1
|
Wang Z, Zheng Q, Chen X, Wang H. Exploring the association between cumulative hs-CRP and all-cause mortality, with consideration of cardiometabolic mediators in middle-aged and elderly adults: Insights from observational study: Hs-CRP and overall mortality risk. Arch Gerontol Geriatr 2025; 135:105861. [PMID: 40354683 DOI: 10.1016/j.archger.2025.105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Under a state of sustained relatively low inflammation, it is uncertain if cumulative high-sensitivity C-reactive protein (cumhs-CRP) can predict all-cause mortality, and its impact on it through cardiometabolic factors is also unknown. METHODS This is a longitudinal national cohort study using CHARLS data. Specifically, we only included participants aged 45 and older with hs-CRP levels below 10mg/L in both 2012 and 2015. Cumhs-CRP derived through time-weighted averaging was employed as the key exposure. Death events were recorded as the primary outcome. All-cause mortality is defined as death occurring at any point from 2015 to 2018. Variables selection and interpretation were conducted by Boruta and Shapley Additive Explanations (SHAP). Further mediation analysis explored the possibility of cardiometabolic factors serving as mediators. Additional Mendelian randomization was conducted to demonstrate the robustness of the association. RESULTS 5052 Chinese adults over 45 years of age with hs-CRP levels below 10mg/L over time were included. Boruta identified 16 possible variables, with SHAP confirming the importance of cumhs-CRP. Multivariate analysis showed a significant association between cumhs-CRP and mortality (OR 1.05, 95 % CI 1.02 1.09, p = 0.003), and a linear relationship was observed (p-nonlinear = 0.184). Importantly, cumhs-CRP indirectly may affect the risk of death through systolic and diastolic blood pressure, fasting glucose, and uric acid, with proportions of 17.4 %, 8.2 %, 5.2 %, and 17 %, respectively. CONCLUSIONS Cumhs-CRP levels are associated with increased mortality risk, even in individuals with lower baseline levels. Regular monitoring of hs-CRP levels may aid in identifying individuals with elevated mortality risk.
Collapse
Affiliation(s)
- Zhonghai Wang
- Department of Geriatrics, North Sichuan Medical College, Nanchong, Sichuan, PR China; Department of Cardiology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, PR China
| | - Qiaoqi Zheng
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, Sichuan, PR China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, Sichuan, PR China
| | - Han Wang
- Department of Cardiology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, PR China.
| |
Collapse
|
2
|
Geusens B, Haykal D. Genetic profiling and precision skin care: a review. Front Genet 2025; 16:1559510. [PMID: 40529811 PMCID: PMC12170653 DOI: 10.3389/fgene.2025.1559510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 05/26/2025] [Indexed: 06/20/2025] Open
Abstract
Skin aging is a multifaceted biological phenomenon driven by intrinsic and extrinsic factors, including genetics, hormonal changes, metabolic shifts, and environmental influences. Notably, genetic factors play a significant role, explaining up to 60% of the variability in how individuals age. Genes such as elastin (ELN), filaggrin (FLG), and melanocortin 1 receptor (MC1R) play pivotal roles in processes like elasticity, hydration, and pigmentation, directly impacting both intrinsic and extrinsic aging pathways. Understanding these genetic mechanisms is crucial for advancing personalized anti-aging products and therapies, particularly given the significant variability among individuals and ethnic groups. This review explores the current state of knowledge regarding the genetic determinants of skin aging, highlighting recent discoveries and proposing functional pathways for targeted interventions. Future directions are discussed to highlight the transformative potential of these innovations in clinical and aesthetic dermatology. While genetic factors may account for up to 60% of skin aging variability in specific populations, this figure should be interpreted with caution. It primarily reflects heritability under controlled conditions and does not negate the significant influence of modifiable lifestyle and environmental factors on skin and overall aging.
Collapse
Affiliation(s)
| | - Diala Haykal
- Private Practice, Centre Médical Laser Palaiseau, Paris, France
| |
Collapse
|
3
|
Zhang J, Yu H, Jiao L, Wang D, Gu Y, Meng G, Wu H, Wu X, Zhu D, Chen Y, Wang D, Wang Y, Geng H, Huang T, Niu K. Causal Association of Sleep Traits with All-Cause and Cause-Specific Mortality: A Prospective Cohort and Mendelian Randomization Study. Rejuvenation Res 2025; 28:136-145. [PMID: 39883542 DOI: 10.1089/rej.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
The study aimed to explore the association between different sleep traits and all-cause mortality as well as to validate causality in the association through mendelian randomization (MR). We analyzed 451,420 European ancestry participants from the UK Biobank. Multivariable-adjusted Cox proportional hazards model was conducted to evaluate the association between sleep traits and all-cause mortality. In MR analysis, the inverse variance weighting (IVW) method was applied as the primary analysis to investigate the causal association between sleep traits and mortality. During a median follow-up period of 12.68 years, 34,397 individuals died. Observational analyses showed the multivariate-adjusted hazard ratio (HR) and 95% confidence intervals (CIs) for short sleep, long sleep, early chronotype, daytime sleepiness, daytime napping, and insomnia with mortality, 1.246 (1.195, 1.298), 1.735 (1.643, 1.831), 0.931 (0.909, 0.953), 1.276 (1.212, 1.344), 1.299 (1.254, 1.346), and 1.117 (1.091, 1.142) (All p < 0.0001). Based on UK Biobank, MR analysis indicated the association between daytime napping and an increased risk of all-cause mortality (odd ratio [OR]: 1.219, 95% CI: 1.071-1.387, p = 0.003), which may be largely attributable to cancer disease mortality (OR: 1.188, 95% CI: 1.009-1.399, p = 0.039). We found no causal association between sleep duration, short sleep, long sleep, chronotype, daytime sleepiness, insomnia, and mortality risk. The causal associations between sleep traits and all-cause mortality risk were directionally replicated in FinnGen. Our findings suggest a potential causal association between daytime napping and increased risk of all-cause mortality in middle-aged and older persons. The finding could have important implications for evaluating daytime napping habits to decrease the risk of mortality.
Collapse
Affiliation(s)
- Jinjin Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Yu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lirui Jiao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Di Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuehui Wu
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dandan Zhu
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinxiao Chen
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongli Wang
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaxiao Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Geng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Thakur R, Xu M, Sowards H, Yon J, Jessop L, Myers T, Zhang T, Chari R, Long E, Rehling T, Hennessey R, Funderburk K, Yin J, Machiela MJ, Johnson ME, Wells AD, Chesi A, Grant SFA, Iles MM, Landi MT, Law MH, Melanoma Meta-Analysis Consortium, Choi J, Brown KM. Mapping chromatin interactions at melanoma susceptibility loci uncovers distant cis-regulatory gene targets. Am J Hum Genet 2025:S0002-9297(25)00178-8. [PMID: 40409268 DOI: 10.1016/j.ajhg.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/25/2025] Open
Abstract
Genome-wide association studies (GWASs) of melanoma risk have identified 68 independent signals at 54 loci. For most loci, specific functional variants and their respective target genes remain to be established. Capture-HiC is an assay that links fine-mapped risk variants to candidate target genes by comprehensively mapping chromatin interactions. We performed a melanoma GWAS region-focused capture-HiC assay in human primary melanocytes to identify physical interactions between fine-mapped risk variants and potential causal melanoma-susceptibility genes. Overall, chromatin-interaction data alone nominated potential causal genes for 61 of the 68 melanoma risk signals, identifying many candidates beyond those reported by previous studies. We further integrated these data with epigenomic (chromatin state, accessibility), gene expression (expression quantitative trait locus [eQTL]/transcriptome-wide association study [TWAS]), DNA methylation (methylation QTL [meQTL]/methylome-wide association study [MWAS]), and massively parallel reporter assay (MPRA) data generated from melanoma-relevant cell types to prioritize potentially cis-regulatory variants and their respective candidate gene targets. From the set of fine-mapped variants across these loci, we identified 140 prioritized credible causal variants linked to 195 candidate genes at 42 risk signals. In addition, we developed an integrative scoring system to facilitate candidate gene prioritization, integrating melanocyte and melanoma datasets. Notably, at several GWAS risk signals, we observed long-range chromatin connections (500 kb to >1 Mb) with distant candidate target genes. We validated several such cis-regulatory interactions using CRISPR inhibition, providing evidence for known cancer driver genes MDM4 and CBL, as well as the SRY-box transcription factor SOX4, as likely melanoma risk genes.
Collapse
Affiliation(s)
- Rohit Thakur
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hayley Sowards
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Joshuah Yon
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lea Jessop
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Timothy Myers
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Tongwu Zhang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Erping Long
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Thomas Rehling
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rebecca Hennessey
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Karen Funderburk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jinhu Yin
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Matthew E Johnson
- Division of Human Genetics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Maria Teresa Landi
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Matthew H Law
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | | | - Jiyeon Choi
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
5
|
Erickson PA, Chang VC, He S, Dagnall C, Teshome K, Machiela MJ, Barry KH, Pereira EFR, Gadalla SM, Parks CG, Berndt SI, Beane Freeman LE, Andreotti G, Hofmann JN. Occupational pesticide use and relative leukocyte telomere length in the biomarkers of exposure and effect in agriculture study. ENVIRONMENTAL RESEARCH 2025; 273:121174. [PMID: 39986429 DOI: 10.1016/j.envres.2025.121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Previous epidemiological studies have reported increased risks of certain cancers in relation to pesticide exposures. Although the biologic mechanisms underlying these associations are not well understood, altered telomere length has been hypothesized to play a role. We examined associations between occupational use of specific pesticides and leukocyte telomere length in the Biomarkers of Exposure and Effect in Agriculture study, a molecular epidemiological investigation of pesticide applicators in Iowa and North Carolina. Relative telomere length (RTL) was measured using quantitative polymerase chain reaction in leukocytes from 1539 male pesticide applicators ≥50 years of age. We evaluated lifetime use of 47 pesticides in terms of self-reported ever use and intensity-weighted lifetime days (IWLDs), a metric integrating lifetime days of use and other factors influencing exposure. Multivariable linear regression was used to estimate percent difference in geometric mean RTL in relation to ever (vs. never) use, IWLDs of use, and timing of use [recent (last 12 months) and former vs. never use]. Mean RTL was significantly longer among ever users of the insecticides lindane (percent difference = 2.20%, 95%CI: 0.45%, 3.99%) and aldicarb (percent difference = 3.27%, 95%CI: 0.23%, 6.40%). Longer RTL was also associated with increasing IWLDs of lindane (highest quartile vs. never use: percent difference = 4.51%, 95%CI: -0.22%, 9.46%; p-trend = 0.048) and the insecticide diazinon (4.77%, 95%CI: 0.17%, 9.58%; p-trend = 0.055), and with recent use of the insecticide dichlorvos (vs. never use: 8.15%, 95%CI: 1.31%, 15.46%). Increasing IWLDs of the insecticide heptachlor and the herbicide 2,4,5-TP and recent use of the herbicide metolachlor were significantly associated with shorter RTL. Our findings provide novel evidence suggesting that use of certain pesticides is associated with altered leukocyte telomere length. Notably, diazinon and lindane have previously been associated with increased risks of lung and lymphoid malignancies, respectively, and longer leukocyte telomere length has been implicated in the development of these cancers.
Collapse
Affiliation(s)
- Patricia A Erickson
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vicky C Chang
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Shisi He
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Casey Dagnall
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Rockville, MD, USA
| | - Kedest Teshome
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Rockville, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Kathryn Hughes Barry
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Edna F R Pereira
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA.
| |
Collapse
|
6
|
Gómez-Ilescas A, Silveira PP. Early adversity and the comorbidity between metabolic disease and psychopathology. J Physiol 2025. [PMID: 40349327 DOI: 10.1113/jp285927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
Although the co-existence of metabolic and psychiatric disorders in the same individual (comorbidity) is very prevalent, the mechanisms by which these disorders co-occur are poorly understood, but a history of early-life adversity is a common developmental risk factor. Exposure to adverse environments during critical periods of development (e.g. fetal life and infancy) modifies the metabolism and the function of the brain persistently, influencing behaviours that contribute to both metabolic and mental health disarrangements over the life course. We will review molecular and clinical evidence supporting the notion that early adversity is an important risk factor for the comorbidity between metabolic and psychiatric conditions. We will also discuss the possible mechanisms involved: neurometabolic programming, epigenetic alterations and the cumulative effects of altered inflammatory and oxidative pathways linked to early adversity.
Collapse
Affiliation(s)
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Solh T, Cevher ŞC. The relationship between neuropsychiatric disorders and aging: A review on telomere length, oxidative stress, and inflammation. Behav Brain Res 2025; 485:115528. [PMID: 40064353 DOI: 10.1016/j.bbr.2025.115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Aging is the group of time-independent changes that occur in an organism and that ultimately end in death. The relationship between aging and neuropsychiatric disorders is complex. Not only does the incidence of several neuropsychiatric disorders rise with age, but also these disorders are linked with premature mortality and are even thought to be syndromes of accelerated biological aging. Oxidative stress, inflammation and telomere length are factors commonly used to assess biological aging. The purpose of this review is to sum up the existing information about the state of those factors in schizophrenia, depression, bipolar disorder and anxiety disorders, and to summarize the effects of treatment on telomere length in patients with those neuropsychiatric disorders. The main focus, however, is on telomere length seeing the highly controversial study results on this biomarker in neuropsychiatric disorders. There is no scientific consensus on the state of those factors in the mentioned neuropsychiatric disorders or on the effects of treatment on telomere length, thus further research is needed where confounding variables are controlled. Regarding telomere length, it is highly important to explore whether short telomeres lead to the development of neuropsychiatric disorders or vice versa, as it carries huge clinical potential.
Collapse
Affiliation(s)
- Tala Solh
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey.
| | - Şule Coşkun Cevher
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey
| |
Collapse
|
8
|
Yu J, Zhang Y, Pang CP, Tham CC, Yam JC, Chen LJ. Association between leukocyte telomere length and incident glaucoma: A prospective UK biobank study. Eye (Lond) 2025:10.1038/s41433-025-03838-7. [PMID: 40335681 DOI: 10.1038/s41433-025-03838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Leukocyte telomere length (LTL) has been associated with various diseases, including age-related eye diseases such as cataract and age-related macular degeneration. However, the role of LTL in the longitudinal development of glaucoma is still unknown. Here we prospectively evaluate the association of LTL with glaucoma incidence and related traits, in the UK Biobank cohort. METHODS The study cohort included 419,603 participants with complete baseline data for glaucoma analyses. Multivariable Cox proportional hazards models were used to evaluate the association between LTL and the risk of glaucoma incidence, and multivariable linear regression was employed to test the association between LTL and glaucoma-related traits. RESULTS During a 13.58-year follow-up period, 7385 (1.76%) participants developed glaucoma. No association between LTL and incident glaucoma was found in either Model 1 (adjusted for age, sex, ethnicity and the ancestry components; HR = 1.011, 95% CI: 0.990-1.033; P = 0.311), or Model 2 (additionally adjusted for smoking status, alcohol consumption, body mass index, systolic blood pressure, education level, Townsend Deprivation Index, polygenic risk score for glaucoma, and history of diabetes and cardiovascular diseases; HR = 1.010, 95% CI: 0.988-1.032; P = 0.367). Non-significant associations were also observed for glaucoma-related traits, including the retinal nerve fibre layer, ganglion cell-inner plexiform layer, and intraocular pressure with LTL (all P-values > 0.05), but LTL was associated with a slightly increased vertical cup-to-disc ratio (P = 0.009). CONCLUSIONS This study suggested that LTL is not a major biomarker for incident glaucoma in the UK Biobank population. Further studies in different populations are warranted.
