1
|
Wang L, Zhang C, Ma J, Li J, Wu Y, Ren Y, Li J, Li Y, Yang Y. Mammalian Ste20-like kinase 1 regulates AMPK to mitigate the progression of non-alcoholic fatty liver disease. Eur J Med Res 2025; 30:296. [PMID: 40247356 PMCID: PMC12004885 DOI: 10.1186/s40001-025-02557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) progression is strongly associated with deteriorating hepatic function, primarily driven by free cholesterol (FC) accumulation-induced lipotoxicity. Emerging evidence highlights the regulatory role of mammalian Ste20-like kinase 1 (MST1) in modulating intrahepatic lipid homeostasis, suggesting its therapeutic potential for non-alcoholic fatty liver disease (NAFLD) management. This investigation seeks to elucidate the pathophysiological mechanisms through which MST1 modulates NASH progression. METHODS The experimental design employed two murine genetic models-wild-type (WT) controls and MST1-knockout (MST1-KO) specimens-subjected to a nutritionally modified Western diet (WD) enriched with saturated fats, simple carbohydrates, and dietary cholesterol to induce non-alcoholic steatohepatitis (NASH) pathogenesis. Lentiviral transduction techniques facilitated targeted MST1 overexpression in WT animals maintained on this dietary regimen. Parallel in vitro investigations utilized HepG2 hepatocyte cultures exposed to free fatty acid (FFA) cocktails comprising palmitic and oleic acids, coupled with CRISPR-mediated MST1 suppression and complementary gain-of-function manipulations to delineate molecular mechanisms. RESULTS NASH triggers hepatic sterol biosynthesis activation, resulting in pathological FC overload concurrent with MST1 transcriptional suppression. Genetic ablation of MST1 amplifies intrahepatic FC retention and potentiates histopathological inflammation, while MST1 reconstitution mitigates steatotic FC deposition and attenuates inflammatory cascades. Mechanistic profiling revealed MST1-mediated AMPKα phosphorylation at Thr172, which suppresses cholesterogenic enzyme expression via sterol regulatory element-binding transcription factor 2 (SREBP2) axis modulation. This phosphorylation cascade demonstrates dose-dependent inhibition of HMGCR activity, resolving FC-induced hepatotoxicity. Crucially, MST1 orchestrates AMPK/SREBP2 crosstalk to maintain sterol homeostasis, with knockout models exhibiting 67% elevated SREBP2 nuclear translocation compared to controls. CONCLUSIONS The regulatory axis involving MST1-mediated AMPK phosphorylation emerges as a promising therapeutic modality for modulating hepatic sterol metabolism. It demonstrates significant potential in arresting the progression of inflammatory cascades and extracellular matrix remodeling characteristic of NASH pathogenesis. Mechanistic studies confirm that this phosphorylation cascade effectively suppresses de novo lipogenesis while enhancing cholesterol efflux capacity, thereby establishing a dual-target strategy against both metabolic dysfunction and fibrotic transformation in preclinical models.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Chenglei Zhang
- Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Jie Ma
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Jiarui Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Yuanyuan Wu
- Department of Oncology, Cancer Hospital, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Yanru Ren
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Jianning Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China
| | - Yan Li
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China.
| | - Yi Yang
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, 750001, Ningxia, China.
| |
Collapse
|
2
|
Zhang J, Sun Z, Su W, Wang Z, Meng W, Chang Y. A signal recognition particle receptor gene from the sea cucumber, Apostichopus japonicas. Sci Rep 2023; 13:22973. [PMID: 38151522 PMCID: PMC10752883 DOI: 10.1038/s41598-023-50320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
The signal recognition particle (SRP) system delivers approximately 30% of the proteome to the endoplasmic reticulum (ER) membrane. SRP receptor alpha (SRα) binds to SRP for targeting nascent secreted proteins to the ER membrane in eukaryotic cells. In this study, the SRα homologous gene was identified in the sea cucumber, Apostichopus japonicus (AjSRα). AjSRα codes for 641 amino acids and has 54.94% identity with its mammalian homologs. Like mammalian SRα, it is expected to contain the SRP-alpha N domain, SRP54_N domain, and SRP54 domain. In addition, AjSRα is ubiquitously expressed in adult tissues and exhibits a sexually dimorphic expression pattern, with significantly higher expression in ovaries compared to testes. As a maternal factor, AjSRα can be continuously detected during embryonic development. Importantly, we first attempted to investigate its function by using lentiviral vectors for delivering SRα gene-specific shRNA, and we revealed that lentiviral vectors do not induce an upregulation of immune-related enzymes in sea cucumbers. However, compared to the dsRNA-based RNA interference (RNAi) method, lentivirus-mediated RNAi caused dynamic changes in gene expression at a later time. This study supplied the technical support for studying the functional mechanism of SRα in sea cucumbers.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Science, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zhihui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| | - Weiyi Su
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zengdong Wang
- Shandong Anyuan Aquaculture Co. Ltd, Yantai, 264000, China
| | - Weihan Meng
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yaqing Chang
- School of Life Science, Liaoning Normal University, Dalian, 116029, China.
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
3
|
Buck AM, Deveau TM, Henrich TJ, Deitchman AN. Challenges in HIV-1 Latent Reservoir and Target Cell Quantification in CAR-T Cell and Other Lentiviral Gene Modifying HIV Cure Strategies. Viruses 2023; 15:1126. [PMID: 37243212 PMCID: PMC10222761 DOI: 10.3390/v15051126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Gene-modification therapies are at the forefront of HIV-1 cure strategies. Chimeric antigen receptor (CAR)-T cells pose a potential approach to target infected cells during antiretroviral therapy or following analytical treatment interruption (ATI). However, there are technical challenges in the quantification of HIV-1-infected and CAR-T cells in the setting of lentiviral CAR gene delivery and also in the identification of cells expressing target antigens. First, there is a lack of validated techniques to identify and characterize cells expressing the hypervariable HIV gp120 in both ART-suppressed and viremic individuals. Second, close sequence homology between lentiviral-based CAR-T gene modification vectors and conserved regions of HIV-1 creates quantification challenges of HIV-1 and lentiviral vector levels. Consideration needs to be taken into standardizing HIV-1 DNA/RNA assays in the setting of CAR-T cell and other lentiviral vector-based therapies to avoid these confounding interactions. Lastly, with the introduction of HIV-1 resistance genes in CAR-T cells, there is a need for assays with single-cell resolution to determine the competence of the gene inserts to prevent CAR-T cells from becoming infected in vivo. As novel therapies continue to arise in the HIV-1 cure field, resolving these challenges in CAR-T-cell therapy will be crucial.
Collapse
Affiliation(s)
- Amanda M. Buck
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Tyler-Marie Deveau
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Timothy J. Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Amelia N. Deitchman
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
4
|
Li J, Zhang J, Bui S, Ahat E, Kolli D, Reid W, Xing L, Wang Y. Common Assays in Mammalian Golgi Studies. Methods Mol Biol 2022; 2557:303-332. [PMID: 36512224 DOI: 10.1007/978-1-0716-2639-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Golgi is a complex structure characterized by stacks of tightly aligned flat cisternae. In mammalian cells, Golgi stacks often concentrate in the perinuclear region and link together to form a ribbon. This structure is dynamic to accommodate continuous cargo flow in and out of the Golgi in both directions and undergoes morphological changes under physiological and pathological conditions. The fine, stacked Golgi structure makes it difficult to study by conventional light or even super-resolution microscopy. Furthermore, efforts to understand how Golgi structural dynamics impact cellular processes have been slow because of the knowledge gap in the protein machinery that maintains the complex and dynamic Golgi structure. In this method article, we list the common assays used in our research to help new and established researchers select the most appropriate method to properly address their questions.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Divya Kolli
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Whitney Reid
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lijuan Xing
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Generation of Stable Cell Lines Expressing Golgi Reassembly Stacking Proteins (GRASPs) by Viral Transduction. Methods Mol Biol 2022; 2557:391-416. [PMID: 36512228 DOI: 10.1007/978-1-0716-2639-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stable cell lines that express a gene of specific interest provide an advantage over transient gene expression by reducing variations in transfection efficiency between experiments, sustaining expression for long-term studies, and controlling expression levels in particular if a clonal population is selected. Transient transfection requires introduction of an exogenous gene into host cells via typically harsh chemicals or conditions that permeabilize the cell membrane, which does not normally integrate into the target cell genome. Here, we describe the method of using retroviral transduction to stably express Golgi proteins fused to a promiscuous biotin ligase (TurboID) in HeLa cells, thus creating cell lines that can be leveraged in studies of the proximome/interactome. We also demonstrate a similar protocol for stable expression of a Golgi protein fused to a fluorescent tag via lentiviral transduction. These methods can be further adapted to establish other cell lines with different sub-cellular markers or fusion tags. Viral transduction is a convenient method to create stable cell lines in cell-based studies.
Collapse
|
6
|
Arsenijevic Y, Berger A, Udry F, Kostic C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14081605. [PMID: 36015231 PMCID: PMC9414879 DOI: 10.3390/pharmaceutics14081605] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.
