1
|
Chen HM, Zhang J, Li JX, Li CH, Li YF, Zhang Q, Kong B, Wang PH. The viral early protein 4 of human papillomavirus type 16 suppresses innate antiviral immunity. Int J Biol Macromol 2025; 315:144542. [PMID: 40409624 DOI: 10.1016/j.ijbiomac.2025.144542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 05/13/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Although non-structural proteins of HPV are known to modulate interferon (IFN) responses, the specific role of HPV16 E4 in immune evasion remains poorly defined. In this study, we demonstrated that HPV16 E4 inhibited IFN and IFN-stimulated gene (ISG) expression induced by VSV, MHV, SeV, HSV1, and HPV16 infection. Plaque assays revealed that E4-expressing cells produced higher titers of VSV and HSV1, supporting its role in promoting viral replication. Dual-luciferase reporter assays and RT-qPCR analyses confirmed that HPV16 E4 attenuates IFN responses by targeting key antiviral pathways, including RIG-I/MDA5-MAVS, TLR3-TRIF, and cGAS-STING. Coimmunoprecipitation and immunoblotting assays revealed that E4 interacted with RIG-I, MDA5, MAVS, TRIF, TBK1, and IRF3, thereby inhibiting the phosphorylation of TBK1 and IRF3. Confocal microscopy and nuclear-cytoplasmic fractionation demonstrated that E4 impaired IRF3 nuclear translocation, a pivotal step in IFN signaling. E4 also suppressed the JAK-STAT pathway, resulting in reduced ISG expression. Furthermore, E4 disrupted ISGF3 complex formation by interacting with STAT2 and IRF9, thereby preventing the nuclear translocation of STAT1, STAT2, and IRF9. Collectively, these mechanisms facilitate viral replication and enable evasion of host antiviral immunity. These findings advance our understanding of HPV immune evasion strategies and suggest novel therapeutic targets for managing HPV-related diseases.
Collapse
Affiliation(s)
- Hui-Min Chen
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Jing Zhang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Jin-Xin Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Cheng-Hao Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yun-Fang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China; Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan 250012, China; Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Pei-Hui Wang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Chakraborty A, Das NC, Gupta PSS, Panda SK, Rana MK, Bonam SR, Bayry J, Mukherjee S. In silico evidence of monkeypox F14 as a ligand for the human TLR1/2 dimer. Front Immunol 2025; 16:1544443. [PMID: 40165949 PMCID: PMC11955672 DOI: 10.3389/fimmu.2025.1544443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025] Open
Abstract
Recent emergence of zoonotic monkeypox virus (Mpox) in human has triggered the virologists to develop plausible preventive measures. Hitherto, our understanding on the mechanism of immunopathogenesis of Mpox infection is elusive. However, available experimental evidences suggest induction of inflammation as the main cause of pathogenesis. Toll-like receptors (TLRs) are critical in initiating and modulating the host immune response to pathogens. Inflammatory responses observed in various poxvirus infections have, in fact, been shown to be mediated through TLR activation. Therefore, by in silico approaches, this study seeks to identify the Mpox antigen(s) (MAg) that are most likely to interact with human cell-surface TLRs. The Mpox proteomics data available in UniProt database contain 174 protein sequences, among which 105 immunoreactive proteins were modeled for 3D structure and examined for comparative protein-protein interactions with the TLRs through molecular docking and molecular dynamics simulation. F14, an 8.28 kDa infective protein of Mpox, was found to exhibit strong binding affinity (ΔG=-12.5 Kcal mol-1) to TLR1/2 dimer to form a compact thermodynamically stable protein complex. Interestingly, a significant level of conformational change was also observed in both F14 and TLR6 while forming F14-TLR1/2 complex. Based on these data we propose F14 as a putative ligand of human TLR1/2 to initiate proinflammatory signaling in the Mpox-infected host.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Bioscience and Bioengineering, D.Y. Patil International University, Pune, India
| | - Saroj Kumar Panda
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, Odisha, India
| | - Malay Kumar Rana
- Department of Chemistry, Indian Institute of Science Education and Research, Berhampur, Odisha, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
3
|
Abdrabou AM, Ahmed SU, Fan MJ, Duong BTV, Chen K, Lo PY, Mayes JM, Esmaeili F, GhavamiNejad A, Zargartalebi H, Atwal RS, Lin S, Angers S, Kelley SO. Identification of VISTA regulators in macrophages mediating cancer cell survival. SCIENCE ADVANCES 2024; 10:eadq8122. [PMID: 39602545 PMCID: PMC11601207 DOI: 10.1126/sciadv.adq8122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Numerous human cancers have exhibited the ability to elude immune checkpoint blockade (ICB) therapies. This type of resistance can be mediated by immune-suppressive macrophages that limit antitumor immunity in the tumor microenvironment (TME). Here, we elucidate a strategy to shift macrophages into a proinflammatory state that down-regulates V domain immunoglobulin suppressor of T cell activation (VISTA) via inhibiting AhR and IRAK1. We used a high-throughput microfluidic platform combined with a genome-wide CRISPR knockout screen to identify regulators of VISTA levels. Functional characterization showed that the knockdown of these hits diminished VISTA surface levels on macrophages and sustained an antitumor phenotype. Furthermore, targeting of both AhR and IRAK1 in mouse models overcame resistance to ICB treatment. Tumor immunophenotyping indicated that infiltration of cytotoxic CD8+ cells, natural killer cells, and antitumor macrophages was substantially increased in treated mice. Collectively, AhR and IRAK1 are implicated as regulators of VISTA that coordinate a multifaceted barrier to antitumor immune responses.
Collapse
Affiliation(s)
- Abdalla M. Abdrabou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| | - Sharif U. Ahmed
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | | | - Bill T. V. Duong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Kangfu Chen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Pei-Ying Lo
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Julia M. Mayes
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Fatemeh Esmaeili
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Amin GhavamiNejad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Hossein Zargartalebi
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Randy Singh Atwal
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sichun Lin
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Mercuri FA, White S, McQuilten HA, Lemech C, Mynhardt S, Hari R, Zhang P, Kruger N, McLachlan G, Miller BE, West NP, Tal-Singer R, Demaison C. Evaluation of intranasal TLR2/6 agonist INNA-051: safety, tolerability and proof of pharmacology. ERJ Open Res 2024; 10:00199-2024. [PMID: 39655168 PMCID: PMC11626610 DOI: 10.1183/23120541.00199-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/25/2024] [Indexed: 12/12/2024] Open
Abstract
Background Local priming of the innate immune system with a Toll-like receptor (TLR)2/6 agonist may reduce morbidity and mortality associated with viral respiratory tract infections, particularly for the elderly and those with chronic diseases. The objectives of the present study were to understand the potential of prophylactic treatment with a TLR2/6 agonist as an enhancer of innate immunity pathways leading to accelerated respiratory virus clearance from the upper airways. Methods Two randomised, double-blind, placebo-controlled clinical trials were conducted in healthy adult participants. The first dose-escalation study assessed safety, tolerability and mechanistic biomarkers following single and repeated intranasal administrations of INNA-051. The second was an influenza A viral challenge study assessing the impact of treatment on host defence biomarkers and viral load. Results INNA-051 was well tolerated in both studies, with no dose-limiting toxicities identified. Mechanistic biomarkers assessed in both studies demonstrated the expected engagement of pharmacology, including innate immune pathways. There were lower than anticipated rates of infection. Post hoc analysis conducted in laboratory-confirmed infected participants with low or no antibody titre against the challenge virus showed INNA-051 treatment led to a significantly shorter duration of infection and increased expression of genes and pathways associated with host defence responses against influenza. Conclusions The safety and pharmacology profile of INNA-051 confirms preclinical studies. INNA-051 increased expression of genes and pathways associated with host defence responses against influenza and was associated with a shorter duration of infection. These studies support further clinical assessment in the context of natural viral respiratory tract infections in individuals at increased risk of severe illness.
