritic cells. Mol Immunol 2012; 53:295-301. [PMID: 22990073 DOI: 10.1016/j.molimm.2012.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/07/2012] [Indexed: 11/23/2022]
Abstract
CD11c, a member of the β(2) integrin family of adhesion molecule, is expressed on the surface of myeloid lineages and activated lymphoid cells and forms a heterodimeric receptor with CD18. We analyzed the mouse CD11c promoter structure to elucidate the transcriptional regulation in dendritic cells (DCs). By reporter assay, the -84/-65 region was identified to be essential for activity of the mouse CD11c promoter in the mouse bone marrow-derived (BM) DCs and monocyte cell line RAW264.7. An electrophoretic mobility shift assay using a number of antibodies against transcription factors revealed that the target region was recognized by a complex including JunD and Fra2, which are transcription factors belonging to the AP-1 family. The direct interaction of JunD and Fra2 with the CD11c promoter was further confirmed by a chromatin immunoprecipitation assay using CD11c-positive cells purified from BMDCs. Finally, mouse JunD and/or Fra2 siRNA was introduced into BMDCs to evaluate the involvement of these factors against CD11c transcription and found that Fra2 siRNA reduced cell surface expression level of CD11c. These results indicate that AP-1 composed with JunD and Fra2 protein plays a primary role in enhancing the transcription level of the CD11c gene in DC.
Collapse
|
47
|
Reynolds J, Cook PR, Behmoaras J, Smith J, Bhangal G, Tadros S, Tee J, Salama AD, Evans DJ, Aitman TJ, Cook HT, Pusey CD. Genetic susceptibility to experimental autoimmune glomerulonephritis in the Wistar Kyoto rat. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1843-51. [PMID: 22445570 DOI: 10.1016/j.ajpath.2012.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/03/2012] [Accepted: 01/19/2012] [Indexed: 12/21/2022]
Abstract
In experimental autoimmune glomerulonephritis (EAG), a model of Goodpasture's disease, Wistar Kyoto (WKY) rats immunized with collagenase-solubilized glomerular basement membrane (GBM) or the recombinant NC1 domain of the α3 chain of type IV collagen [α3(IV)NC1] develop anti-GBM antibodies and focal necrotizing glomerulonephritis with crescent formation. However, Lewis (LEW) rats, which share the same major histocompatibility complex (MHC) haplotype, are resistant to EAG development. A genome-wide linkage analysis of backcrossed animals with EAG revealed a major quantitative trait locus (QTL) on rat chromosome 13 (LOD = 3.9) linked to the percentage of glomerular crescents. To investigate the role of this QTL in EAG induction, reciprocal congenic rats were generated (LEW.WCrgn1 congenic and WKY.LCrgn1 congenic), immunized with recombinant rat α3(IV)NC1, and assessed for EAG development. WKY.LCrgn1 rats showed a marked reduction in albuminuria, severity of crescentic nephritis, and number of glomerular macrophages compared with WKY controls. No reduction in antibody levels was observed. However, LEW.WCrgn1 rats were resistant to EAG development, as were LEW controls. Macrophage activation in vitro was assessed in parental and congenic rat bone marrow-derived macrophages (BMDMs). WKY.LCrgn1 BMDMs showed a significant reduction in Fc receptor-mediated oxidative burst, phagocytosis of opsonised polystyrene beads, and LPS-induced levels of MCP-1 secretion and iNOS mRNA expression compared with WKY rats. These results confirm the importance of Crgn1 on chromosome 13 in EAG susceptibility, mediated partly through differences in Fc receptor-mediated macrophage activation.