Collapse
Affiliation(s)
- Yvan Arsenijevic
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
- Correspondence: (Y.A.); (C.K.)
| | - Adeline Berger
- Group Epigenetics of ocular diseases, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Florian Udry
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland
- Correspondence: (Y.A.); (C.K.)
| |
Collapse
|
7
|
Nagree MS, Felizardo TC, Faber ML, Rybova J, Rupar CA, Foley SR, Fuller M, Fowler DH, Medin JA. Autologous, lentivirus-modified, T-rapa cell "micropharmacies" for lysosomal storage disorders. EMBO Mol Med 2022; 14:e14297. [PMID: 35298086 PMCID: PMC8988206 DOI: 10.15252/emmm.202114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/11/2022] Open
Abstract
T cells are the current choice for many cell therapy applications. They are relatively easy to access, expand in culture, and genetically modify. Rapamycin-conditioning ex vivo reprograms T cells, increasing their memory properties and capacity for survival, while reducing inflammatory potential and the amount of preparative conditioning required for engraftment. Rapamycin-conditioned T cells have been tested in patients and deemed to be safe to administer in numerous settings, with reduced occurrence of infusion-related adverse events. We demonstrate that ex vivo lentivirus-modified, rapamycin-conditioned CD4+ T cells can also act as next-generation cellular delivery vehicles-that is, "micropharmacies"-to disseminate corrective enzymes for multiple lysosomal storage disorders. We evaluated the therapeutic potential of this treatment platform for Fabry, Gaucher, Farber, and Pompe diseases in vitro and in vivo. For example, such micropharmacies expressing α-galactosidase A for treatment of Fabry disease were transplanted in mice where they provided functional enzyme in key affected tissues such as kidney and heart, facilitating clearance of pathogenic substrate after a single administration.
Collapse
Affiliation(s)
- Murtaza S Nagree
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Department of PediatricsMedical College of WisconsinMilwaukeeWIUSA
| | | | - Mary L Faber
- Department of PediatricsMedical College of WisconsinMilwaukeeWIUSA
| | - Jitka Rybova
- Department of PediatricsMedical College of WisconsinMilwaukeeWIUSA
| | - C Anthony Rupar
- Department of Pathology and Laboratory MedicineWestern UniversityLondonONCanada
| | - S Ronan Foley
- Juravinski Hospital and Cancer CentreMcMaster UniversityHamiltonONCanada
| | - Maria Fuller
- Genetics and Molecular PathologySA Pathology at Women's and Children's HospitalNorth AdelaideSAAustralia
| | | | - Jeffrey A Medin
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Department of PediatricsMedical College of WisconsinMilwaukeeWIUSA
- Department of BiochemistryMedical College of WisconsinMilwaukeeWIUSA
| |
Collapse
|
8
|
Zhang Z, Han Z, Guo Y, Liu X, Gao Y, Zhang Y. Establishment of an Efficient Immortalization Strategy Using HMEJ-Based b TERT Insertion for Bovine Cells. Int J Mol Sci 2021; 22:ijms222212540. [PMID: 34830422 PMCID: PMC8622252 DOI: 10.3390/ijms222212540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/09/2022] Open
Abstract
Immortalized cell lines have been used in a wide range of applications in research on immune disorders and cellular metabolic regulation due to the stability and uniformity of their cellular characteristics. At present, the investigation into molecular functions and signaling pathways within bovine cells remains largely limited by the lack of immortalized model cells. Current methods for immortalizing bovine cells are mainly restricted to the ectopic expression of human telomerase reverse transcriptase (hTERT) through transient transfection or virus-mediated delivery, which have defects in efficiency and reliability. In this study, we identified bovine TERT (bTERT) as a novel potent biofactor for immortalizing bovine cells with great advantages over hTERT, and established an efficient and easily manipulated strategy for the immortalization of bovine primary cells. Through the homology-mediated end-joining-based insertion of bTERT at the ROSA26 locus, we successfully generated immortalized bovine fetal fibroblast cell lines with stable characteristics. The observed limitation of this strategy in immortalizing bovine bone marrow-derived macrophages was attributed to the post-translational modification of bTERT, causing inhibited nuclear localization and depressed activity of bTERT in this terminally differentiated cell. In summary, we constructed an innovative method to achieve the high-quality immortalization of bovine primary cells, thereby expanding the prospects for the future application of immortalized bovine model cell lines.
Collapse
Affiliation(s)
- Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Zhuo Han
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Ying Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Xin Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Yuanpeng Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.G.); (Y.Z.)
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.G.); (Y.Z.)
| |
Collapse
|
9
|
Weuring W, Geerligs J, Koeleman BPC. Gene Therapies for Monogenic Autism Spectrum Disorders. Genes (Basel) 2021; 12:genes12111667. [PMID: 34828273 PMCID: PMC8617899 DOI: 10.3390/genes12111667] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
Novel genome editing and transient gene therapies have been developed the past ten years, resulting in the first in-human clinical trials for monogenic disorders. Syndromic autism spectrum disorders can be caused by mutations in a single gene. Given the monogenic aspect and severity of syndromic ASD, it is an ideal candidate for gene therapies. Here, we selected 11 monogenic ASD syndromes, validated by animal models, and reviewed current gene therapies for each syndrome. Given the wide variety and novelty of some forms of gene therapy, the best possible option must be decided based on the gene and mutation.
Collapse
|
10
|
Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses 2021; 13:v13071288. [PMID: 34372494 PMCID: PMC8310029 DOI: 10.3390/v13071288] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.
Collapse
|
11
|
Integrase-Defective Lentiviral Vectors for Delivery of Monoclonal Antibodies against Influenza. Viruses 2020; 12:v12121460. [PMID: 33348840 PMCID: PMC7767071 DOI: 10.3390/v12121460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Delivering rapid protection against infectious agents to non-immune populations is a formidable public health challenge. Although passive immunotherapy is a fast and effective method of protection, large-scale production and administration of monoclonal antibodies (mAbs) is expensive and unpractical. Viral vector-mediated delivery of mAbs offers an attractive alternative to their direct injection. Integrase-defective lentiviral vectors (IDLV) are advantageous for this purpose due to the absence of pre-existing anti-vector immunity and the safety features of non-integration and non-replication. We engineered IDLV to produce the humanized mAb VN04-2 (IDLV-VN04-2), which is broadly neutralizing against H5 influenza A virus (IAV), and tested the vectors’ ability to produce antibodies and protect from IAV in vivo. We found that IDLV-transduced cells produced functional VN04-2 mAbs in a time- and dose-dependent fashion. These mAbs specifically bind the hemagglutinin (HA), but not the nucleoprotein (NP) of IAV. VN04-2 mAbs were detected in the serum of mice at different times after intranasal (i.n.) or intramuscular (i.m.) administration of IDLV-VN04-2. Administration of IDLV-VN04-2 by the i.n. route provided rapid protection against lethal IAV challenge, although the protection did not persist at later time points. Our data suggest that administration of mAb-expressing IDLV may represent an effective strategy for rapid protection against infectious diseases.
Collapse
|
12
|
Lentiviral Transduction for Optimal LSC/HSC Manipulation. Methods Mol Biol 2020. [PMID: 33165856 DOI: 10.1007/978-1-0716-0810-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Historically, efficient transduction of hematopoietic stem cells (HSC) to study the role of specific genes on HSC function, as well as to broaden the potential of gene therapy for hematopoietic related diseases has relied on our ability to design vectors capable of delivering the gene of interest without affecting HSC function. While retroviruses have been used extensively for this purpose, HIV-derived lentiviruses prove superior for transduction of quiescent HSC due to their ability to infect nondividing cells. The design of the vector and the quality of the lentiviral preparation are the key elements to obtain reproducible consistent results that will eventually be translated into the clinic. This chapter describes the preparation of concentrated lentiviruses and the transduction of HSC to obtain long-term engraftment with persistent gene transfer and expression of the desired transgene.
Collapse
|
13
|
Lu XA, He T, Han Z, Ding Y, Zhao L, Liu G, De Smet F, Huang X, Chen D, Qi F, Zhao X. Production of lentiviral vectors in suspension cells using low proportion of supercoiled circular plasmid DNA. Cytotechnology 2020; 72:10.1007/s10616-020-00433-4. [PMID: 33123933 PMCID: PMC7695760 DOI: 10.1007/s10616-020-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022] Open
Abstract
The supercoiled circular (SC) topology form of plasmid DNA has been regarded to be advantageous over open circular or linearized analogue in transfection and expression efficiency, and therefore are largely demanded in the biopharmaceutical manufacturing. However, production of high-purity SC plasmid DNA would result in high manufacturing cost. The effect of SC proportion in plasmid DNA on the quality of packaged lentiviral vectors has never been reported. In this study, we established an efficient system for production of high-titer lentiviral vectors using suspension HEK293SF cells in serum-free media, and the lentiviral titer was not associated with the proportion of SC plasmid DNA. Plasmids DNA with different proportion of SC, open-circular, and linearized forms were prepared using the thermal denaturation method, and were transfected to adherent HEK293T or suspension HEK293SF cells for packaging of lentiviral vectors. The titer of lentiviral vectors from HEK293T cells, but not from HEK293SF cells, was significantly impaired when the proportion of SC plasmid DNA decreased from 60-80% to 30-40%. Further decrease of SC plasmid proportion to 3% led to a dramatic reduction of lentiviral titer no matter the packaging cell line was. However, lentiviral vectors from HEK293SF cells still showed a high titer even when the proportion of SC plasmid DNA was 3%. This study demonstrated that extremely high proportion of SC plasmid DNA was not required for packaging of high-titer lentiviral vector in HEK293SF cells, at least under our manufacturing process.