Collapse
Affiliation(s)
| | - Scott White
- ENA Respiratory, Melbourne, VIC, Australia
- These authors contributed equally
| | | | - Charlotte Lemech
- Scientia Clinical Research Ltd, Randwick, NSW, Australia
- Prince of Wales Clinical School, UNSW, Sydney, NSW, Australia
| | | | - Rana Hari
- Scientia Clinical Research Ltd, Randwick, NSW, Australia
| | - Ping Zhang
- Griffith Biostatistics Unit, Griffith Health, Griffith University Gold Coast Campus, QLD, Australia
| | | | | | | | - Nicholas P. West
- School of Pharmacy and Medical Science and the Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | | | | |
Collapse
|
5
|
Herrero-Fernández B, Ortega-Zapero M, Gómez-Bris R, Sáez A, Iborra S, Zorita V, Quintas A, Vázquez E, Dopazo A, Sánchez-Madrid F, Arribas SM, González-Granado JM. Role of lamin A/C on dendritic cell function in antiviral immunity. Cell Mol Life Sci 2024; 81:400. [PMID: 39264480 PMCID: PMC11393282 DOI: 10.1007/s00018-024-05423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Dendritic cells (DCs) play a crucial role in orchestrating immune responses, particularly in promoting IFNγ-producing-CD8 cytotoxic T lymphocytes (CTLs) and IFNγ-producing-CD4 T helper 1 (Th1) cells, which are essential for defending against viral infections. Additionally, the nuclear envelope protein lamin A/C has been implicated in T cell immunity. Nevertheless, the intricate interplay between innate and adaptive immunity in response to viral infections, particularly the role of lamin A/C in DC functions within this context, remains poorly understood. In this study, we demonstrate that mice lacking lamin A/C in myeloid LysM promoter-expressing cells exhibit a reduced capacity to induce Th1 and CD8 CTL responses, leading to impaired clearance of acute primary Vaccinia virus (VACV) infection. Remarkably, in vitro-generated granulocyte macrophage colony-stimulating factor bone marrow-derived DCs (GM-CSF BMDCs) show high levels of lamin A/C. Lamin A/C absence on GM-CSF BMDCs does not affect the expression of costimulatory molecules on the cell membrane but it reduces the cellular ability to form immunological synapses with naïve CD4 T cells. Lamin A/C deletion induces alterations in NFκB nuclear localization, thereby influencing NF-κB-dependent transcription. Furthermore, lamin A/C ablation modifies the gene accessibility of BMDCs, predisposing these cells to mount a less effective antiviral response upon TLR stimulation. This study highlights the critical role of DCs in interacting with CD4 T cells during antiviral responses and proposes some mechanisms through which lamin A/C may modulate DC function via gene accessibility and transcriptional regulation.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Marina Ortega-Zapero
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Raquel Gómez-Bris
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain
| | - Angela Sáez
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Spain
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
- Fundacion Inmunotek, Alcalá de Henares, 28805, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones, Cardiovasculares (CNIC), Madrid, 28029, Spain
- Immunology Unit, Medicine Department, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Instituto Investigacion Sanitaria-Princesa IIS-IP, Madrid, Spain, Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, 28029, Spain.
| | - Jose Maria González-Granado
- LamImSys Lab, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), Madrid, 28041, Spain.
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
6
|
Thomas SM, Ankley LM, Conner KN, Rapp AW, McGee AP, LeSage F, Tanner CD, Vielma TE, Scheeres EC, Obar JJ, Olive AJ. TGFβ primes alveolar-like macrophages to induce type I IFN following TLR2 activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611226. [PMID: 39282428 PMCID: PMC11398362 DOI: 10.1101/2024.09.04.611226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Alveolar macrophages (AMs) are key mediators of lung function and are potential targets for therapies during respiratory infections. TGFβ is an important regulator of AM differentiation and maintenance, but how TGFβ directly modulates the innate immune responses of AMs remains unclear. This shortcoming prevents effective targeting of AMs to improve lung function in health and disease. Here we leveraged an optimized ex vivo AM model system, fetal-liver derived alveolar-like macrophages (FLAMs), to dissect the role of TGFβ in AMs. Using transcriptional analysis, we first globally defined how TGFβ regulates gene expression of resting FLAMs. We found that TGFβ maintains the baseline metabolic state of AMs by driving lipid metabolism through oxidative phosphorylation and restricting inflammation. To better understand inflammatory regulation in FLAMs, we next directly tested how TGFβ alters the response to TLR2 agonists. While both TGFβ (+) and TGFβ (-) FLAMs robustly responded to TLR2 agonists, we found an unexpected activation of type I interferon (IFN) responses in FLAMs and primary AMs in a TGFβ-dependent manner. Surprisingly, mitochondrial antiviral signaling protein and the interferon regulator factors 3 and 7 were required for IFN production by TLR2 agonists. Together, these data suggest that TGFβ modulates AM metabolic networks and innate immune signaling cascades to control inflammatory pathways in AMs.
Collapse
Affiliation(s)
- Sean M. Thomas
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Laurisa M. Ankley
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Kayla N. Conner
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Alexander W. Rapp
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Abigail P. McGee
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Francois LeSage
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Christopher D. Tanner
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Taryn E. Vielma
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Eleanor C. Scheeres
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Joshua J. Obar
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Andrew J. Olive
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
7
|
Sabbaghian M, Gheitasi H, Fadaee M, Javadi Henafard H, Tavakoli A, Shekarchi AA, Poortahmasebi V. Human cytomegalovirus microRNAs: strategies for immune evasion and viral latency. Arch Virol 2024; 169:157. [PMID: 38969819 DOI: 10.1007/s00705-024-06080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/17/2024] [Indexed: 07/07/2024]
Abstract
Viruses use various strategies and mechanisms to deal with cells and proteins of the immune system that form a barrier against infection. One of these mechanisms is the encoding and production of viral microRNAs (miRNAs), whose function is to regulate the gene expression of the host cell and the virus, thus creating a suitable environment for survival and spreading viral infection. miRNAs are short, single-stranded, non-coding RNA molecules that can regulate the expression of host and viral proteins, and due to their non-immunogenic nature, they are not eliminated by the cells of the immune system. More than half of the viral miRNAs are encoded and produced by Orthoherpesviridae family members. Human cytomegalovirus (HCMV) produces miRNAs that mediate various processes in infected cells to contribute to HCMV pathogenicity, including immune escape, viral latency, and cell apoptosis. Here, we discuss which cellular and viral proteins or cellular pathways and processes these mysterious molecules target to evade immunity and support viral latency in infected cells. We also discuss current evidence that their function of bypassing the host's innate and adaptive immune system is essential for the survival and multiplication of the virus and the spread of HCMV infection.
Collapse
Affiliation(s)
- Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Tanaka S, Kawakita M, Yasui H, Sudo K, Itoh F, Sasaki M, Shibata N, Hara H, Iwakura Y, Hashidate-Yoshida T, Shindou H, Shimizu T, Oyama T, Matsunaga H, Takahara K. An immune-adrenergic pathway induces lethal levels of platelet-activating factor in mice. Commun Biol 2024; 7:782. [PMID: 38951147 PMCID: PMC11217416 DOI: 10.1038/s42003-024-06498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
Acute immune responses with excess production of cytokines, lipid/chemical mediators, or coagulation factors, often result in lethal damage. In addition, the innate immune system utilizes multiple types of receptors that recognize neurotransmitters as well as pathogen-associated molecular patterns, making immune responses complex and clinically unpredictable. We here report an innate immune and adrenergic link inducing lethal levels of platelet-activating factor. Injecting mice with toll-like receptor (TLR) 4 ligand lipopolysaccharide (LPS), cell wall N-glycans of Candida albicans, and the α2-adrenergic receptor (α2-AR) agonist medetomidine induces lethal damage. Knocking out the C-type lectin Dectin-2 prevents the lethal damage. In spleen, large amounts of platelet-activating factor (PAF) are detected, and knocking out lysophospholipid acyltransferase 9 (LPLAT9/LPCAT2), which encodes an enzyme that converts inactive lyso-PAF to active PAF, protects mice from the lethal damage. These results reveal a linkage/crosstalk between the nervous and the immune system, possibly inducing lethal levels of PAF.
