1
|
Li X, Li Z, Tang M, Zhang K, Yang T, Zhong W, Yu B, Wang F, Dou X. Thymic stromal lymphopoietin-activated basophil promotes lung inflammation in mouse atopic march model. Front Immunol 2025; 16:1573130. [PMID: 40443683 PMCID: PMC12119317 DOI: 10.3389/fimmu.2025.1573130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
Background Atopic dermatitis (AD), a prevalent inflammatory skin disease affecting 10%-20% of the population, is linked to the development of asthma through atopic march (AM). This study aims to explore the role of basophils in OVA-induced lung inflammation in the presence of AD-like skin lesions and investigate the potential contribution of thymic stromal lymphopoietin (TSLP) in activating basophils. Methods Mouse AM models were established in C57BL/6 mice using MC903 and OVA epicutaneous sensitization, followed by intranasal OVA challenges. An intraperitoneal OVA-sensitized asthma model was employed as the control group. RNA-Seq analysis was conducted on lung CD45+ immune cells from these models. Histologic examinations, flow cytometry, and ELISA were used to examine the lung and systemic inflammatory response. Basophil depletion was achieved through intraperitoneal administration of anti-FcϵRIα mAb. The role of TSLP was investigated using TSLPR knockout mice. Results As in the intraperitoneal sensitization model, AM model also induced eosinophilic lung inflammation in mice, resembling the AM process. The RNA-Seq analysis revealed differential gene expression, with genes related to basophils being prominent in AM model. Increased basophil activation and IL-4 production were observed in OVA epicutaneously sensitized mice. Basophil depletion attenuated the eosinophilic lung inflammation. TSLP levels increased with topical MC903, and TSLPR knockout reduced lung inflammation, suggesting TSLP is involved in basophil activation. Conclusion Basophils play a crucial role in OVA-induced lung inflammation in the context of AD-like skin lesions, and TSLP appears to drive basophil activation. Understanding these interactions provides insights for potential therapeutic interventions in AM-associated conditions.
Collapse
Affiliation(s)
- Xu Li
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zizhuo Li
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mindan Tang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kaoyuan Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Dermatology, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ting Yang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weilong Zhong
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Dermatology, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Fang Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xia Dou
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Dermatology, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
2
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. eLife 2025; 13:RP98287. [PMID: 40326866 PMCID: PMC12055012 DOI: 10.7554/elife.98287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Furthermore, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Madison Mack
- Immunology and Inflammation Research Therapeutic Area, SanofiCambridgeUnited States
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Anna M Trier
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Jenny M Karo
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joseph C Sun
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
3
|
Gasmi M, Hejazi M, Muscella A, Marsigliante S, Sharma A. Aging-associated changes in immunological parameters: Implications for COVID-19 immune response in the elderly. Physiol Rep 2025; 13:e70364. [PMID: 40405557 PMCID: PMC12098970 DOI: 10.14814/phy2.70364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/07/2025] [Accepted: 04/26/2025] [Indexed: 05/24/2025] Open
Abstract
Aging has a profound impact on the immune system, leading to a gradual decline in its function and increased systemic inflammation, collectively known as immunosenescence and inflammaging. These changes make older adults more susceptible to infections, including COVID-19, and contribute to worse clinical outcomes, such as higher morbidity and mortality rates. This review explores immunological changes associated with aging, including impaired innate immune responses, reduced T- and B-cell function, and altered cytokine profiles. A comprehensive literature search identified relevant studies on the topic, and inclusion criteria focused on studies addressing age-related immune changes and their impact on responses to COVID-19. The findings underscore the need for targeted healthcare strategies to mitigate the negative effects of aging on immunity and improve immune resilience, and ultimately clinical outcomes and quality of life for this vulnerable population.
Collapse
Affiliation(s)
- Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar SaidTunisTunisia
| | - Mahdi Hejazi
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Antonella Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA)University of SalentoLecceItaly
| | - Santo Marsigliante
- Department of Biological and Environmental Science and Technologies (DiSTeBA)University of SalentoLecceItaly
| | - Aastha Sharma
- Department of Basic and Applied Science, School of Engineering and ScienceUniversity‐GD Goenka University GurugramGurugramIndia
| |
Collapse
|
4
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.23.590767. [PMID: 38712036 PMCID: PMC11071423 DOI: 10.1101/2024.04.23.590767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Further, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M. Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Madison Mack
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA 02141, USA
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anna M. Trier
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Steven J. Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny M. Karo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai 10019
| |
Collapse
|
5
|
He ZH, Jin Y, Chen D, Zheng HX, Xiang JE, Jiang YJ, Wen ZS. Seleno-chitooligosaccharide-induced modulation of intestinal barrier function: Role of inflammatory cytokines, tight junction proteins, and gut microbiota in mice. J Appl Biomed 2025; 23:45-55. [PMID: 40145885 DOI: 10.32725/jab.2025.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/26/2025] [Indexed: 03/28/2025] Open
Abstract
This study aimed to explore the function of Seleno-chitooligosaccharide (SOA) on the intestinal barrier through regulation of inflammatory cytokines, tight junction protein, and gut microbiota in mice. The results of ELISA assay demonstrated that SOA significantly increased the levels of IL-2, IL-10, and IFN-γ in serum and ileum. Meanwhile, SOA increased the levels of IL-4 in the ileum (p < 0.05). In addition, Diamine Oxidase (DAO) concentration was decreased in ileum by SOA treatments (p < 0.05). The administration of SOA significantly upregulated the expression of ZO-1 and Occludin in the ileum (p < 0.05). By 16S rDNA sequencing, reduced ratio of Bacillota/Bacteroidota was observed in SOA treated mice. Within the phylum of Bacteroidota, SOA increased the relative abundance of Deferribacterota, uncultured Bacteroidales bacterium, and Bacteroides. Within the phylum of Bacillota, increased relative abundance of Erysipelatoclostridium and Lachnoclostridium, and reduced relative abundance of Ruminococcaceae UCG-010 were observed with SOA supplement. In summary, SOA has the potential to modulate the function of intestinal barrier function and prevent intestinal diseases.
Collapse
Affiliation(s)
| | | | - Die Chen
- Zhejiang Ocean University, School of Food and Pharmacy, Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan, Zhejiang Province 316022, China
| | - Hui-Xin Zheng
- Zhejiang Ocean University, School of Food and Pharmacy, Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan, Zhejiang Province 316022, China
| | - Jia-Er Xiang
- Zhejiang Ocean University, School of Food and Pharmacy, Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan, Zhejiang Province 316022, China
| | - Yong-Jun Jiang
- Zhejiang Ocean University, School of Food and Pharmacy, Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan, Zhejiang Province 316022, China
| | - Zheng-Shun Wen
- Zhejiang Ocean University, School of Food and Pharmacy, Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan, Zhejiang Province 316022, China
- Xianghu Lab, Venture Valley Building, 168 Gengwen Road, Xiaoshan District, Hangzhou, Zhejiang Province 311231, China
| |
Collapse
|
6
|
Mannion JM, Rahimi RA. Tissue-Resident Th2 Cells in Type 2 Immunity and Allergic Diseases. Immunol Rev 2025; 330:e70006. [PMID: 39981858 PMCID: PMC11897987 DOI: 10.1111/imr.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Type 2 immunity represents a unique immune module that provides host protection against macro-parasites and noxious agents such as venoms and toxins. In contrast, maladaptive type 2 immune responses cause allergic diseases. While multiple cell types play important roles in type 2 immunity, recent studies in humans and murine models of chronic allergic diseases have shown that a distinct population of tissue-resident, CD4+ T helper type 2 (Th2) cells play a critical role in chronic allergic inflammation. The rules regulating Th2 cell differentiation have remained less well defined than other T cell subsets, but recent studies have shed new light into the specific mechanisms controlling Th2 cell biology in vivo. Here, we review our current understanding of the checkpoints regulating the development and function of tissue-resident Th2 cells with a focus on chronic allergic diseases. We discuss evidence for a barrier tissue checkpoint in initial Th2 cell priming, including the role of neuropeptides, damage-associated molecular patterns, and dendritic cell macro-clusters. Furthermore, we review the evidence for a second barrier tissue checkpoint that instructs the development of multi-cytokine producing, tissue-resident Th2 cells that orchestrate allergic inflammation. Lastly, we discuss potential approaches to therapeutically target tissue-resident Th2 cells in chronic allergic diseases.
Collapse
Affiliation(s)
- Jenny M Mannion
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Obata‐Ninomiya K, Jayaraman T, Ziegler SF. From the bench to the clinic: basophils and type 2 epithelial cytokines of thymic stromal lymphopoietin and IL-33. Clin Transl Immunology 2024; 13:e70020. [PMID: 39654685 PMCID: PMC11626414 DOI: 10.1002/cti2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 epithelial cytokines, including thymic stromal lymphopoietin and IL-33, play central roles in modulation of type 2 immune cells, such as basophils. Basophils are a small subset of granulocytes within the leukocyte population that predominantly exist in the blood. They have non-redundant roles in allergic inflammation in peripheral tissues such as the lung, skin and gut, where they increase and accumulate at inflammatory lesions and exclusively produce large amounts of IL-4, a type 2 cytokine. These inflammatory reactions are known to be, to some extent, phenocopies of infectious diseases of ticks and helminths. Recently, biologics related to both type 2 epithelial cytokines and basophils have been approved by the US Food and Drug Administration for treatment of allergic diseases. We summarised the roles of Type 2 epithelial cytokines and basophils in basic science to translational medicine, including recent findings.