Collapse
Affiliation(s)
- Xin-An Lu
- Immunochina Pharmaceuticals Co., Ltd, 100089, Beijing, China
| | - Ting He
- Immunochina Pharmaceuticals Co., Ltd, 100089, Beijing, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of PLA General Hospital, 100048, Beijing, China
| | - Yanping Ding
- Immunochina Pharmaceuticals Co., Ltd, 100089, Beijing, China
| | - Liang Zhao
- Immunochina Pharmaceuticals Co., Ltd, 100089, Beijing, China
| | - Guanghua Liu
- Immunochina Pharmaceuticals Co., Ltd, 100089, Beijing, China
| | - Floris De Smet
- Sartorius Stedim North America Inc., 565 Johnson Avenue, Bohemia, New York, 11716, USA
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Danqing Chen
- Immunochina Pharmaceuticals Co., Ltd, 100089, Beijing, China
| | - Feifei Qi
- Immunochina Pharmaceuticals Co., Ltd, 100089, Beijing, China.
| | - Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China.
| |
Collapse
|
14
|
Rittiner JE, Moncalvo M, Chiba-Falek O, Kantor B. Gene-Editing Technologies Paired With Viral Vectors for Translational Research Into Neurodegenerative Diseases. Front Mol Neurosci 2020; 13:148. [PMID: 32903507 PMCID: PMC7437156 DOI: 10.3389/fnmol.2020.00148] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Diseases of the central nervous system (CNS) have historically been among the most difficult to treat using conventional pharmacological approaches. This is due to a confluence of factors, including the limited regenerative capacity and overall complexity of the brain, problems associated with repeated drug administration, and difficulties delivering drugs across the blood-brain barrier (BBB). Viral-mediated gene transfer represents an attractive alternative for the delivery of therapeutic cargo to the nervous system. Crucially, it usually requires only a single injection, whether that be a gene replacement strategy for an inherited disorder or the delivery of a genome- or epigenome-modifying construct for treatment of CNS diseases and disorders. It is thus understandable that considerable effort has been put towards the development of improved vector systems for gene transfer into the CNS. Different viral vectors are of course tailored to their specific applications, but they generally should share several key properties. The ideal viral vector incorporates a high-packaging capacity, efficient gene transfer paired with robust and sustained expression, lack of oncogenicity, toxicity and pathogenicity, and scalable manufacturing for clinical applications. In this review, we will devote attention to viral vectors derived from human immunodeficiency virus type 1 (lentiviral vectors; LVs) and adeno-associated virus (AAVs). The high interest in these viral delivery systems vectors is due to: (i) robust delivery and long-lasting expression; (ii) efficient transduction into postmitotic cells, including the brain; (iii) low immunogenicity and toxicity; and (iv) compatibility with advanced manufacturing techniques. Here, we will outline basic aspects of LV and AAV biology, particularly focusing on approaches and techniques aiming to enhance viral safety. We will also allocate a significant portion of this review to the development and use of LVs and AAVs for delivery into the CNS, with a focus on the genome and epigenome-editing tools based on clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas 9) and the development of novel strategies for the treatment of neurodegenerative diseases (NDDs).
Collapse
Affiliation(s)
- Joseph Edward Rittiner
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Malik Moncalvo
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Ornit Chiba-Falek
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| |
Collapse
|
15
|
Rajawat YS, Humbert O, Kiem HP. In-Vivo Gene Therapy with Foamy Virus Vectors. Viruses 2019; 11:v11121091. [PMID: 31771194 PMCID: PMC6950547 DOI: 10.3390/v11121091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Foamy viruses (FVs) are nonpathogenic retroviruses that infect various animals including bovines, felines, nonhuman primates (NHPs), and can be transmitted to humans through zoonotic infection. Due to their non-pathogenic nature, broad tissue tropism and relatively safe integration profile, FVs have been engineered as novel vectors (foamy virus vector, FVV) for stable gene transfer into different cells and tissues. FVVs have emerged as an alternative platform to contemporary viral vectors (e.g., adeno associated and lentiviral vectors) for experimental and therapeutic gene therapy of a variety of monogenetic diseases. Some of the important features of FVVs include the ability to efficiently transduce hematopoietic stem and progenitor cells (HSPCs) from humans, NHPs, canines and rodents. We have successfully used FVV for proof of concept studies to demonstrate safety and efficacy following in-vivo delivery in large animal models. In this review, we will comprehensively discuss FVV based in-vivo gene therapy approaches established in the X-linked severe combined immunodeficiency (SCID-X1) canine model.
Collapse
Affiliation(s)
- Yogendra Singh Rajawat
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
- Departments of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Departments of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-667-4425
| |
Collapse
|
16
|
Abstract
RNA interference (RNAi) has greatly facilitated investigation of gene functions in vitro as well as in vivo. Recombinant lentivirus is widely used to deliver small hairpin RNA (shRNA) because of its high transduction capacity into diverse cell types and tissues. Here, we describe methods of lentivirus-mediated delivery of shRNA for the study of skeletal muscle cell differentiation in vitro and injury-induced muscle regeneration in mice.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Adriana Reyes-Ordoñez
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
17
|
Nakamura A. Mutation-Based Therapeutic Strategies for Duchenne Muscular Dystrophy: From Genetic Diagnosis to Therapy. J Pers Med 2019; 9:jpm9010016. [PMID: 30836656 PMCID: PMC6462977 DOI: 10.3390/jpm9010016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Duchenne and Becker muscular dystrophy (DMD/BMD) are X-linked muscle disorders caused by mutations of the DMD gene, which encodes the subsarcolemmal protein dystrophin. In DMD, dystrophin is not expressed due to a disruption in the reading frame of the DMD gene, resulting in a severe phenotype. Becker muscular dystrophy exhibits a milder phenotype, having mutations that maintain the reading frame and allow for the production of truncated dystrophin. To date, various therapeutic approaches for DMD have been extensively developed. However, the pathomechanism is quite complex despite it being a single gene disorder, and dystrophin is expressed not only in a large amount of skeletal muscle but also in cardiac, vascular, intestinal smooth muscle, and nervous system tissue. Thus, the most appropriate therapy would be complementation or restoration of dystrophin expression, such as gene therapy using viral vectors, readthrough therapy, or exon skipping therapy. Among them, exon skipping therapy with antisense oligonucleotides can restore the reading frame and yield the conversion of a severe phenotype to one that is mild. In this paper, I present the significance of molecular diagnosis and the development of mutation-based therapeutic strategies to complement or restore dystrophin expression.
Collapse
Affiliation(s)
- Akinori Nakamura
- Department of Neurology, National Hospital Organization, Matsumoto Medical Center, 2-20-30 Murai-machi Minami, Matsumoto 399-8701, Japan.
- Third Department of Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| |
Collapse
|
18
|
Kesari AS, Sharkey CM, Sanders DA. Role of heparan sulfate in entry and exit of Ross River virus glycoprotein-pseudotyped retroviral vectors. Virology 2019; 529:177-185. [DOI: 10.1016/j.virol.2019.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 01/23/2023]
|
19
|
Chen X, Chen Y, Shen X, Zuo J, Guo H. The Improvement and Application of Lentivirus-Mediated Gene Transfer and Expression System in Penaeid Shrimp Cells. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:9-18. [PMID: 30542951 DOI: 10.1007/s10126-018-9862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 06/09/2023]
Abstract
This study first reported the improvement and application of lentivirus-mediated gene transfer and expression system in shrimp cells. After modified by the inclusion of two envelope proteins (VP19 and VP28) of shrimp white spot syndrome virus (WSSV) into the envelope of the packaged lentivirus, and insertion of a truncated promoter of immediate-early gene 1 (Pie1-504) of shrimp WSSV virus into the lentiviral reporter plasmid, the second-generation lentiviral expression system (pLVX-PEF1α-IRES-mCherry, psPAX2, and PMD2.G) was found to behave better in the mitosis-arrested shrimp cells than the similarly modified retrovirus expression system did. Results from the insect sf9 cells indicated that the inclusion of VP19 and VP28 into the envelope of packaged lentiviruses could significantly improve the tropism or infectivity of the modified lentiviruses to insect cells in a cumulative way. Notably, the VP28 contributed about 86% of the total increase of the tropism. In the shrimp primary lymphoid cells infected by modified lentivirus IV with both VP19 and VP28 included, the infection efficiency was up to 11% (non-confocal) and 19% (confocal) and no background fluorescent signal was observed. However, background fluorescent signal was observed in the shrimp primary Oka organ cells although only under a confocal microscope. In the lentivirus IV-infected Oka organ cells, the actual infection efficiencies were calculated up to 8% (non-confocal) and 19% (confocal), significantly higher than those of commercial intact lentivirus I of 0 (non-confocal) and 3% (confocal). The insertion of WSSV promoter (Pie1-504) had interrupted the effective expression of reporter plasmid encoding lentiviral construct of pLVX-PEF1α-Pie1-504-IRES-mCherry in the HEK293T cells, but markedly increased its efficiencies up to 14% (non-confocal) and 26% (confocal) in the Oka organ cells. This improved lentivirus expression system will provide us a useful tool for efficient gene transfer and expression in shrimp cells.
Collapse
Affiliation(s)
- Xuemei Chen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yueru Chen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaotong Shen
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jianwei Zuo
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Huarong Guo
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
20
|
Doiron B, DeFronzo RA. A novel experimental model for human mixed acinar-ductal pancreatic cancer. Carcinogenesis 2018; 39:180-190. [PMID: 29106450 PMCID: PMC5862347 DOI: 10.1093/carcin/bgx119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/27/2017] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer has remained refractory to treatment. In large part, this results from the lack of an animal model that mimics pancreatic cancer in man. We describe a novel experimental model of pancreatic cancer that shares the genetic background, histologic features and natural history of human mixed acinar–ductal carcinoma. Adult wild-type mice received an injection into the pancreatic duct of lentivirus coding two molecules, KrasG12D mutation and shRNA p53, which recapitulate the mechanisms of pancreatic cancer in humans. The lentivirus constructs also co-expressed the luciferase gene for in vivo imaging by bioluminescence using the Xenogen IVIS imaging system. Weeks post-injection wild-type mice develop pancreatic cancer with the same histologic characteristics and metastases observed with human pancreatic mixed acinar–ductal carcinoma. This novel approach represents the first pancreatic cancer model that does not involve alterations of embryonic development, which is inherent with transgenic mice or knockout mice models. This novel experimental human pancreatic cancer model can be used to more effectively test new anti-cancer drug to inhibit tumor progression in situ and to retard metastases. Furthermore, our method of injecting lentivirus containing oncogenes and molecules implicated in the development of pancreatic can be employed in diabetic and obese mice, two common metabolic conditions characterized by an increased incidence of pancreatic cancer.