Collapse
Affiliation(s)
- Shuto Tanaka
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masataka Kawakita
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hikaru Yasui
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Koichi Sudo
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Fumie Itoh
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masato Sasaki
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Nobuyuki Shibata
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | | | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo, Japan
| | - Taiki Oyama
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Himawari Matsunaga
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kazuhiko Takahara
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
da Silva MI, Oli N, Gambonini F, Ott T. Effects of parity and early pregnancy on peripheral blood leukocytes in dairy cattle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592827. [PMID: 38766084 PMCID: PMC11100682 DOI: 10.1101/2024.05.06.592827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Subfertility remains a major problem in the dairy industry. Only 35-40% of high-yielding dairy cows and 55-65% of nonlactating heifers become pregnant after their first service. The immune system plays a critical role in the establishment of pregnancy. However, it can also create challenges for embryo survival and contribute to reduced fertility. We conducted 2 separate experiments to characterize changes in subsets of peripheral blood leukocytes (PBL) and their phenotype over the estrous cycle and early pregnancy in heifers and cows. We used flow cytometry and RT-qPCR to assess protein and mRNA expression of molecules important for immune function. We observed that monocytes and T cells were most affected by pregnancy status in heifers, whereas, CD8+ lymphocytes and natural killer (NK) cells were most affected during early pregnancy in cows. Changes in immune parameters measured appeared to be greater in heifers than cows including changes in expression of numerous immune function molecules. To test the hypothesis, we conducted a third experiment to simultaneously analyze the immunological responses to pregnancy between cows and heifers. We observed that cows had greater expression of proinflammatory cytokines and molecules associated with leukocyte migration and phagocytosis compared to heifers. Moreover, animals that failed to become pregnant showed altered expression of anti-inflammatory molecules. Overall, these findings support the hypothesis that early pregnancy signaling alters the proportions and functions of peripheral blood immune cells and differences between cows and heifers may yield insight into the reduced fertility of mature lactating dairy cows.
Collapse
Affiliation(s)
- M I da Silva
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - N Oli
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - F Gambonini
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - T Ott
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
11
|
Kawai T, Ikegawa M, Ori D, Akira S. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 2024; 57:649-673. [PMID: 38599164 DOI: 10.1016/j.immuni.2024.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.
Collapse
Affiliation(s)
- Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan; Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan.
| | - Moe Ikegawa
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Shizuo Akira
- Center for Advanced Modalities and DSS (CAMaD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Mogakala MR, Smith RM, Mavimbela C, Dalton DL. Identification of low levels of neutral and functional genetic diversity in South African bontebok ( Damaliscus pygargus pygargus). Ecol Evol 2024; 14:e10962. [PMID: 38450323 PMCID: PMC10915478 DOI: 10.1002/ece3.10962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 03/08/2024] Open
Abstract
Bontebok (Damaliscus pygargus pygargus) and blesbok (D. p. phillipsi) are classified as separate sub-species. The blesbok has a widespread distribution throughout South Africa and is listed as least concern by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. Bontebok on the other hand is endemic within the Cape Floristic Region of the Western Cape in South Africa and has been listed as near-threatened species on the IUCN Red List of Threatened Species. Bontebok populations experienced a severe bottleneck and were brought back from the brink of extinction in the 1830s. Currently, the subspecies is threatened by hybridisation with blesbok resulting in fertile offspring. To date, molecular investigations using neutral markers have determined that genetic diversity in pure South African bontebok was significantly lower than in pure blesbok. Here, we investigated genetic diversity in bontebok, blesbok and hybrid individuals using microsatellites and an adaptive marker (toll-like receptor two (TLR2)). The study of single nucleotide polymorphisms (SNPs) revealed five mutations in TLR2 in different individuals and subspecies of D. pygargus. This included three non-synonymous and two synonymous mutations. The three amino acid substitution mutations were predicted to have no effect on protein function. Two of the five mutations, one of which resulted in an amino acid substitution, were not present in bontebok. The other three mutations were present to varying frequencies in the three groups. We confirm low adaptive and neutral diversity in bontebok. These mutations provide insights into the genetic diversity and relationships among the two sub-species of D. pygargus and may have implications for their conservation and management.
Collapse
Affiliation(s)
- Martin Ratanang Mogakala
- School of Science and TechnologySefako Makgatho Health Sciences UniversityMedunsaSouth Africa
- Zoological ResearchSouth African National Biodiversity InstitutePretoriaSouth Africa
| | - Rae Marvin Smith
- Zoological ResearchSouth African National Biodiversity InstitutePretoriaSouth Africa
- Department of Life and Consumer SciencesCollege of Agriculture and Environmental Sciences, University of South AfricaJohannesburgSouth Africa
| | - Caswell Mavimbela
- Zoological ResearchSouth African National Biodiversity InstitutePretoriaSouth Africa
| | - Desiré Lee Dalton
- Zoological ResearchSouth African National Biodiversity InstitutePretoriaSouth Africa
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
| |
Collapse
|
13
|
Pandi K, Angabo S, Makkawi H, Benyamini H, Elgavish S, Nussbaum G. P. gingivalis-Induced TLR2 Interactome Analysis Reveals Association with PARP9. J Dent Res 2024; 103:329-338. [PMID: 38344758 DOI: 10.1177/00220345231222181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium strongly associated with periodontal disease. Toll-like receptor 2 (TLR2) is indispensable for the host response to P. gingivalis, but P. gingivalis escapes from immune clearance via TLR2-dependent activation of phosphoinositide-3-kinase (PI3K). To probe the TLR2-dependent escape pathway of P. gingivalis, we analyzed the TLR2 interactome induced following P. gingivalis infection or activation by a synthetic lipopeptide TLR2/1 agonist on human macrophages overexpressing TLR2. Interacting proteins were stabilized by cross-linking and then immunoprecipitated and analyzed by mass spectrometry. In total, 792 proteins were recovered and network analysis enabled mapping of the TLR2 interactome at baseline and in response to infection. The P. gingivalis infection-induced TLR2 interactome included the poly (ADP-ribose) polymerase family member mono-ADP-ribosyltransferase protein 9 (PARP9) and additional members of the PARP9 complex (DTX3L and NMI). PARP9 and its complex members are highly upregulated in macrophages exposed to P. gingivalis or to the synthetic TLR2/1 ligand Pam3Cys-Ser-(Lys)4 (PAM). Consistent with its known role in virally induced interferon production, PARP9 knockdown blocked type I interferon (IFN-I) production in response to P. gingivalis and reduced inflammatory cytokine production. We found that P. gingivalis drives signal transducer and activation of transcription (STAT) 1 (S727) phosphorylation through TLR2-PARP9, explaining PARP9's role in the induction of IFN-I downstream of TLR2. Furthermore, PARP9 knockdown reduced PI3K activation by P. gingivalis, leading to improved macrophage bactericidal activity. In summary, PARP9 is a novel TLR2 interacting partner that enables IFN-I induction and P. gingivalis immune escape in macrophages downstream of TLR2 sensing.
Collapse
Affiliation(s)
- K Pandi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - S Angabo
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - H Makkawi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - H Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - G Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
14
|
Ji L, Li T, Chen H, Yang Y, Lu E, Liu J, Qiao W, Chen H. The crucial regulatory role of type I interferon in inflammatory diseases. Cell Biosci 2023; 13:230. [PMID: 38124132 PMCID: PMC10734085 DOI: 10.1186/s13578-023-01188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Type I interferon (IFN-I) plays crucial roles in the regulation of inflammation and it is associated with various inflammatory diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and periodontitis, impacting people's health and quality of life. It is well-established that IFN-Is affect immune responses and inflammatory factors by regulating some signaling. However, currently, there is no comprehensive overview of the crucial regulatory role of IFN-I in distinctive pathways as well as associated inflammatory diseases. This review aims to provide a narrative of the involvement of IFN-I in different signaling pathways, mainly mediating the related key factors with specific targets in the pathways and signaling cascades to influence the progression of inflammatory diseases. As such, we suggested that IFN-Is induce inflammatory regulation through the stimulation of certain factors in signaling pathways, which displays possible efficient treatment methods and provides a reference for the precise control of inflammatory diseases.