Collapse
Affiliation(s)
- Jun Yu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yuzhou Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, Hong Kong.
- Hong Kong Eye Hospital, Hong Kong, Hong Kong.
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
- Hong Kong Eye Hospital, Hong Kong, Hong Kong.
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, Hong Kong.
| |
Collapse
|
9
|
Yang B, Bi J, Zeng W, Chen M, Yao Z, Cheng S, Jiang Z, Zhang C, Liao H, Gu X, Xian Z, Yu Y. Causal effect between telomere length and thirteen types of cancer in Asian population: a bidirectional Mendelian randomization study. Aging Clin Exp Res 2025; 37:134. [PMID: 40299209 PMCID: PMC12041116 DOI: 10.1007/s40520-025-03046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND The relationship between leukocyte telomere length (LTL) and the risk of developing various cancers has always been controversial and predominantly focused on European populations. Hence, Mendelian randomization (MR) was applied to the Asian population to explore the causal relationships between LTL and the risk of developing various cancers. METHODS We explored the causal connection between LTL and the risk of developing thirteen types of cancer in Asian populations using freely available genetic variation data. The primary analytical method employed was the inverse variance weighted (IVW) method, complemented by sensitivity and validation analyses. Following Bonferroni correction, P < 0.0038 was considered to indicate statistical significance, and P values ranging from 0.0038 to 0.05 were considered to indicate a nominally significant association. RESULTS The findings indicated significant positive associations between LTL and the risk of developing lung cancer [odds ratio (OR) = 1.6009, 95% confidence interval (CI) 1.3056-1.9629, P = 6.08 × 10-6] and prostate cancer (OR = 1.4200, 95% CI 1.1489-1.7550, P = 0.0012). Additionally, there was a nominally significant association between LTL and the risk of developing hematological malignancy (OR = 1.5119, 95% CI 1.0810-2.1146, P = 0.0157). No statistically significant relationships between LTL and the risk of developing the other ten kinds of cancer were detected. No causal link between the risk of developing various cancers and LTL was discovered. CONCLUSIONS Asians with longer telomeres are more prone to developing lung and prostate cancer. There is also a nominally significant association between longer telomeres and the risk of developing hematological malignancy.
Collapse
Affiliation(s)
- Bowen Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Junming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Weinan Zeng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
- Shantou University Medical College, Shantou, 515000, China
| | - Mingquan Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Zhihao Yao
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
- School of Medicine, South China University of Technology, Guangzhou, 510000, China
| | - Zhaoqiang Jiang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Changzheng Zhang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Hangyu Liao
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Xiaokang Gu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Zhiyong Xian
- Department of Urology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, 341000, China.
- Department of Urology, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, 528200, China.
| | - Yuming Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China.
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
10
|
Wang Q, Liu F, Cai B, Wang X, Deng Y, Chen T. Telomere Length, Brain Imaging-Derived Phenotypes, and Alzheimer's Disease: Mendelian Randomization Analysis. Mol Neurobiol 2025:10.1007/s12035-025-04913-6. [PMID: 40220244 DOI: 10.1007/s12035-025-04913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Previous studies have reported a correlation between telomere length (TL) and Alzheimer's disease (AD); however, the specific biological mechanisms supporting this association remain unclear. We used two-sample Mendelian randomization (MR) to systematically explore the putative causal relationships between TL, brain imaging-derived phenotypes (IDPs), and AD, while further evaluating the mediating role of IDPs using both two-step MR and multivariable MR. In addition, we utilized several independent validation cohorts to repeat the analysis, further strengthening our inferences. The MR analysis showed that a longer TL was causally associated with a lower risk for AD (OR, 0.84; 95% CI, 0.75 to 0.93; P = 0.001). In addition, the subsequent two-step MR results indicate that nine brain IDPs partially mediate the effect of TL on AD. The inverse association of genetically predicted TL with AD was attenuated after adjusting for these IDPs in multivariable MR. Our study provides further evidence for the causal relationship between TL and AD, with IDPs potentially partially mediating this association. Therefore, telomere biology may be a potential pathway involved in AD development, and identifying the important role of telomeres can draw more attention to the development of telomere-related diagnostics, treatments, and AD therapies.
Collapse
Affiliation(s)
- Qitong Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Fang Liu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Benchi Cai
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Xinyu Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Yidong Deng
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
- Hainan Provincial Bureau of Disease Prevention and Control, Haikou, 570100, China.
| |
Collapse
|
11
|
Hong Y, Wang Y, Shu W. Immunocyte phenotypes and childhood disease susceptibility: insights from bidirectional Mendelian randomization and implications for immunomodulatory therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04091-1. [PMID: 40178601 DOI: 10.1007/s00210-025-04091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Immune cells are essential for maintaining immune homeostasis during childhood and influence both growth and disease susceptibility. However, the causal relationships between immunocyte phenotypes and childhood diseases remain unclear. This study employed a two-sample Mendelian Randomization (MR) analysis to assess causal associations between 731 immunocyte phenotypes and four major childhood diseases: childhood obesity, childhood absence epilepsy, childhood asthma, and childhood allergies. Genome-wide association study (GWAS) data were used, and stringent instrumental variable (IV) selection and multiple sensitivity analyses, including MR-Egger, weighted median, and leave-one-out tests, were applied to validate the robustness of the results. Significant associations were identified between specific T cell, monocyte, and B cell phenotypes and childhood diseases. Notably, CD8bright T cells and CD19 + B cells were positively correlated with childhood obesity, while monocyte subtypes were strongly associated with asthma pathophysiology. Reverse MR analysis indicated no significant causal effects of childhood diseases on immune phenotypes, except for negative associations between childhood asthma and TCRgd AC, and childhood allergy and CD28 + CD45RA + CD4 + cells. These findings highlight the critical role of immune dysregulation in childhood disease etiology and suggest potential targets for immunomodulatory therapies. Understanding these immune-disease interactions may inform novel pharmacological interventions, particularly in immune-mediated disorders such as asthma and obesity. Further research into immune-targeted therapies could enhance treatment strategies for pediatric conditions associated with chronic inflammation and immune dysfunction.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China.
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Wanyi Shu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| |
Collapse
|
12
|
Foffa I, Esposito A, Simonini L, Berti S, Vecoli C. Telomere Length and Clonal Hematopoiesis of Indeterminate Potential: A Loop Between Two Key Players in Aortic Valve Disease? J Cardiovasc Dev Dis 2025; 12:135. [PMID: 40278194 PMCID: PMC12027716 DOI: 10.3390/jcdd12040135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Aortic valve stenosis (AVS) is the most common valvular heart disease that was considered, for a long time, a passive degenerative disease due to physiological aging. More recently, it has been recognized as an active, modifiable disease in which many cellular processes are involved. Nevertheless, since aging remains the major risk factor for AVS, a field of research has focused on the role of early (biological) aging and its dependent pathways in the initiation and progression of AVS. Telomeres are regions at the ends of chromosomes that are critical for maintaining genome stability in eukaryotic cells. Telomeres are the hallmarks and molecular drivers of aging and age-related degenerative pathologies. Clonal hematopoiesis of indeterminate potential (CHIP), a condition caused by somatic mutations of leukemia-associated genes in individuals without hematologic abnormalities or clonal disorders, has been reported to be associated with aging. CHIP represents a new and independent risk factor in cardiovascular diseases, including AVS. Interestingly, evidence suggests a causal link between telomere biology and CHIP in several pathological disorders. In this review, we discussed the current knowledge of telomere biology and CHIP as possible mechanisms of aortic valve degeneration. We speculated on how a better understanding of the complex relationship between telomere and CHIP might provide great potential for an early diagnosis and for developing novel medical therapies to reduce the constant increasing health burden of AVS.
Collapse
Affiliation(s)
- Ilenia Foffa
- CNR Institute of Clinical Physiology, 54100 Massa, Italy;
- Cardiology Unit, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (A.E.); (S.B.)
| | - Augusto Esposito
- Cardiology Unit, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (A.E.); (S.B.)
| | - Ludovica Simonini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Sergio Berti
- Cardiology Unit, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (A.E.); (S.B.)
| | - Cecilia Vecoli
- CNR Institute of Clinical Physiology, 54100 Massa, Italy;
- Cardiology Unit, Fondazione Toscana Gabriele Monasterio, 54100 Massa, Italy; (A.E.); (S.B.)
| |
Collapse
|
13
|
Chik HYJ, Sibma A, Mannarelli ME, dos Remedios N, Simons MJP, Burke T, Dugdale HL, Schroeder J. Heritability and age-dependent changes in genetic variation of telomere length in a wild house sparrow population. Evol Lett 2025; 9:209-220. [PMID: 40191408 PMCID: PMC11968191 DOI: 10.1093/evlett/qrae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 04/09/2025] Open
Abstract
Telomere length (TL) and/or its rate of change are popular biomarkers of senescence, as telomere dynamics are linked with survival and lifespan. However, the evolutionary potential of telomere dynamics has received mixed support in natural populations. To better understand how telomere dynamics evolve, it is necessary to quantify genetic variation in TL and how such variation changes with age. Here, we analyzed 2,083 longitudinal samples from 1,225 individuals across 16 years, collected from a wild, insular house sparrow (Passer domesticus) population with complete life history and genetic relatedness data. Using a series of "animal" models, we confirmed that TL changes with age, reflecting senescence in this population. We found TL to be repeatable (14.0%, 95% CrI: 9.1%-19.9%) and heritable (12.3%, 95% CrI: 7.5%-18.2%); and detected a genotype-by-age interaction, meaning that genotypes differ in their rate of change of TL, and additive genetic variance increases at older ages. Our findings provide empirical evidence from a wild population that supports hypotheses explaining the evolution of senescence and highlight the importance of telomere dynamics as a key biomarker of body physiology for the evolution of senescence.
Collapse
Affiliation(s)
- Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- School of Natural Sciences, Macquarie University, Sydney, New Sout Wales, Australia
| | - Aaron Sibma
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Maria-Elena Mannarelli
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- School of Biological Sciences, University of East Anglia, Norfolk, United Kingdom
| | - Natalie dos Remedios
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- School of Social Sciences, University of Auckland, Auckland, New Zealand
| | - Mirre J P Simons
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Julia Schroeder
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Department of Life Sciences, Imperial College London Silwood Park, Ascot, United Kingdom
| |
Collapse
|
14
|
Su Y, Yin L, Zhao Y, Zhao Y, Zhang W, Ke Y, Wang M, He X, Liu M, Liu G, Qin P, Hu F, Zhang M, Hu D. The association of telomere length and coronary heart disease: A systematic review and dose-response meta-analysis. Nutr Metab Cardiovasc Dis 2025; 35:103830. [PMID: 39800618 DOI: 10.1016/j.numecd.2024.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 03/23/2025]
Abstract
AIMS The association of telomere length (TL) and coronary heart disease (CHD) is still debated, and there is a lack of dose-response meta-analyses on this issue. The aim is therefore to integrate existing evidence on the association between TL and CHD risk and explore the dose-response relationship between them. DATA SYNTHESIS PubMed, EMBASE, and Web of Science were searched for relevant studies up to September 2024. Meta-analysis was performed using a random-effects model, with data presented as RRs and 95 % CIs. Restricted cubic splines were used to assess linear and nonlinear associations. Subgroup analysis and meta-regression were performed to explore sources of heterogeneity. Fourteen articles (8 prospective cohort studies, 2 case-cohort studies, 2 case-control studies, and 2 cross-sectional studies) were finally included in the meta-analysis, with a total sample size of 199,562 participants and 25,752 cases. For CHD, the total RR for the highest TL group compared to the lowest TL group was 0.69 (95 % CI: 0.61, 0.78, I2 = 64.5 %). For every 1 kilobase pair (kbp) increase in TL, the CHD risk decreased by 23 % (RR = 0.77, 95 % CI: 0.69, 0.87, I2 = 89.0 %). The nonlinearity test indicated a linear association between TL and CHD risk (Pnon-linearity = 0.930). Sensitivity analyses indicated that the results were robust. CONCLUSIONS The meta-analysis showed a linear relationship between TL and CHD. People with low TL may be more likely to develop CHD than those with high TL. The association between the two did not change in a wide range of populations.
Collapse
Affiliation(s)
- Yijia Su
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lei Yin
- Department of Cardiovascular Medicine, The Seventh People's Hospital of Zhengzhou, Zhengzhou, Henan, People's Republic of China; Henan Provincial Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou, Henan, People's Republic of China
| | - Yujie Zhao
- Department of Cardiovascular Medicine, The Seventh People's Hospital of Zhengzhou, Zhengzhou, Henan, People's Republic of China; Henan Provincial Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou, Henan, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenkai Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yamin Ke
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Mengdi Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xinxin He
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Mengna Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ge Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Pei Qin
- Department of Medical Record Management, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, People's Republic of China
| | - Dongsheng Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
15
|
Tirkkonen A, Mak JKL, Eriksson JG, Halonen P, Jylhävä J, Hägg S, Enroth L, Raitanen J, Hovatta I, Jääskeläinen T, Koskinen S, Haapanen MJ, von Bonsdorff MB, Kananen L. Predicting cardiovascular morbidity and mortality with SCORE2 (OP) and Framingham risk estimates in combination with indicators of biological ageing. Age Ageing 2025; 54:afaf075. [PMID: 40178198 PMCID: PMC11966606 DOI: 10.1093/ageing/afaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Previous research assessing whether biological ageing (BA) indicators can enhance the risk assessment of cardiovascular disease (CVD) outcomes beyond established CVD risk indicators, such as Framingham Risk Score (FRS) and Systematic Coronary Risk Evaluation (SCORE2)/SCORE2-Older Persons (OP), is scarce. We explored whether BA indicators, namely the Rockwood Frailty Index (FI) and leukocyte telomere length (TL), improve predictive accuracy of CVD outcomes beyond the traditional CVD risk indicators in general population of middle-aged and older CVD-free individuals. METHODS Data included 14 118 individuals from three population-based cohorts: TwinGene, Health 2000 (H2000), and the Helsinki Birth Cohort Study, grouped by baseline age (<70, 70+). The outcomes were incident CVD and CVD mortality with 10-year follow-up. Risk estimations were assessed using Cox regression and predictive accuracies with Harrell's C-index. RESULTS Across the three study cohorts and age groups: (i) a higher FI, but not TL, was associated with a higher occurrence of incident CVD (P < .05), (ii) also when considering simultaneously the baseline CVD risk according to FRS or SCORE2/SCORE2-OP (P < .05) (iii) adding FI to the FRS or SCORE2/SCORE2-OP model improved the predictive accuracy of incident CVD. Similar findings were seen for CVD mortality, but less consistently across the cohorts. CONCLUSIONS We show robust evidence that a higher FI value at baseline is associated with an increased risk of incident CVD in middle-aged and older CVD-free individuals, also when simultaneously considering the risk according to the FRS or SCORE2/SCORE2-OP. The FI improved the predictive accuracy of CVD outcomes beyond the traditional CVD risk indicators and demonstrated satisfactory predictive accuracy even when used independently.