Collapse
Affiliation(s)
- Bruno Doiron
- Diabetes Division, University of Texas Health Science Center at San Antonio, USA
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center at San Antonio, USA
| |
Collapse
|
21
|
Xie L, Lin L, Huang S, Yang T, Shi D, Li X. Inhibition of Suv39H1 enhances transgenic IFNα-2b gene expression in Bcap-37 cells. Anim Biotechnol 2018; 30:358-365. [PMID: 30179066 DOI: 10.1080/10495398.2018.1500373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The low expression of exogenous transferred gene limited the application of transgenic animal technology. Suppressor of variegation 3 ∼ 9 homolog 1(SUV39H1) gene plays a prominent role on repressive heterochromatin and transcription. To understand if exogenous transgenic gene expression was affected by SUV39H1 epigenetic modification, in this paper, the effective shRNA fragments targeting SUV39H1 gene were first screened, their roles on expression of exogenous transgenic genes were determined by using Bcap-37 cell line with stable expressing IFNα-2b gene as a model, the preliminary regulation mechanism of SUV39H1 gene was investigated. The results showed that the designed shRNA1/2 fragments of SUV39H1 gene had an obvious inhibition effect on the expression of SUV39H1 gene, reached 53.07 and 31.28%, respectively by qRT-PCR analysis. Compared with the control group, the expression of IFNα-2b gene in transgenic Bcap-37 cells infected with shRNA1 and 2 viruses significantly increased by 96.25 and 121.08%, respectively (p < 0.05). In addition, the expression of DNMT1, HDAC1 and G9a gene in the shRNA infected cells reduced significantly, and the expression of the HAT1 gene increased significantly (p < 0.05). The above results indicated that the expression of exogenous transgenic gene could be promoted by suppressing SUV39H1 gene at the cell level.
Collapse
Affiliation(s)
- Liangliang Xie
- State Key Laboratory of Subtropical Bioresource Conservation and Utilization at Guangxi University , Guangxi , China
| | - Lang Lin
- State Key Laboratory of Subtropical Bioresource Conservation and Utilization at Guangxi University , Guangxi , China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University , Guangxi , China
| | - Ting Yang
- State Key Laboratory of Subtropical Bioresource Conservation and Utilization at Guangxi University , Guangxi , China
| | - Deshun Shi
- State Key Laboratory of Subtropical Bioresource Conservation and Utilization at Guangxi University , Guangxi , China
| | - Xiangping Li
- State Key Laboratory of Subtropical Bioresource Conservation and Utilization at Guangxi University , Guangxi , China
| |
Collapse
|
22
|
Joglekar AV, Sandoval S. Pseudotyped Lentiviral Vectors: One Vector, Many Guises. Hum Gene Ther Methods 2017; 28:291-301. [DOI: 10.1089/hgtb.2017.084] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Alok V. Joglekar
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Salemiz Sandoval
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
23
|
Fujino M, Li XK, Kitazawa Y, Funeshima N, Guo L, Okuyama T, Amano T, Amemiya H, Suzuki S. Selective Repopulation of Mice Liver after Fas-Resistant Hepatocyte Transplantation. Cell Transplant 2017. [DOI: 10.3727/000000001783986701] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte transplantation has been proposed as a potential therapeutic method to treat irreversible liver failure and inherited hepatic disorders, although transplanted cells do not easily reconstruct the liver tissue under intact conditions. This study was aimed at modulating the recipient liver conditions to promote repopulation of the liver after hepatocyte transplantation. Hepatocytes isolated from male MRL-lpr/lpr (lpr) mice with a mutation of Fas antigen were transplanted in a number of 1 × 106 cells in female MRL-+/+ (wildtype mice) by intrasplenic injection. An agonistic anti-Fas antibody (0.15 mg/kg) was administered intravenously 24 h after cell transplantation. We also administrated the antibody at 0.3 mg/kg 1 week after grafting and at 0.6 mg/kg 2 weeks after transplantation. The liver specimens were taken at different time intervals for histological examination. The reconstructed male lpr hepatocytes in the female wild-type mice were determined by a real-time quantitative PCR assay using the primers and probe for the sry gene. The pathologic findings of the recipient livers after treatment with anti-Fas antibody revealed a large number of apoptotic hepatocytes. The grafted lpr hepatocytes were observed to reconstruct as much as 6.9% of the recipient liver in the anti-Fas antibody-treated group 3 months after transplantation. In contrast, we observed the transplanted cells at lower than 0.1% in the nontreated livers. These findings demonstrated that repeated induction of apoptosis in recipient hepatocytes shifts the environment of the liver to a regenerative condition. This method may be useful to promote the reconstruction of transplanted hepatocytes in a recipient liver.
Collapse
Affiliation(s)
- Masayuki Fujino
- Department of Experimental Surgery and Bioengineering, Tokyo, Japan
- Department of Zootechnical Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Xiao-Kang Li
- Department of Experimental Surgery and Bioengineering, Tokyo, Japan
| | - Yusuke Kitazawa
- Department of Experimental Surgery and Bioengineering, Tokyo, Japan
| | - Naoko Funeshima
- Department of Experimental Surgery and Bioengineering, Tokyo, Japan
| | - Lei Guo
- Department of Experimental Surgery and Bioengineering, Tokyo, Japan
| | - Torayuki Okuyama
- Genetics, National Children's Medical Research Center, Tokyo, Japan
| | - Takashi Amano
- Department of Zootechnical Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiroshi Amemiya
- Department of Experimental Surgery and Bioengineering, Tokyo, Japan
| | - Seiichi Suzuki
- Department of Experimental Surgery and Bioengineering, Tokyo, Japan
| |
Collapse
|
24
|
Totsugawa T, Kobayashi N, Okitsu T, Noguchi H, Watanabe T, Matsumura T, Maruyama M, Fujiwara T, Sakaguchi M, Tanaka N. Lentiviral Transfer of the LacZ Gene into Human Endothelial Cells and Human Bone Marrow Mesenchymal Stem Cells. Cell Transplant 2017. [DOI: 10.3727/000000002783985620] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Because one of the attractive characteristics of human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors is that it can infect even nondividing cells, a lentivirus-mediated gene delivery system is currently being paid a great deal of attention as an innovative tool for gene transfer into target cells. The purpose of the work was to investigate the efficacy of lentiviral transfer of the LacZ gene into human umbilical vein endothelial cells (HUVECs) and human bone marrow mesenchymal stem cells (HMSCs) in vitro. For the present study, a vesicular stomatitis virus G-protein (VSV-G)-pseudotyped lentiviral vector encoding the E. coli LacZ gene tagged with nuclear localization signal (NLS) was generated in 293T cells by means of the three-plasmid system. The resulting lentiviral vector, LtV-NLS/LacZ, was allowed to infect HUVECs and HMSCs. Approximately 70% of HUVECs were positive for LacZ expression and 50% of HMSCs showed LacZ activity. There was no significant difference in transduction efficacy between early and late-passage phases in both cells. LtV-NLS/LacZ-transduced HUVECs showed gene expression of endothelial markers including CD34 and flt-1 and KDR/flk-1 of vascular endothelial growth factor (VEGF) receptors and had angiogenic potential as efficiently as primarily cultured HUVECs in a Matrigel assay. These findings provide evidence that lentiviral vectors are efficient tools for gene transfer and expression in human endothelial cells and stem cells that could be useful for tissue engineering.
Collapse
Affiliation(s)
- Toshinori Totsugawa
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- The Japan Health Sciences Foundation
| | - Teru Okitsu
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hirofumi Noguchi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Takamasa Watanabe
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Toshihisa Matsumura
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Masanobu Maruyama
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Noriaki Tanaka
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
25
|
Abstract
Pulmonary hypertension (PH) is a multifaceted vascular disease where development and severity are determined by both genetic and environmental factors. Over the past decade, there has been an acceleration of the discovery of molecular effectors that mediate PH pathogenesis, including large numbers of microRNA molecules that are expressed in pulmonary vascular cell types and exert system-wide regulatory functions in all aspects of vascular health and disease. Due to the inherent pleiotropy, overlap, and redundancy of these molecules, it has been challenging to define their integrated effects on overall disease manifestation. In this review, we summarize our current understanding of the roles of microRNAs in PH with an emphasis on potential methods to discern the hierarchical motifs governing their multifunctional and interconnected activities. Deciphering this higher order of regulatory structure will be crucial for overcoming the challenges of developing these molecules as biomarkers or therapeutic targets, in isolation or combination.
Collapse
|
26
|
Chen F, Qi X, Zhang R, Wu ZY, Yan CE, Li J, Liu QY, Qi J. Episomal lentiviral vectors confer erythropoietin expression in dividing cells. Plasmid 2017; 90:15-19. [PMID: 28189631 DOI: 10.1016/j.plasmid.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 01/07/2023]
Abstract
Lentiviral vectors are now widely considered as one of the most common gene delivery tools for dividing and non-dividing cells. However, insertional mutagenesis has been found in clinical trials with retroviral vectors, which poses a safety risk. The use of non-integrating lentiviral (NIL) vectors, which avoid integration, eliminates the insertional mutagenesis problem. These NIL vectors are unable to mediate stable gene delivery into dividing cells, which makes them of limited use in the clinical practice of gene therapy. In this study, we constructed a NIL vector which harbors the scaffold/matrix attachment region (S/MAR) sequence and a therapeutic gene. NIL retained episomal erythropoietin (EPO) gene expression for 74days in dividing cells both with and without selection. Furthermore, Southern blot analysis showed that the NIL vector was retained extrachromosomally in CHO cells. In conclusion, the NIL vector based on an S/MAR sequence retained the extrachromosomal expression of a therapeutic gene in dividing cells. Our results show that NIL vectors maybe a safe and effective means of gene delivery, which is of potential clinical significance.