Collapse
Affiliation(s)
- Ling Ji
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Tianle Li
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Huimin Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
- Division of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Jieying Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| | - Hui Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
15
|
Zhu S, Yu Y, Qu M, Qiu Z, Zhang H, Miao C, Guo K. Neutrophil extracellular traps contribute to immunothrombosis formation via the STING pathway in sepsis-associated lung injury. Cell Death Discov 2023; 9:315. [PMID: 37626060 PMCID: PMC10457383 DOI: 10.1038/s41420-023-01614-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are involved in the activation and dysfunction of multiple overlapping and interacting pathways, including the immune response to injury, inflammation, and coagulation, which contribute to the pathogenesis of sepsis-induced acute lung injury (SI-ALI). However, how NETs mediate the relationship between inflammation and coagulation has not been fully clarified. Here, we found that NETs, through stimulator of interferon genes (STING) activation, induced endothelial cell damage with abundant production of tissue factor (TF), which magnified the dysregulation between inflammatory and coagulant responses and resulted in poor prognosis of SI-ALI model mice. Disruption of NETs and inhibition of STING improved the outcomes of septic mice and reduced the inflammatory response and coagulation. Furthermore, Toll-like receptor 2 (TLR2) on the surface of endothelial cells was involved in the interaction between NETs and the STING pathway. Collectively, these findings demonstrate that NETs activate the coagulant cascade in endothelial cells in a STING-dependent manner in the development of SI-ALI.
Collapse
Affiliation(s)
- Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhiyun Qiu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
16
|
Agnello L, Ciaccio AM, Vidali M, Cortegiani A, Biundo G, Gambino CM, Scazzone C, Lo Sasso B, Ciaccio M. Monocyte distribution width (MDW) in sepsis. Clin Chim Acta 2023; 548:117511. [PMID: 37562521 DOI: 10.1016/j.cca.2023.117511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Sepsis is a life-threatening syndrome due to a dysregulated host response to infection, which can be caused by bacterial, viral, or fungal infection. Thus, it is crucial to know how the different microorganisms influence the levels of a biomarker. In the last decade, monocyte distribution width (MDW) has emerged as a promising sepsis biomarker, especially in acute settings, such as the Emergency Department and Intensive Care Unit. In this article, we explore the relationship between MDW and the different pathogens causing infection. Noteworthy, MDW is not a biological molecule, but it is calculated by a mathematical formula based on monocyte characteristics. Monocytes represent the first line defence against microorganisms and undergo activation upon infection, independently from the invading pathogen. According to the knowledge on the biomarker biology and the few literatures evidence, MDW may be considered a biomarker of sepsis, independent of the causative pathogen. However, further investigations are warranted before drawing definite conclusion.
Collapse
Affiliation(s)
- Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Maria Ciaccio
- Internal Medicine and Medical Specialties "G. D'Alessandro", Department of Health Promotion, Maternal and Infant Care, University of Palermo, Palermo, Italy
| | - Matteo Vidali
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science, University of Palermo, Palermo, Italy
| | - Giuseppe Biundo
- Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Caterina Maria Gambino
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Concetta Scazzone
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Bruna Lo Sasso
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy.
| |
Collapse
|
17
|
Farris LC, Torres-Odio S, Adams LG, West AP, Hyde JA. Borrelia burgdorferi Engages Mammalian Type I IFN Responses via the cGAS-STING Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1761-1770. [PMID: 37067290 PMCID: PMC10192154 DOI: 10.4049/jimmunol.2200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/23/2023] [Indexed: 04/18/2023]
Abstract
Borrelia burgdorferi, the etiologic agent of Lyme disease, is a spirochete that modulates numerous host pathways to cause a chronic, multisystem inflammatory disease in humans. B. burgdorferi infection can lead to Lyme carditis, neurologic complications, and arthritis because of the ability of specific borrelial strains to disseminate, invade, and drive inflammation. B. burgdorferi elicits type I IFN (IFN-I) responses in mammalian cells and tissues that are associated with the development of severe arthritis or other Lyme-related complications. However, the innate immune sensors and signaling pathways controlling IFN-I induction remain unclear. In this study, we examined whether intracellular nucleic acid sensing is required for the induction of IFN-I to B. burgdorferi. Using fluorescence microscopy, we show that B. burgdorferi associates with mouse and human cells in culture, and we document that internalized spirochetes colocalize with the pattern recognition receptor cyclic GMP-AMP synthase (cGAS). Moreover, we report that IFN-I responses in mouse macrophages and murine embryonic fibroblasts are significantly attenuated in the absence of cGAS or its adaptor stimulator of IFN genes (STING), which function to sense and respond to intracellular DNA. Longitudinal in vivo tracking of bioluminescent B. burgdorferi revealed similar dissemination kinetics and borrelial load in C57BL/6J wild-type, cGAS-deficient, or STING-deficient mice. However, infection-associated tibiotarsal joint pathology and inflammation were modestly reduced in cGAS-deficient compared with wild-type mice. Collectively, these results indicate that the cGAS-STING pathway is a critical mediator of mammalian IFN-I signaling and innate immune responses to B. burgdorferi.
Collapse
Affiliation(s)
- Lauren C. Farris
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - L. Garry Adams
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| |
Collapse
|
18
|
Wang C, Chen Q, Tang M, Wei T, Zou J. Effects of TLR2/4 signalling pathway in western mosquitofish (Gambusia affinis) after Edwardsiella tarda infection. JOURNAL OF FISH DISEASES 2023; 46:299-307. [PMID: 36811195 DOI: 10.1111/jfd.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Gambusia affinis is regarded as an important animal model. Edwardsiella tarda is one of the most serious pathogens affecting aquaculture. The study explores the effects of TLR2/4 partial signalling pathway in G. affinis of E. tarda infection. The study collected the brain, liver, and intestine after E. tarda LD50 and 0.85% NaCl solution challenge at different times (0 h, 3 h, 9 h, 18 h, 24 h, and 48 h). In these three tissues, the mRNA levels of PI3K, AKT3, IRAK4, TAK1, IKKβ, and IL-1β were substantially enhanced (p < .05) then returned to normal levels. Additionally, Rac1 and MyD88 in liver had different trend with other genes in brain and intestine, which displayed significantly indifference. The overexpression of IKKβ, and IL-1β indicated that E. tarda also caused immune reaction in intestine and liver, which would be consistent with delayed edwardsiellosis, which causes intestinal lesions and liver and kidney necrosis. Additionally, MyD88 plays a smaller role than IRAK4 and TAK1 in this signalling pathways. This study could enrich the understanding of the immune mechanism of the TLR2/4 signalling pathway in fish and might help to prescribe preventive measures against E. tarda to prevent infectious diseases in fish.