Collapse
Affiliation(s)
| | | | - Steven F Ziegler
- Center of Fundamental ImmunologyBenaroya Research InstituteSeattleWAUSA
- Department of ImmunologyUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
8
|
Joulia R, Lloyd CM. Basophils: Regulators of lung inflammation over space and time. J Exp Med 2024; 221:e20241663. [PMID: 39453397 PMCID: PMC11519372 DOI: 10.1084/jem.20241663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
In this issue of JEM, Schuijs et al. (https://doi.org/10.1084/jem.20240103) highlight a novel role for basophils during allergic immune responses to house dust mites (HDM). They reveal that interleukin-33 (IL-33)-activated basophils facilitate the recruitment and extravasation of Th2 cells into the lungs during a specific time frame via their interactions with pulmonary endothelial cells.
Collapse
Affiliation(s)
- Régis Joulia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
9
|
Schuijs MJ, Brenis Gomez CM, Bick F, Van Moorleghem J, Vanheerswynghels M, van Loo G, Beyaert R, Voehringer D, Locksley RM, Hammad H, Lambrecht BN. Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue. J Exp Med 2024; 221:e20240103. [PMID: 39297875 PMCID: PMC11413418 DOI: 10.1084/jem.20240103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Asthma is characterized by lung eosinophilia, remodeling, and mucus plugging, controlled by adaptive Th2 effector cells secreting IL-4, IL-5, and IL-13. Inhaled house dust mite (HDM) causes the release of barrier epithelial cytokines that activate various innate immune cells like DCs and basophils that can promote Th2 adaptive immunity directly or indirectly. Here, we show that basophils play a crucial role in the development of type 2 immunity and eosinophilic inflammation, mucus production, and bronchial hyperreactivity in response to HDM inhalation in C57Bl/6 mice. Interestingly, conditional depletion of basophils during sensitization did not reduce Th2 priming or asthma inception, whereas depletion during allergen challenge did. During the challenge of sensitized mice, basophil-intrinsic IL-33/ST2 signaling, and not FcεRI engagement, promoted basophil IL-4 production and subsequent Th2 cell recruitment to the lungs via vascular integrin expression. Basophil-intrinsic loss of the ubiquitin modifying molecule Tnfaip3, involved in dampening IL-33 signaling, enhanced key asthma features. Thus, IL-33-activated basophils are gatekeepers that boost allergic airway inflammation by controlling Th2 tissue entry.
Collapse
Affiliation(s)
- Martijn J. Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Claudia M. Brenis Gomez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Fabian Bick
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Laboratory of Molecular and Cellular Pathophysiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| | - Richard M. Locksley
- UCSF Department of Medicine and Howard Hugues Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, Netherlands
| |
Collapse
|
10
|
Pogorelov D, Bode SFN, He X, Ramiro-Garcia J, Hedin F, Ammerlaan W, Konstantinou M, Capelle CM, Zeng N, Poli A, Domingues O, Montamat G, Hunewald O, Ciré S, Baron A, Longworth J, Demczuk A, Bazon ML, Casper I, Klimek L, Neuberger-Castillo L, Revets D, Guyonnet L, Delhalle S, Zimmer J, Benes V, Codreanu-Morel F, Lehners-Weber C, Weets I, Alper P, Brenner D, Gutermuth J, Guerin C, Morisset M, Hentges F, Schneider R, Shamji MH, Betsou F, Wilmes P, Glaab E, Cosma A, Goncalves J, Hefeng FQ, Ollert M. Multiomics approaches disclose very-early molecular and cellular switches during insect-venom allergen-specific immunotherapy: an observational study. Nat Commun 2024; 15:10266. [PMID: 39592626 PMCID: PMC11599746 DOI: 10.1038/s41467-024-54684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Allergen-specific immunotherapy (AIT) induces immune tolerance, showing the highest success rate (>95%) for insect venom while a much lower chance for pollen allergy. However, the molecular switches leading to successful durable tolerance restoration remain elusive. The primary outcome of this observational study is the comprehensive immunological cellular characterization during the AIT initiation phase, whereas the secondary outcomes are the serological and Th2-cell-type-specific transcriptomic analyses. Here we apply a multilayer-omics approach to reveal dynamic peripheral immune landscapes during the AIT-initiation phase in venom allergy patients (VAP) versus pollen-allergic and healthy controls. Already at baseline, VAP exhibit altered abundances of several cell types, including classical monocytes (cMono), CD4+ hybrid type 1-type 17 cells (Th1-Th17 or Th1/17) and CD8+ counterparts (Tc1-Tc17 or Tc1/17). At 8-24 h following AIT launch in VAP, we identify a uniform AIT-elicited pulse of late-transitional/IL-10-producing B cells, IL-6 signaling within Th2 cells and non-inflammatory serum-IL-6 levels. Sequential induction of activation and survival protein markers also immediately occur. A disequilibrium between serum IL-6 and cMono in VAP baseline is restored at day seven following AIT launch. Our longitudinal analysis discovers molecular switches during initiation-phase insect-venom AIT that secure long-term outcomes. Trial number: NCT02931955.
Collapse
Affiliation(s)
- Dimitrii Pogorelov
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Center of Allergy & Environment, Technical University of Munich, Munich, Germany
| | - Sebastian Felix Nepomuk Bode
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Xin He
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Javier Ramiro-Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Fanny Hedin
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Wim Ammerlaan
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
| | - Maria Konstantinou
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Séverine Ciré
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Agnieszka Demczuk
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Murilo Luiz Bazon
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Ingrid Casper
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | | | - Dominique Revets
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Lea Guyonnet
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Cytometry Platform, Institut Curie; Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
| | - Sylvie Delhalle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Françoise Codreanu-Morel
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Christiane Lehners-Weber
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Ilse Weets
- Department of Clinical Biology/ Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Pinar Alper
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Jan Gutermuth
- Department of Dermatology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Coralie Guerin
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- Cytometry Platform, Institut Curie; Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, France
| | - Martine Morisset
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Allergy Unit, Angers University Hospital, Angers, France
| | - François Hentges
- National Unit of Immunology-Allergology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute, Imperial College London, London, UK
| | - Fay Betsou
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
- CRBIP, Institut Pasteur, Université Paris Cité, Paris, France
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jorge Goncalves
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
11
|
Fisher TM, Liddelow SA. Emerging roles of astrocytes as immune effectors in the central nervous system. Trends Immunol 2024; 45:824-836. [PMID: 39332912 DOI: 10.1016/j.it.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
The astrocyte, a major glial cell type in the central nervous system (CNS), is widely regarded as a functionally diverse mediator of homeostasis. During development and throughout adulthood, astrocytes have essential roles, such as providing neuron metabolic support, modulating synaptic function, and maintaining the blood-brain barrier (BBB). Recent evidence continues to underscore their functional heterogeneity and importance for CNS maintenance, as well as how these cells ensure optimal CNS and immune responses to disease, acute trauma, and infection. Advances in our understanding of neuroimmune interactions complement our knowledge of astrocyte functional heterogeneity, where astrocytes are now regarded as key effectors and propagators of immune signaling. This shift in perspective highlights the role of astrocytes not merely as support cells, but as active participants in CNS immune responses.
Collapse
Affiliation(s)
- Theodore M Fisher
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Wei J, Mayberry CL, Lv X, Hu F, Khan T, Logan NA, Wilson JJ, Sears JD, Chaussabel D, Chang CH. IL3-Driven T Cell-Basophil Crosstalk Enhances Antitumor Immunity. Cancer Immunol Res 2024; 12:822-839. [PMID: 38739030 PMCID: PMC11219266 DOI: 10.1158/2326-6066.cir-23-0851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Cytotoxic T lymphocytes (CTL) are pivotal in combating cancer, yet their efficacy is often hindered by the immunosuppressive tumor microenvironment, resulting in CTL exhaustion. This study investigates the role of interleukin-3 (IL3) in orchestrating antitumor immunity through CTL modulation. We found that intratumoral CTLs exhibited a progressive decline in IL3 production, which was correlated with impaired cytotoxic function. Augmenting IL3 supplementation, through intraperitoneal administration of recombinant IL3, IL3-expressing tumor cells, or IL3-engineered CD8+ T cells, conferred protection against tumor progression, concomitant with increased CTL activity. CTLs were critical for this therapeutic efficacy as IL3 demonstrated no impact on tumor growth in Rag1 knockout mice or following CD8+ T-cell depletion. Rather than acting directly, CTL-derived IL3 exerted its influence on basophils, concomitantly amplifying antitumor immunity within CTLs. Introducing IL3-activated basophils retarded tumor progression, whereas basophil depletion diminished the effectiveness of IL3 supplementation. Furthermore, IL3 prompted basophils to produce IL4, which subsequently elevated CTL IFNγ production and viability. Further, the importance of basophil-derived IL4 was evident from the absence of benefits of IL3 supplementation in IL4 knockout tumor-bearing mice. Overall, this research has unveiled a role for IL3-mediated CTL-basophil cross-talk in regulating antitumor immunity and suggests harnessing IL3 sustenance as a promising approach for optimizing and enhancing cancer immunotherapy. See related Spotlight, p. 798.
Collapse
Affiliation(s)
- Jian Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine, ME 04609, USA
| | - Colleen L. Mayberry
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine, ME 04609, USA
| | - Xiaoting Lv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Fangyan Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Taushif Khan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Natalie A. Logan
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine, ME 04609, USA
- Stanford University, Stanford, CA 94305, USA
| | - John J. Wilson
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine, ME 04609, USA
| | - John D. Sears
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine, ME 04609, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Damien Chaussabel
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine, ME 04609, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Chih-Hao Chang
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine, ME 04609, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
13
|
Baglivo I, Quaranta VN, Dragonieri S, Colantuono S, Menzella F, Selvaggio D, Carpagnano GE, Caruso C. The New Paradigm: The Role of Proteins and Triggers in the Evolution of Allergic Asthma. Int J Mol Sci 2024; 25:5747. [PMID: 38891935 PMCID: PMC11171572 DOI: 10.3390/ijms25115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Epithelial barrier damage plays a central role in the development and maintenance of allergic inflammation. Rises in the epithelial barrier permeability of airways alter tissue homeostasis and allow the penetration of allergens and other external agents. Different factors contribute to barrier impairment, such as eosinophilic infiltration and allergen protease action-eosinophilic cationic proteins' effects and allergens' proteolytic activity both contribute significantly to epithelial damage. In the airways, allergen proteases degrade the epithelial junctional proteins, allowing allergen penetration and its uptake by dendritic cells. This increase in allergen-immune system interaction induces the release of alarmins and the activation of type 2 inflammatory pathways, causing or worsening the main symptoms at the skin, bowel, and respiratory levels. We aim to highlight the molecular mechanisms underlying allergenic protease-induced epithelial barrier damage and the role of immune response in allergic asthma onset, maintenance, and progression. Moreover, we will explore potential clinical and radiological biomarkers of airway remodeling in allergic asthma patients.