Collapse
Affiliation(s)
- Feng Chen
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China.
| | - Xin Qi
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, PR China
| | - Rong Zhang
- Department of Clinical Laboratory, Central Hospital of Qingdao, Qingdao 266042, Shandong, PR China
| | - Zong-Yong Wu
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China
| | - Cui-E Yan
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China
| | - Jia Li
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China
| | - Qiu-Ying Liu
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China
| | - Jun Qi
- Department of Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10021, PR China
| |
Collapse
|
27
|
Fumoto S, Nishida K. Methods for Evaluating the Stimuli-Responsive Delivery of Nucleic Acid and Gene Medicines. Chem Pharm Bull (Tokyo) 2017; 65:642-648. [DOI: 10.1248/cpb.c17-00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
28
|
Huang Z, Zhang N, Li W, Cao J, Zhang L, Chen Y. Expression of CHODL in hepatocellular carcinoma affects invasion and migration of liver cancer cells. Oncol Lett 2016; 13:715-721. [PMID: 28356950 PMCID: PMC5351393 DOI: 10.3892/ol.2016.5466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/30/2016] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death. Due to rapid progression and metastasis, the long-term survival remains poor for most patients. Thus, it is important to discover and develop novel preventive strategies and therapeutic approaches for HCC. Recent data show that chondrolectin (CHODL) is commonly overexpressed in the majority of lung cancers, indicating a possible correlation between CHODL and metastasis of lung cancer cells. Our investigation shows that the expression of CHODL is significantly decreased in HCC clinical samples and in HCC cell lines. Overexpression of CHODL in SMMC7721 cells with a lentiviral vector increased SMMC7721 cell migration and invasion. Our findings establish for the first time an association between human CHODL and HCC metastasis.
Collapse
Affiliation(s)
- Zejian Huang
- Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ning Zhang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Wenda Li
- Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jun Cao
- Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Lei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yajin Chen
- Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
29
|
Abstract
Lentiviral (LV) vectors offer unique advantages over other gene delivery systems, namely the ability to integrate transgenes into the genome of both dividing and nondividing cells. Detailed herein is a simple protocol for the production LV vectors, describing the triple transfection of an LV transfer vector and LV helper plasmids into HEK-293 cells, and the subsequent purification of virions from the cellular media. The current protocol is versatile, and can be easily modified to fit the specific needs of the researcher in order to produce relatively high-titer LV vectors which can be used to transduce a wide variety of cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matthew J Benskey
- Department of Translational Science and Molecular Medicine, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI, 49503-2532, USA.
| | - Fredric P Manfredsson
- Translational Science and Molecular Medicine, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI, 49503-2532, USA
| |
Collapse
|
30
|
van Vollenstee FA, Jackson C, Hoffmann D, Potgieter M, Durandt C, Pepper MS. Human adipose derived mesenchymal stromal cells transduced with GFP lentiviral vectors: assessment of immunophenotype and differentiation capacity in vitro. Cytotechnology 2016; 68:2049-60. [PMID: 26815002 PMCID: PMC5023578 DOI: 10.1007/s10616-016-9945-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022] Open
Abstract
Adipose derived mesenchymal stromal/stem cells (ASCs) are a heterogeneous population characterized by (a) their ability to adhere to plastic; (b) immunophenotypic expression of certain cell surface markers, while lacking others; and (c) the capacity to differentiate into lineages of mesodermal origin including osteocytes, chondrocytes and adipocytes. The long-term goal is to utilize these cells for clinical translation into cell-based therapies. However, preclinical safety and efficacy need to be demonstrated in animal models. ASCs can also be utilized as biological vehicles for vector-based gene delivery systems, since they are believed to home to sites of inflammation and infection in vivo. These factors motivated the development of a labelling system for ASCs using lentiviral vector-based green fluorescent protein (GFP) transduction. Human ASCs were transduced with GFP-expressing lentiviral vectors. A titration study determined the viral titer required to transduce the maximum number of ASCs. The effect of the transduced GFP lentiviral vector on ASC immunophenotypic expression of surface markers as well as their ability to differentiate into osteocytes and adipocytes were assessed in vitro. A transduction efficiency in ASC cultures of approximately 80 % was observed with an MOI of ~118. No significant immunophenotypic differences were observed between transduced and non-transduced cells and both cell types successfully differentiated into adipocytes and osteocytes in vitro. We obtained >80 % transduction of ASCs using GFP lentiviral vectors. Transduced ASCs maintained plastic adherence, demonstrated ASC immunophenotype and the ability to differentiate into cells of the mesodermal lineage. This GFP-ASC transduction technique offers a potential tracking system for future pre-clinical studies.
Collapse
Affiliation(s)
- Fiona A van Vollenstee
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine and MRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 2034, Pretoria, 0001, South Africa
| | - Carlo Jackson
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine and MRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 2034, Pretoria, 0001, South Africa
| | - Danie Hoffmann
- Plastic and Reconstructive Surgeon, Private Practice, Pretoria, South Africa
| | - Marnie Potgieter
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine and MRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 2034, Pretoria, 0001, South Africa
| | - Chrisna Durandt
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine and MRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 2034, Pretoria, 0001, South Africa
| | - Michael S Pepper
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine and MRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 2034, Pretoria, 0001, South Africa.
| |
Collapse
|
31
|
Xu Z, Chen F, Zhang L, Lu J, Xu P, Liu G, Xie X, Mu W, Wang Y, Liu D. Non-integrating lentiviral vectors based on the minimal S/MAR sequence retain transgene expression in dividing cells. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1024-1033. [PMID: 27614752 DOI: 10.1007/s11427-016-0067-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/21/2016] [Indexed: 01/10/2023]
Abstract
Safe and efficient gene transfer systems are the basis of gene therapy applications. Non-integrating lentiviral (NIL) vectors are among the most promising candidates for gene transfer tools, because they exhibit high transfer efficiency in both dividing and non-dividing cells and do not present a risk of insertional mutagenesis. However, non-integrating lentiviral vectors cannot introduce stable exogenous gene expression to dividing cells, thereby limiting their application. Here, we report the design of a non-integrating lentiviral vector that contains the minimal scaffold/matrix attachment region (S/MAR) sequence (SNIL), and this SNIL vector is able to retain episomal transgene expression in dividing cells. Using SNIL vectors, we detected the expression of the eGFP gene for 61 days in SNIL-transduced stable CHO cells, either with selection or not. In the NIL group without the S/MAR sequence, however, the transduced cells died under selection for the transient expression of NIL vectors. Furthermore, Southern blot assays demonstrated that the SNIL vectors were retained extrachromosomally in the CHO cells. In conclusion, the minimal S/MAR sequence retained the non-integrating lentiviral vectors in dividing cells, which indicates that SNIL vectors have the potential for use as a gene transfer tool.
Collapse
Affiliation(s)
- Zhen Xu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Feng Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Lingling Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Jing Lu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Peng Xu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Guang Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xuemin Xie
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Wenli Mu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yajun Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Depei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
32
|
He K, You H, Li Y, Cui L, Zhang J, He W. TCRγ4δ1-engineered αβT cells exhibit effective antitumor activity. Mol Med 2016; 22:519-529. [PMID: 27463149 DOI: 10.2119/molmed.2016.00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
T cell engineering with T cell receptors (TCRs) specific for tumors plays an important role in adoptive T-cell transfer (ATC) therapy for cancer. Here, we present a novel strategy to redirect peripheral blood-derived αβT cells against tumors via TCRγ4δ1 gene transduction. The broad-spectrum anti-tumor activity of TCRδ1 cells in innate immunity is dependent on CDR3δ1. TCRγ4δ1-engineered αβT cells were prepared by lentiviral transduction and characterized by analyzing in vitro and in vivo cytotoxicity to tumors, ability of proliferation and cytokine production, and their potential role in autoimmunity. Results show TCRγ4δ1 genes were transduced to approximately 36% of polyclonal αβT cells. TCRγ4δ1-engineered αβT cells exhibited an effective in-vitro TCRγδ-dependent cytotoxicity against various tumor cells via the perforin-granzyme pathway. They also showed a strong proliferative capacity and robust cytokine production. TCRγ4δ1-engineered αβT cells neither expressed mixed TCR dimers nor bound/killed normal cells in vitro. More importantly, adoptive transfer of TCRγ4δ1-engineered αβT cells into nude mice bearing a human HepG2 cell line significantly suppressed tumor growth. Our results demonstrate a novel role for TCRγ4δ1 in gene therapy and ATC for cancer.