Collapse
Affiliation(s)
- Chong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qingshi Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Manfei Tang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Tianli Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Yang J, Yang K, Wang K, Zhou D, Zhou J, Du X, Liu S, Cheng Z. Serum amyloid A regulates TLR2/4-mediated IFN-β signaling pathway against Marek's disease virus. Virus Res 2023; 326:199044. [PMID: 36652973 DOI: 10.1016/j.virusres.2023.199044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/16/2023]
Abstract
Serum amyloid A (SAA), an acute response phase protein (APP), is crucial for the innate immune response during pathogenic microorganisms' invasion. Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that activates multiple innate immune molecules, including SAA, in the host during infection. However, the pathway through which SAA participates in MDV-induced host innate immunity remains unknown. The present study aimed to elucidate the pathway through which SAA exerts its anti-MDV function. We observed that MDV infection in vivo and in vitro significantly elevated SAA expression. Furthermore, through SAA overexpression and knockdown experiments, we demonstrated that SAA could inhibit MDV replication. Subsequently, we found that SAA activated Toll-Like Receptor 2/4 (TLR2/4) -mediated Interferon Beta (IFN-β) promoter activity and IFN regulatory factor 7 (IRF7) promoter activity. During MDV infection, SAA enhanced TLR2/4-mediated IFN-β signal transduction and messenger RNAs (mRNAs) expression of type I IFN (IFN-I) and interferon-stimulated genes (ISGs). Finally, TLR2/4 inhibitor OxPAPC inhibits the anti-MDV activity of SAA. These results demonstrated that SAA inhibits MDV replication and enhancing TLR2/4-mediated IFN-β signal transduction to promote IFNs and ISGs expression. This finding is the first to demonstrate the signaling pathway by which SAA exerts its anti-MDV function. It also provides new insights into the control of oncogenic herpesviruses from the perspective of acute response phase proteins.
Collapse
Affiliation(s)
- Jianhao Yang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Kunmei Yang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Kang Wang
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Xusheng Du
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Shenglong Liu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
| |
Collapse
|
20
|
Potential health risks of mRNA-based vaccine therapy: A hypothesis. Med Hypotheses 2023; 171:111015. [PMID: 36718314 PMCID: PMC9876036 DOI: 10.1016/j.mehy.2023.111015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/08/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Therapeutic applications of synthetic mRNA were proposed more than 30 years ago, and are currently the basis of one of the vaccine platforms used at a massive scale as part of the public health strategy to get COVID-19 under control. To date, there are no published studies on the biodistribution, cellular uptake, endosomal escape, translation rates, functional half-life and inactivation kinetics of synthetic mRNA, rates and duration of vaccine-induced antigen expression in different cell types. Furthermore, despite the assumption that there is no possibility of genomic integration of therapeutic synthetic mRNA, only one recent study has examined interactions between vaccine mRNA and the genome of transfected cells, and reported that an endogenous retrotransposon, LINE-1 is unsilenced following mRNA entry to the cell, leading to reverse transcription of full length vaccine mRNA sequences, and nuclear entry. This finding should be a major safety concern, given the possibility of synthetic mRNA-driven epigenetic and genomic modifications arising. We propose that in susceptible individuals, cytosolic clearance of nucleotide modified synthetic (nms-mRNAs) is impeded. Sustained presence of nms-mRNA in the cytoplasm deregulates and activates endogenous transposable elements (TEs), causing some of the mRNA copies to be reverse transcribed. The cytosolic accumulation of the nms-mRNA and the reverse transcribed cDNA molecules activates RNA and DNA sensory pathways. Their concurrent activation initiates a synchronized innate response against non-self nucleic acids, prompting type-I interferon and pro-inflammatory cytokine production which, if unregulated, leads to autoinflammatory and autoimmune conditions, while activated TEs increase the risk of insertional mutagenesis of the reverse transcribed molecules, which can disrupt coding regions, enhance the risk of mutations in tumour suppressor genes, and lead to sustained DNA damage. Susceptible individuals would then expectedly have an increased risk of DNA damage, chronic autoinflammation, autoimmunity and cancer. In light of the current mass administration of nms-mRNA vaccines, it is essential and urgent to fully understand the intracellular cascades initiated by cellular uptake of synthetic mRNA and the consequences of these molecular events.
Collapse
|
21
|
Zhao Z, Huang C, Zhu X, Qi Z, Cao Y, Li P, Bao H, Sun P, Bai X, Fu Y, Li K, Zhang J, Ma X, Wang J, Yuan H, Li D, Liu Z, Zhang Q, Lu Z. Creation of poxvirus expressing foot-and-mouth and peste des petits ruminant disease virus proteins. Appl Microbiol Biotechnol 2023; 107:639-650. [PMID: 36586016 DOI: 10.1007/s00253-022-12351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Foot-and-mouth disease (FMD) and Peste des petits ruminant disease (PPR) are acute and severe infectious diseases of sheep and are listed as animal diseases for compulsory immunization. However, there is no dual vaccine to prevent these two diseases. The Modified Vaccinia virus Ankara strain (MVA) has been widely used in the construction of recombinant live vector vaccine because of its large capacity of foreign gene, wide host range, high safety, and immunogenicity. In this study, MVA-GFP recombinant virus skeleton was used to construct dual live vector vaccines against FMD and PPR. METHODS The recombinant plasmid pUC57-FMDV P1-2A3CPPRV FH was synthesized and transfected into MVA-GFP infected CEF cells for homologous recombination. RESULTS The results showed that a recombinant virus without fluorescent labeling was obtained after multiple rounds of plaque screening. The recombinant virus successfully expressed the target proteins, and the empty capsid of FMDV could be observed by transmission electron microscope (TME), and the expression levels of foreign proteins (VP1 and VP3) detected by ELISA were like those detected in FMDV-infected cells. This study laid the foundation for the successful construction of a live vector vaccine against FMD and PPR. KEY POINTS • A recombinant MVA expressing FMDVP12A3C and PRRV HF proteins • Both the FMDV and PRRV proteins inserted into the virus were expressed • The proteins expressed by the recombinant poxvirus were assembled into VLPs.
Collapse
Affiliation(s)
- Zhixun Zhao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Caiyun Huang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Xueliang Zhu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Zheng Qi
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Jian Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China.
| | - Qiang Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China.
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
22
|
Investigation of TLR4 Antagonists for Prevention of Intestinal Inflammation. Inflammation 2023; 46:103-114. [PMID: 35867263 PMCID: PMC9971050 DOI: 10.1007/s10753-022-01714-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/08/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022]
Abstract
Activation of toll-like receptor 4 (TLR4) has been shown to be a major influence on the inflammatory signalling pathways in intestinal mucositis (IM), as demonstrated by TLR4 knock-out mice. Pharmacological TLR4 inhibition has thus been postulated as a potential new therapeutic approach for the treatment of IM but specific TLR4 inhibitors have yet to be investigated. As such, we aimed to determine whether direct TLR4 antagonism prevents inflammation in pre-clinical experimental models of IM. The non-competitive and competitive TLR4 inhibitors, TAK-242 (10 µM) and IAXO-102 (10 µM), respectively, or vehicle were added to human T84, HT-29, and U937 cell lines and mouse colonic explants 1 h before the addition of lipopolysaccharide (LPS) (in vitro: 100 µg/mL; ex vivo: 10 µg/mL), SN-38 (in vitro: 1 µM or 1 nM; ex vivo: 2 µM), and/or tumour necrosis factor-alpha (TNF-α) (5 µg/mL). Supernatant was collected for human IL-8 and mouse IL-6 enzyme-linked immunosorbent assays (ELISAs), as a measure of inflammatory signalling. Cell viability was measured using XTT assays. Explant tissue was used in histopathological and RT-PCR analysis for genes of interest: TLR4, MD2, CD14, MyD88, IL-6, IL-6R, CXCL2, CXCR1, CXCR2. SN-38 increased cytostasis compared to vehicle (P < 0.0001). However, this was not prevented by either antagonist (P > 0.05) in any of the 3 cell lines. Quantitative histological assessment scores showed no differences between vehicle and treatment groups (P > 0.05). There were no differences in in vitro IL-8 (P > 0.05, in all 3 cells lines) and ex vivo IL-6 (P > 0.05) concentrations between vehicle and treatment groups. Transcript expression of all genes was similar across vehicle and treatment groups (P > 0.05). TLR4 antagonism using specific inhibitors TAK-242 and IAXO-102 was not effective at blocking IM in these pre-clinical models of mucositis. This work indicates that specific epithelial inhibition of TLR4 with these compounds is insufficient to manage mucositis-related inflammation. Rather, TLR4 signalling through immune cells may be a more important target to prevent IM.