Collapse
Affiliation(s)
- Anna Tirkkonen
- Faculty of Sport and Health Sciences and Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jonathan K L Mak
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Johan G Eriksson
- Folkhälsan Research Center, Public Health Programme, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pauliina Halonen
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center, Tampere University, Tampere, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine and Health Technology and Gerontology Research Center, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere, Finland
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Linda Enroth
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center, Tampere University, Tampere, Finland
| | - Jani Raitanen
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center, Tampere University, Tampere, Finland
- The UKK Institute for Health Promotion Research, Tampere, Finland
| | - Iiris Hovatta
- SleepWell Research Program and Department of Psychology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Seppo Koskinen
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Markus J Haapanen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Folkhälsan Research Center, Public Health Programme, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikaela B von Bonsdorff
- Faculty of Sport and Health Sciences and Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
- Folkhälsan Research Center, Public Health Programme, Helsinki, Finland
| | - Laura Kananen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center, Tampere University, Tampere, Finland
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
16
|
Wang Y, Hong Y. Investigating the complex roles of immunocyte phenotypes in the pathogenesis of dermatitis: a causal inference Mendelian randomization analysis. Arch Dermatol Res 2025; 317:593. [PMID: 40100330 DOI: 10.1007/s00403-025-04072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/20/2025]
Abstract
The etiology of dermatitis involves complex interactions between immune cells, genetics, and environmental factors. While immunocyte phenotypes have been linked to various forms of dermatitis, their causal role remains unclear. We conducted a two-sample Mendelian randomization (MR) analysis to investigate the causal effects between 731 immunocyte phenotypes and four types of dermatitis: atopic dermatitis, contact dermatitis, infective dermatitis, and seborrhoeic dermatitis. Genetic variants were used as instrumental variables, and the inverse variance-weighted (IVW) method was employed to assess causality. Sensitivity analyses were performed to ensure robustness. The forward MR analysis identified significant associations between 22 immunocyte phenotypes and atopic dermatitis, 8 phenotypes with contact dermatitis, 5 with infective dermatitis, and 6 with seborrhoeic dermatitis. The reverse MR analysis suggested potential bidirectional interactions of atopic dermatitis and CD3 on CD28 + CD45RA- CD8br (OR = 0.924, P = 0.012). This study revealed causal relationships between specific immunocyte phenotypes and dermatitis subtypes, providing novel insights into the immunopathogenesis of dermatitis and potential therapeutic targets.
Collapse
Affiliation(s)
- Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China.
| |
Collapse
|
17
|
Yao C, Zhang Y, Zhao SS, Ren J, Sun P, Kong L, Tao J, Li J, Fang M, Zhu Q. Effect of Physical Activity on Chronic Widespread Pain: Insights From Meta-Analysis and Two-Sample Mendelian Randomization. J Pain Res 2025; 18:1275-1289. [PMID: 40110208 PMCID: PMC11920634 DOI: 10.2147/jpr.s505397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Background Chronic widespread pain (CWP) is a core symptom of fibromyalgia that is associated with significant morbidity and mortality. Despite the widespread recommendation for physical activity (PA) in management, the heterogeneity of PA prescriptions limits the in-depth evaluation of its efficacy. By triangulating clinical interventional evidence with human genetic evidence, the aim of this study was to investigate the role of influencing factors such as PA mode, course of treatment, and intensity on PA in the prevention and treatment of CWP. Methods Ten international and regional databases were searched for articles published between January 2014 and July 2024. Randomized control trials with CWP or fibromyalgia as an entry criterion and PA as an intervention were included. Meta-analyses were performed using fixed- or random-effects models based on heterogeneity, and subgroup analyses were conducted. Mendelian randomization (MR) was used to estimate the effects of the genetic variants linked to PA intensity on CWP risk. Results The analysis included 11 studies with 540 participants. PA effectively improved pain perception (MD: -1.47; 95% CI: -2.23, -0.72), depression (MD: -4.77; 95% CI: -7.40, -2.14), and overall quality of life (SMD: -1.43; 95% CI: -2.16, -0.69). MR analysis revealed that several PA intensities were associated with reduced susceptibility to CWP: walking for pleasure (OR: 0.950; 95% CI: 0.934-0.966), light do-it-yourself (DIY) (OR: 0.976; 95% CI: 0.961-0.992), strenuous sports (OR: 0.923; 95% CI: 0.880-0.967), and other exercises (OR: 0.957; 95% CI: 0.942-0.973). Conclusion PA interventions are beneficial for reducing pain perception and mood disorders and enhancing the quality of life of patients with CWP. A treatment course of approximately three months is preferable, with Ba-Duan-Jin potentially more effective than other PAs, and high-intensity PA offers the most significant protective effect against CWP.
Collapse
Affiliation(s)
- Chongjie Yao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yuchen Zhang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Sizheng Steven Zhao
- Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biological Medicine and Health, the University of Manchester, Manchester, UK
| | - Jun Ren
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Pingping Sun
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Lingjun Kong
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiming Tao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jingxian Li
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Min Fang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China
| | - Qingguang Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China
| |
Collapse
|
18
|
Huang X, Huang L, Lu J, Cheng L, Wu D, Li L, Zhang S, Lai X, Xu L. The relationship between telomere length and aging-related diseases. Clin Exp Med 2025; 25:72. [PMID: 40044947 PMCID: PMC11882723 DOI: 10.1007/s10238-025-01608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025]
Abstract
The intensifying global phenomenon of an aging population has spurred a heightened emphasis on studies on aging and disorders associated with aging. Cellular senescence and aging are known to be caused by telomere shortening. Telomere length (TL) has emerged as a biomarker under intense scrutiny, and its widespread use in investigations of diseases tied to advancing age. This review summarizes the current knowledge of the association between telomeres and aging-related diseases, explores the important contribution of dysfunctional telomeres to the development and progression of these diseases, and aims to provide valuable insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xuanqi Huang
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Leyi Huang
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Jiaweng Lu
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Lijuan Cheng
- Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China
| | - Du Wu
- Hangzhou Wuyunshan Hospital, Hangzhou, China
| | - Linmeng Li
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Shuting Zhang
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Xinyue Lai
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Lu Xu
- Hangzhou Normal University School of Nursing, Hangzhou, China.
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
19
|
Florez-Vargas O, Ho M, Hogshead MH, Papenberg BW, Lee CH, Forsythe K, Jones K, Luo W, Teshome K, Blauwendraat C, Billingsley KJ, Kolmogorov M, Meredith M, Paten B, Chari R, Zhang C, Schneekloth JS, Machiela MJ, Chanock SJ, Gadalla SM, Savage SA, Mbulaiteye SM, Prokunina-Olsson L. Genetic regulation of TERT splicing affects cancer risk by altering cellular longevity and replicative potential. Nat Commun 2025; 16:1676. [PMID: 39956830 PMCID: PMC11830802 DOI: 10.1038/s41467-025-56947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. Here, we characterize a variable number tandem repeat within TERT intron 6, VNTR6-1 (38-bp repeat unit), and detect a strong link between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.5-66.5 repeats) and GWAS signals rs2242652 and rs10069690 within TERT intron 4. Bioinformatics analyses reveal that rs10069690-T allele increases intron 4 retention while VNTR6-1-Long allele expands a polymorphic G-quadruplex (G4, 35-113 copies) within intron 6, with both variants contributing to variable TERT expression through alternative splicing and nonsense-mediated decay. In two cell lines, CRISPR/Cas9 deletion of VNTR6-1 increases the ratio of TERT-full-length (FL) to the alternative TERT-β isoform, promoting apoptosis and reducing cell proliferation. In contrast, treatment with G4-stabilizing ligands shifts splicing from TERT-FL to TERT-β isoform, implicating VNTR6-1 as a splicing switch. We associate the functional variants VNTR6-1, rs10069690, and their haplotypes with multi-cancer risk and age-related telomere shortening. By regulating TERT splicing, these variants may contribute to fine-tuning cellular longevity and replicative potential in the context of stress due to tissue-specific endogenous and exogenous exposures, thereby influencing the cancer risk conferred by this locus.
Collapse
Affiliation(s)
- Oscar Florez-Vargas
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Michelle Ho
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Maxwell H Hogshead
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Brenen W Papenberg
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Chia-Han Lee
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kaitlin Forsythe
- Laboratory of Translational Genomics, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kedest Teshome
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kimberly J Billingsley
- Center for Alzheimer's and Related Dementias, National Institute of Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, CCR, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chi Zhang
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, CCR, National Cancer Institute, Frederick, MD, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | - Sam M Mbulaiteye
- Infections and Immunoepidemiology Branch, DCEG, National Cancer Institute, Rockville, MD, USA
| | | |
Collapse
|
20
|
Chen C, Li Y, Gu Y, Zhai Q, Guo S, Xiang J, Xie Y, An M, Li C, Qin N, Shi Y, Yang L, Zhou J, Xu X, Xu Z, Wang K, Zhu M, Jiang Y, He Y, Xu J, Yin R, Chen L, Xu L, Dai J, Jin G, Hu Z, Wang C, Ma H, Shen H. Massively parallel variant-to-function mapping determines functional regulatory variants of non-small cell lung cancer. Nat Commun 2025; 16:1391. [PMID: 39910069 PMCID: PMC11799298 DOI: 10.1038/s41467-025-56725-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Genome-wide association studies have identified thousands of genetic variants associated with non-small cell lung cancer (NSCLC), however, it is still challenging to determine the causal variants and to improve disease risk prediction. Here, we applied massively parallel reporter assays to perform NSCLC variant-to-function mapping at scale. A total of 1249 candidate variants were evaluated, and 30 potential causal variants within 12 loci were identified. Accordingly, we proposed three genetic architectures underlying NSCLC susceptibility: multiple causal variants in a single haplotype block (e.g. 4q22.1), multiple causal variants in multiple haplotype blocks (e.g. 5p15.33), and a single causal variant (e.g. 20q11.23). We developed a modified polygenic risk score using the potential causal variants from Chinese populations, improving the performance of risk prediction in 450,821 Europeans from the UK Biobank. Our findings not only augment the understanding of the genetic architecture underlying NSCLC susceptibility but also provide strategy to advance NSCLC risk stratification.
Collapse
Affiliation(s)
- Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China
| | - Yang Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Qiqi Zhai
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211116, Jiangsu, China
| | - Songwei Guo
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211116, Jiangsu, China
| | - Jun Xiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuan Xie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211116, Jiangsu, China
| | - Mingxing An
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chenmeijie Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yanan Shi
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211116, Jiangsu, China
| | - Liu Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jun Zhou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xianfeng Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ziye Xu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211116, Jiangsu, China
| | - Kai Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuanlin He
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210029, Jiangsu, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210029, Jiangsu, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213003, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
21
|
Stajnko A, Pineda D, Klus JK, Love TM, Thurston SW, Mulhern MS, Strain JJ, McSorley EM, Myers GJ, Watson GE, Shroff E, Shamlaye CF, Yeates AJ, van Wijngaarden E, Broberg K. Associations of Prenatal Mercury Exposure and PUFA with Telomere Length and mtDNA Copy Number in 7-Year-Old Children in the Seychelles Child Development Nutrition Cohort 2. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:27002. [PMID: 39903555 PMCID: PMC11793161 DOI: 10.1289/ehp14776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) variations are linked to age-related diseases and are associated with environmental exposure and nutritional status. Limited data, however, exist on the associations with mercury exposure, particularly early in life. OBJECTIVE We examined the association between prenatal mercury (Hg) exposure and TL and mtDNAcn in 1,145 Seychelles children, characterized by a fish-rich diet. METHODS Total mercury (THg) was determined in maternal hair at delivery and cord blood. TL and mtDNAcn were determined relative to a single-copy hemoglobin beta gene in the saliva of 7-y-old children. Linear regression models assessed associations between THg and relative TL (rTL) and relative mtDNAcn (rmtDNAcn) while controlling for maternal and cord serum polyunsaturated fatty acid (PUFA) status and sociodemographic factors. Interactions between THg and child sex, PUFA, and telomerase genotypes were evaluated for rTL and rmtDNAcn. RESULTS Higher THg concentrations in maternal hair and cord blood were associated with longer rTL [β = 0.009 ; 95% confidence interval (CI): 0.002, 0.016 and β = 0.002 ; 95% CI: 0.001, 0.003, respectively], irrespective of sex, PUFA, or telomerase genotypes. Maternal serum n-6 PUFA and n-6/n-3 ratio were associated with shorter [β = - 0.24 ; 95% CI: - 0.33 , - 0.15 and β = - 0.032 ; 95% CI: - 0.048 , - 0.016 , respectively] and n - 3 PUFA with longer (β = 0.34 ; 95% CI: 0.032, 0.65) rTL. Cord blood n-6 PUFA was associated with longer (β = 0.15 ; 95% CI: 0.050, 0.26) rTL. Further analyses revealed linoleic acid in maternal blood and arachidonic acid in cord blood as the main drivers of the n-6 PUFA associations. No associations were observed for THg and PUFA with rmtDNAcn. DISCUSSION Our results indicate that prenatal THg exposure and PUFA status are associated with rTL later in childhood, although not consistently aligned with our initial hypothesis. Subsequent research is needed to confirm this finding, further evaluate the potential confounding of fish intake, and investigate the underlying molecular mechanisms to verify the use of rTL as a true biomarker of THg exposure. https://doi.org/10.1289/EHP14776.