Collapse
Affiliation(s)
- Ilaria Baglivo
- Centro Malattie Apparato Digerente (CEMAD) Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Vitaliano Nicola Quaranta
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Silvano Dragonieri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Stefania Colantuono
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital-AULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - David Selvaggio
- UOS di Malattie dell’Apparato Respiratorio Ospedale Cristo Re, 00167 Roma, Italy
| | - Giovanna Elisiana Carpagnano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Respiratory Disease, University “Aldo Moro” of Bari, 70121 Bari, Italy (S.D.)
| | - Cristiano Caruso
- Unità Operativa Semplice Dipartimentale Day Hospital (UOSD DH) Medicina Interna e Malattie dell’Apparato Digerente, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
14
|
Leyva-Castillo JM, Vega-Mendoza D, Strakosha M, Deng L, Choi S, Miyake K, Karasuyama H, Chiu IM, Phipatanakul W, Geha RS. Basophils are important for development of allergic skin inflammation. J Allergy Clin Immunol 2024; 153:1344-1354.e5. [PMID: 38336257 PMCID: PMC11070311 DOI: 10.1016/j.jaci.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Atopic dermatitis skin lesions exhibit increased infiltration by basophils. Basophils produce IL-4, which plays an important role in the pathogenesis of atopic dermatitis. OBJECTIVE We sought to determine the role of basophils in a mouse model of antigen-driven allergic skin inflammation. METHODS Wild-type mice, mice with selective and inducible depletion of basophils, and mice expressing Il4-driven enhanced green fluorescent protein were subjected to epicutaneous sensitization with ovalbumin or saline. Sensitized skin was examined by histology for epidermal thickening. Cells were analyzed for surface markers and intracellular expression of enhanced green fluorescent protein by flow cytometry. Gene expression was evaluated by real-time reverse transcription-quantitative PCR. RESULTS Basophils were important for epidermal hyperplasia, dermal infiltration by CD4+ T cells, mast cells, and eosinophils in ovalbumin-sensitized mouse skin and for the local and systemic TH2 response to epicutaneous sensitization. Moreover, basophils were the major source of IL-4 in epicutaneous-sensitized mouse skin and promote the ability of dendritic cells to drive TH2 polarization of naive T cells. CONCLUSION Basophils play an important role in the development of allergic skin inflammation induced by cutaneous exposure to antigen in mice.
Collapse
Affiliation(s)
- Juan-Manuel Leyva-Castillo
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass.
| | - Daniela Vega-Mendoza
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Maria Strakosha
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, Mass
| | - Samantha Choi
- Department of Immunology, Harvard Medical School, Boston, Mass
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, Mass
| | - Wanda Phipatanakul
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass
| |
Collapse
|
15
|
Nakano K, Whitehead GS, Lyons-Cohen MR, Grimm SA, Wilkinson CL, Izumi G, Livraghi-Butrico A, Cook DN, Nakano H. Chemokine CCL19 promotes type 2 T-cell differentiation and allergic airway inflammation. J Allergy Clin Immunol 2024; 153:487-502.e9. [PMID: 37956733 PMCID: PMC10922373 DOI: 10.1016/j.jaci.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Allergic asthma is driven largely by allergen-specific TH2 cells, which develop in regional lymph nodes on the interaction of naive CD4+ T cells with allergen-bearing dendritic cells that migrate from the lung. This migration event is dependent on CCR7 and its chemokine ligand, CCL21. However, is has been unclear whether the other CCR7 ligand, CCL19, has a role in allergic airway disease. OBJECTIVE This study sought to define the role of CCL19 in TH2 differentiation and allergic airway disease. METHODS Ccl19-deficient mice were studied in an animal model of allergic asthma. Dendritic cells or fibroblastic reticular cells from wild-type and Ccl19-deficient mice were cultured with naive CD4+ T cells, and cytokine production was measured by ELISA. Recombinant CCL19 was added to CD4+ T-cell cultures, and gene expression was assessed by RNA-sequencing and quantitative PCR. Transcription factor activation was assessed by flow cytometry. RESULTS Lungs of Ccl19-deficient mice had less allergic airway inflammation, reduced airway hyperresponsiveness, and less IL-4 and IL-13 production compared with lungs of Ccl19-sufficient animals. Naive CD4+ T cells cocultured with Ccl19-deficient dendritic cells or fibroblastic reticular cells produced lower amounts of type 2 cytokines than did T cells cocultured with their wild-type counterparts. Recombinant CCL19 increased phosphorylation of STAT5 and induced expression of genes associated with TH2 cell and IL-2 signaling pathways. CONCLUSIONS These results reveal a novel, TH2 cell-inducing function of CCL19 in allergic airway disease and suggest that strategies to block this pathway might help to reduce the incidence or severity of allergic asthma.
Collapse
Affiliation(s)
- Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Gregory S Whitehead
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Miranda R Lyons-Cohen
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Christina L Wilkinson
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Gentaro Izumi
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | | | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC.
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC.
| |
Collapse
|
16
|
Karim S, Leyva-Castillo JM, Narasimhan S. Tick salivary glycans - a sugar-coated tick bite. Trends Parasitol 2023; 39:1100-1113. [PMID: 37838514 DOI: 10.1016/j.pt.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
Ticks are hematophagous arthropods that transmit disease-causing pathogens worldwide. Tick saliva deposited into the tick-bite site is composed of an array of immunomodulatory proteins that ensure successful feeding and pathogen transmission. These salivary proteins are often glycosylated, and glycosylation is potentially critical for the function of these proteins. Some salivary glycans are linked to the phenomenon of red meat allergy - an allergic response to red meat consumption in humans exposed to certain tick species. Tick salivary glycans are also invoked in the phenomenon of acquired tick resistance wherein non-natural host species exposed to tick bites develop an immune response that thwarts subsequent tick feeding. This review dwells on our current knowledge of these two phenomena, thematically linked by salivary glycans.
Collapse
Affiliation(s)
- Shahid Karim
- University of Southern Mississippi, Hattiesburg, MS, USA
| | - Juan Manuel Leyva-Castillo
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven-06520, CT, USA.
| |
Collapse
|
17
|
Qiao YL, Zhu MW, Xu S, Jiao WE, Ni HF, Tao ZZ, Chen SM. Allergen-induced CD11c + dendritic cell pyroptosis aggravates allergic rhinitis. Cell Commun Signal 2023; 21:281. [PMID: 37817225 PMCID: PMC10566027 DOI: 10.1186/s12964-023-01309-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Pyroptosis is crucial for controlling various immune cells. However, the role of allergen-induced CD11c + dendritic cell (DC) pyroptosis in allergic rhinitis (AR) remains unclear. METHODS Mice were grouped into the control group, AR group and necrosulfonamide-treated AR group (AR + NSA group). The allergic symptom scores, OVA-sIgE titres, serum IL-1β/IL-18 levels, histopathological characteristics and T-helper cell-related cytokines were evaluated. CD11c/GSDMD-N-positive cells were examined by immunofluorescence analysis. Murine CD11c + bone marrow-derived DCs (BMDCs) were induced in vitro, stimulated with OVA/HDM, treated with necrosulfonamide (NSA), and further cocultured with lymphocytes to assess BMDC function. An adoptive transfer murine model was used to study the role of BMDC pyroptosis in allergic rhinitis. RESULTS Inhibiting GSDMD-N-mediated pyroptosis markedly protected against Th1/Th2/Th17 imbalance and alleviated inflammatory responses in the AR model. GSDMD-N was mainly coexpressed with CD11c (a DC marker) in AR mice. In vitro, OVA/HDM stimulation increased pyroptotic morphological abnormalities and increased the expression of pyroptosis-related proteins in a dose-dependent manner; moreover, inhibiting pyroptosis significantly decreased pyroptotic morphology and NLRP3, C-Caspase1 and GSDMD-N expression. In addition, OVA-induced BMDC pyroptosis affected CD4 + T-cell differentiation and related cytokine levels, leading to Th1/Th2/Th17 cell imbalance. However, the Th1/Th2/Th17 cell immune imbalance was significantly reversed by NSA. Adoptive transfer of OVA-loaded BMDCs promoted allergic inflammation, while the administration of NSA to OVA-loaded BMDCs significantly reduced AR inflammation. CONCLUSION Allergen-induced dendritic cell pyroptosis promotes the development of allergic rhinitis through GSDMD-N-mediated pyroptosis, which provides a clue to allergic disease interventions. Video Abstract.