Collapse
|
23
|
Petnicki-Ocwieja T, Sharma B, Powale U, Pathak D, Tan S, Hu LT. An AP-3-dependent pathway directs phagosome fusion with Rab8 and Rab11 vesicles involved in TLR2 signaling. Traffic 2022; 23:558-567. [PMID: 36224049 PMCID: PMC10757455 DOI: 10.1111/tra.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 01/20/2023]
Abstract
Intracellular compartmentalization of ligands, receptors and signaling molecules has been recognized as an important regulator of inflammation. The toll-like receptor (TLR) 2 pathway utilizes the trafficking molecule adaptor protein 3 (AP-3) to activate interleukin (IL)-6 signaling from within phagosomal compartments. To better understand the vesicular pathways that may contribute to intracellular signaling and cooperate with AP-3, we performed a vesicular siRNA screen. We identified Rab8 and Rab11 GTPases as important in IL-6 induction upon stimulation with the TLR2 ligand Pam3 CSK4 or the pathogen, Borrelia burgdorferi (Bb), the causative agent of Lyme disease. These Rabs were recruited to late and lysosomal stage phagosomes and co-transported with TLR2 signaling adaptors and effectors, such as MyD88, TRAM and TAK1, in an AP-3-dependent manner. Our data support a model where AP-3 mediates the recruitment of recycling and secretory vesicles and the assembly of signaling complexes at the phagosome.
Collapse
Affiliation(s)
- Tanja Petnicki-Ocwieja
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Bijaya Sharma
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Urmila Powale
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Devesh Pathak
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Pim1 promotes IFN-β production by interacting with IRF3. Exp Mol Med 2022; 54:2092-2103. [PMID: 36446848 PMCID: PMC9722908 DOI: 10.1038/s12276-022-00893-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The Pim (proviral integration site for Moloney murine leukemia virus) proteins compose a serine threonine kinase family whose members regulate cell proliferation, migration and cell survival. However, whether Pim kinases participate in innate immune responses is unclear. Here, we show for the first time that Pim1 plays an essential role in the production of interferon (IFN)-β by macrophages after their Toll-like receptor (TLR) pathway is activated by pathogen-associated molecular patterns (PAMPs). Specifically, Pim1 was quickly upregulated in an NF-κB-dependent manner after TLR stimulation with PAMPs. Pim1 deficiency reduced TLR3- or TLR4-stimulated IFN-β and IFN-stimulated gene (ISG) expression but not proinflammatory cytokine expression in macrophages. Mechanistically, Pim1 specifically upregulates IRF3 phosphorylation and nuclear translocation. However, this role is not dependent on Pim1 kinase activity. Rather, Pim1 appears to promote IRF3 phosphorylation by enhancing the formation of IFN-β signaling complexes composed of TRIF, TRAF3, TBK1, and IRF3. Poly (I:C)-treated Pim1-/- mice produced less serum IFN-β and were less likely to survive than wild-type mice. These findings show for the first time that Pim1 participates in TLR-mediated IFN-β production, thus revealing a novel target for controlling antiviral innate immune responses.
Collapse
|
25
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
26
|
Aguilar Briseño JA, Ramos Pereira L, van der Laan M, Pauzuolis M, ter Ellen BM, Upasani V, Moser J, de Souza Ferreira LC, Smit JM, Rodenhuis-Zybert IA. TLR2 axis on peripheral blood mononuclear cells regulates inflammatory responses to non-infectious immature dengue virus particles. PLoS Pathog 2022; 18:e1010499. [PMID: 36240261 PMCID: PMC9605289 DOI: 10.1371/journal.ppat.1010499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/26/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Severe dengue virus (DENV) infection is characterized by exacerbated inflammatory responses that lead to endothelial dysfunction and plasma leakage. We have recently demonstrated that Toll-like receptor 2 (TLR2) on blood monocytes senses DENV infection leading to endothelial activation. Here, we report that non-infectious immature DENV particles, which are released in large numbers by DENV-infected cells, drive endothelial activation via the TLR2 axis. We show that fully immature DENV particles induce a rapid, within 6 hours post-infection, inflammatory response in PBMCs. Furthermore, pharmacological blocking of TLR2/TLR6/CD14 and/or NF-kB prior to exposure of PBMCs to immature DENV reduces the initial production of inter alia TNF-α and IL-1β by monocytes and prevents endothelial activation. However, prolonged TLR2 block induces TNF-α production and leads to exacerbated endothelial activation, indicating that TLR2-mediated responses play an important role not only in the initiation but also the resolution of inflammation. Altogether, these data indicate that the maturation status of the virus has the potential to influence the kinetics and extent of inflammatory responses during DENV infection.
Collapse
Affiliation(s)
- José Alberto Aguilar Briseño
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Lennon Ramos Pereira
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marleen van der Laan
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Mindaugas Pauzuolis
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Bram M. ter Ellen
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Vinit Upasani
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Jill Moser
- Departments of Critical Care, Pathology & Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Manan A, Pirzada RH, Haseeb M, Choi S. Toll-like Receptor Mediation in SARS-CoV-2: A Therapeutic Approach. Int J Mol Sci 2022; 23:10716. [PMID: 36142620 PMCID: PMC9502216 DOI: 10.3390/ijms231810716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 01/18/2023] Open
Abstract
The innate immune system facilitates defense mechanisms against pathogen invasion and cell damage. Toll-like receptors (TLRs) assist in the activation of the innate immune system by binding to pathogenic ligands. This leads to the generation of intracellular signaling cascades including the biosynthesis of molecular mediators. TLRs on cell membranes are adept at recognizing viral components. Viruses can modulate the innate immune response with the help of proteins and RNAs that downregulate or upregulate the expression of various TLRs. In the case of COVID-19, molecular modulators such as type 1 interferons interfere with signaling pathways in the host cells, leading to an inflammatory response. Coronaviruses are responsible for an enhanced immune signature of inflammatory chemokines and cytokines. TLRs have been employed as therapeutic agents in viral infections as numerous antiviral Food and Drug Administration-approved drugs are TLR agonists. This review highlights the therapeutic approaches associated with SARS-CoV-2 and the TLRs involved in COVID-19 infection.
Collapse
Affiliation(s)
- Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | | | - Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
28
|
Clement M, Forbester JL, Marsden M, Sabberwal P, Sommerville MS, Wellington D, Dimonte S, Clare S, Harcourt K, Yin Z, Nobre L, Antrobus R, Jin B, Chen M, Makvandi-Nejad S, Lindborg JA, Strittmatter SM, Weekes MP, Stanton RJ, Dong T, Humphreys IR. IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses. Nat Commun 2022; 13:5294. [PMID: 36075894 PMCID: PMC9454482 DOI: 10.1038/s41467-022-32587-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a restriction factor that limits viral pathogenesis and exerts poorly understood immunoregulatory functions. Here, using human and mouse models, we demonstrate that IFITM3 promotes MyD88-dependent, TLR-mediated IL-6 production following exposure to cytomegalovirus (CMV). IFITM3 also restricts IL-6 production in response to influenza and SARS-CoV-2. In dendritic cells, IFITM3 binds to the reticulon 4 isoform Nogo-B and promotes its proteasomal degradation. We reveal that Nogo-B mediates TLR-dependent pro-inflammatory cytokine production and promotes viral pathogenesis in vivo, and in the case of TLR2 responses, this process involves alteration of TLR2 cellular localization. Nogo-B deletion abrogates inflammatory cytokine responses and associated disease in virus-infected IFITM3-deficient mice. Thus, we uncover Nogo-B as a driver of viral pathogenesis and highlight an immunoregulatory pathway in which IFITM3 fine-tunes the responsiveness of myeloid cells to viral stimulation.