Collapse
Affiliation(s)
- Anja Stajnko
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Jonathan K. Klus
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Tanzy M. Love
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Sally W. Thurston
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Maria S. Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - J. J. Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Emeir M. McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Gary J. Myers
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Gene E. Watson
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Emelyn Shroff
- The Ministry of Health, Mahé, Republic of Seychelles
| | | | - Alison J. Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Edwin van Wijngaarden
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Karin Broberg
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Sánchez-González JL, Sánchez-Rodríguez JL, González-Sarmiento R, Navarro-López V, Juárez-Vela R, Pérez J, Martín-Vallejo J. Effect of Physical Exercise on Telomere Length: Umbrella Review and Meta-Analysis. JMIR Aging 2025; 8:e64539. [PMID: 39846264 PMCID: PMC11755188 DOI: 10.2196/64539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Telomere length (TL) is a marker of cellular health and aging. Physical exercise has been associated with longer telomeres and, therefore, healthier aging. However, results supporting such effects vary across studies. Our aim was to synthesize existing evidence on the effect of different modalities and durations of physical exercise on TL. Objective The aim of this study was to explore the needs and expectations of individuals with physical disabilities and their interventionists for the use of a virtual reality physical activity platform in a community organization. Methods We performed an umbrella review and meta-analysis. Data sources included PubMed, Embase, Web of Science, Cochrane Library, and Scopus. We selected systematic reviews and meta-analyses of randomized and nonrandomized controlled clinical trials evaluating the effect of physical exercise on TL. Results Our literature search retrieved 12 eligible systematic reviews, 5 of which included meta-analyses. We identified 22 distinct primary studies to estimate the overall effect size of physical exercise on TL. The overall effect size was 0.28 (95% CI 0.118-0.439), with a heterogeneity test value Q of 43.08 (P=.003) and I² coefficient of 51%. The number of weeks of intervention explained part of this heterogeneity (Q_B=8.25; P=.004), with higher effect sizes found in studies with an intervention of less than 30 weeks. Exercise modality explained additional heterogeneity within this subgroup (Q_B=10.28, P=.02). The effect sizes were small for aerobic exercise and endurance training, and moderate for high-intensity interval training. Conclusions Our umbrella review and meta-analysis detected a small-moderate positive effect of physical exercise on TL, which seems to be influenced by the duration and type of physical exercise. High quality studies looking into the impact of standardized, evidence-based physical exercise programs on TL are still warranted.
Collapse
Affiliation(s)
- Juan Luis Sánchez-González
- Faculty of Nursing and Physiotherapy, Department of Physiotherapy, University of Salamanca, Salamanca, Spain
| | - Juan Luis Sánchez-Rodríguez
- Faculty of Psychology, Department of Basic Psychology, Psychobiology and Methodology, University of Salamanca, Salamanca, Spain
| | | | - Víctor Navarro-López
- Faculty of Health Sciences, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Madrid, Spain
| | - Raúl Juárez-Vela
- Faculty of Health Sciences, Department of Nursing, University of La Rioja, Logroño, Spain
| | - Jesús Pérez
- Faculty of Medicine, Department of Psychiatry, University of Salamanca, Avenida Donantes de Sangre s/n, Salamanca, 37007, Spain, 34 7535596578
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Javier Martín-Vallejo
- Faculty of Medicine, Department of Statistics, University of Salamanca, Salamanca, Spain
| |
Collapse
|
23
|
Hong Y, Wang Y. Causal Relationship Between Antibody-Mediated Immune Responses of Chlamydia trachomatis Infection and Reproductive Tract Complications: A Bidirectional Mendelian Randomization Study. Am J Reprod Immunol 2025; 93:e70036. [PMID: 39777772 DOI: 10.1111/aji.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/24/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE Characterized as a prevalent sexually transmitted infection, Chlamydia trachomatis is intimately associated with reproductive tract complications, including pelvic inflammatory disease (PID) and infertility. However, the causal relationships between C. trachomatis infection and reproductive tract complications remain elusive. METHODS To investigate the causal relationships between C. trachomatis antibodies and seven reproductive tract complications, we conducted a bidirectional Mendelian randomization (MR) analysis. The fundamental data were originated from the genome-wide association studies (GWAS) database. While the influences of C. trachomatis antibodies on reproductive tract complications such as tubal factor infertility (TFI) and PID have been assessed, the reverse MR analysis examined how these complications impacted C. trachomatis antibodies. RESULTS The forward MR analysis revealed that the upregulation of MOMP A antibodies was significantly associated with a reduced risk of TFI (OR = 0.932, p = 0.007), while MOMP D antibodies were associated with a reduced risk of ectopic pregnancy (EP) (OR = 0.923, p = 0.005). However, no significant causal interactions were identified for other reproductive complications. Moreover, the reverse MR analysis indicated that cervicitis was significantly correlated with lower MOMP A antibody levels (OR = 0.900, p = 0.016). CONCLUSIONS This study demonstrates the protective effects of C. trachomatis antibodies, particularly MOMP A and MOMP D, against TFI and EP, respectively. It also emphasizes the potential role of cervical inflammation in shaping immune responses to C. trachomatis. These insights provide a foundation for future research to develop immune-targeted therapies and integrated approaches for preventing and managing C. trachomatis-related reproductive tract complications.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
24
|
Fan M, Yun Z, Yuan J, Zhang S, Xie H, Lu D, Yuan H, Gao H. Genetic insights into therapeutic targets for gout: evidence from a multi-omics mendelian randomization study. Hereditas 2024; 161:56. [PMID: 39734218 DOI: 10.1186/s41065-024-00362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Considering that the treatment of gout is poor, we performed a Mendelian randomization (MR) study to identify candidate biomarkers and therapeutic targets for gout. METHODS A drug-targeted MR study was performed for gout by integrating the gout genome-wide association studies (GWAS) summary data and cis expression quantitative trait loci of 2,633 druggable genes from multiple cohorts. Summary data-based Mendelian randomization (SMR) analyses based on transcript and protein levels were further implemented to validate the reliability of the identified potential therapeutic targets for gout. Phenome-wide MR (Phe-MR) analysis was conducted in 1403 diseases to investigate incidental side effects of potential therapeutic targets for gout. RESULTS Eight potential therapeutic targets (ALDH3B1, FCGR2B, IL2RB, NRBP1, RCE1, SLC7A7, SUMF1, THBS3) for gout were identified in the discovery cohort using MR analysis. Replication analysis and meta-analysis implemented in the replication cohort validated the robustness of the MR findings (P < 0.05). Evidence from the SMR analysis (P < 0.05) further strengthened the reliability of the 8 potential therapeutic targets for gout also revealed that high levels of ALDH3B1 reduced the gout risk possibly modified by the methylation site cg25402137. SMR analysis (P < 0.05) at the protein level added emphasis on the impact of the risk genes NRBP1 and SUMF1 on gout. Phe-MR analysis indicated significant causality between 7 gout causal genes and 45 diseases. CONCLUSION This study identified several biomarkers associated with gout risk, providing new insights into the etiology of gout and promising targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Mingyuan Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhangjun Yun
- Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Jiushu Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Sai Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingyi Lu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haipo Yuan
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
25
|
He X, Cao L, Fu X, Wu Y, Wen H, Gao Y, Huo W, Wang M, Liu M, Su Y, Liu G, Zhang M, Hu F, Hu D, Zhao Y. The Association Between Telomere Length and Diabetes Mellitus: Accumulated Evidence From Observational Studies. J Clin Endocrinol Metab 2024; 110:e177-e185. [PMID: 39087945 DOI: 10.1210/clinem/dgae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE In order to assess the associations between telomere length (TL) and diabetes mellitus (DM), especially type 2 diabetes (T2DM), we performed this systematic review and meta-analysis. METHODS PubMed, Embase, and Web of Science were thoroughly searched up to July 11, 2023. The pooled standardized mean difference (SMD) and the 95% confidence interval (CI) were evaluated using the random-effects model. Age, sex, study design, duration of diabetes, region, sample size, and body mass index (BMI) were used to stratify subgroup analyses. RESULTS A total of 37 observational studies involving 18 181 participants from 14 countries were included in the quantitative meta-analysis. In this study, patients with diabetes had shorter TL than the non-diabetic, whether those patients had T1DM (-2.70; 95% CI: -4.47, -0.93; P < .001), T2DM (-3.70; 95% CI: -4.20, -3.20; P < .001), or other types of diabetes (-0.71; 95% CI: -1.10, -0.31; P < .001). Additionally, subgroup analysis of T2DM showed that TL was significantly correlated with age, sex, study design, diabetes duration, sample size, detection method, region, and BMI. CONCLUSION A negative correlation was observed between TL and DM. To validate this association in the interim, more extensive, superior prospective investigations and clinical trials are required.
Collapse
Affiliation(s)
- Xinxin He
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Lu Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Xueru Fu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuying Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Hongwei Wen
- Department of Public Health, Zhengzhou Shuqing Medical College, Zhengzhou, Henan 450000, People's Republic of China
| | - Yajuan Gao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Weifeng Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Mengdi Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Mengna Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yijia Su
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Ge Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Dongsheng Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
26
|
Liu S, Xu L, Cheng Y, Liu D, Zhang B, Chen X, Zheng M. Decreased telomerase activity and shortened telomere length in infants whose mothers have gestational diabetes mellitus and increased severity of telomere shortening in male infants. Front Endocrinol (Lausanne) 2024; 15:1490336. [PMID: 39736866 PMCID: PMC11682970 DOI: 10.3389/fendo.2024.1490336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Gestational diabetes mellitus (GDM) is a common complication during pregnancy and increases the risk of metabolic diseases in offspring. We hypothesize that the poor intrauterine environment in pregnant women with GDM may lead to chromosomal DNA damage and telomere damage in umbilical cord blood cells, providing evidence of an association between intrauterine programming and increased long-term metabolic disease risk in offspring. Methods We measured telomere length (TL), serum telomerase (TE) activity, and oxidative stress markers in umbilical cord blood mononuclear cells (CBMCs) from pregnant women with GDM (N=200) and healthy controls (Ctrls) (N=200) and analysed the associations of TL with demographic characteristics, biochemical indicators, and blood glucose levels. Results The length of telomeres in umbilical CBMCs in the GDM group was significantly shorter than that in the Ctrl group (P<0.001), and the shortening of telomeres in male infants in the GDM group was more significant than that in the Ctrl group (P<0.001) after adjustment for Pre-pregnancy body mass index (PBMI), Pregnancy weight gain (PGW), and Triglyceride (TG) as confounding factors. In addition, the TE expression level in the GDM group was lower after adjustment. There was no statistically significant difference in oxidative stress hydroxydeoxyguanosine (8-OHdG), malondialdehyde (MDA) and superoxide dismutase (SOD) between the two groups. TL was positively correlated with TE activity, and both were negatively correlated with blood glucose levels. There was no correlation between TL and Gestational age (GA), PBMI, PGW, or TG levels. Conclusion The poor intrauterine environment in pregnant women with GDM increases telomere attrition and reduces TE activity, which may be potential genetic risk factors for an increased risk of metabolic diseases in offspring later in life due to intrauterine reprogramming.
Collapse
Affiliation(s)
- Shuhua Liu
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Liping Xu
- Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yan Cheng
- Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Dehong Liu
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Bin Zhang
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Xianxia Chen
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Zhang RY, Li JY, Liu YN, Zhang ZX, Zhao J, Li FJ. The causal relationship between type 2 diabetes mellitus and isolated REM sleep behavior disorder: results from multivariable and network Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1408053. [PMID: 39655344 PMCID: PMC11625559 DOI: 10.3389/fendo.2024.1408053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/25/2024] [Indexed: 12/12/2024] Open
Abstract
Objectives To investigate the causal relationship between type 2 diabetes mellitus (T2DM, exposure) and isolated REM sleep behavior disorder (iRBD, outcome). Methods Genome-wide association study (GWAS) data for iRBD comprised 9,447 samples, including 1,061 iRBD cases from the International RBD Study Group. Initially, we performed linkage disequilibrium score regression (LDSC) to explore the genetic correlation between T2DM and iRBD. Then the two-sample univariate MR (UVMR) analysis was conducted to examine the effects of T2DM and blood sugar metabolism-related factors on iRBD. Subsequently, we applied multivariable MR (MVMR) methods to further adjust for confounders. Lastly, we executed a network MR analysis, with cytokines and immune cell characteristics as potential mediators, aiming to investigate indirect effect of T2DM on iRBD. Results Results from LDSC suggest a genetic correlation between T2DM and iRBD (rg=0.306, P=0.029). UVMR analysis indicates that both T2DM (Odds Ratio [95% Confidence Interval] = 1.19 [1.03, 1.37], P = 0.017) and high blood glucose levels (1.55 [1.04, 2.30], P = 0.032) are risk factors for iRBD. Even after adjusting for confounders in MVMR, the association between T2DM and iRBD remains robust. Finally, results from network MR analysis suggest that T2DM may indirectly promote the development of iRBD by reducing levels of Stromal Cell-Derived Factor 2 in circulation and by increasing BAFF-receptor expression in IgD- CD38- B cells. Conclusions T2DM may promote the onset of iRBD by influencing immune-inflammatory responses. Our findings provide valuable insights and directions for understanding the pathogenesis of iRBD, identifying high-risk groups, and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Ru-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, First People's Hospital of Zigong, Zigong, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin-Yu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Ning Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi-Xuan Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fu-Jia Li
- Department of Pulmonary and Critical Care Medicine, First People's Hospital of Zigong, Zigong, Sichuan, China
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Thakur R, Xu M, Sowards H, Yon J, Jessop L, Myers T, Zhang T, Chari R, Long E, Rehling T, Hennessey R, Funderburk K, Yin J, Machiela MJ, Johnson ME, Wells AD, Chesi A, Grant SF, Iles MM, Landi MT, Law MH, Melanoma Meta-Analysis Consortium, Choi J, Brown KM. Mapping chromatin interactions at melanoma susceptibility loci and cell-type specific dataset integration uncovers distant gene targets of cis-regulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.14.24317204. [PMID: 39802764 PMCID: PMC11722502 DOI: 10.1101/2024.11.14.24317204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Genome-wide association studies (GWAS) of melanoma risk have identified 68 independent signals at 54 loci. For most loci, specific functional variants and their respective target genes remain to be established. Capture-HiC is an assay that links fine-mapped risk variants to candidate target genes by comprehensively mapping cell-type specific chromatin interactions. We performed a melanoma GWAS region-focused capture-HiC assay in human primary melanocytes to identify physical interactions between fine-mapped risk variants and potential causal melanoma susceptibility genes. Overall, chromatin interaction data alone nominated potential causal genes for 61 of the 68 melanoma risk signals, identifying many candidates beyond those reported by previous studies. We further integrated these data with cell-type specific epigenomic (chromatin state, accessibility), gene expression (eQTL/TWAS), DNA methylation (meQTL/MWAS), and massively parallel reporter assay (MPRA) data to prioritize potentially cis-regulatory variants and their respective candidate gene targets. From the set of fine-mapped variants across these loci, we identified 140 prioritized candidate causal variants linked to 195 candidate genes at 42 risk signals. In addition, we developed an integrative scoring system to facilitate candidate gene prioritization, integrating melanocyte and melanoma datasets. Notably, at several GWAS risk signals we observed long-range chromatin connections (500 kb to >1 Mb) with distant candidate target genes. We validated several such cis-regulatory interactions using CRISPR inhibition, providing evidence for known cancer driver genes MDM4 and CBL, as well as the SRY-box transcription factor SOX4, as likely melanoma risk genes.