Collapse
Affiliation(s)
- Kangxia He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hongqin You
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yuxia Li
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Lianxian Cui
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Wei He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Beijing, China
| |
Collapse
|
33
|
Ren B, Tao C, Swan MA, Joachim N, Martiniello-Wilks R, Nassif NT, O'Brien BA, Simpson AM. Pancreatic Transdifferentiation and Glucose-Regulated Production of Human Insulin in the H4IIE Rat Liver Cell Line. Int J Mol Sci 2016; 17:534. [PMID: 27070593 PMCID: PMC4848990 DOI: 10.3390/ijms17040534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 12/13/2022] Open
Abstract
Due to the limitations of current treatment regimes, gene therapy is a promising strategy being explored to correct blood glucose concentrations in diabetic patients. In the current study, we used a retroviral vector to deliver either the human insulin gene alone, the rat NeuroD1 gene alone, or the human insulin gene and rat NeuroD1 genes together, to the rat liver cell line, H4IIE, to determine if storage of insulin and pancreatic transdifferentiation occurred. Stable clones were selected and expanded into cell lines: H4IIEins (insulin gene alone), H4IIE/ND (NeuroD1 gene alone), and H4IIEins/ND (insulin and NeuroD1 genes). The H4IIEins cells did not store insulin; however, H4IIE/ND and H4IIEins/ND cells stored 65.5 ± 5.6 and 1475.4 ± 171.8 pmol/insulin/5 × 106 cells, respectively. Additionally, several β cell transcription factors and pancreatic hormones were expressed in both H4IIE/ND and H4IIEins/ND cells. Electron microscopy revealed insulin storage vesicles in the H4IIE/ND and H4IIEins/ND cell lines. Regulated secretion of insulin to glucose (0–20 mmol/L) was seen in the H4IIEins/ND cell line. The H4IIEins/ND cells were transplanted into diabetic immunoincompetent mice, resulting in normalization of blood glucose. This data shows that the expression of NeuroD1 and insulin in liver cells may be a useful strategy for inducing islet neogenesis and reversing diabetes.
Collapse
Affiliation(s)
- Binhai Ren
- School of Life Sciences and Centre for Health Technologies, University of Technology Sydney, P.O. Box 123, Broadway, 2007 Sydney, NSW, Australia.
| | - Chang Tao
- School of Life Sciences and Centre for Health Technologies, University of Technology Sydney, P.O. Box 123, Broadway, 2007 Sydney, NSW, Australia.
| | - Margaret Anne Swan
- School of Medical Sciences (Anatomy & Histology) and Bosch Institute, University of Sydney, 2006 Sydney, NSW, Australia.
| | - Nichole Joachim
- School of Medical Sciences (Anatomy & Histology) and Bosch Institute, University of Sydney, 2006 Sydney, NSW, Australia.
| | - Rosetta Martiniello-Wilks
- School of Life Sciences and Centre for Health Technologies, University of Technology Sydney, P.O. Box 123, Broadway, 2007 Sydney, NSW, Australia.
| | - Najah T Nassif
- School of Life Sciences and Centre for Health Technologies, University of Technology Sydney, P.O. Box 123, Broadway, 2007 Sydney, NSW, Australia.
| | - Bronwyn A O'Brien
- School of Life Sciences and Centre for Health Technologies, University of Technology Sydney, P.O. Box 123, Broadway, 2007 Sydney, NSW, Australia.
| | - Ann M Simpson
- School of Life Sciences and Centre for Health Technologies, University of Technology Sydney, P.O. Box 123, Broadway, 2007 Sydney, NSW, Australia.
| |
Collapse
|
34
|
Lin FX, Rong JL, Wang MZ, Bao DD, Wang Y, Gong ZX, Gu YF, Zhao Y, Ge XW. Chitosan-based core-shell structured particles for in vivo sustainable gene transfection. J Mater Chem B 2016; 4:893-901. [PMID: 32263162 DOI: 10.1039/c5tb02074c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A core-shell structured chitosan (CS)-based gene vector with a sustainable gene transfection effect was designed and successfully prepared in this study. The pEGFP was first combined with the thiolated and N-alkylated chitosan (TACS). Then, hydroxybutyl chitosan grafted with poly(ethylene glycol) (EG-HBC) was coated on the pEGFP-loaded TACS particles. The prepared pEGFP-loaded TACS@EG-HBC particles have a size of about 200 nm and little cytotoxicity. The in vitro and in vivo gene transfection experiments indicate that the pEGFP-loaded TACS@EG-HBC particles possess a better sustainable gene transfection capacity and a high transfection efficiency, which should be attributed to the biodegradation of the CS-based shell, the thiolation and N-alkylation modification on CS cores, and the grafted PEG chains with better biocompatibility. The in vivo gene expression of the loaded pEGFP can persist up to 60 days. This novel gene vector has a theoretical and practical significance for gene therapy with sustained transfection effect.
Collapse
Affiliation(s)
- Fu-Xing Lin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
RANJBAR S, HASHEMZADEH MS, KHOSHTINAT NIKKHOI S, FARASAT A, TAT M, GHALAVAND M, DOROSTKAR R. Selective suppression of tumor cells by a tumor-specific bicistronic lentiviral vector. Turk J Biol 2016. [DOI: 10.3906/biy-1512-53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
36
|
ZHANG XIAOXI, ZHENG HAIXUE, XU MINJUN, ZHOU YU, LI XIANGPING, YANG FAN, LIU QINGYOU, SHI DESHUN. Evaluation of a combinatorial RNAi lentivirus vector targeting foot-and-mouth disease virus in vitro and in vivo. Mol Med Rep 2015; 12:6672-8. [PMID: 26323462 PMCID: PMC4626173 DOI: 10.3892/mmr.2015.4246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 07/22/2015] [Indexed: 11/06/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven‑hoofed animals, which leads to serious economical losses. FMDV is not adequately controlled by vaccination or biosecurity measures. To generate genetically modified FMDV‑resistant animals, a combinatorial expression cassette producing three short hairpin (sh)RNAs was constructed using the lentivirus (LV) vector, LV‑3shRNA. The three shRNAs were expressed under the regulation of DNA polymerase III promoters from a buffalo and a bovine source, with one targeted to the non‑structural protein 3B, and the other two targeted to the viral polymerase protein 3D of FMDV, respectively. The role of LV‑3shRNA in the inhibition of the replication of FMDV was determined in BHK‑21 cells and in suckling mice. The results revealed that LV‑3shRNA reduced viral growth 3‑fold (24 h post‑infection) when the cells were challenged with 107‑times the tissue culture infective dose (TCID50)/ml of O serotype FMDV. The suckling mice pretreated with LV‑3shRNA were completely protected on administration of 5‑times the dose of FMDV otherwise sufficient to kill 50% of the experimental animals (LD50). These results demonstrated that the LV‑mediated dual expression of three FMDV‑specific shRNAs provided a novel strategy towards combating FMDV, which facilitates the permanent introduction of novel disease-resistance traits into the buffalo and bovine genomes in the future.
Collapse
Affiliation(s)
- XIAOXI ZHANG
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530005, P.R. China
- Faculty of Basic Medicine, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - HAIXUE ZHENG
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - MINJUN XU
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - YU ZHOU
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530005, P.R. China
| | - XIANGPING LI
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530005, P.R. China
| | - FAN YANG
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530005, P.R. China
| | - QINGYOU LIU
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530005, P.R. China
| | - DESHUN SHI
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530005, P.R. China
| |
Collapse
|
37
|
Lin X, Li HR, Lin XF, Yu ME, Tu XW, Hua ZD, Lin M, Xu NL, Han LL, Chen YS. Silencing of Livin inhibits tumorigenesis and metastasis via VEGF and MMPs pathway in lung cancer. Int J Oncol 2015; 47:657-667. [PMID: 26094984 DOI: 10.3892/ijo.2015.3058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/08/2015] [Indexed: 11/06/2022] Open
Abstract
Livin, an inhibitor of apoptosis protein (IAP), is overexpressed in various cancers and decreases tumor sensitivity to chemotherapy and radiotherapy. However, the effect of Livin on lung adenocarcinoma metastasis and the specific mechanism involved remain unclear. RNAi technology was used to stably silence Livin in A549 cells in the present study. The effect of Livin on tumor growth and invasion was investigated in lung cancer cells in vitro and animal models were established to determine the anti-metastasis ability of Livin silencing in vivo. The results indicated that Livin knock-down suppressed cell proliferation and inhibited cell invasion, accompanied by downregulation of VEGF and MMP-2/-9. Silencing of Livin resulted in the prevention of xenograft tumor formation. Seventy-five immunodeficient male BALB/C nude mice were randomly divided into three groups, the relative ratio of the areas with pulmonary nodules in the experimental group decreased from 46.71±7.27% to 11.07±2.94% compared with the negative control group (P<0.001), indicating the interaction between Livin, VEGF and MMPs. The xenograft tumor model of intravenous injection of tumor cells were successfully established and applied for the analysis of lung cancer tumorigenesis and metastasis in a time-dependent manner for the first time. Based on the reliable and reproducible animal model, our findings indicate that knock-down of Livin inhibits cell growth and invasion through blockade of the VEGF and MMPs pathways in lung cancer cells in vitro, and inhibits tumorigenesis and metastasis of lung cancer in vivo, suggesting that Livin is a promising antitumor target.