Collapse
Affiliation(s)
- M Clement
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - J L Forbester
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - M Marsden
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - P Sabberwal
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - M S Sommerville
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - D Wellington
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - S Dimonte
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - S Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - K Harcourt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Z Yin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - L Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - B Jin
- Fourth Military Medical University, Xian, China
| | - M Chen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - S Makvandi-Nejad
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - J A Lindborg
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - S M Strittmatter
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - R J Stanton
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - T Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - I R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
29
|
Werth VP, Furie RA, Romero-Diaz J, Navarra S, Kalunian K, van Vollenhoven RF, Nyberg F, Kaffenberger BH, Sheikh SZ, Radunovic G, Huang X, Clark G, Carroll H, Naik H, Gaudreault F, Meyers A, Barbey C, Musselli C, Franchimont N. Trial of Anti-BDCA2 Antibody Litifilimab for Cutaneous Lupus Erythematosus. N Engl J Med 2022; 387:321-331. [PMID: 35939578 DOI: 10.1056/nejmoa2118024] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Blood dendritic cell antigen 2 (BDCA2) is a receptor that is exclusively expressed on plasmacytoid dendritic cells, which are implicated in the pathogenesis of lupus erythematosus. Whether treatment with litifilimab, a humanized monoclonal antibody against BDCA2, would be efficacious in reducing disease activity in patients with cutaneous lupus erythematosus has not been extensively studied. METHODS In this phase 2 trial, we randomly assigned adults with histologically confirmed cutaneous lupus erythematosus with or without systemic manifestations in a 1:1:1:1 ratio to receive subcutaneous litifilimab (at a dose of 50, 150, or 450 mg) or placebo at weeks 0, 2, 4, 8, and 12. We used a dose-response model to assess whether there was a response across the four groups on the basis of the primary end point, which was the percent change from baseline to 16 weeks in the Cutaneous Lupus Erythematosus Disease Area and Severity Index-Activity score (CLASI-A; scores range from 0 to 70, with higher scores indicating more widespread or severe skin involvement). Safety was also assessed. RESULTS A total of 132 participants were enrolled; 26 were assigned to the 50-mg litifilimab group, 25 to the 150-mg litifilimab group, 48 to the 450-mg litifilimab group, and 33 to the placebo group. Mean CLASI-A scores for the groups at baseline were 15.2, 18.4, 16.5, and 16.5, respectively. The difference from placebo in the change from baseline in CLASI-A score at week 16 was -24.3 percentage points (95% confidence interval [CI] -43.7 to -4.9) in the 50-mg litifilimab group, -33.4 percentage points (95% CI, -52.7 to -14.1) in the 150-mg group, and -28.0 percentage points (95% CI, -44.6 to -11.4) in the 450-mg group. The least squares mean changes were used in the primary analysis of a best-fitting dose-response model across the three drug-dose levels and placebo, which showed a significant effect. Most of the secondary end points did not support the results of the primary analysis. Litifilimab was associated with three cases each of hypersensitivity and oral herpes infection and one case of herpes zoster infection. One case of herpes zoster meningitis occurred 4 months after the participant received the last dose of litifilimab. CONCLUSIONS In a phase 2 trial involving participants with cutaneous lupus erythematosus, treatment with litifilimab was superior to placebo with regard to a measure of skin disease activity over a period of 16 weeks. Larger and longer trials are needed to determine the effect and safety of litifilimab for the treatment of cutaneous lupus erythematosus. (Funded by Biogen; LILAC ClinicalTrials.gov number, NCT02847598.).
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dose-Response Relationship, Drug
- Double-Blind Method
- Herpes Zoster/etiology
- Humans
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/immunology
- Lupus Erythematosus, Cutaneous/drug therapy
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/immunology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Severity of Illness Index
- Treatment Outcome
Collapse
Affiliation(s)
- Victoria P Werth
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Richard A Furie
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Juanita Romero-Diaz
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Sandra Navarra
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Kenneth Kalunian
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Ronald F van Vollenhoven
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Filippa Nyberg
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Benjamin H Kaffenberger
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Saira Z Sheikh
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Goran Radunovic
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Xiaobi Huang
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - George Clark
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Hua Carroll
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Himanshu Naik
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Francois Gaudreault
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Adam Meyers
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Catherine Barbey
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Cristina Musselli
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Nathalie Franchimont
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| |
Collapse
|
30
|
Effect of Cytomegalovirus on the Immune System: Implications for Aging and Mental Health. Curr Top Behav Neurosci 2022; 61:181-214. [PMID: 35871707 DOI: 10.1007/7854_2022_376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a major modulator of the immune system leading to long-term changes in T-lymphocytes, macrophages, and natural killer (NK) cells among others. Perhaps because of this immunomodulatory capacity, HCMV infection has been linked with a host of deleterious effects including accelerated immune aging (premature mortality, increased expression of immunosenescence-linked markers, telomere shortening, speeding-up of epigenetic "clocks"), decreased vaccine immunogenicity, and greater vulnerability to infectious diseases (e.g., tuberculosis) or infectious disease-associated pathology (e.g., HIV). Perhaps not surprisingly given the long co-evolution between HCMV and humans, the virus has also been associated with beneficial effects, such as increased vaccine responsiveness, heterologous protection against infections, and protection against relapse in the context of leukemia. Here, we provide an overview of this literature. Ultimately, we focus on one other deleterious effect of HCMV, namely the emerging literature suggesting that HCMV plays a pathophysiological role in psychiatric illness, particularly depression and schizophrenia. We discuss this literature through the lens of psychological stress and inflammation, two well-established risk factors for psychiatric illness that are also known to predispose to reactivation of HCMV.
Collapse
|
31
|
Girkin JLN, Maltby S, Bartlett NW. Toll-like receptor-agonist-based therapies for respiratory viral diseases: thinking outside the cell. Eur Respir Rev 2022; 31:210274. [PMID: 35508333 PMCID: PMC9488969 DOI: 10.1183/16000617.0274-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Respiratory virus infections initiate in the upper respiratory tract (URT). Innate immunity is critical for initial control of infection at this site, particularly in the absence of mucosal virus-neutralising antibodies. If the innate immune response is inadequate, infection can spread to the lower respiratory tract (LRT) causing community-acquired pneumonia (as exemplified by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019). Vaccines for respiratory viruses (influenza and SARS-CoV-2) leverage systemic adaptive immunity to protect from severe lung disease. However, the URT remains vulnerable to infection, enabling viral transmission and posing an ongoing risk of severe disease in populations that lack effective adaptive immunity.Innate immunity is triggered by host cell recognition of viral pathogen-associated molecular patterns via molecular sensors such as Toll-like receptors (TLRs). Here we review the role of TLRs in respiratory viral infections and the potential of TLR-targeted treatments to enhance airway antiviral immunity to limit progression to severe LRT disease and reduce person-to-person viral transmission. By considering cellular localisation and antiviral mechanisms of action and treatment route/timing, we propose that cell surface TLR agonist therapies are a viable strategy for preventing respiratory viral diseases by providing immediate, durable pan-viral protection within the URT.