Collapse
Affiliation(s)
- Rohit Thakur
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hayley Sowards
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Joshuah Yon
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lea Jessop
- Laboratory of Genomic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Timothy Myers
- Laboratory of Genomic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Tongwu Zhang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Erping Long
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Thomas Rehling
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rebecca Hennessey
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Karen Funderburk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jinhu Yin
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mitchell J. Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Matthew E. Johnson
- Division of Human Genetics, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark M. Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Maria Teresa Landi
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Matthew H. Law
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, University fo Queensland, Brisbane, QLD, Australia
| | | | - Jiyeon Choi
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M. Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
29
|
Scarabino D, Veneziano L, Nethisinghe S, Mantuano E, Fiore A, Granata G, Solanky N, Zanni G, Cavalcanti F, Corbo RM, Giunti P. Unusual Age-Dependent Behavior of Leukocytes Telomere Length in Friedreich's Ataxia. Mov Disord 2024; 39:2058-2066. [PMID: 39235665 DOI: 10.1002/mds.29976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/15/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by an expanded GAA repeat in the first intron of the FXN gene. OBJECTIVE The aim of this study was to analyze leukocyte telomeres length (LTL) in FRDA to verify the possible relationships between LTL and disease progression. We investigated LTL in a cohort of FRDA biallelic patients (n = 61), heterozygous (n = 29), and age-matched healthy subjects (n = 87). METHODS LTL was measured by real-time polymerase chain reaction quantitative analysis (qPCR). RESULTS The results showed that before 35 years of age, leukocyte telomeres were longer in patients than in controls, whereas the reverse applies in patients above 36 years of age. Interestingly, LTL was greater than controls at any age in heterozygous subjects. This picture mirrors what has been previously observed in vitro in FRDA cultured fibroblasts, showing significantly longer telomeres at early passages because of activation of an alternative lengthening of telomeres (ALT)-like mechanism, but showing accelerated telomere shortening as population doubling increases. GAA1 repeat length is positively correlated with the LTL and negatively correlated with the age at blood sampling. The relationship of LTL with clinical parameters (cardiomyopathy, diabetes, dependence on a wheelchair) was also analyzed. Significantly shorter leukocyte telomeres were associated with the presence of cardiomyopathy, but not with diabetes and the dependence on a wheelchair. CONCLUSIONS Overall, the present study indicates that telomere length analysis in FRDA may be a relevant biomarker for following the stages of the disease. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniela Scarabino
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Liana Veneziano
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
- Human Functional Genomics Laboratory, IRCCS San Raffaele, Rome, Italy
| | - Suran Nethisinghe
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Elide Mantuano
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| | - Alessia Fiore
- Department of Biology and Biotechnology, La Sapienza University, Rome, Italy
| | - Giulia Granata
- Department of Biology and Biotechnology, La Sapienza University, Rome, Italy
| | - Nita Solanky
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Disorders, Unit of Developmental Neurology, Bambino Gesù Children's Research Hospital, IRCCS, Rome, Italy
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Mangone, Italy
| | - Rosa Maria Corbo
- Department of Biology and Biotechnology, La Sapienza University, Rome, Italy
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
30
|
Lyu Y, Zhao H, Zeng G, Yang J, Shao Q, Wu H. Mapping the evolving trend of research on leukocyte telomere length: a text-mining study. Hum Genomics 2024; 18:117. [PMID: 39468654 PMCID: PMC11520877 DOI: 10.1186/s40246-024-00687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Substantial evidence indicates that measuring leukocyte telomere length (LTL) is a useful tool that may be considered as a valuable biomarker of individual biological age, correlating with numerous chronic disorders. However, to date, there has been a lack of in-depth understanding regarding the current landscape and forthcoming developments in the LTL field. Therefore, this study aimed to utilize bibliometric methods to summarize the knowledge structure, current focus, and emerging directions in this field. METHOD Scientific publications on LTL spanning the period from 2000 to 2022 were acquired from the Web of Science Core Collection database. Several bibliometric tools including CiteSpace, VOSviewer, and an online website were utilized for bibliometric analysis. The primary evaluations encompassed investigating the major contributors and their collaborative relationships among countries/regions, institutions, and authors, conducting co-citation analyses of authors, journals, as well as reference, examining reference bursts, as well as performing co-occurrence analyses of keywords. RESULTS There are 1818 papers with 66,668 citations identified. Both the annual publication and citation counts on LTL exhibited significant upward trends. The United States emerged as the most prominent contributor, as evidenced by the greatest volume of papers and the highest H-index value. University of California San Francisco and Aviv A were identified as the most productive institution and author in this domain, respectively. Reference analysis revealed that longitudinal study and mendelian randomization study are the most concerned research method in this field recently. Keywords analysis showed that the most concerned diseases in LTL fields were aging, inflammation, cardiovascular diseases, endocrine diseases, neurological and psychiatric diseases, and cancers. In addition, the following research directions such as "COPD", "mendelian randomization", "adiposity", "colorectal cancer", "National Health and Nutrition Examination Survey (NHNES)", "telomerase reverse transcriptase", "pregnancy" have garnered increasing attention in recent times and hold the potential to evolve into research foci in the foreseeable future. CONCLUSION This is the first bibliometric study that provides comprehensive overview of LTL research. The findings of this study could become valuable references for investigators to explore and address the current and emerging challenges in LTL research.
Collapse
Affiliation(s)
- Yuanjun Lyu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Hongjie Zhao
- Department of Oncology, Tianjin Medical University Baodi Hospital, Tianjin, China
| | - Guiping Zeng
- Department of Orthopaedic Surgery, Yangxin People's Hospital, Yangxin, 435200, Hubei, China
| | - Jia Yang
- Department of Orthopaedics, Jincheng General Hospital, Jincheng, 048006, Shanxi Province, China
| | - Qipeng Shao
- Department of Orthopaedics, Ganzhou People's Hospital, Ganzhou, China.
| | - Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
31
|
Zhang H, Zheng R, Yu B, Yu Y, Luo X, Yin S, Zheng Y, Shi J, Ai S. Dissecting shared genetic architecture between depression and body mass index. BMC Med 2024; 22:455. [PMID: 39394142 PMCID: PMC11481102 DOI: 10.1186/s12916-024-03681-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND A growing body of evidence supports the comorbidity between depression (DEP) and obesity, yet the genetic mechanisms underlying this association remain unclear. Our study explored the shared genetic architecture and causal associations of DEP with BMI. METHODS We investigated the multigene overlap and genetic correlation between DEP (N > 1.3 million) and BMI (N = 806,834) based on genome-wide association studies (GWAS) and using the bivariate causal mixture model and linkage disequilibrium score regression (LDSC). The causal association was explored by bi-directional Mendelian randomization (MR). Common risk loci were identified through cross-trait meta-analyses. Stratified LDSC and multi-marker gene annotation analyses were applied to investigate single-nucleotide polymorphisms enrichment across tissue types, cell types, and functional categories. Finally, we explored shared functional genes by Summary Data-Based Mendelian Randomization (SMR) and further detected differential expression genes (DEG) in brain tissues of individuals with depression and obesity. RESULTS We found a positive genetic correlation between DEP and BMI (rg = 0.19, P = 4.07 × 10-26), which was more evident in local genomic regions. Cross-trait meta-analyses identified 16 shared genetic loci, 5 of which were newly identified, and they had influence on both diseases in the same direction. MR analysis showed a bidirectional causal association between DEP and BMI, with comparable effect sizes estimated in both directions. Combined with gene expression information, we found that genetic correlations between DEP and BMI were enriched in 6 brain regions, predominantly in the nucleus accumbens and anterior cingulate cortex. Moreover, 6 specific cell types and 23 functional genes were found to have an impact on both DEP and BMI across the brain regions. Of which, NEGR1 was identified as the most significant functional gene and associated with DEP and BMI at the genome-wide significance level (P < 5 × 10-8). Compared with healthy controls, the expression levels of NEGR1 gene were significant lower in brain tissues of individuals with depression and obesity. CONCLUSIONS Our study reveals shared genetic basis underpinnings between DEP and BMI, including genetic correlations and common genes. These insights offer novel opportunities and avenues for future research into their comorbidities.
Collapse
Affiliation(s)
- Hengyu Zhang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
| | - Rui Zheng
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China
| | - Binhe Yu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center, Weihui, 453100, Henan, China
| | - Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Xiaomin Luo
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shujuan Yin
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China.
| | - Jie Shi
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, 100191, China.
| | - Sizhi Ai
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center, Weihui, 453100, Henan, China.
| |
Collapse
|
32
|
Vrettou M, Lager S, Toffoletto S, Iliadis SI, Kallak TK, Agnafors S, Nieratschker V, Skalkidou A, Comasco E. Peripartum depression symptom trajectories, telomere length and genotype, and adverse childhood experiences. BMC Psychiatry 2024; 24:661. [PMID: 39379870 PMCID: PMC11462957 DOI: 10.1186/s12888-024-06115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND As a biological marker for cellular senescence, telomere length (TL) has been linked to a variety of psychiatric disorders and adverse childhood experiences (ACE), though only preliminarily to peripartum depression (PPD). The present study sought to examine the association between TL and PPD, assessing the moderating role of ACE and genetic polymorphic variations related with the telomere machinery. METHODS Adversity was self-reported, likewise were depressive symptoms evaluated at pregnancy week 17 and 32, as well as six-weeks and six-months postpartum. TL was assessed by use of qPCR in blood samples collected during delivery from females with antenatal depression resolving postpartum, females with depression persisting to postpartum, and healthy controls. Twenty haplotype-tagging Single Nucleotide Polymorphisms in the Telomerase Reverse Transcriptase (TERT) and three in the Telomerase RNA Component (TERC) genes were genotyped. RESULTS TL was negatively correlated with severity of PPD symptoms at pregnancy week 32 and postpartum week 6. PPD was associated with shorter TL. Lastly, ACE, but not the TERT/TERC genotype, moderated the TL-trajectory association; with increasing ACE, individuals with persistent PPD symptoms had shorter TL, whereas the opposite pattern (longer TL) was observed in the controls. CONCLUSIONS The findings contribute to further understanding of PPD underpinnings, suggesting a negative relationship with TL.
Collapse
Affiliation(s)
- Maria Vrettou
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Box 593, Uppsala, 751 24, Sweden
| | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Simone Toffoletto
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Box 593, Uppsala, 751 24, Sweden
| | - Stavros I Iliadis
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | - Sara Agnafors
- Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health, Linköping University, Linköping, Sweden
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical University Hospital Tübingen, German Center for Mental Health (DZPG), partner site Tübingen, Germany
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Box 593, Uppsala, 751 24, Sweden.
| |
Collapse
|
33
|
Wu X, Li W, Chen Y. Differences in the risk association of TERT-CLPTM1L rs4975616 (A>G) with lung cancer between Caucasian and Asian populations: A meta-analysis. PLoS One 2024; 19:e0309747. [PMID: 39255319 PMCID: PMC11386447 DOI: 10.1371/journal.pone.0309747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Although the G allele variant of TERT-CLPTM1L rs4975616 has been confirmed to be negatively associated to the risk of lung cancer (LC), some other studies haven't found this negative association. The purpose of this study is to clarify the association of the rs4975616 with the risk of developing LC and the differences of this association among patients with different ethnicities (Caucasians and Asians), different subtypes of LC, and different smoking status. METHODS Relevant literatures published before July 20, 2023 in PubMed, EMbase, Web of Science, MEDLINE databases were searched through the Internet. Statistical analysis of data was performed in Revman5.3, including drawing forest plots, funnel plots and so on. Sensitivity and publication bias were performed in Stata 14.0. The stability of the results was assessed using Test Sequence Analysis (TSA) software. Registration number: CRD42024568348. RESULTS The G allele variant of rs4975616 was negatively associated with the risk of LC ([OR] = 0.86, 95%CI [0.84, 0.88]), and that this negative association was present in both Caucasians ([OR] = 0.85, 95%CI [0.83, 0.87]) and Asians ([OR] = 0.91, 95%CI [0.86, 0.95]), and the strength of the negative association was higher in Caucasians than in Asians (subgroup differences: P = 0.02, I2 = 80.3%). Across LC subtypes, rs4975616[G] was negatively associated with the risk of NSCLC (LUAD, LUSC) in both Caucasians and Asians (P<0.05) and the strength of the association with NSCLC (LUAD) was higher in Caucasians than in Asians (Subgroup differences: I2>50%). In Caucasians, rs4975616[G] was negatively associated with the risk of LC in both smokers and non-smokers (P<0.05), and the strength of the association did not differ between smokers and non-smokers (Subgroup differences: P = 0.18, I2 = 45.0%). In Asians, rs4975616[G] was mainly negatively associated with the risk of LC in smokers (P<0.05) but not in non-smokers ([OR] = 0.97, 95%CI [0.78, 1.20]). Comparisons between the two populations showed that the strength of this negative association was higher in Caucasian non-smokers than in Asian non-smokers (Subgroup differences: P = 0.04, I2 = 75.3%), whereas the strength of this negative association was the same for Caucasian smokers as for Asian smokers (Subgroup differences: P = 0.42, I2 = 0%). Among the different LC subtypes, rs4975616[G] was negatively associated with the risk of NSCLC (LUAD) incidence in both Asian smokers and Caucasian non-smokers (P<0.05), whereas it was not associated with the risk of NSCLC development in Asian non-smokers (P>0.05). Comparisons between the two populations showed that the strength of the association was higher in Caucasian non-smokers than in Asian non-smokers (Subgroup differences: I2>50%). CONCLUSION The G allele variant of rs4975616 is negatively associated with the risk of LC and NSCLC (LUAD, LUSC). Compared with Asians, Caucasians are more likely to have a higher risk of LC and NSCLC (LUAD) due to the rs4975616 variant. In Caucasians, smoking and other factors like non-smoking contribute to rs4975616 variations leading to LC, and other factors like non-smoking also induce rs4975616 variations leading to NSCLC (LUAD). In Asians, smoking is the major risk factor for the induction of rs4975616 variations leading to LC and NSCLC(LUAD).