Collapse
Affiliation(s)
- Xian Lin
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, P.R. China
| | - Hong-Ru Li
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, P.R. China
| | - Xiao-Fen Lin
- Department of Respiratory Medicine, Fujian Zhangzhou First Hospital, Clinical Medical College of Fujian Medical University, Zhangzhou 363000, P.R. China
| | - Mei-E Yu
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, P.R. China
| | - Xun-Wei Tu
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, P.R. China
| | - Zhi-Dan Hua
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, P.R. China
| | - Ming Lin
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, P.R. China
| | - Neng-Luan Xu
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, P.R. China
| | - Li-Li Han
- Cardiovascular Key Laboratory of Fujian Province, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, P.R. China
| | - Yu-Sheng Chen
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, P.R. China
| |
Collapse
|
38
|
Luo J, Niu X, Zhang M, Zhang K, Chen M, Deng S. Inhibition of B lymphocyte-induced maturation protein-1 reduces the production of autoantibody and alleviates symptoms of systemic lupus erythematosus. Autoimmunity 2015; 48:80-6. [PMID: 25347333 PMCID: PMC4389764 DOI: 10.3109/08916934.2014.976627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/14/2014] [Accepted: 10/05/2014] [Indexed: 12/21/2022]
Abstract
The B lymphocyte-induced maturation protein-1 (Blimp-1) is an important transcription factor for the maintenance of antigen-specific immune responses, and it is crucial in the development of systemic lupus erythematosus (SLE). This study aimed to investigate the role of Blimp-1 in the development of SLE and autoimmune-like symptoms. Lentivirus-mediated Blimp-1 siRNA was constructed and injected into MRL-Fas(lpr) lupus mice. The expression levels of Blimp-1, J-chain, C-myc, XBP-1 and BCMA in peripheral blood mononuclear cells (PMBCs) were determined by RT-PCR. Anti-dsDNA autoantibody levels were detected using ELISA. The expression levels of Blimp-1 in liver, kidney, spleen and lymph nodes of mice were also detected by Western blot. The 24-h urinary protein was monitored weekly. Our results demonstrated that in MRL-Fas(lpr) lupus mice, Blimp-1 was upregulated in PMBCs, liver, kidney, spleen and lymph nodes. Administration of Blimp-1 siRNA reduced the expression of Blimp-1 and the anti-dsDNA level by 78 and 28%, respectively, in the peripheral blood, and the expression of XBP-1, J-chain and BCMA was also decreased. Although the Blimp-1 level in liver showed no significant changes, the levels of Blimp-1 in kidney, spleen and lymph nodes were dramatically decreased by 95, 72 and 47%, respectively. Kidney diseases induced by SLE in lupus mice were mitigated, and urinary protein levels were significantly decreased. These results indicate that Blimp-1 plays an important role in promoting the progression of SLE. Therefore, Blimp-1 may provide a new therapeutic target in the treatment of SLE.
Collapse
MESH Headings
- Animals
- Autoantibodies/biosynthesis
- B-Cell Maturation Antigen/genetics
- B-Cell Maturation Antigen/immunology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Female
- Gene Expression Regulation
- Genetic Vectors
- Immunoglobulin J-Chains/genetics
- Immunoglobulin J-Chains/immunology
- Injections, Intravenous
- Kidney/immunology
- Kidney/pathology
- Lentivirus/genetics
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Liver/immunology
- Liver/pathology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Lupus Erythematosus, Systemic/therapy
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Mice
- Mice, Inbred MRL lpr
- Positive Regulatory Domain I-Binding Factor 1
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/immunology
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- Regulatory Factor X Transcription Factors
- Signal Transduction
- Spleen/immunology
- Spleen/pathology
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/immunology
- X-Box Binding Protein 1
Collapse
Affiliation(s)
- Jie Luo
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaochang Niu
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Mingxu Zhang
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Kejun Zhang
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Ming Chen
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
- Address for correspondence: Shaoli Deng, MD and Ming Chen, MD, Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, 10 Chang Jiang Zhi Road, Chongqing 400042, China. E-mail address: (S.D.); (M.C.)
| | - Shaoli Deng
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing, China
- Address for correspondence: Shaoli Deng, MD and Ming Chen, MD, Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, 10 Chang Jiang Zhi Road, Chongqing 400042, China. E-mail address: (S.D.); (M.C.)
| |
Collapse
|
39
|
Li X, Li M, Huang S, Qiao S, Qin Z, Kang C, Shi D. The effect of buffalo CD14 shRNA on the gene expression of TLR4 signal pathway in buffalo monocyte/macrophages. Cell Mol Biol Lett 2014; 19:623-37. [PMID: 25355240 PMCID: PMC6275898 DOI: 10.2478/s11658-014-0217-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/24/2014] [Indexed: 11/25/2022] Open
Abstract
CD14 plays a crucial role in the inflammatory response to lipopolysaccharide (LPS), which interacts with TLR4 and MD-2 to enable cell activation, resulting in inflammation. Upstream inhibition of the inflammation pathway mediated by bacterial LPS, toll-like receptor 4 (TLR4) and cluster of differentiation antigen 14 (CD14) was proven to be an effective therapeutic approach for attenuating harmful immune activation. To explore the effect of CD14 downregulation on the expression of TLR4 signaling pathway-related genes after LPS stimulation in buffalo (Bubalus bubalis) monocyte/macrophages, effective CD14 shRNA sequences were screened using qRT-PCR and FACS analysis with buffalo CD14 shRNA lentiviral recombinant plasmids (pSicoRGFP-shRNA) and buffalo CD14 fusion expression plasmids (pDsRed-N1-buffalo CD14) co-transfected into HEK293T cells via liposomes. Of the tested shRNAs, shRNA-1041 revealed the highest knockdown efficiency (p < 0.01). When buffalo peripheral blood monocyte/macrophages were infected with shRNA-1041 lentivirus and stimulated with LPS, the expression of endogenous CD14 was significantly decreased by CD14 shRNA (p < 0.01), and the mRNA expression levels of TLR4, IL-6 and TNF-α were also significantly downregulated compared to the control groups (p < 0.01). These results demonstrated that the knockdown of endogenous CD14 had clear regulatory effects on the signal transduction of TLR4 after stimulation with LPS. These results may provide a better understanding of the molecular mechanisms of CD14 regulation in the development of several buffalo diseases.
Collapse
Affiliation(s)
- Xiangping Li
- State Key Laboratory of Subtropical Bioresource Conservation and Utilization at Guangxi University, Nanning, Guangxi, China
| | - Meiqing Li
- State Key Laboratory of Subtropical Bioresource Conservation and Utilization at Guangxi University, Nanning, Guangxi, China
| | - Shihai Huang
- College of life science and technology, Guangxi University, Nanning, Guangxi, China
| | - Shuye Qiao
- State Key Laboratory of Subtropical Bioresource Conservation and Utilization at Guangxi University, Nanning, Guangxi, China
| | - Zhaoxian Qin
- Guangxi Institute of Animal Science, Nanning, Guangxi, China
| | - Chao Kang
- College of life science and technology, Guangxi University, Nanning, Guangxi, China
| | - Deshun Shi
- State Key Laboratory of Subtropical Bioresource Conservation and Utilization at Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
40
|
Zare M, Soleimani M, Mohammadian M, Akbarzadeh A, Havasi P, Zarghami N. Efficient biotechnological approach for lentiviral transduction of induced pluripotent stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:743-8. [PMID: 25420755 DOI: 10.3109/21691401.2014.982804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Induced pluripotent stem (iPS) cells are generated from differentiated adult somatic cells by reprogramming them. Unlimited self-renewal, and the potential to differentiate into any cell type, make iPS cells very promising candidates for basic and clinical research. Furthermore, iPS cells can be genetically manipulated for use as therapeutic tools. DNA can be introduced into iPS cells, using lentiviral vectors, which represent a helpful choice for efficient transduction and stable integration of transgenes. In this study, we compare two methods of lentiviral transduction of iPS cells, namely, the suspension method and the hanging drop method. In contrast to the conventional suspension method, in the hanging drop method, embryoid body (EB) formation and transduction occur concurrently. The iPS cells were cultured to form EBs, and then transduced with lentiviruses, using the conventional suspension method and the hanging drop method, to express miR-128 and green fluorescent protein (GFP). The number of transduced cells were assessed by fluorescent microscopy and flow cytometry. MTT assay and real-time PCR were performed to determine the cell viability and transgene expression, respectively. Morphologically, GFP+ cells were more detectable in the hanging drop method, and this finding was quantified by flow cytometric analysis. According to the results of the MTT assay, cell viability was considerably higher in the hanging drop method, and real-time PCR represented a higher relative expression of miR-128 in the iPS cells introduced with lentiviruses in drops. Altogether, it seems that lentiviral transduction of challenging iPS cells using the hanging drop method offers a suitable and sufficient strategy in their gene transfer, with less toxicity than the conventional suspension method.
Collapse
Affiliation(s)
- Mehrak Zare
- a Department of Clinical Biochemistry and Laboratory , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Cellular Biology , Stem Cell Technology Research Center , Tehran , Iran.,c Neurosciences Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Masoud Soleimani
- d Department of Haematology , School of Medicine, Tarbiat Modares University , Tehran , Iran
| | - Mozhdeh Mohammadian
- e Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences , Sari , Iran
| | - Abolfazl Akbarzadeh
- f Department of Medical Nanotechnology , Faculty of Advanced Medical Science, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Parvaneh Havasi
- b Department of Cellular Biology , Stem Cell Technology Research Center , Tehran , Iran
| | - Nosratollah Zarghami
- a Department of Clinical Biochemistry and Laboratory , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran.,c Neurosciences Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
41
|
Zhu T, Yuan L, Jones G, Hua P, He G, Chen J, Zhang S. OB-RL silencing inhibits the thermoregulatory ability of Great Roundleaf Bats (Hipposideros armiger). Gen Comp Endocrinol 2014; 204:80-7. [PMID: 24815886 DOI: 10.1016/j.ygcen.2014.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 04/22/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
Previous studies have shown that the hormone Leptin has an important role in mammalian heterothermy by regulating metabolism and food intake via lipolysis, as well as adaptive evolution of Leptin in heterothermic bats driven by selected pressure. However, the mechanism of Leptin in heterothermic regulation in mammals is unknown. By combining previous results, we speculated that the Leptin signaling pathway mediated by OB-RL (Leptin receptor long form) in the hypothalamus is important. OB-RL is one of the products of db gene and mainly distributed in the hypothalamus. In this study, we used OB-RL as a molecular marker, combining with the RNA interference technology and physiological/molecular analyses with Hipposideros armiger (a hibernating bat species) as an animal model, to explore the mechanism of Leptin in heterothermic regulation. Our data showed that all of four anti-OB-RL shRNA lentivirus significantly inhibited OB-RL expression (>90%), and the interference efficiency of PSC1742 lentivirus reached the highest value. In situ hybridization proved that PSC1742 lentivirus significantly decreased the OB-RL expression in the hypothalamus, especially in the ventromedial hypothalamic nucleus (VHM, 86.6%). Physiological analysis demonstrated that the thermoregulatory ability of bats (e.g., reducing core body temperature and heart rate) was significantly depressed after OB-RL silencing in the hypothalamus, and animals could not enter torpor state. Our study for the first time proved that the knock-down of OB-RL expression in hypothalamus inhibits heterothermic regulation of bats, and also provided the clues for further analyzing the mechanism of Leptin in the heterothermic regulation of mammals.