Collapse
Affiliation(s)
- Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Ming-Wan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Hai-Feng Ni
- Department of Otolaryngology-Head and Neck surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, P.R. China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| |
Collapse
|
18
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
19
|
Čelakovská J, Čermáková E, Boudková P, Andrýs C, Krejsek J. The association between eosinophils (CD16 + eosinophils), basophils (CD203 + basophils), and CD23 B lymphocytes in patients with atopic dermatitis on dupilumab therapy: pilot study. Dermatol Ther (Heidelb) 2023; 13:1193-1210. [PMID: 37071375 PMCID: PMC10149537 DOI: 10.1007/s13555-023-00922-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Eosinophils, basophils, and the molecule CD23 on B cells are involved in the pathophysiology of atopic dermatitis (AD). The molecule CD23 is involved in the regulation of IgE synthesis and is expressed by activated B cells. The molecule CD16 is used to assess the activation of eosinophils and CD203 of basophils. The association between the count of eosinophils, basophils, CD16+ eosinophils, CD203+ basophils and the expression of the activation marker CD23 on B cells in patients with AD (with and without dupilumab therapy) is not described. OBJECTIVE The aim of this pilot study is to evaluate the association between the blood count of eosinophils, basophils, relative CD16+ eosinophils, relative CD203+ basophils, and the expression of molecule CD23 on B cells and on their subsets (total, memory, naive, switched, non-switched) in patients suffering from AD (with and without dupilumab therapy) and in control group. METHODS A total of 45 patients suffering from AD were examined; 32 patients without dupilumab treatment (10 men, 22 women, average age 35 years), 13 patients with dupilumab treatment (7 men, 6 women, average age 43.4 years), and 30 subjects as a control group (10 men, 20 women, average age 44.7 years). Immunophenotype was examined by flow cytometry in which monoclonal antibodies with fluorescent molecules were used. For statistical analysis we used non-parametric Kruskal-Wallis one-factor analysis of variance with post hoc by Dunn's test with Bonferroni modification and the Spearman's rank correlation coefficient; for coefficients higher than 0.41, we report R2 (percent of variation explained). RESULTS The absolute count of eosinophils was significantly higher in patients with AD (with and without dupilumab) in comparison to healthy subjects. The difference in the relative count of CD16+ eosinophils in patients with AD (with and without dupilumab therapy) compared with control is not statistically significant. In patients with dupilumab therapy the significantly lower count of relative CD203+ basophils was confirmed compared with control. The higher association between the count of eosinophils (absolute and relative) and the expression of CD23 marker on B cells was confirmed in patients with dupilumab therapy; in contrast, this association was low in patients with AD without dupilumab therapy and in healthy subjects. CONCLUSION The higher association between the count of eosinophils (absolute and relative) and the expression of CD23 marker on B cells was confirmed in patients with AD under dupilumab therapy. It suggests that IL-4 production by eosinophils may play a role in B lymphocyte activation. The significantly lower count of CD203+ basophils has been demonstrated in patients with dupilumab therapy. This reduction of CD203+ basophil count may contribute to the therapeutic effects of dupilumab by reducing the inflammatory response and allergic reactions in patients with AD.
Collapse
Affiliation(s)
- Jarmila Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty, Charles University, Hradec Králové, Czech Republic.
| | - Eva Čermáková
- Department of Medical Biophysics, Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Petra Boudková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Ctirad Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty, Charles University, 50002, Hradec Králové, Czech Republic
| |
Collapse
|
20
|
Layritz A, Galicia‐Carreón J, Benfadal S, Novak N. Differences in allergen-specific basophil activation and T cell proliferation in atopic dermatitis patients with comorbid allergic rhinoconjunctivitis treated with a monoclonal anti-IL-4Rα antibody or allergen-specific immunotherapy. Immun Inflamm Dis 2023; 11:e808. [PMID: 37102639 PMCID: PMC10091378 DOI: 10.1002/iid3.808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD), a chronic inflammatory disorder, is often accompanied by allergic rhinoconjunctivitis (ARC) as a co-morbidity. The use of a monoclonal anti-IL-4Rα antibody has been effective in controlling moderate to severe AD symptoms. Allergen-specific immunotherapy (AIT) is widely used for the treatment of ARC and asthma. The effects of AIT on basophil reactivity/effector functions have already been examined and used as indicators of the treatment efficacy. However, it is unclear, how an anti-IL-4Rα antibody can influence allergen-specific immune responses of basophils and T cells of AD patients with comorbid ARC. OBJECTIVE To investigate the effect of a monoclonal anti-IL-4Rα antibody on the in vitro allergic responses of basophils and T cells deriving from AD patients with comorbid ARC. METHODS Blood samples of 32 AD patients were obtained before, after 4 and 16 weeks of an anti-IL-4Rα antibody therapy (300 mg subcutaneously/2 weeks; n = 21) or AIT (daily sublingual application; n = 11). Patients treated with an anti-IL-4Rα antibody were grouped according to their serum specific immunoglobulin E levels and ARC symptoms, while patients receiving an AIT were additionally grouped according to the allergen specificity of their AIT. Basophil activation test and T cell proliferation assays were undertaken after an in vitro allergen stimulation. RESULTS A significant reduction of the immunoglobulin E levels and the allergen-specific T cell proliferation was observed in AD patients treated with an anti-IL-4Rα -antibody, while the allergen-specific basophil activation/sensitivity were found to be significantly increased. In patients receiving an AIT, the in vitro allergen-specific basophil activation and the T cell proliferation were found to be significantly decreased in response to seasonal allergens. CONCLUSIONS An IL-4Rα blockade induced by a monoclonal anti-IL-4Rα antibody leads to an increased activity/sensitivity of early effector cells (such as basophils), in contrast to a decreasing reactivity observed under an AIT. The late-phase T cell reaction to allergens did not differ between the herein assessed treatments.
Collapse
Affiliation(s)
| | | | - Said Benfadal
- Department of Dermatology and AllergyUniversity Hospital BonnBonnGermany
| | - Natalija Novak
- Department of Dermatology and AllergyUniversity Hospital BonnBonnGermany
| |
Collapse
|
21
|
Möbs C, Salheiser M, Bleise F, Witt M, Mayer JU. Basophils control T cell priming through soluble mediators rather than antigen presentation. Front Immunol 2023; 13:1032379. [PMID: 36846020 PMCID: PMC9950813 DOI: 10.3389/fimmu.2022.1032379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 02/12/2023] Open
Abstract
Basophils play an important role in the development of type 2 immunity and have been linked to protective immunity against parasites but also inflammatory responses in allergic diseases. While typically classified as degranulating effector cells, different modes of cellular activation have been identified, which together with the observation that different populations of basophils exist in the context of disease suggest a multifunctional role. In this review we aim to highlight the role of basophils play in antigen presentation of type 2 immunity and focus on the contribution basophils play in the context of antigen presentation and T cell priming. We will discuss evidence suggesting that basophils perform a direct role in antigen presentation and relate it to findings that indicate cellular cooperation with professional antigen-presenting cells, such as dendritic cells. We will also highlight tissue-specific differences in basophil phenotypes that might lead to distinct roles in cellular cooperation and how these distinct interactions might influence immunological and clinical outcomes of disease. This review thus aims to consolidate the seemingly conflicting literature on the involvement of basophils in antigen presentation and tries to find a resolution to the discussion whether basophils influence antigen presentation through direct or indirect mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Johannes U. Mayer
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
22
|
Plant-Hately AJ, Eryilmaz B, David CAW, Brain DE, Heaton BJ, Perrie Y, Liptrott NJ. Exposure of the Basophilic Cell Line KU812 to Liposomes Reveals Activation Profiles Associated with Potential Anaphylactic Responses Linked to Physico-Chemical Characteristics. Pharmaceutics 2022; 14:pharmaceutics14112470. [PMID: 36432660 PMCID: PMC9695975 DOI: 10.3390/pharmaceutics14112470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Lipidic nanoparticles (LNP), particularly liposomes, have been proven to be a successful and versatile platform for intracellular drug delivery for decades. Whilst primarily developed for small molecule delivery, liposomes have recently undergone a renaissance due to their success in vaccination strategies, delivering nucleic acids, in the COVID-19 pandemic. As such, liposomes are increasingly being investigated for the delivery of nucleic acids, beyond mRNA, as non-viral gene delivery vectors. Although not generally considered toxic, liposomes are increasingly shown to not be immunologically inert, which may have advantages in vaccine applications but may limit their use in other conditions where immunological responses may lead to adverse events, particularly those associated with complement activation. We sought to assess a small panel of liposomes varying in a number of physico-chemical characteristics associated with complement activation and inflammatory responses, and examine how basophil-like cells may respond to them. Basophils, as well as other cell types, are involved in the anaphylactic responses to liposomes but are difficult to isolate in sufficient numbers to conduct large scale analysis. Here, we report the use of the human KU812 cell line as a surrogate for primary basophils. Multiple phenotypic markers of activation were assessed, as well as the release of histamine and inflammasome activity within the cells. We found that larger liposomes were more likely to result in KU812 activation, and that non-PEGylated liposomes were potent stimulators of inflammasome activity (four-fold greater IL-1β secretion than untreated controls), and a lower ratio of cholesterol to lipid was also associated with greater IL-1β secretion ([Cholesterol:DSPC ratio] 1:10; 0.35 pg/mL IL-1β vs. 5:10; 0.1 pg/mL). Additionally, PEGylation appeared to be associated with direct KU812 activation. These results suggest possible mechanisms related to the consequences of complement activation that may be underpinned by basophilic cells, in addition to other immune cell types. Investigation of the mechanisms behind these responses, and their impact on use in vivo, are now warranted.