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wen Li
- Department of Preclinical medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yunzhi Chen
- Department of Preclinical medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
34
|
Liu H, Fan Y, Liang J, Hu A, Chen W, Wang H, Fan Y, Li M, Duan J, Wang Q. A causal relationship between sarcopenia and cognitive impairment: A Mendelian randomization study. PLoS One 2024; 19:e0309124. [PMID: 39240885 PMCID: PMC11379137 DOI: 10.1371/journal.pone.0309124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/05/2024] [Indexed: 09/08/2024] Open
Abstract
OBJECTIVE Sarcopenia and cognitive impairment often coexist in the elderly. In this study, we investigated the causal relationship between sarcopenia-related muscle characteristics and cognitive performance. METHODS We used linkage disequilibrium score regression (LDSC) and Mendelian Randomization (MR) analyses to estimate genetic correlations and causal relationships between genetically predicted sarcopenia-related muscle traits and cognitive function, as well as cognitive function-based discovery samples and replicated samples. Estimated effect sizes were derived from a fixed-effects meta-analysis. RESULTS Our univariate genome-wide association study (GWAS) meta-analysis indicated a causal relationship between appendicular lean mass (ALM) (β = 0.049; 95% confidence interval (CI): 0.032-0.066, P < 0.001) and walking pace (β = 0.349; 95% CI: 0.210-0.487, P < 0.001) with cognitive function, where a causal relationship existed between ALM in both male and female (βALM-Male(M) = 0.060; 95% CI: 0.031-0.089, PALM-M < 0.001; βALM-Female(F) = 0.045; 95% CI: 0.020-0.069, PALM-F < 0.001) with cognitive function. Low grip strength was not causally associated with cognitive function (β = -0.045; 95% CI: -0.092 - -0.002, P = 0.062). A reverse causality GWAS meta-analysis showed a causal relationship between cognitive function and ALM (β = 0.033; 95% CI: 0.018-0.048, P < 0.001) and walking pace (β = 0.039; 95% CI: 0.033-0.051, P < 0.001), where ALM in both male and female showed a causality (βALM-M = 0.041; 95% CI: 0.019-0.063, PALM-M < 0.001; βALM-F = 0.034; 95% CI: 0.010-0.058, PALM-F = 0.005). Cognitive function was not causally related to low grip strength (β = -0.024; 95% CI: -0.073-0.025, P = 0.344). Multivariable MR1 (MVMR1) analyses showed a significant causal relationship for ALM (β = 0.077; 95% CI: 0.044-0.109, P = 0.000) and walking pace (β = 0.579; 95% CI: 0.383-0.775, P = 0.000) and cognitive function. Multivariable MR2 (MVMR2) multivariate analysis showed that ALM causality remained (β = 0.069; 95% CI: 0.033-0.106, P = 0.000), and walking pace (β = 0.589; 95% CI: 0.372-0.806, P = 0.000). CONCLUSIONS Bidirectional two-sample MR demonstrated that sarcopenia-related muscle characteristics and cognitive performance were positive causal genetic risk factors for each other, while a multivariable MR study demonstrated that low ALM and a slow walking pace were causally involved in reduced cognitive performance. This study suggests a causal relationship between sarcopenia and cognitive impairment in older adults and provide new ideas for prevention and treatment.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Orthopaedics, Huangshi Central Hospital, Huangshi, China
- Department of Orthopaedics, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Yi Fan
- Department of Infection, Huangshi Central Hospital, Huangshi, China
- Department of Infection, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Jie Liang
- Department of Orthopaedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Orthopaedics, Yichang Central People's Hospital, Yichang, China
| | - Aixin Hu
- Department of Orthopaedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Orthopaedics, Yichang Central People's Hospital, Yichang, China
| | - Wutong Chen
- Department of Orthopaedics, China Three Gorges University, College of Basic Medical Sciences, Yichang, China
| | - Hua Wang
- Department of Orthopaedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Orthopaedics, Yichang Central People's Hospital, Yichang, China
| | - Yifeng Fan
- Department of Orthopaedics, China Three Gorges University, College of Basic Medical Sciences, Yichang, China
| | - Mingwu Li
- Department of Orthopaedics, Huangshi Central Hospital, Huangshi, China
- Department of Orthopaedics, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Jun Duan
- Department of Orthopaedics, Huangshi Central Hospital, Huangshi, China
- Department of Orthopaedics, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Qinzhi Wang
- Department of Orthopaedics, Huangshi Central Hospital, Huangshi, China
- Department of Orthopaedics, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| |
Collapse
|
35
|
Sun P, Gu KJ, Zheng G, Sikora AG, Li C, Zafereo M, Wei P, Wu J, Shete S, Liu J, Li G. Genetic variations associated with telomere length predict the risk of recurrence of non-oropharyngeal head and neck squamous cell carcinoma. Mol Carcinog 2024; 63:1722-1737. [PMID: 38837510 DOI: 10.1002/mc.23768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Genetic factors underlying lymphocyte telomere length (LTL) may provide insights into genomic stability and integrity, with direct links to susceptibility to cancer recurrence. Polymorphisms in telomere-associated genes are strongly associated with LTL and cancer risk, while few large studies have explored the associations between LTL-related polymorphisms and recurrence risk of non-oropharyngeal head and neck squamous cell carcinoma (non-OPHNSCC). Totally 1403 non-OPHNSCC patients were recruited and genotyped for 16 LTL-related polymorphisms identified by genome-wide association studies. Univariate and multivariate analyzes were performed to evaluate associations between the polymorphisms and non-OPHNSCC recurrence risk. Patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes exhibited shorter DFS than those with the rs755017 AA, rs2487999 CC, rs2736108 CC, or s6772228 TT genotypes, respectively (all log-rank p < 0.05). Multivariable analysis confirmed an increased risk of recurrence for patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes (adjusted hazard ratio [aHR]: 1.66, 95% confidence interval [CI]: 1.32-2.07; aHR: 1.77, 95% CI: 1.41-2.23; aHR: 1.56, 95% CI: 1.22-1.99; aHR: 1.52, 95% CI: 1.20-1.93, respectively). Further stratified analysis revealed stronger associations between these genotypes and recurrence risk in ever-smokers and patients undergoing chemoradiotherapy. The similar but particularly pronounced results were observed for the combined risk genotypes of the four significant polymorphisms. This is the first large study on non-OPHNSCC patients showing that LTL-related polymorphisms may modify risk of non-OPHNSCC recurrence individually and jointly, particularly when analyzed in the context of smoking status and personized treatment. Larger studies are needed to validate these results.
Collapse
Affiliation(s)
- Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kyle J Gu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Guibin Zheng
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chao Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jisheng Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
36
|
Tang L, Li D, Wang J, Su B, Tian Y. Ambient air pollution, genetic risk and telomere length in UK biobank. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:845-852. [PMID: 37550565 DOI: 10.1038/s41370-023-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Telomere length (TL) is a biomarker of genomic aging. The evidence on the association between TL and air pollution was inconsistent. Besides, the modification effect of genetic susceptibility on the air pollution-TL association remains unknown. OBJECTIVE We aimed to evaluate the association of ambient air pollution with TL and further assess the modification effect of genetic susceptibility. METHODS 433,535 participants with complete data of TL and air pollutants in UK Biobank were included. Annual average exposure of NO2, NOx, PM10 and PM2.5 was estimated by applying land use regression models. Genetic risk score (GRS) was constructed using reported telomere-related SNPs. Leukocyte TL was measured by quantitative polymerase chain reaction (qPCR). Multivariable linear regression models were employed to conduct associational analyses. RESULTS Categorical exposure models and RCS models both indicated U-shaped (for NO2 and NOx) and L-shaped (for PM10 and PM2.5) correlations between air pollution and TL. In comparison to the lowest quartile, the 2nd and 3rd quartile of NO2 (q2: -1.3% [-2.1%, -0.4%]; q3: -1.2% [-2.0%, -0.3%], NOx (q2: -1.3% [-2.1%, -0.5%]; q3: -1.4% [-2.2%, -0.5%]), PM2.5 (q2: -0.8% [-1.7%, 0.0%]; q3: -1.3% [-2.2%, -0.5%]), and the third quartile of PM10 (q3: -1.1% [-1.9%, -0.2%]) were inversely associated with TL. The highest quartile of NO2 was positively correlated with TL (q4: 1.0% [0.0%, 2.0%]), whereas the negative correlation between the highest quartile of other pollutants and TL was also attenuated and no longer significant. In the genetic analyses, synergistic interactions were observed between the 4th quartile of three air pollutants (NO2, NOx, and PM2.5) and genetic risk. IMPACT STATEMENT Our study for the first time revealed a non-linear trend for the association between air pollution and telomere length. The genetic analyses suggested synergistic interactions between air pollution and genetic risk on the air pollution-TL association. These findings may shed new light on air pollution's health effects, offer suggestions for identifying at-risk individuals, and provide hints regarding further investigation into gene-environment interactions.
Collapse
Affiliation(s)
- Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No.31, Beijige-3, Dongcheng District, 100730, Beijing, China.
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, 430030, Wuhan, China.
| |
Collapse
|
37
|
Li FJ, Zhang ZX, Li YDY, Li JY, Liu YN, Liu XJ, Zhang RY, Liu X, Zhang W, Xu CY, Cui GY. High bioavailable testosterone levels increase the incidence of isolated REM sleep behavior disorder: Results from multivariable and network Mendelian randomization analysis. Sleep Med 2024; 121:102-110. [PMID: 38959716 DOI: 10.1016/j.sleep.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVES To explore the causal relationships between sex hormone levels and incidence of isolated REM sleep behavior disorder (iRBD). METHODS In our study, we utilized Genome-Wide Association Studies (GWAS) data for iRBD, including 9447 samples with 1061 cases of iRBD provided by the International RBD Study Group. Initially, we conducted a two-sample univariate MR analysis to explore the impact of sex hormone-related indicators on iRBD. This was followed by the application of multivariable MR methods to adjust for other hormone levels and potential confounders. Finally, we undertook a network MR analysis, employing brain structure Magnetic Resonance Imaging (MRI) characteristics as potential mediators, to examine whether sex hormones could indirectly influence the incidence of iRBD by affecting brain structure. RESULTS Bioavailable testosterone (BioT) is an independent risk factor for iRBD (Odds Ratio [95 % Confidence Interval] = 2.437 [1.308, 4.539], P = 0.005, corrected-P = 0.020), a finding that remained consistent even after adjusting for other sex hormone levels and potential confounders. Additionally, BioT appears to indirectly increase the risk of iRBD by reducing axial diffusivity and increasing the orientation dispersion index in the left cingulum and cingulate gyrus. CONCLUSIONS Our research reveals that elevated levels of BioT contribute to the development of iRBD. However, the specific impact of BioT on different sexes remains unclear. Furthermore, high BioT may indirectly lead to iRBD by impairing normal pathways in the left cingulum and cingulate gyrus and fostering abnormal pathway formation.
Collapse
Affiliation(s)
- Fu-Jia Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Zi-Xuan Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Yang-Dan-Yu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Jin-Yu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Yu-Ning Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Xuan-Jing Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Ru-Yu Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Xu Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Chuan-Ying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China
| | - Gui-Yun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, People's Republic of China.
| |
Collapse
|
38
|
Han X, Wu TQ, Yao R, Liu C, Chen L, Feng X. Gastroesophageal Reflux Disease and Preterm Birth: Univariate and Multivariate Mendelian Randomization. Int J Womens Health 2024; 16:1389-1399. [PMID: 39157004 PMCID: PMC11330254 DOI: 10.2147/ijwh.s467056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
Background Observational studies have established a connection between Gastroesophageal reflux disease (GERD) and preterm birth (PTB). Nevertheless, these correlations can be affected by residual confounding or reverse causality, resulting in ambiguity regarding the connection. The objective of this study was to assess the relationship between genetically predicted GERD and PTB. Methods Initially, we performed bidirectional univariate Mendelian randomization (UVMR) analysis utilizing publicly accessible genome-wide association studies (GWAS) data. The primary analytical approach employed to determine the causal impact between GERD and PTB is the inverse variance weighted technique (IVW). Subsequently, we utilized multivariate Mendelian randomization (MVMR) to adjust for potential factors that could influence the results, such as body mass index (BMI), maternal smoking around birth, educational attainment, household income, and Townsend deprivation index (TDI). Furthermore, we performed a sequence of comprehensive sensitivity analyses to assess the reliability of our MR findings. Results The UVMR analysis results showed a significant correlation between GERD and PTB (odds ratio [OR]: 1.810; 95% confidence interval [CI]: 1.344-2.439; P=9.60E-05) in the IVW model, and the Weighted median method (OR=1.591, 95% CI=1.094-2.315, P=0.015) revealed consistent results. The inverse MR findings suggest no causal link between PTB and the incidence of GERD. In addition, the sensitivity analysis did not detect heterogeneity or horizontal pleiotropy, and the "leave-one-out" examination confirmed that the causal estimation is unlikely to be influenced by the single nucleotide polymorphisms (SNPs) effect. The MVMR analysis demonstrated that the causal association between GERD and PTB still existed after considering BMI, maternal smoking around birth, educational attainment, household income, and TDI (OR=1.921, 95% CI=1.401-2.634, P=5.08E-05). Conclusion This study presents evidence indicating that genetically predicted GERD can heighten the risk of PTB. Therefore, it is advisable to perform focused screening for pregnant women with GERD in order to find the initial signs of PTB and promptly apply intervention strategies to extend the duration of pregnancy.
Collapse
Affiliation(s)
- Xinyu Han
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Tian Qiang Wu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Ruiting Yao
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Chang Liu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Lu Chen
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
39
|
Han X, Wu TQ, Bian Y, Chen L, Feng X. Asthma and risk of adverse pregnancy outcomes: A Mendelian randomization study. Heliyon 2024; 10:e33857. [PMID: 39044964 PMCID: PMC11263667 DOI: 10.1016/j.heliyon.2024.e33857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Background Multiple empirical investigations have indicated a connection between asthma and adverse pregnancy outcomes (APOs). Nevertheless, the effects of asthma on APOs remain uncertain. Methods We performed bi-directional Univariable Mendelian randomization (UVMR) analyses using combined information obtained from genome-wide association studies (GWAS) data that is publicly accessible. The principal approach used to analyze the causal association between asthma or age when diagnosed and APOs was the inverse variance weighted (IVW) method. The two types of data regarding exposure originate from the IEU Open GWAS project, which includes 56,167 and 47,222 European asthma patients, respectively. The data of four APOs were acquired via the GWAS dataset of the FinnGen collaboration. In addition, we implemented multivariable Mendelian randomization (MVMR), controlling for confounding factors such as smoking status, frequent drinking, body mass index (BMI), and live birth quantity. Furthermore, we executed several meticulous sensitivity studies to ascertain the reliability of our MR results. Results Following the implementation of the Bonferroni adjustment, the UVMR assessment revealed that in the IVW model, asthma was significantly linked to an elevated risk of spontaneous abortion (SA) (odds ratio [OR]: 1.115; 95 % confidence interval [CI]: 1.031-1.206; P = 0.006) and gestational diabetes mellitus (GDM) (OR: 1.125; 95 % CI: 1.037-1.220; P = 0.005). However, there was no causal correlation between asthma and preterm birth (PTB) (OR: 0.979; 95 % CI: 0.897-1.068; P = 0.629) or preeclampsia (PE) (OR: 1.059; 95 % CI: 0.951-1.179; P = 0.297). After adjusting for confounding factors, including smoking status, frequent drinking, BMI, and live birth quantity, the MVMR analysis shows a statistically significant causal relationship between asthma and SA or GDM. Furthermore, our investigation's findings did not reveal a substantial correlation between the age of asthma onset based on genetics and the likelihood of SA or GDM. The inverse MR outcomes indicate a lack of causal connection linking APOs to the incidence of asthma. The validity of these findings were verified by sensitivity analyses. Conclusions The evidence provided by this study proves that genetically determined asthma is linked to a higher likelihood of SA and GDM. Further research is required to examine potential pathways. However, no conclusive evidence has been found to support the increased risk of SA and GDM in early asthma diagnosis or the interaction between asthma and PTB or PE, indicating that confounding factors may affect the results of previous observational studies.