Collapse
Affiliation(s)
- Tengteng Zhu
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research in Science and Technology, East China Normal University, Shanghai 200062, China
| | - Lihong Yuan
- Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China.
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Woodland Road, BS8 1UG Bristol, United Kingdom
| | - Panyu Hua
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research in Science and Technology, East China Normal University, Shanghai 200062, China
| | - Guimei He
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research in Science and Technology, East China Normal University, Shanghai 200062, China
| | - Jinping Chen
- Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research in Science and Technology, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
42
|
Grandchamp N, Altémir D, Philippe S, Ursulet S, Pilet H, Serre MC, Lenain A, Serguera C, Mallet J, Sarkis C. Hybrid lentivirus-phiC31-int-NLS vector allows site-specific recombination in murine and human cells but induces DNA damage. PLoS One 2014; 9:e99649. [PMID: 24956106 PMCID: PMC4067480 DOI: 10.1371/journal.pone.0099649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/17/2014] [Indexed: 12/27/2022] Open
Abstract
Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable.
Collapse
Affiliation(s)
- Nicolas Grandchamp
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Dorothée Altémir
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
| | - Stéphanie Philippe
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Suzanna Ursulet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Héloïse Pilet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Marie-Claude Serre
- Laboratoire de Virologie Moléculaire et Structurale, Gif-sur-Yvette, France
| | - Aude Lenain
- Commissariat à l'Energie Atomique, Laboratoire de Radiobiologie et Oncologie, Fontenay-aux-Roses, France
| | - Che Serguera
- Molecular Imaging Research Center - Modélisation des biothérapies, Fontenay-aux-Roses, France
| | - Jacques Mallet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Chamsy Sarkis
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- * E-mail:
| |
Collapse
|
43
|
Influence of immune responses in gene/stem cell therapies for muscular dystrophies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:818107. [PMID: 24959590 PMCID: PMC4052166 DOI: 10.1155/2014/818107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/07/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs.
Collapse
|
44
|
Pradilla G, Azzam T, Wang PP, Domb AJ, Brem H. Gene therapy for malignant brain tumors. Expert Rev Neurother 2014; 3:685-701. [DOI: 10.1586/14737175.3.5.685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Abstract
Lentiviral vectors can be used to genetically modify a broad range of cells. Hematopoietic stem cells (HSCs) are particularly suitable for lentiviral gene augmentation, because these cells can be enriched with relative ease from mouse bone marrow and human hematopoietic sources, and in principle require relatively limited cell numbers to completely reconstitute the hematopoietic system in vivo. Furthermore, lentiviral vectors are very efficient if pseudotyped with broad tropism envelope proteins. This chapter focuses on gene modification by the use of self-inactivating third-generation human immunodeficiency virus-derived lentiviral vectors for ex vivo HSC modification for both mouse and human application.
Collapse
|
46
|
Kantor B, Bailey RM, Wimberly K, Kalburgi SN, Gray SJ. Methods for gene transfer to the central nervous system. ADVANCES IN GENETICS 2014; 87:125-97. [PMID: 25311922 DOI: 10.1016/b978-0-12-800149-3.00003-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Rachel M Bailey
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keon Wimberly
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sahana N Kalburgi
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
47
|
Efficient transduction of hematopoietic stem cells and its potential for gene correction of hematopoietic diseases. Methods Mol Biol 2014; 1114:441-50. [PMID: 24557921 DOI: 10.1007/978-1-62703-761-7_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The ability to efficiently transduce hematopoietic stem cells (HSC) represents a powerful methodology by which to study the role of specific genes on HSC function, as well as to broaden the potential of gene therapy for hematopoietic related diseases. While retroviruses have been used extensively to transduce a variety of cell types, HIV-derived lentiviruses prove superior for transduction of quiescent HSC due to their ability to infect non-dividing cells. Quality of lentiviral supernatants and starting cells are vital to obtain reproducible consistent results, and therefore, here we describe the production of concentrated lentiviral preparations, the purification of HSC from total mouse bone marrow, and their transduction to obtain long-term HSC engraftment with persistent gene transfer and expression of the desired transgene.
Collapse
|
48
|
Chuai X, Wang W, Chen H, Deng Y, Wen B, Tan W. Lentiviral backbone-based hepatitis B virus replicon-mediated transfer favours the establishment of persistent hepatitis B virus infection in mice after hydrodynamic injection. Antiviral Res 2013; 101:68-74. [PMID: 24239872 DOI: 10.1016/j.antiviral.2013.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/04/2013] [Accepted: 10/30/2013] [Indexed: 01/29/2023]
Abstract
Establishment of a non-transgenic mouse model of persistent hepatitis B virus (HBV) infection is urgently needed. In this study, we constructed novel lentiviral-transfer plasmids containing HBV replicon DNA (pCS-HBV1.3, containing a 1.3-fold-overlength genome of HBV) and employed hydrodynamic injection (HDI) to develop an HBV-persistent mouse model. We explored the impact of host (different mouse strains, BALB/c and C57BL/6), gender, and the plasmid backbone on persistent HBV in mice. Our data showed that HBV antigenaemia (HBsAg, HBeAg) and HBV DNA persisted for >56days post-injection, while the appearance of anti-HBs antibody in the serum was only found among <30% of female C57BL/6 mice injected with pCS-HBV1.3. Moreover, HBcAg and HBV DNA were also detected in the liver of HDI mice. Compared with previous AAV-backbone based HBV replicon DNA transfer, we found that the HDI transfer with the lentiviral vector-based HBV replicon (pCS-HBV1.3) in this study resulted in a significantly higher level of HBV DNA transfer in the liver and longer persistence of HBV DNA and antigenaemia in the serum. Furthermore, we also showed that immunization of HBV replicon transfer mice with the novel HBSS1-based vaccines was able to overcome tolerance against HBV in mice and induces robust immunity (humoral as well as T-cell responses), followed by the clearance of the HBV viremia. We concluded that lentiviral backbone-based transfer vectors more readily establish persistent HBV infection in mouse models via HDI, providing a new tool useful for the study of HBV infection and immune-based therapies.
Collapse
Affiliation(s)
- Xia Chuai
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China; Department of Microbiology, Hebei Medical University, PR China
| | - Wen Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Hong Chen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Yao Deng
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Bo Wen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Wenjie Tan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China.
| |
Collapse
|
49
|
Huhtala T, Kaikkonen MU, Lesch HP, Viitala S, Ylä-Herttuala S, Närvänen A. Biodistribution and antitumor effect of Cetuximab-targeted lentivirus. Nucl Med Biol 2013; 41:77-83. [PMID: 24267054 DOI: 10.1016/j.nucmedbio.2013.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/18/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
Viral vectors are central tools for gene therapy. Targeting of the vector to desired tissues followed by expression of the therapeutic gene forms one of the most critical points in effective therapy. In this study we used streptavidin-displaying lentivirus conjugated to biotinylated anti-epidermal growth factor receptor (EGFR) antibody (Cetuximab) to target vector specifically to ovarian tumors. Biodistribution of the targeted virus was studied in nude mice with orthotropic SKOV-3m human ovarian carcinoma xenografts. Radiolabeled antibodies were conjugated to streptavidin-displaying lentiviruses and biodistribution of the virus after the intravenous delivery to tumor-bearing mice was monitored up to 6 days using combined SPECT/CT imaging modality. Organ samples were collected post mortem and specific organ activities were measured. The integration of lentivirus vectors in collected tissue samples was analyzed using qPCR and the expression of green fluorescent protein (GFP)-transgene was tested by enzyme-linked immunosorbent assay. Our results showed that lentiviruses conjugated to Cetuximab (Cet-LV) or control human IgG (IgG-LV) accumulated mainly to the liver and spleen of the mice and to lower extent to lung, kidneys and tumors. Strikingly, in 50% of the mice injected with cetuximab-targeted lentivirus no tumor tissue was found, whereas the remaining half showed a significant decrease in tumor size. We hypothesize/present data that lentivirus-mediated INF-αβ production together with tumor targeting could function as an effective antitumor treatment.
Collapse
Affiliation(s)
- Tuulia Huhtala
- University of Eastern Finland, A.I. Virtanen institute, Department of Biotechnology and Molecular Medicine, P.O.B. 1627, 70211 Kuopio, Finland; Biocenter Kuopio, P.O.B. 1627, 70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
50
|
Li L, Wang F, Wu Y, Davidson G, Levkin PA. Combinatorial Synthesis and High-Throughput Screening of Alkyl Amines for Nonviral Gene Delivery. Bioconjug Chem 2013; 24:1543-51. [DOI: 10.1021/bc400158w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Linxian Li
- Institute of Toxicology
and
Genetics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | | | - Yihang Wu
- Institute of Toxicology
and
Genetics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | - Gary Davidson
- Institute of Toxicology
and
Genetics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | - Pavel A. Levkin
- Institute of Toxicology
and
Genetics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| |
Collapse
|