Collapse
Affiliation(s)
- Alexander J. Plant-Hately
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L7 3NY, UK
| | - Burcu Eryilmaz
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Christopher A. W. David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L7 3NY, UK
| | - Danielle E. Brain
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L7 3NY, UK
| | - Bethany J. Heaton
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L7 3NY, UK
| | - Yvonne Perrie
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Neill J. Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L7 3NY, UK
- Correspondence: ; Tel.: +44-(0)15-1795-7566
| |
Collapse
|
23
|
Lobato TB, Gennari-Felipe M, Pauferro JRB, Correa IS, Santos BF, Dias BB, de Oliveira Borges JC, dos Santos CS, de Sousa Santos ES, de Araújo MJL, Ferreira LA, Pereira SA, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges L, Cury-Boaventura MF, Vinolo MAR, Pithon-Curi TC, Masi LN, Curi R, Hirabara SM, Gorjão R. Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Front Microbiol 2022; 13:1037469. [PMID: 36406408 PMCID: PMC9670542 DOI: 10.3389/fmicb.2022.1037469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 03/27/2024] Open
Abstract
Recent studies show that the metabolic characteristics of different leukocytes, such as, lymphocytes, neutrophils, and macrophages, undergo changes both in the face of infection with SARS-CoV-2 and in obesity and type 2 diabetes mellitus (DM2) condition. Thus, the objective of this review is to establish a correlation between the metabolic changes caused in leukocytes in DM2 and obesity that may favor a worse prognosis during SARS-Cov-2 infection. Chronic inflammation and hyperglycemia, specific and usual characteristics of obesity and DM2, contributes for the SARS-CoV-2 replication and metabolic disturbances in different leukocytes, favoring the proinflammatory response of these cells. Thus, obesity and DM2 are important risk factors for pro-inflammatory response and metabolic dysregulation that can favor the occurrence of the cytokine storm, implicated in the severity and high mortality risk of the COVID-19 in these patients.
Collapse
Affiliation(s)
- Tiago Bertola Lobato
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Matheus Gennari-Felipe
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Ilana Souza Correa
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Ferreira Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Belmiro Dias
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - João Carlos de Oliveira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Camila Soares dos Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Maria Janaína Leite de Araújo
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Liliane Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Sara Araujo Pereira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Leandro Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Renata Gorjão
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| |
Collapse
|
24
|
Estimates of genomic heritability and genome-wide association studies for blood parameters in Akkaraman sheep. Sci Rep 2022; 12:18477. [PMID: 36323871 PMCID: PMC9630504 DOI: 10.1038/s41598-022-22966-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to estimate genomic heritability and the impact that genetic backgrounds have on blood parameters in Akkaraman sheep by conducting genome-wide association studies and regional heritability mapping analysis. Genomic heritability estimates for blood parameters ranged from 0.00 to 0.55, indicating that measured phenotypes have a low to moderate heritability. A total of 7 genome- and 13 chromosome-wide significant SNPs were associated with phenotypic changes in 15 blood parameters tested. Accordingly, SCN7A, SCN9A, MYADM-like, CCDC67, ITGA9, MGAT5, SLC19A1, AMPH, NTRK2, MSRA, SLC35F3, SIRT6, CREB3L3, and NAV3 genes as well as three undefined regions (LOC101117887, LOC106991526 and LOC105608461) were suggested as candidates. Most of the identified genes were involved in basic biological processes that are essential to immune system function and cellular growth; specific functions include cellular transport, histone deacetylation, cell differentiation, erythropoiesis, and endocytosis. The top significant SNP for HCT, MCH, and MCHC was found within a genomic region mainly populated by the MYADM-like gene family. This region was previously suggested to be under historical selection pressure in many sheep breeds from various parts of the world. These results have implications on animal breeding program studies due to the effect that the genetic background has on blood parameters, which underlying many productive and wellness related traits.
Collapse
|
25
|
Konlaan Y, Asamoah Sakyi S, Kumi Asare K, Amoah Barnie P, Opoku S, Nakotey GK, Victor Nuvor S, Amoani B. Evaluating immunohaematological profile among COVID-19 active infection and recovered patients in Ghana. PLoS One 2022; 17:e0273969. [PMID: 36094915 PMCID: PMC9467340 DOI: 10.1371/journal.pone.0273969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction The rapid spread of COVID-19 has been a global public health problem and it is yet to be put under control. Active COVID-19 is associated with unrestrained secretion of pro-inflammatory cytokines and imbalances in haematological profile including anaemia, leukocytosis and thrombocytopaenia. However, the haematological profile and immune status following recovery from COVID-19 has not been recognized. We evaluated the immunohaematological profile among COVID-19 patients with active infection, recovered cases and unexposed healthy individuals in the Ashanti region of Ghana. Methodology A total of 95 adult participants, consisting of 35 positive, 30 recovered and 30 unexposed COVID-19 negative individuals confirmed by RT-PCR were recruited for the study. All the patients had the complete blood count performed using the haematological analyzer Sysmex XN-1500. Their plasma cytokine levels of interleukin (IL)-1β, IL-6, IL-10, IL-17, tumour necrosis factor-alpha (TNF-α) and interferon gamma (IFN-γ) were analysed using ELISA. Statistical analyses were performed on R statistical software. Result The Patients with COVID-19 active infection had significantly higher levels of IL10 (181±6.14 pg/mL vs 155.00±14.32 pg/mL vs 158.80±11.70 pg/mL, p = 0.038), WBC count (5.5±0.4 x109 /L vs 4.5±0.6 x109 /L vs 3.8±0.5, p < 0.0001) and percentage basophil (1.8±0.1% vs 0.8±0.3% vs 0.7±0.2%, p = 0.0040) but significantly lower levels of IFN-γ (110.10±9.52 pg/mL vs 142.80±5.46 pg/mL vs 140.80±6.39 pg/mL, p = 0.021), haematocrit (24.1±3.7% vs 38.3± 3.0% vs 38.5±2.2%, p < 0.0001), haemoglobin concentration (9.4±0.1g/dl vs 12.5± 5.0g/dl vs 12.7±0.8, p < 0.0001) and MPV (9.8±0.2fL vs 11.1±0.5fL vs 11.6±0.3fL, p < 0.0001) compared to recovered and unexposed controls respectively. There were significant association between IL-1β & neutrophils (r = 0.42, p<0.05), IL-10 & WBC (r = 0.39, p<0.05), IL-10 & Basophils (r = -0.51, p<0.01), IL-17 & Neutrophil (r = 0.39, p<0.05) in the active COVID-19 cases. Conclusion COVID-19 active infection is associated with increased IL-10 and WBC with a concomitant decrease in IFN-γ and haemoglobin concentration. However, recovery from the disease is associated with immune recovery with appareantly normal haematological profile.
Collapse
Affiliation(s)
- Yatik Konlaan
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwame Kumi Asare
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Prince Amoah Barnie
- Department of Forensic Science, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Stephen Opoku
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gideon Kwesi Nakotey
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Amoani
- Department of Biomedical Sciences, College of Health and Allied Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
26
|
Pengsart W, Tongkrajang N, Whangviboonkij N, Sarasombath PT, Kulkeaw K. Balamuthia mandrillaris trophozoites ingest human neuronal cells via a trogocytosis-independent mechanism. Parasit Vectors 2022; 15:232. [PMID: 35761411 PMCID: PMC9235117 DOI: 10.1186/s13071-022-05306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/27/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Environmental protozoa need an adaptation mechanism to survive drastic changes in niches in the human body. In the brain parenchyma, Balamuthia mandrillaris trophozoites, which are causative agents of fatal brain damage, must acquire nutrients through the ingestion of surrounding cells. However, the mechanism deployed by the trophozoites for cellular uptake remains unknown. METHODS Amoebic ingestion of human neural cell components was investigated using a coculture system of clinically isolated B. mandrillaris trophozoites and human neuroblastoma SH-SY5Y cells. Cell-to-cell interactions were visualized in a three-dimensional manner using confocal and holotomographic microscopes. RESULTS The B. mandrillaris trophozoites first attached themselves to human neuroblastoma SH-SY5Y cells and then twisted themselves around the cytoplasmic bridge. Based on fluorescence-based cell tracking, the B. mandrillaris trophozoites then inserted invadopodia into the cytoplasm of the human cells. Subsequently, the human protein-enriched components were internalized into the trophozoites in the form of nonmembranous granules, whereas the human lipids were dispersed in the cytoplasm. Intervention of trogocytosis, a process involving nibbling on parts of the target cells, failed to inhibit this cellular uptake. CONCLUSIONS Human cell ingestion by B. mandrillaris trophozoites likely differs from trogocytosis, suggesting that a pathogen-specific strategy can be used to ameliorate brain damage.
Collapse
Affiliation(s)
- Worakamol Pengsart
- Faculty of Graduate Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Nongnat Tongkrajang
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 7th floor Adulyadejvikrom Building, 2 Wang Lang Road, Khwaeng Siriraj, Khet Bangkok-noi, Bangkok, 10700, Thailand
| | - Narisara Whangviboonkij
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 7th floor Adulyadejvikrom Building, 2 Wang Lang Road, Khwaeng Siriraj, Khet Bangkok-noi, Bangkok, 10700, Thailand
| | - Patsharaporn Techasintana Sarasombath
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 7th floor Adulyadejvikrom Building, 2 Wang Lang Road, Khwaeng Siriraj, Khet Bangkok-noi, Bangkok, 10700, Thailand
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 7th floor Adulyadejvikrom Building, 2 Wang Lang Road, Khwaeng Siriraj, Khet Bangkok-noi, Bangkok, 10700, Thailand.
| |
Collapse
|
27
|
Miyake K, Ito J, Karasuyama H. Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 2022; 13:902494. [PMID: 35693800 PMCID: PMC9186123 DOI: 10.3389/fimmu.2022.902494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Basophils are the rarest granulocytes and have long been overlooked in immunological research due to their rarity and similarities with tissue-resident mast cells. In the last two decades, non-redundant functions of basophils have been clarified or implicated in a broad spectrum of immune responses, particularly by virtue of the development of novel analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various disorders, even though they circulate in the bloodstream under homeostatic conditions. Depletion of basophils results in the amelioration or exaggeration of inflammation, depending on models of disease, indicating basophils can play either beneficial or deleterious roles in a context-dependent manner. In this review, we summarize the recent findings of basophil pathophysiology under various conditions in mice and humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19. Further mechanistic studies on basophil biology could lead to the identification of novel biomarkers or therapeutic targets in a broad range of diseases.