Collapse
Affiliation(s)
- Xinyu Han
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tian qiang Wu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanyuan Bian
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Chen
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
40
|
Xie L, Gan W, Cai G. The causal relationship between gut microbiota and diabetic neuropathy: a bi-directional two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1402014. [PMID: 39050567 PMCID: PMC11266094 DOI: 10.3389/fendo.2024.1402014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Background Many studies suggest a strong correlation between gut microbiota (GM) and diabetic neuropathy (DN). However, the precise causal relationship between GM and DN has yet to be fully elucidated. Hence, a bi-directional Mendelian randomization (MR) analysis was used to examine the association between GM and DN. Methods Widely known genome-wide association study (GWAS) of GM was collected from the MiBio Gen project. Summary-level datasets for DN were taken from the FinnGen project. Inverse variance weighted approach was used for evaluating the causal relationship between GM and DN. Subsequently, pleiotropy and heterogeneity tests were performed to verify the reliability of the data. Furthermore, a bidirectional two-sample MR analysis was done to investigate the directionality of the causal relationships. Gene Ontology analysis was conducted to identify the associations that could indicate biological functions. Results We identified potential causal associations between GM and DN (p< 0.05 in all three MR methods). Among them, we found increased levels of Christensenellaceae R-7 (Odds ratio, OR= 1.52; 95% confidence interval, CI = 1.03-2.23; p = 0.03), Ruminococcaceae UCG013 (OR =1.35; 95% CI = 1.00-1.85; p = 0.04), and Eggerthella groups (OR = 1.27; 95% CI = 1.05-1.55; p = 0.01), which may be associated with a higher risk of DN, while increased levels of Peptococcaceae (OR = 0.69; 95% CI = 0.54-0.90; p< 0.01) and Eubacterium coprostanoligenes groups (OR = 0.68; 95% CI = 0.49-0.93; p = 0.01) could be associated with a lower risk. Gene Ontology pathway analysis revealed enrichment of genes regulated by the associated single-nucleotide polymorphisms (SNPs) in the apical plasma membrane, glycosyltransferase activity, hexosyltransferase activity and membrane raft. Reverse MR analyses indicated that DN was associated with five microbial taxa in all three MR methods. Conclusion The results of our study validate the possible causative relationship between GM and DN. This discovery gives new perspectives into the mechanism on how GM influences DN, and establishes a theoretical foundation for future investigations into targeted preventive measures.
Collapse
Affiliation(s)
- Long Xie
- Department of Orthopedics, The Fourth Hospital of Changsha (The Changsha Affiliated Hospital of Hunan Normal University), Hunan Normal University, Changsha, China
| | - Wen Gan
- Department of Thoracic Surgery, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| | - GuangRong Cai
- Trauma Department of Orthopaedics, Yuebei People’s Hospital, Shaoguan, Guangdong, China
| |
Collapse
|
41
|
Yu J, Pu F, Yang G, Hao M, Zhang H, Zhang J, Cao X, Zhu L, Wan Y, Wang X, Liu Z. Sex-Specific Association Between Childhood Adversity and Accelerated Biological Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309346. [PMID: 38704685 PMCID: PMC11234451 DOI: 10.1002/advs.202309346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Indexed: 05/07/2024]
Abstract
Is childhood adversity associated with biological aging, and if so, does sex modify the association, and do lifestyle and mental health mediate the association? A lifespan analysis is conducted using data on 142 872 participants from the UK Biobank to address these questions. Childhood adversity is assessed through the online mental health questionnaire (2016), including physical neglect, physical abuse, emotional neglect, emotional abuse, sexual abuse, and a cumulative score. Biological aging is indicated by telomere length (TL) measured from leukocyte DNA using qPCR, and the shorter TL indicates accelerated biological aging; a lifestyle score is constructed using body mass index, physical activity, drinking, smoking, and diet; mental disorder is assessed using depression, anxiety, and insomnia at the baseline survey. The results reveal a sex-specific association such that childhood adversity is associated with shorter TL in women after adjusting for covariates including polygenic risk score for TL, but not in men. Unhealthy lifestyle and mental disorder partially mediate the association in women. The proportions of indirect effects are largest for sexual and physical abuse. These findings highlight the importance of behavioral and psychological interventions in promoting healthy aging among women who experienced childhood adversity, particularly sexual and physical abuse.
Collapse
Affiliation(s)
- Jie Yu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fan Pu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Gan Yang
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meng Hao
- Human Phenome Institute and State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hui Zhang
- Human Phenome Institute and State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai, 200433, China
- National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Jingyun Zhang
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xingqi Cao
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lijun Zhu
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuhui Wan
- MOE Key Laboratory of Population Health across Life Cycle/Anhui Provincial Key Laboratory of Population Health and Aristogenics, and Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xiaofeng Wang
- Human Phenome Institute and State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Fudan University, Shanghai, 200433, China
- National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics of the Second Affiliated Hospital, and Department of Big Data in Health Science School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
42
|
Han X, Wu TQ, Bian Y, Chen L, Feng X. Psychological distress and uterine fibroids: a bidirectional two-sample mendelian randomization study. BMC Womens Health 2024; 24:351. [PMID: 38890689 PMCID: PMC11184690 DOI: 10.1186/s12905-024-03196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Observational data indicates a connection between emotional discomfort, such as anxiety and depression, and uterine fibroids (UFs). However, additional investigation is required to establish the causal relationship between them. Hence, we assessed the reciprocal causality between four psychological disorders and UFs utilizing two-sample Mendelian randomization (MR). METHODS To evaluate the causal relationship between four types of psychological distress (depressive symptoms, severe depression, anxiety or panic attacks, mood swings) and UFs, bidirectional two-sample MR was employed, utilizing single nucleotide polymorphisms (SNPs) associated with these conditions. Both univariate MR (UVMR) and multivariate MR (MVMR) primarily applied inverse variance weighted (IVW) as the method for estimating potential causal effects. Complementary approaches such as MR Egger, weighted median, simple mode, and weighted mode were utilized to validate the findings. To assess the robustness of our MR results, we conducted sensitivity analyses using Cochran's Q-test and the MR Egger intercept test. RESULTS The results of our UVMR analysis suggest that genetic predispositions to depressive symptoms (Odds Ratio [OR] = 1.563, 95% Confidence Interval [CI] = 1.209-2.021, P = 0.001) and major depressive disorder (MDD) (OR = 1.176, 95% CI = 1.044-1.324, P = 0.007) are associated with an increased risk of UFs. Moreover, the IVW model showed a nominally significant positive correlation between mood swings (OR: 1.578; 95% CI: 1.062-2.345; P = 0.024) and UFs risk. However, our analysis did not establish a causal relationship between UFs and the four types of psychological distress. Even after adjusting for confounders like body mass index (BMI), smoking, alcohol consumption, and number of live births in the MVMR, the causal link between MDD and UFs remained significant (OR = 1.217, 95% CI = 1.039-1.425, P = 0.015). CONCLUSIONS Our study presents evidence supporting the causal relationship between genetic susceptibility to MDD and the incidence of UFs. These findings highlight the significance of addressing psychological health issues, particularly depression, in both the prevention and treatment of UFs.
Collapse
Affiliation(s)
- Xinyu Han
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tian Qiang Wu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanyuan Bian
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Chen
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26, Heping Road, Xiang-fang District, Harbin, Heilongjiang Province, China
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26, Heping Road, Xiang-fang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
43
|
Xiang B, Li J, Deng Y, Wang J. Causal relationship between immune cells and aortic aneurysms: a Mendelian randomization study. Eur J Cardiothorac Surg 2024; 65:ezae229. [PMID: 38833686 DOI: 10.1093/ejcts/ezae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVES The causal association between immune cell traits and aortic aneurysm remains unknown. METHODS We performed a bidirectional two-sample Mendelian randomization analysis to explore the causality between 731 immune cell characteristics and the risk of abdominal aortic aneurysm and thoracic aortic aneurysms through publicly available genetic data, respectively. To examine heterogeneity and horizontal pleiotropy, Cochran's Q test and MR-Egger intercept were utilized. Additionally, multivariable Mendelian randomization analysis and meta-analysis were performed in further analysis. RESULTS We found that 20 immune phenotypes had a suggestive causality on abdominal aortic aneurysm, and 15 immune phenotypes had a suggestive causal effect on thoracic aortic aneurysm. After further false discovery rate adjustment (q value <0.1), CD20 on IgD+ CD38- B cell (q = 0.053) and CD127 on CD28+ CD4+ T cell (q = 0.096) were associated with an increased risk of abdominal aortic aneurysm, respectively, indicating a significant causality between them. After adjusting for smoking, there is still statistical significance between CD127 on CD28+ CD4+ T cell and abdominal aortic aneurysm. However, after adjusting for lipids, no statistical significance can be observed between CD127 on CD28+ CD4+ T cells and abdominal aortic aneurysm. Furthermore, there is still statistical significance between CD20 on IgD+ CD38- B cells and abdominal aortic aneurysm after adjusting for lipids and smoking, which was further identified by meta-analysis. CONCLUSIONS We found a causal association between immune cell traits and aortic aneurysm by genetic methods, thus providing new avenues for future mechanism studies.
Collapse
Affiliation(s)
- Bitao Xiang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Li
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Deng
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junjie Wang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Agabekian IA, Abdulkina LR, Lushnenko AY, Young PG, Valeeva LR, Boskovic O, Lilly EG, Sharipova MR, Shippen DE, Juenger TE, Shakirov EV. Arabidopsis AN3 and OLIGOCELLULA genes link telomere maintenance mechanisms with cell division and expansion control. PLANT MOLECULAR BIOLOGY 2024; 114:65. [PMID: 38816532 PMCID: PMC11372841 DOI: 10.1007/s11103-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.
Collapse
Affiliation(s)
- Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Alina Y Lushnenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Pierce G Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA
| | - Lia R Valeeva
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Olivia Boskovic
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Ethan G Lilly
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Margarita R Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA.
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA.
| | - Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA.
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25755, USA.
| |
Collapse
|
45
|
Keener R, Chhetri SB, Connelly CJ, Taub MA, Conomos MP, Weinstock J, Ni B, Strober B, Aslibekyan S, Auer PL, Barwick L, Becker LC, Blangero J, Bleecker ER, Brody JA, Cade BE, Celedon JC, Chang YC, Cupples LA, Custer B, Freedman BI, Gladwin MT, Heckbert SR, Hou L, Irvin MR, Isasi CR, Johnsen JM, Kenny EE, Kooperberg C, Minster RL, Naseri T, Viali S, Nekhai S, Pankratz N, Peyser PA, Taylor KD, Telen MJ, Wu B, Yanek LR, Yang IV, Albert C, Arnett DK, Ashley-Koch AE, Barnes KC, Bis JC, Blackwell TW, Boerwinkle E, Burchard EG, Carson AP, Chen Z, Chen YDI, Darbar D, de Andrade M, Ellinor PT, Fornage M, Gelb BD, Gilliland FD, He J, Islam T, Kaab S, Kardia SLR, Kelly S, Konkle BA, Kumar R, Loos RJF, Martinez FD, McGarvey ST, Meyers DA, Mitchell BD, Montgomery CG, North KE, Palmer ND, Peralta JM, Raby BA, Redline S, Rich SS, Roden D, Rotter JI, Ruczinski I, Schwartz D, Sciurba F, Shoemaker MB, Silverman EK, Sinner MF, Smith NL, Smith AV, Tiwari HK, Vasan RS, Weiss ST, Williams LK, Zhang Y, Ziv E, Raffield LM, Reiner AP, Arvanitis M, Greider CW, Mathias RA, Battle A. Validation of human telomere length multi-ancestry meta-analysis association signals identifies POP5 and KBTBD6 as human telomere length regulation genes. Nat Commun 2024; 15:4417. [PMID: 38789417 PMCID: PMC11126610 DOI: 10.1038/s41467-024-48394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.