Collapse
Affiliation(s)
- John Reynolds
- Renal Section, Department of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Page TH, D'Souza Z, Nakanishi S, Serikawa T, Pusey CD, Aitman TJ, Cook HT, Behmoaras J. Role of novel rat-specific Fc receptor in macrophage activation associated with crescentic glomerulonephritis. J Biol Chem 2011; 287:5710-9. [PMID: 22184119 PMCID: PMC3285343 DOI: 10.1074/jbc.m111.260695] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crescentic glomerulonephritis (Crgn) is a complex disease where the initial insult is often the glomerular deposition of antibodies against intrinsic or deposited antigens in the glomerulus. The role of Fc receptors in the induction and progression of Crgn is increasingly recognized, and our previous studies have shown that copy number variation in Fcgr3 partially explains the genetic susceptibility of the Wistar-Kyoto (WKY) rat to nephrotoxic nephritis, a rat model of Crgn. The Fcgr3-related sequence (Fcgr3-rs) is a novel rat-specific Fc receptor with a cytoplasmic domain 6 amino acids longer than its paralogue, Fcgr3. The Fcgr3-rs gene is deleted from the WKY rat genome, and this deletion is associated with enhanced macrophage activity in this strain. Here, we investigated the mechanism by which the deletion of Fcgr3-rs in the WKY strain leads to increased macrophage activation. By lentivirus-mediated gene delivery, we generated stably transduced U937 cells expressing either Fcgr3-rs or Fcgr3. In these cells, which lack endogenous Fcgr3 receptors, we show that Fcgr3-rs interacts with the common Fc-γ chain but that Fc receptor-mediated phagocytosis and signaling are defective. Furthermore, in primary macrophages, expression of Fcgr3-rs inhibits Fc receptor-mediated functions, because WKY bone marrow-derived macrophages transduced with Fcgr3-rs had significantly reduced phagocytic activity. This inhibitory effect on phagocytosis was mediated by the novel cytoplasmic domain of Fcgr3-rs. These results suggest that Fcgr3-rs may act to inhibit Fcgr3-mediated signaling and phagocytosis and could be considered as a novel mechanism in the modulation of Fc receptor-mediated cell activation in autoimmune diseases.
Collapse
Affiliation(s)
- Theresa H Page
- Kennedy Institute of Rheumatology Division, Imperial College London, London W6 8LH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ström M, Al Nimer F, Lindblom R, Nyengaard JR, Piehl F. Naturally Occurring Genetic Variability in Expression of Gsta4 is Associated with Differential Survival of Axotomized Rat Motoneurons. Neuromolecular Med 2011; 14:15-29. [DOI: 10.1007/s12017-011-8164-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/19/2011] [Indexed: 10/14/2022]
|
50
|
Spleen tyrosine kinase promotes acute neutrophil-mediated glomerular injury via activation of JNK and p38 MAPK in rat nephrotoxic serum nephritis. J Transl Med 2011; 91:1727-38. [PMID: 21894146 DOI: 10.1038/labinvest.2011.137] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Glomerular antibody deposition induces acute neutrophil-mediated glomerular injury via activation of c-Jun amino terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). However, the link between antibody deposition and activation of JNK/p38 MAPK signalling is unclear. This study tested the postulate that spleen tyrosine kinase (Syk), which is activated via Fcγ-receptor ligation, is required for activation of JNK and p38 signalling and acute neutrophil-mediated glomerular injury. We used a Syk inhibitor (SYKi) in rat nephrotoxic serum nephritis (NTN) in which neutrophil-mediated glomerular injury is dependent upon JNK and p38 signalling. SYKi or vehicle treatment of Sprague-Dawley rats began 30 min before administration of anti-GBM serum with rats killed 3 or 24 h later. Immunostaining identified de novo glomerular Syk activation (p-Tyr 525/526) in untreated NTN, being most prominent in neutrophils. Vehicle and untreated NTN exhibited heavy proteinuria and glomerular thrombosis at 24 h with P-selectin and fibrin immunostaining within capillaries, glomerular macrophage and T cell infiltration, activation of JNK and p38 MAPK signalling, and upregulation of glomerular mRNA levels of pro-inflammatory molecules (TNF-α, NOS2, MMP-12 and CCL2). In contrast, SYKi treatment provided complete protection from proteinuria, with a profound reduction in glomerular thrombosis and immunostaining for P-selectin and fibrin, and a substantial reduction in glomerular mRNA levels of pro-inflammatory molecules. SYKi treatment also reduced the acute glomerular neutrophil influx and pro-inflammatory response at 3 h in NTN. These protective effects were associated with a significant reduction in glomerular JNK and p38 MAPK activation. In addition, activation of Syk, JNK and p38 was identified in human biopsy samples of acute crescentic glomerulonephritis. In conclusion, this study demonstrates that Syk signalling is required for JNK and p38 MAPK signalling and acute neutrophil-dependent glomerular injury in rat NTN. These findings identify Syk as a potential therapeutic target in antibody-dependent kidney disease.
Collapse
|