Collapse
|
28
|
Castaño N, Kim S, Martin AM, Galli SJ, Nadeau KC, Tang SKY. Exponential magnetophoretic gradient for the direct isolation of basophils from whole blood in a microfluidic system. LAB ON A CHIP 2022; 22:1690-1701. [PMID: 35438713 PMCID: PMC9080715 DOI: 10.1039/d2lc00154c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite their rarity in peripheral blood, basophils play important roles in allergic disorders and other diseases including sepsis and COVID-19. Existing basophil isolation methods require many manual steps and suffer from significant variability in purity and recovery. We report an integrated basophil isolation device (i-BID) in microfluidics for negative immunomagnetic selection of basophils directly from 100 μL of whole blood within 10 minutes. We use a simulation-driven pipeline to design a magnetic separation module to apply an exponentially increasing magnetic force to capture magnetically tagged non-basophils flowing through a microtubing sandwiched between magnetic flux concentrators sweeping across a Halbach array. The exponential profile captures non-basophils effectively while preventing their excessive initial buildup causing clogging. The i-BID isolates basophils with a mean purity of 93.9% ± 3.6% and recovery of 95.6% ± 3.4% without causing basophil degradation or unintentional activation. Our i-BID has the potential to enable basophil-based point-of-care diagnostics such as rapid allergy assessment.
Collapse
Affiliation(s)
- Nicolas Castaño
- Department of Mechanical Engineering, Stanford University, USA.
| | - Sungu Kim
- Department of Mechanical Engineering, Stanford University, USA.
| | - Adrian M Martin
- Department of Mechanical Engineering, Stanford University, USA.
| | - Stephen J Galli
- Department of Pathology, Stanford University, USA.
- Department of Microbiology and Immunology, Stanford University, USA
| | - Kari C Nadeau
- Department of Medicine and Pediatrics, with courtesy in Otolaryngology and in Population Science and Epidemiology, Stanford University, USA.
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, USA.
| |
Collapse
|
29
|
Huang JY, Lyons-Cohen MR, Gerner MY. Information flow in the spatiotemporal organization of immune responses. Immunol Rev 2022; 306:93-107. [PMID: 34845729 PMCID: PMC8837692 DOI: 10.1111/imr.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
Immune responses must be rapid, tightly orchestrated, and tailored to the encountered stimulus. Lymphatic vessels facilitate this process by continuously collecting immunological information (ie, antigens, immune cells, and soluble mediators) about the current state of peripheral tissues, and transporting these via the lymph across the lymphatic system. Lymph nodes (LNs), which are critical meeting points for innate and adaptive immune cells, are strategically located along the lymphatic network to intercept this information. Within LNs, immune cells are spatially organized, allowing them to efficiently respond to information delivered by the lymph, and to either promote immune homeostasis or mount protective immune responses. These responses involve the activation and functional cooperation of multiple distinct cell types and are tailored to the specific inflammatory conditions. The natural patterns of lymph flow can also generate spatial gradients of antigens and agonists within draining LNs, which can in turn further regulate innate cell function and localization, as well as the downstream generation of adaptive immunity. In this review, we explore how information transmitted by the lymph shapes the spatiotemporal organization of innate and adaptive immune responses in LNs, with particular focus on steady state and Type-I vs. Type-II inflammation.
Collapse
Affiliation(s)
| | | | - Michael Y Gerner
- Corresponding author: Michael Gerner, , Address: 750 Republican Street Seattle, WA 98109, Phone: 206-685-3610
| |
Collapse
|
30
|
Immune Regulation of Heme Oxygenase-1 in Allergic Airway Inflammation. Antioxidants (Basel) 2022; 11:antiox11030465. [PMID: 35326116 PMCID: PMC8944570 DOI: 10.3390/antiox11030465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is not only a rate-limiting enzyme in heme metabolism but is also regarded as a protective protein with an immunoregulation role in asthmatic airway inflammation. HO-1 exerts an anti-inflammation role in different stages of airway inflammation via regulating various immune cells, such as dendritic cells, mast cells, basophils, T cells, and macrophages. In addition, the immunoregulation role of HO-1 may differ according to subcellular locations.
Collapse
|
31
|
Virtanen T. Inhalant Mammal-Derived Lipocalin Allergens and the Innate Immunity. FRONTIERS IN ALLERGY 2022; 2:824736. [PMID: 35387007 PMCID: PMC8974866 DOI: 10.3389/falgy.2021.824736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
A major part of important mammalian respiratory allergens belongs to the lipocalin family of proteins. By this time, 19 respiratory mammalian lipocalin allergens have been registered in the WHO/IUIS Allergen Nomenclature Database. Originally, lipocalins, small extracellular proteins (molecular mass ca. 20 kDa), were characterized as transport proteins but they are currently known to exert a variety of biological functions. The three-dimensional structure of lipocalins is well-preserved, and lipocalin allergens can exhibit high amino acid identities, in several cases more than 50%. Lipocalins contain an internal ligand-binding site where they can harbor small principally hydrophobic molecules. Another characteristic feature is their capacity to bind to specific cell-surface receptors. In all, the physicochemical properties of lipocalin allergens do not offer any straightforward explanations for their allergenicity. Allergic sensitization begins at epithelial barriers where diverse insults through pattern recognition receptors awaken innate immunity. This front-line response is manifested by epithelial barrier-associated cytokines which together with other components of immunity can initiate the sensitization process. In the following, the crucial factor in allergic sensitization is interleukin (IL)-4 which is needed for stabilizing and promoting the type 2 immune response. The source for IL-4 has been searched widely. Candidates for it may be non-professional antigen-presenting cells, such as basophils or mast cells, as well as CD4+ T cells. The synthesis of IL-4 by CD4+ T cells requires T cell receptor engagement, i.e., the recognition of allergen peptides, which also provides the specificity for sensitization. Lipocalin and innate immunity-associated cell-surface receptors are implicated in facilitating the access of lipocalin allergens into the immune system. However, the significance of this for allergic sensitization is unclear, as the recognition by these receptors has been found to produce conflicting results. As to potential adjuvants associated with mammalian lipocalin allergens, the hydrophobic ligands transported by lipocalins have not been reported to enhance sensitization while it is justified to suppose that lipopolysaccharide plays a role in it. Taken together, type 2 immunity to lipocalin allergens appears to be a harmful immune response resulting from a combination of signals involving both the innate and adaptive immunities.
Collapse
Affiliation(s)
- Tuomas Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
32
|
Clinical and Translational Significance of Basophils in Patients with Cancer. Cells 2022; 11:cells11030438. [PMID: 35159247 PMCID: PMC8833920 DOI: 10.3390/cells11030438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Despite comprising a very small proportion of circulating blood leukocytes, basophils are potent immune effector cells. The high-affinity receptor for IgE (FcɛRI) is expressed on the basophil cell surface and powerful inflammatory mediators such as histamine, granzyme B, and cytokines are stored in dense cytoplasmic granules, ready to be secreted in response to a range of immune stimuli. Basophils play key roles in eliciting potent effector functions in allergic diseases and type 1 hypersensitivity. Beyond allergies, basophils can be recruited to tissues in chronic and autoimmune inflammation, and in response to parasitic, bacterial, and viral infections. While their activation states and functions can be influenced by Th2-biased inflammatory signals, which are also known features of several tumor types, basophils have received little attention in cancer. Here, we discuss the presence and functional significance of basophils in the circulation of cancer patients and in the tumor microenvironment (TME). Interrogating publicly available datasets, we conduct gene expression analyses to explore basophil signatures and associations with clinical outcomes in several cancers. Furthermore, we assess how basophils can be harnessed to predict hypersensitivity to cancer treatments and to monitor the desensitization of patients to oncology drugs, using assays such as the basophil activation test (BAT).
Collapse
|
33
|
Frech M, Omata Y, Schmalzl A, Wirtz S, Taher L, Schett G, Zaiss MM, Sarter K. Btn2a2 Regulates ILC2–T Cell Cross Talk in Type 2 Immune Responses. Front Immunol 2022; 13:757436. [PMID: 35145516 PMCID: PMC8821520 DOI: 10.3389/fimmu.2022.757436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Innate lymphoid cells (ILC) not only are responsible for shaping the innate immune response but also actively modulate T cell responses. However, the molecular processes regulating ILC-T cell interaction are not yet completely understood. The protein butyrophilin 2a2 (Btn2a2), a co-stimulatory molecule first identified on antigen-presenting cells, has a pivotal role in the maintenance of T cell homeostasis, but the main effector cell and the respective ligands remain elusive. We analyzed the role of Btn2a2 in the ILC-T cell cross talk. We found that the expression of Btn2a2 is upregulated in ILC2 following stimulation with IL-33/IL-25/TSLP. In vitro and in vivo experiments indicated that lack of Btn2a2 expression on ILC2 resulted in elevated T cell responses. We observed an enhanced proliferation of T cells as well as increased secretion of the type 2 cytokines IL-4/IL-5/IL-13 following cocultures with Btn2a2-deficient ILC2. In vivo transfer experiments confirmed the regulatory role of Btn2a2 on ILC2 as Btn2a2-deficient ILC2 induced stronger T cell responses and prevented chronic helminth infections. Taken together, we identified Btn2a2 as a significant player in the regulation of ILC2–T cell interactions.