Collapse
Grants
- P30 AG028747 NIA NIH HHS
- R01 DK107786 NIDDK NIH HHS
- R01AG069120 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U01 AG058589 NIA NIH HHS
- U01 HL072518 NHLBI NIH HHS
- P01 HL162607 NHLBI NIH HHS
- UG1 HL139125 NHLBI NIH HHS
- R01 HG010297 NHGRI NIH HHS
- R01 HL079915 NHLBI NIH HHS
- R01 HL149836 NHLBI NIH HHS
- K12 GM123914 NIGMS NIH HHS
- R01 HL112064 NHLBI NIH HHS
- R01 ES021801 NIEHS NIH HHS
- R01HL153805 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG081244 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL139731 NHLBI NIH HHS
- P30 ES007048 NIEHS NIH HHS
- 5K12GM123914 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AG081244 NIA NIH HHS
- R01 HL120393 NHLBI NIH HHS
- R01 HL087698 NHLBI NIH HHS
- R01 ES016535 NIEHS NIH HHS
- R35CA209974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35 CA209974 NCI NIH HHS
- R01 HL076647 NHLBI NIH HHS
- R01HL105756 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL092577 NHLBI NIH HHS
- R01HL68959 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL079915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL158668 NHLBI NIH HHS
- P01 ES009581 NIEHS NIH HHS
- R01HL87681 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 ES022845 NIEHS NIH HHS
- R01 HL061768 NHLBI NIH HHS
- R01 HL153805 NHLBI NIH HHS
- P50 CA180905 NCI NIH HHS
- R01HL-120393 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AG058921 NIA NIH HHS
- U01 HL153009 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- R35 HL135818 NHLBI NIH HHS
- I01 BX005295 BLRD VA
- RC2 HL101651 NHLBI NIH HHS
- P01 ES011627 NIEHS NIH HHS
- R01 AG069120 NIA NIH HHS
- R35GM139580 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- HHSN268201800001C NHLBI NIH HHS
- UM1 AI160040 NIAID NIH HHS
- R01 HL087680 NHLBI NIH HHS
- M01 RR000052 NCRR NIH HHS
- R00 ES027870 NIEHS NIH HHS
- R01 AI132476 NIAID NIH HHS
- U01 HL137162 NHLBI NIH HHS
- R01 AI153239 NIAID NIH HHS
- R01 GM152471 NIGMS NIH HHS
- U01 AG052409 NIA NIH HHS
- R01 ES023262 NIEHS NIH HHS
- R01 HL068959 NHLBI NIH HHS
- R03 ES014046 NIEHS NIH HHS
- R01 DK071891 NIDDK NIH HHS
- R35 GM139580 NIGMS NIH HHS
- U01 AI160018 NIAID NIH HHS
- R01 HL157635 NHLBI NIH HHS
- R01 HL087681 NHLBI NIH HHS
- UG3 HL151865 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Surya B Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew P Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joshua Weinstock
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Strober
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | | - Paul L Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lucas Barwick
- LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eugene R Bleecker
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Juan C Celedon
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Barry I Freedman
- Internal Medicine - Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mark T Gladwin
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jill M Johnsen
- Department of Medicine and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ryan L Minster
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Satupa'itea Viali
- Oceania University of Medicine, Apia, Samoa
- School of Medicine, National University of Samoa, Apia, Samoa
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington DC, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Baojun Wu
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana V Yang
- Departments of Biomedical Informatics, Medicine, and Epidemiology, University of Colorado, Boulder, CO, USA
| | - Christine Albert
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna K Arnett
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | | | - Kathleen C Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MI, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Talat Islam
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stefan Kaab
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- University of California San Francisco Benioff Children's Hospital, Oakland, CA, USA
| | - Barbara A Konkle
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rajesh Kumar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando D Martinez
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Stephen T McGarvey
- Department of Epidemiology & International Health Institute, Brown University School of Public Health, Providence, RI, USA
| | - Deborah A Meyers
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Courtney G Montgomery
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Benjamin A Raby
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Susan Redline
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Dan Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Schwartz
- Departments of Medicine and Immunology, University of Colorado, Boulder, CO, USA
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Benjamin Shoemaker
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Nicholas L Smith
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Yingze Zhang
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Carol W Greider
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- University Professor Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA.
- Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
46
|
Liu HZ, Liang J, Hu AX. Type 2 diabetes mediates the causal relationship between obesity and osteomyelitis: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38214. [PMID: 38758842 PMCID: PMC11098215 DOI: 10.1097/md.0000000000038214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
Mendelian randomization (MR) analysis was used to determine the causal relationship between Type 2 diabetes (T2D) and osteomyelitis (OM). We performed MR analysis using pooled data from different large-scale genome-wide association studies (GWAS). Instrumental variables were selected based on genome-wide significance, instrumental strength was assessed using F-values, and thresholds for the number of exposed phenotypes were further adjusted by Bonferroni correction. univariable and multivariable MR analyses were performed to assess causal effects and proportions mediated by T2D. IVW (inverse variance weighting) showed a significant genetic effect of osteomyelitis on the following: After correction by Bonferroni, univariable analyses showed that childhood body mass index (BMI) was not significantly associated with genetic susceptibility to OM [odds ratio (OR), 1.26; 95% confidence interval (CI), 1.02, 1.55; P = .030], not significantly associated with adulthood BMI (OR, 1.28; 95% CI, 1.02, 1.61; P = .034), significantly associated with waist circumference (OR, 1.84; 95% CI, 1.51, 2.24; P < .001), and significantly associated with hip circumference (OR, 1.52; 95% CI, 1.31, 1.76; P < .001). Meanwhile, multivariable analyses showed no significant effect of childhood BMI on OM (OR, 1.16; 95% CI, 0.84, 1.62; P = .370), no significant effect of adulthood BMI on OM (OR, 0.42; 95% CI, 0.21, 0.84; P = .015), a significant association between waist circumference and OM (OR, 4.30; 95% CI, 1.89, 9.82; P = .001), T2D mediated 10% (95% CI, 0.02, 0.14), and no significant association between hip circumference and OM (OR, 1.01; 95% CI, 0.54, 1.90; P = .968). Our study provides evidence for a genetically predicted causal relationship among obesity, T2D, and OM. We demonstrate that increased waist circumference is positively associated with an increased risk of OM and that T2D mediates this relationship. Clinicians should be more cautious in the perioperative management of osteomyelitis surgery in obese patients with T2D. In addition, waist circumference may be a more important criterion to emphasize and strictly control than other measures of obesity.
Collapse
Affiliation(s)
- Heng-Zhi Liu
- Department of Orthopaedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Orthopaedics, Yichang Central People’s Hospital, Yichang, China
| | - Jie Liang
- Department of Orthopaedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Orthopaedics, Yichang Central People’s Hospital, Yichang, China
| | - Ai-Xin Hu
- Department of Orthopaedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Orthopaedics, Yichang Central People’s Hospital, Yichang, China
| |
Collapse
|
47
|
Xu WM, Zhang HF, Feng YH, Li SJ, Xie BY. Genetically predicted fatty liver disease and risk of psychiatric disorders: A mendelian randomization study. World J Clin Cases 2024; 12:2359-2369. [PMID: 38765736 PMCID: PMC11099412 DOI: 10.12998/wjcc.v12.i14.2359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/18/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ArLD) constitute the primary forms of chronic liver disease, and their incidence is progressively increasing with changes in lifestyle habits. Earlier studies have documented a correlation between the occurrence and development of prevalent mental disorders and fatty liver. AIM To investigate the correlation between fatty liver and mental disorders, thus necessitating the implementation of a mendelian randomization (MR) study to elucidate this association. METHODS Data on NAFLD and ArLD were retrieved from the genome-wide association studies catalog, while information on mental disorders, including Alzheimer's disease, schizophrenia, anxiety disorder, attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder, multiple personality disorder, obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and schizophrenia was acquired from the psychiatric genomics consortium. A two-sample MR method was applied to investigate mediators in significant associations. RESULTS After excluding weak instrumental variables, a causal relationship was identified between fatty liver disease and the occurrence and development of some psychiatric disorders. Specifically, the findings indicated that ArLD was associated with a significantly elevated risk of developing ADHD (OR: 5.81, 95%CI: 5.59-6.03, P < 0.01), bipolar disorder (OR: 5.73, 95%CI: 5.42-6.05, P = 0.03), OCD (OR: 6.42, 95%CI: 5.60-7.36, P < 0.01), and PTSD (OR: 5.66, 95%CI: 5.33-6.01, P < 0.01). Meanwhile, NAFLD significantly increased the risk of developing bipolar disorder (OR: 55.08, 95%CI: 3.59-845.51, P < 0.01), OCD (OR: 61.50, 95%CI: 6.69-565.45, P < 0.01), and PTSD (OR: 52.09, 95%CI: 4.24-639.32, P < 0.01). CONCLUSION Associations were found between genetic predisposition to fatty liver disease and an increased risk of a broad range of psychiatric disorders, namely bipolar disorder, OCD, and PTSD, highlighting the significance of preventive measures against psychiatric disorders in patients with fatty liver disease.
Collapse
Affiliation(s)
- Wei-Ming Xu
- Department of Medicine, The First People's Hospital of Fuyang, Hangzhou 311400, Zhejiang Province, China
| | - Hai-Fu Zhang
- Department of Internal Medicine, The First People's Hospital of Fuyang, Hangzhou 311400, Zhejiang Province, China
| | - Yong-Hang Feng
- Department of Internal Medicine, The First People's Hospital of Fuyang, Hangzhou 311400, Zhejiang Province, China
| | - Shuo-Jun Li
- Department of Internal Medicine, The First People's Hospital of Fuyang, Hangzhou 311400, Zhejiang Province, China
| | - Bi-Yun Xie
- Department of Internal Medicine, The First People's Hospital of Fuyang, Hangzhou 311400, Zhejiang Province, China
| |
Collapse
|
48
|
Tannemann N, Erbel R, Nöthen MM, Jöckel KH, Pechlivanis S. Genetic polymorphisms affecting telomere length and their association with cardiovascular disease in the Heinz-Nixdorf-Recall study. PLoS One 2024; 19:e0303357. [PMID: 38743757 PMCID: PMC11093374 DOI: 10.1371/journal.pone.0303357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Short telomeres are associated with cardiovascular disease (CVD). We aimed to investigate, if genetically determined telomere-length effects CVD-risk in the Heinz-Nixdorf-Recall study (HNRS) population. We selected 14 single-nucleotide polymorphisms (SNPs) associated with telomere-length (p<10-8) from the literature and after exclusion 9 SNPs were included in the analyses. Additionally, a genetic risk score (GRS) using these 9 SNPs was calculated. Incident CVD was defined as fatal and non-fatal myocardial infarction, stroke, and coronary death. We included 3874 HNRS participants with available genetic data and had no known history of CVD at baseline. Cox proportional-hazards regression was used to test the association between the SNPs/GRS and incident CVD-risk adjusting for common CVD risk-factors. The analyses were further stratified by CVD risk-factors. During follow-up (12.1±4.31 years), 466 participants experienced CVD-events. No association between SNPs/GRS and CVD was observed in the adjusted analyses. However, the GRS, rs10936599, rs2487999 and rs8105767 increase the CVD-risk in current smoker. Few SNPs (rs10936599, rs2487999, and rs7675998) showed an increased CVD-risk, whereas rs10936599, rs677228 and rs4387287 a decreased CVD-risk, in further strata. The results of our study suggest different effects of SNPs/GRS on CVD-risk depending on the CVD risk-factor strata, highlighting the importance of stratified analyses in CVD risk-factors.
Collapse
Affiliation(s)
- Nico Tannemann
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Raimund Erbel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Markus M. Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Asthma and Allergy Prevention, Neuherberg, Germany
| |
Collapse
|
49
|
Weng L, Luo X, Luo Y, Zhang Q, Yao K, Tan J, Yin Y. Association Between Sleep Apnea Syndrome and Osteoarthritis: Insights from Bidirectional Mendelian Randomization and Bioinformatics Analysis. Nat Sci Sleep 2024; 16:473-487. [PMID: 38737460 PMCID: PMC11088414 DOI: 10.2147/nss.s461010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Background Sleep apnea syndrome(SAS) and osteoarthritis (OA) are two prevalent diseases that often coexist, but the causal relationship between them remains unclear. In light of this, our team utilizes Mendelian Randomization and bioinformatics analysis methods to investigate the potential association between the two diseases. Methods In this study, we utilized GWAS data pertaining to SAS and OA to assess the causal relationship between the two diseases through Mendelian randomization (MR) analysis. We then employed transcriptomic data to perform differential gene identification, WGCNA, shared gene determination, functional enrichment analysis, and colocalization analysis, all designed to further elucidate the mechanisms underlying the association between the two diseases. In the end, we utilized Mendelian randomization (MR) analysis again to delve deeper into the relationship between the two diseases and immune cells. Results Our research findings indicate that SAS is a risk factor for OA (p = 0.000004), knee OA (p = 0.0000001) and hip OA(p = 0.001). Furthermore, OA (p = 0.000195), knee OA (p = 0.001) are significant risk factors for SAS. However, there is no clear evidence that hip OA (p = 0.892) is a risk factor for SAS. Interestingly, the genes shared between OA and SAS are significantly enriched in leukocyte migration, leukocyte chemotaxis. Moreover, colocalization analysis suggests that the genes JUNB, COL8A1, FOSB, and IER2 may be key genes associated with both diseases. Furthermore, 57 immune cell phenotypes are associated with SAS, 95 with OA, and 6 shared between both diseases. Conclusion This research confirmed the bidirectional causal relationship between SAS and OA. Notably, the 4 genes (JUNB, COL8A1, FOSB, IER2) and 6 immune phenotypes are crucial for both diseases, these provide hopeful targets for future interventions against these two diseases.
Collapse
Affiliation(s)
- Lian Weng
- Department of orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiongjunjie Luo
- Department of orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yuxi Luo
- Department of orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Qian Zhang
- Department of orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Kaitao Yao
- Department of orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Junjie Tan
- Department of orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yiran Yin
- Department of orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, Sichuan Province, 646000, People’s Republic of China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
50
|
Li B, Han Y, Fu Z, Chai Y, Guo X, Du S, Li C, Wang D. The causal relationship between gut microbiota and lymphoma: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1397485. [PMID: 38774867 PMCID: PMC11106390 DOI: 10.3389/fimmu.2024.1397485] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Background Previous studies have indicated a potential link between the gut microbiota and lymphoma. However, the exact causal interplay between the two remains an area of ambiguity. Methods We performed a two-sample Mendelian randomization (MR) analysis to elucidate the causal relationship between gut microbiota and five types of lymphoma. The research drew upon microbiome data from a research project of 14,306 participants and lymphoma data encompassing 324,650 cases. Single-nucleotide polymorphisms were meticulously chosen as instrumental variables according to multiple stringent criteria. Five MR methodologies, including the inverse variance weighted approach, were utilized to assess the direct causal impact between the microbial exposures and lymphoma outcomes. Moreover, sensitivity analyses were carried out to robustly scrutinize and validate the potential presence of heterogeneity and pleiotropy, thereby ensuring the reliability and accuracy. Results We discerned 38 potential causal associations linking genetic predispositions within the gut microbiome to the development of lymphoma. A few of the more significant results are as follows: Genus Coprobacter (OR = 0.619, 95% CI 0.438-0.873, P = 0.006) demonstrated a potentially protective effect against Hodgkin's lymphoma (HL). Genus Alistipes (OR = 0.473, 95% CI 0.278-0.807, P = 0.006) was a protective factor for diffuse large B-cell lymphoma. Genus Ruminococcaceae (OR = 0.541, 95% CI 0.341-0.857, P = 0.009) exhibited suggestive protective effects against follicular lymphoma. Genus LachnospiraceaeUCG001 (OR = 0.354, 95% CI 0.198-0.631, P = 0.0004) showed protective properties against T/NK cell lymphoma. The Q test indicated an absence of heterogeneity, and the MR-Egger test did not show significant horizontal polytropy. Furthermore, the leave-one-out analysis failed to identify any SNP that exerted a substantial influence on the overall results. Conclusion Our study elucidates a definitive causal link between gut microbiota and lymphoma development, pinpointing specific microbial taxa with potential causative roles in lymphomagenesis, as well as identifying probiotic candidates that may impact disease progression, which provide new ideas for possible therapeutic approaches to lymphoma and clues to the pathogenesis of lymphoma.
Collapse
Affiliation(s)
- Biyun Li
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yahui Han
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyu Fu
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yujie Chai
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xifeng Guo
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shurui Du
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chi Li
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dao Wang
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|