Collapse
Affiliation(s)
- Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), FriedrichAlexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yasunori Omata
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Angelika Schmalzl
- Department of Internal Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Internal Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), FriedrichAlexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M. Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), FriedrichAlexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kerstin Sarter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), FriedrichAlexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- *Correspondence: Kerstin Sarter,
| |
Collapse
|
34
|
Carson AS, Gardner A, Iweala OI. Where's the Beef? Understanding Allergic Responses to Red Meat in Alpha-Gal Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:267-277. [PMID: 35017216 PMCID: PMC8928418 DOI: 10.4049/jimmunol.2100712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023]
Abstract
Alpha-gal syndrome (AGS) describes a collection of symptoms associated with IgE-mediated hypersensitivity responses to the glycan galactose-alpha-1,3-galactose (alpha-gal). Individuals with AGS develop delayed hypersensitivity reactions, with symptoms occurring >2 h after consuming mammalian ("red") meat and other mammal-derived food products. The mechanisms of pathogenesis driving this paradigm-breaking food allergy are not fully understood. We review the role of tick bites in the development of alpha-gal-specific IgE and highlight innate and adaptive immune cells possibly involved in alpha-gal sensitization. We discuss the impact of alpha-gal glycosylation on digestion and metabolism of alpha-gal glycolipids and glycoproteins, and the implications for basophil and mast cell activation and mediator release that generate allergic symptoms in AGS.
Collapse
Affiliation(s)
- Audrey S. Carson
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aliyah Gardner
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Onyinye I. Iweala
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Mengelkoch S, Gassen J, Corrigan EK, Hill SE. Exploring the Links between Personality and Immune Function. PERSONALITY AND INDIVIDUAL DIFFERENCES 2022; 184:111179. [PMID: 34737485 PMCID: PMC8562652 DOI: 10.1016/j.paid.2021.111179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Decades of research finds associations between personality traits and health. In recent years, it has become clear that the activities of the immune system play a key role in linking these variables. In the current work, we add to this research by exploring the relationship between Big Five personality traits and (Study 1) polymorphisms known to impact cytokine release and (Study 2) immunological parameters measured in vivo (differential white blood cell counts, plasma proinflammatory cytokine levels) and in vitro (proinflammatory cytokine release by peripheral blood mononuclear cells, Staphylococcus aureus growth in plasma). Results provide insights into potential mechanistic drivers of the link between personality and immune function and the possibility that, in some cases, relationships between personality and immune function may be sex differentiated.
Collapse
Affiliation(s)
- Summer Mengelkoch
- Department of Psychology, Texas Christian University, Fort Worth, TX, United States
| | - Jeff Gassen
- Department of Psychology, Texas Christian University, Fort Worth, TX, United States
| | - Emily K. Corrigan
- Department of Psychology, Texas Christian University, Fort Worth, TX, United States
| | - Sarah E. Hill
- Department of Psychology, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
36
|
Wu T, Tang L, Feng Y, Jia Y, Li F. Eosinophils and associated parameters in different types of skin diseases related to elevated eosinophil levels. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:73. [PMID: 35282056 PMCID: PMC8848371 DOI: 10.21037/atm-22-99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022]
Abstract
Background Eosinophils, basophils, white blood cells (WBC), and immunoglobulin E (IgE) play major roles in the pathogenesis of atopic dermatitis (AD), bullous pemphigoid (BP), drug reaction with eosinophilia and systemic symptoms (DRESS), and hypereosinophilic syndrome (HES). This study aimed to describe these parameters in different skin diseases and provide further information concerning the underlying pathogenesis. Methods A cross-sectional study of blood test results, including WBC count, peripheral eosinophil count, peripheral basophil/WBC percentage, and IgE level, from 115 cases of AD, 75 cases of BP, 55 cases of DRESS, 119 cases of HES, and 621 healthy volunteers was performed in China. Data from before and after treatment and the population distribution of different diseases were compared and described. Results All participants showed increased peripheral eosinophil counts, eosinophil/WBC ratios, IgE levels, and decreased peripheral basophil counts, with variance among the different disease groups. Peripheral eosinophil counts in HES patients and IgE level in AD patients increased the most prominently. No significant correlation existed among eosinophils, basophils, and IgE. An obvious decrease in eosinophil count was demonstrated after treatment in all 4 diseases. Conclusions Eosinophils, basophils, and IgE exert functions in diverse skin diseases, presenting altered peripheral blood test results. In some cases, these changes are demonstrated only in the skin and not in the blood. Compared with the other parameters considered in this study, eosinophils seemed to be a better biomarker for treatment effects, regardless of the disease type.
Collapse
Affiliation(s)
- Tong Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Luyan Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanjing Jia
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Dermatology, Huashan Hospital Baoshan, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Román-Carrasco P, Hemmer W, Cabezas-Cruz A, Hodžić A, de la Fuente J, Swoboda I. The α-Gal Syndrome and Potential Mechanisms. FRONTIERS IN ALLERGY 2021; 2:783279. [PMID: 35386980 PMCID: PMC8974695 DOI: 10.3389/falgy.2021.783279] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
The α-Gal syndrome is a complex allergic disease characterized by the development of specific IgE antibodies against the carbohydrate galactose-α-1,3-galactose (α-Gal), an oligosaccharide present in cells and tissues of non-primate mammals. Individuals with IgE antibodies to α-Gal suffer from a delayed form of anaphylaxis following red meat consumption. There are several features that make the α-Gal syndrome such a unique allergic disease and distinguish it from other food allergies: (1) symptoms causing IgE antibodies are directed against a carbohydrate moiety, (2) the unusual delay between the consumption of the food and the onset of the symptoms, and (3) the fact that primary sensitization to α-Gal occurs via tick bites. This review takes a closer look at the immune response against α-Gal, in healthy and in α-Gal allergic individuals. Furthermore, the similarities and differences between immune response against α-Gal and against the other important glycan moieties associated with allergies, namely cross-reactive carbohydrate determinants (CCDs), are discussed. Then different mechanisms are discussed that could contribute to the delayed onset of symptoms after consumption of mammalian meat. Moreover, our current knowledge on the role of tick bites in the sensitization process is summarized. The tick saliva has been shown to contain proteins carrying α-Gal, but also bioactive molecules, such as prostaglandin E2, which is capable of stimulating an increased expression of anti-inflammatory cytokines while promoting a decrease in the production of proinflammatory mediators. Together these components might promote Th2-related immunity and trigger a class switch to IgE antibodies directed against the oligosaccharide α-Gal. The review also points to open research questions that remain to be answered and proposes future research directions, which will help to get a better understanding and lead to a better management of the disease.
Collapse
Affiliation(s)
- Patricia Román-Carrasco
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | | | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Adnan Hodžić
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - José de la Fuente
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ines Swoboda
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| |
Collapse
|
38
|
Stephens WZ, Kubinak JL, Ghazaryan A, Bauer KM, Bell R, Buhrke K, Chiaro TR, Weis AM, Tang WW, Monts JK, Soto R, Ekiz HA, O'Connell RM, Round JL. Epithelial-myeloid exchange of MHC class II constrains immunity and microbiota composition. Cell Rep 2021; 37:109916. [PMID: 34731608 PMCID: PMC9012449 DOI: 10.1016/j.celrep.2021.109916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal epithelial cells (IECs) have long been understood to express high levels of major histocompatibility complex class II (MHC class II) molecules but are not considered canonical antigen-presenting cells, and the impact of IEC-MHC class II signaling on gut homeostasis remains enigmatic. As IECs serve as the primary barrier between underlying host immune cells, we reasoned that IEC-intrinsic antigen presentation may play a role in responses toward the microbiota. Mice with an IEC-intrinsic deletion of MHC class II (IECΔMHC class II) are healthy but have fewer microbial-bound IgA, regulatory T cells (Tregs), and immune repertoire selection. This was associated with increased interindividual microbiota variation and altered proportions of two taxa in the ileum where MHC class II on IECs is highest. Intestinal mononuclear phagocytes (MNPs) have similar MHC class II transcription but less surface MHC class II and are capable of acquiring MHC class II from IECs. Thus, epithelial-myeloid interactions mediate development of adaptive responses to microbial antigens within the gastrointestinal tract.
Collapse
Affiliation(s)
- W Zac Stephens
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Jason L Kubinak
- University of South Carolina School of Medicine, Department of Pathology, Microbiology and Immunology, Columbia, SC 29209, USA
| | - Arevik Ghazaryan
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Kaylyn M Bauer
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Rickesha Bell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Kate Buhrke
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Tyson R Chiaro
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Allison M Weis
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - William W Tang
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Josh K Monts
- University of Utah School of Medicine, Flow Cytometry Core, Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Ray Soto
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - H Atakan Ekiz
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA; Izmir Institute of Technology, Molecular Biology and Genetics Department, Gulbahce, Izmir 35430, Turkey
| | - Ryan M O'Connell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA.
| | - June L Round
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA.
| |
Collapse
|
39
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
40
|
Sharma SR, Karim S. Tick Saliva and the Alpha-Gal Syndrome: Finding a Needle in a Haystack. Front Cell Infect Microbiol 2021; 11:680264. [PMID: 34354960 PMCID: PMC8331069 DOI: 10.3389/fcimb.2021.680264] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023] Open
Abstract
Ticks and tick-borne diseases are significant public health concerns. Bioactive molecules in tick saliva facilitate prolonged blood-feeding and transmission of tick-borne pathogens to the vertebrate host. Alpha-gal syndrome (AGS), a newly reported food allergy, is believed to be induced by saliva proteins decorated with a sugar molecule, the oligosaccharide galactose-⍺-1,3-galactose (α-gal). This syndrome is characterized by an IgE antibody-directed hypersensitivity against α-gal. The α-gal antigen was discovered in the salivary glands and saliva of various tick species including, the Lone Star tick (Amblyomma americanum). The underlying immune mechanisms linking tick bites with α-gal-specific IgE production are poorly understood and are crucial to identify and establish novel treatments for this disease. This article reviews the current understanding of AGS and its involvement with tick species.
Collapse
Affiliation(s)
- Surendra Raj Sharma
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shahid Karim
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
41
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
42
|
Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy 2021; 76:1693-1706. [PMID: 33205439 DOI: 10.1111/all.14662] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Basophils are the rarest granulocytes which represent <1% of peripheral blood leukocytes. Basophils bear several phenotypic similarities to tissue-resident mast cells and therefore had been erroneously considered as blood-circulating mast cells. However, recent researches have revealed that basophils play nonredundant roles in allergic inflammation, protective immunity against parasitic infections and regulation of innate and acquired immunity. Basophils are recruited to inflamed tissues and activated in an IgE-dependent or IgE-independent manner to release a variety of effector molecules. Such molecules, including IL-4, act on various types of cells and play versatile roles, including the induction and termination of allergic inflammation and the regulation of immune responses. Recent development of novel therapeutic agents has enabled us to gain further insights into basophil biology in human disorders. In this review, we highlight the recent advances in the field of basophil biology with a particular focus on the role of basophils in allergic inflammation. Further studies on basophils and their effector molecules will help us identify novel therapeutic targets for treating allergic disorders.
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sho Shibata
- Department of Respiratory Medicine Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Soichiro Yoshikawa
- Department of Cell Physiology Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
43
|
Miyake K, Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells 2021; 10:cells10051255. [PMID: 34069602 PMCID: PMC8161413 DOI: 10.3390/cells10051255] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Trogocytosis is an active process, in which one cell extracts the cell fragment from another cell, leading to the transfer of cell surface molecules, together with membrane fragments. Recent reports have revealed that trogocytosis can modulate various biological responses, including adaptive and innate immune responses and homeostatic responses. Trogocytosis is evolutionally conserved from protozoan parasites to eukaryotic cells. In some cases, trogocytosis results in cell death, which is utilized as a mechanism for antibody-dependent cytotoxicity (ADCC). In other cases, trogocytosis-mediated intercellular protein transfer leads to both the acquisition of novel functions in recipient cells and the loss of cellular functions in donor cells. Trogocytosis in immune cells is typically mediated by receptor–ligand interactions, including TCR–MHC interactions and Fcγ receptor-antibody-bound molecule interactions. Additionally, trogocytosis mediates the transfer of MHC molecules to various immune and non-immune cells, which confers antigen-presenting activity on non-professional antigen-presenting cells. In this review, we summarize the recent advances in our understanding of the role of trogocytosis in immune modulation.
Collapse
|
44
|
Karasuyama H, Shibata S, Yoshikawa S, Miyake K. Basophils, a neglected minority in the immune system, have come into the limelight at last. Int Immunol 2021; 33:809-813. [PMID: 34038539 DOI: 10.1093/intimm/dxab021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Basophils, the rarest granulocytes, were identified by Paul Ehrlich more than 140 years ago, much earlier than the discovery of T and B cells. Unfortunately, basophils were often mixed up with tissue-resident mast cells because of some phenotypic similarities between them and considered erroneously as minor relatives or blood-circulating precursors of mast cells. Moreover, basophil research was hindered by the rarity of basophils and the paucity of useful analytical tools, and therefore basophils had often been neglected in immunological studies. A series of studies using newly developed tools, including basophil-depleting antibodies and genetically engineered mice deficient only in basophils, have clearly defined previously unrecognized roles of basophils, that are distinct from those played by tissue-resident mast cells. In this mini-review, we highlight recent advances in our understanding of basophil functions, particularly focusing on their roles in the regulation of innate and acquired immunity, allergic reactions, autoimmunity and protective immunity against parasitic infections, mainly based on animal studies. Further studies on human basophils would facilitate the development of new strategies for the treatment of basophil-associated disorders.
Collapse
Affiliation(s)
- Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sho Shibata
- Department of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Soichiro Yoshikawa
- Department of Cell Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
45
|
Basophils Orchestrating Eosinophils' Chemotaxis and Function in Allergic Inflammation. Cells 2021; 10:cells10040895. [PMID: 33919759 PMCID: PMC8070740 DOI: 10.3390/cells10040895] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are well known to contribute significantly to Th2 immunity, such as allergic inflammations. Although basophils have often not been considered in the pathogenicity of allergic dermatitis and asthma, their role in Th2 immunity has become apparent in recent years. Eosinophils and basophils are present at sites of allergic inflammations. It is therefore reasonable to speculate that these two types of granulocytes interact in vivo. In various experimental allergy models, basophils and eosinophils appear to be closely linked by directly or indirectly influencing each other since they are responsive to similar cytokines and chemokines. Indeed, basophils are shown to be the gatekeepers that are capable of regulating eosinophil entry into inflammatory tissue sites through activation-induced interactions with endothelium. However, the direct evidence that eosinophils and basophils interact is still rarely described. Nevertheless, new findings on the regulation and function of eosinophils and basophils biology reported in the last 25 years have shed some light on their potential interaction. This review will focus on the current knowledge that basophils may regulate the biology of eosinophil in atopic dermatitis and allergic asthma.
Collapse
|
46
|
He X, Cao Y, Gu Y, Fang H, Wang J, Liu X, Lv K, Yu K, Fei Y, Lin C, Liu H, Zhang H, Li H, Xu J, Li R, He H. Clinical Outcomes and Immune Metrics in Intratumoral Basophil-Enriched Gastric Cancer Patients. Ann Surg Oncol 2021; 28:6439-6450. [PMID: 33738713 DOI: 10.1245/s10434-021-09815-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/15/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Accumulation of basophils has been reported in several malignancies. In gastric cancer, the relation between tumor-infiltrating basophils and patient overall survival and chemotherapeutic responsiveness still remains obscure. OBJECTIVE We aimed to investigate the postoperative prognostic and predictive significance of basophils to survival outcomes and chemotherapeutic responsiveness in resectable gastric cancer. METHODS The study enrolled two independent patient data sets with 448 gastric cancer patients overall. Basophils were evaluated with the use of immunohistochemistry (IHC) staining, and the correlation with clinicopathological characteristics, survival outcomes, and responsiveness to fluorouracil-based adjuvant chemotherapy (ACT) were investigated. Additionally, IHC was applied to characterize immune contexture in gastric cancer. RESULTS In either the discovery or validation data sets, accumulated basophils indicated poorer prognosis, and tumor-infiltrating basophils were identified as an independent adverse prognostic factor by multivariate analysis. Furthermore, tumor-infiltrating basophils determined significantly inferior therapeutic responsiveness to fluorouracil-based ACT in patients with stage III tumors. In addition, the abundance of basophils was correlated with an immunoevasive contexture characterized by M2-polarized macrophage infiltration. Moreover, our findings indicated elevated interleukin-4 expression but decreased interferon-γ expression in the high-basophils subgroup. CONCLUSIONS Tumor-infiltrating basophils in gastric cancer were identified as an independent adverse prognosticator, and also predicted inferior chemotherapeutic responsiveness, which identified those patients in need of much more individualized postoperative adjuvant therapy and more stringent follow-up. Furthermore, the infiltration of basophils was associated with immunoevasive tumor microenvironment, which might be a potential immunotherapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Xudong He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yifan Cao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hanji Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Gastric Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kunpeng Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kuan Yu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuchao Fei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Abstract
As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.
Collapse
Affiliation(s)
- Xiangyun Yin
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Shuting Chen
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
48
|
Poddighe D, Vangelista L. Effects of omalizumab on basophils: Potential biomarkers in asthma and chronic spontaneous urticaria. Cell Immunol 2020; 358:104215. [PMID: 33137647 DOI: 10.1016/j.cellimm.2020.104215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Omalizumab is an anti-IgE humanized monoclonal antibody approved for the treatment of severe asthma and chronic spontaneous urticaria. Omalizumab binds free serum IgE and antagonizes its interaction with FcεRI, which is considered the main pharmacodynamic mechanism responsible for the clinical response to the treatment. The reduction of IgE serum concentration down-regulates the cellular expression of FcεRI on basophils. However, the biological events occurring on basophils during the therapy with omalizumab are multiple and complex. Here we review the current evidence regarding the specific biological effects of omalizumab on basophils in patients with asthma and chronic spontaneous urticaria. In addition to the modulation of IgE receptors, omalizumab may affect basophils homeostasis, intra-cellular signaling, cellular responsiveness/activation and cytokine release. These effects may be partially responsible for the clinical success of omalizumab and potentially provide useful biological markers for future assessment of the clinical response to the treatment. However, further investigation is required to better elucidate the role of basophils during the treatment with omalizumab.
Collapse
Affiliation(s)
- Dimitri Poddighe
- Nazarbayev University School of Medicine, Department of Medicine, Nur-Sultan, Kazakhstan; University Medical Center, Department of Pediatrics, Nur-sultan, Kazakhstan.
| | - Luca Vangelista
- Nazarbayev University School of Medicine, Department of Biomedical Sciences, Nur-Sultan, Kazakhstan.
| |
Collapse
|
49
|
Obata-Ninomiya K, Domeier PP, Ziegler SF. Basophils and Eosinophils in Nematode Infections. Front Immunol 2020; 11:583824. [PMID: 33335529 PMCID: PMC7737499 DOI: 10.3389/fimmu.2020.583824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Helminths remain one of the most prolific pathogens in the world. Following infection helminths interact with various epithelial cell surfaces, including skin, lung, and gut. Recent works have shown that epithelial cells produce a series of cytokines such as TSLP, IL-33, and IL-25 that lead to the induction of innate and acquired type 2 immune responses, which we named Type 2 epithelial cytokines. Although basophils and eosinophils are relatively rare granulocytes under normal conditions (0.5% and 5% in peripheral blood, respectively), both are found with increased frequency in type 2 immunity, including allergy and helminth infections. Recent reports showed that basophils and eosinophils not only express effector functions in type 2 immune reactions, but also manipulate the response toward helminths. Furthermore, basophils and eosinophils play non-redundant roles in distinct responses against various nematodes, providing the potential to intervene at different stages of nematode infection. These findings would be helpful to establish vaccination or therapeutic drugs against nematode infections.
Collapse
Affiliation(s)
| | - Phillip P Domeier
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
50
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|