Collapse
Affiliation(s)
- Jason L N Girkin
- Viral Immunology and Respiratory Disease Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
32
|
Alphonse N, Dickenson RE, Alrehaili A, Odendall C. Functions of IFNλs in Anti-Bacterial Immunity at Mucosal Barriers. Front Immunol 2022; 13:857639. [PMID: 35663961 PMCID: PMC9159784 DOI: 10.3389/fimmu.2022.857639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Type III interferons (IFNs), or IFNλs, are cytokines produced in response to microbial ligands. They signal through the IFNλ receptor complex (IFNLR), which is located on epithelial cells and select immune cells at barrier sites. As well as being induced during bacterial or viral infection, type III IFNs are produced in response to the microbiota in the lung and intestinal epithelium where they cultivate a resting antiviral state. While the multiple anti-viral activities of IFNλs have been extensively studied, their roles in immunity against bacteria are only recently emerging. Type III IFNs increase epithelial barrier integrity and protect from infection in the intestine but were shown to increase susceptibility to bacterial superinfections in the respiratory tract. Therefore, the effects of IFNλ can be beneficial or detrimental to the host during bacterial infections, depending on timing and biological contexts. This duality will affect the potential benefits of IFNλs as therapeutic agents. In this review, we summarize the current knowledge on IFNλ induction and signaling, as well as their roles at different barrier sites in the context of anti-bacterial immunity.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Immunoregulation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Abrar Alrehaili
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
33
|
Taks EJM, Moorlag SJCFM, Netea MG, van der Meer JWM. Shifting the Immune Memory Paradigm: Trained Immunity in Viral Infections. Annu Rev Virol 2022; 9:469-489. [PMID: 35676081 DOI: 10.1146/annurev-virology-091919-072546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Trained immunity is defined as the de facto memory characteristics induced in innate immune cells after exposure to microbial stimuli after infections or certain types of vaccines. Through epigenetic and metabolic reprogramming of innate immune cells after exposure to these stimuli, trained immunity induces an enhanced nonspecific protection by improving the inflammatory response upon restimulation with the same or different pathogens. Recent studies have increasingly shown that trained immunity can, on the one hand, be induced by exposure to viruses; on the other hand, when induced, it can also provide protection against heterologous viral infections. In this review we explore current knowledge on trained immunity and its relevance for viral infections, as well as its possible future uses. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Esther J M Taks
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands; .,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands;
| |
Collapse
|
34
|
Müller M, Reguzova A, Löffler MW, Amann R. Orf Virus-Based Vectors Preferentially Target Professional Antigen-Presenting Cells, Activate the STING Pathway and Induce Strong Antigen-Specific T Cell Responses. Front Immunol 2022; 13:873351. [PMID: 35615366 PMCID: PMC9124846 DOI: 10.3389/fimmu.2022.873351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background Orf virus (ORFV)-based vectors are attractive for vaccine development as they enable the induction of potent immune responses against specific transgenes. Nevertheless, the precise mechanisms of immune activation remain unknown. This study therefore aimed to characterize underlying mechanisms in human immune cells. Methods Peripheral blood mononuclear cells were infected with attenuated ORFV strain D1701-VrV and analyzed for ORFV infection and activation markers. ORFV entry in susceptible cells was examined using established pharmacological inhibitors. Using the THP1-Dual™ reporter cell line, activation of nuclear factor-κB and interferon regulatory factor pathways were simultaneously evaluated. Infection with an ORFV recombinant encoding immunogenic peptides (PepTrio-ORFV) was used to assess the induction of antigen-specific CD8+ T cells. Results ORFV was found to preferentially target professional antigen-presenting cells (APCs) in vitro, with ORFV uptake mediated primarily by macropinocytosis. ORFV-infected APCs exhibited an activated phenotype, required for subsequent lymphocyte activation. Reporter cells revealed that the stimulator of interferon genes pathway is a prerequisite for ORFV-mediated cellular activation. PepTrio-ORFV efficiently induced antigen-specific CD8+ T cell recall responses in a dose-dependent manner. Further, activation and expansion of naïve antigen-specific CD8+ T cells was observed in response. Discussion Our findings confirm that ORFV induces a strong antigen-specific immune response dependent on APC uptake and activation. These data support the notion that ORFV D1701-VrV is a promising vector for vaccine development and the design of innovative immunotherapeutic applications.
Collapse
Affiliation(s)
- Melanie Müller
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Alena Reguzova
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Markus W. Löffler
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
- *Correspondence: Ralf Amann, ; Markus W. Löffler,
| | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- *Correspondence: Ralf Amann, ; Markus W. Löffler,
| |
Collapse
|
35
|
Mabrey FL, Morrell ED, Wurfel MM. TLRs in COVID-19: How they drive immunopathology and the rationale for modulation. Innate Immun 2021; 27:503-513. [PMID: 34806446 PMCID: PMC8762091 DOI: 10.1177/17534259211051364] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is both a viral illness and a disease of immunopathology. Proximal events within the innate immune system drive the balance between deleterious inflammation and viral clearance. We hypothesize that a divergence between the generation of excessive inflammation through over activation of the TLR associated myeloid differentiation primary response (MyD88) pathway relative to the TIR-domain-containing adaptor-inducing IFN-β (TRIF) pathway plays a key role in COVID-19 severity. Both viral elements and damage associated host molecules act as TLR ligands in this process. In this review, we detail the mechanism for this imbalance in COVID-19 based on available evidence, and we discuss how modulation of critical elements may be important in reducing severity of disease.
Collapse
Affiliation(s)
- F Linzee Mabrey
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, 7284University of Washington, USA
| | - Eric D Morrell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, 7284University of Washington, USA
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, 7284University of Washington, USA
| |
Collapse
|
36
|
Hinman AE, Jani C, Pringle SC, Zhang WR, Jain N, Martinot AJ, Barczak AK. Mycobacterium tuberculosis canonical virulence factors interfere with a late component of the TLR2 response. eLife 2021; 10:e73984. [PMID: 34755600 PMCID: PMC8610422 DOI: 10.7554/elife.73984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/29/2021] [Indexed: 01/15/2023] Open
Abstract
For many intracellular pathogens, the phagosome is the site of events and interactions that shape infection outcome. Phagosomal membrane damage, in particular, is proposed to benefit invading pathogens. To define the innate immune consequences of this damage, we profiled macrophage transcriptional responses to wild-type Mycobacterium tuberculosis (Mtb) and mutants that fail to damage the phagosomal membrane. We identified a set of genes with enhanced expression in response to the mutants. These genes represented a late component of the TLR2-dependent transcriptional response to Mtb, distinct from an earlier component that included Tnf. Expression of the later component was inherent to TLR2 activation, dependent upon endosomal uptake, and enhanced by phagosome acidification. Canonical Mtb virulence factors that contribute to phagosomal membrane damage blunted phagosome acidification and undermined the endosome-specific response. Profiling cell survival and bacterial growth in macrophages demonstrated that the attenuation of these mutants is partially dependent upon TLR2. Further, TLR2 contributed to the attenuated phenotype of one of these mutants in a murine model of infection. These results demonstrate two distinct components of the TLR2 response and identify a component dependent upon endosomal uptake as a point where pathogenic bacteria interfere with the generation of effective inflammation. This interference promotes tuberculosis (TB) pathogenesis in both macrophage and murine infection models.
Collapse
Affiliation(s)
- Amelia E Hinman
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
| | - Charul Jani
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
| | | | - Wei R Zhang
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
| | - Neharika Jain
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary MedicineNorth Grafton, MAUnited States
| | - Amanda J Martinot
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary MedicineNorth Grafton, MAUnited States
| | - Amy K Barczak
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
- The Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
37
|
Getachew A, Hussain M, Huang X, Li Y. Toll-like receptor 2 signaling in liver pathophysiology. Life Sci 2021; 284:119941. [PMID: 34508761 DOI: 10.1016/j.lfs.2021.119941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Chronic liver diseases (CLD) are among the major cause of mortality and morbidity worldwide. Despite current achievements in the area of hepatitis virus, chronic alcohol abuse and high-fat diet are still fueling an epidemic of severe liver disease, for which, an effective therapy has yet not been discovered. In particular, the therapeutic regimens that could prevent the progression of fibrosis and, in turn, aid cirrhotic liver to develop a robust regenerative capability are intensively needed. To this context, a better understanding of the signaling pathways regulating hepatic disease development may be of critical value. In general, the liver responds to various insults with an orchestrated healing process involving variety of signaling pathways. One such pathway is the TLR2 signaling pathway, which essentially regulates adult liver pathogenesis and thus has emerged as an attractive target to treat liver disease. TLR2 is expressed by different liver cells, including Kupffer cells (KCs), hepatocytes, and hepatic stellate cells (HSCs). From a pathologic perspective, the crosstalk between antigens and TLR2 may preferentially trigger a distinctive set of signaling mechanisms in these liver cells and, thereby, induce the production of inflammatory and fibrogenic cytokines that can initiate and prolong liver inflammation, ultimately leading to fibrosis. In this review, we summarize the currently available evidence regarding the role of TLR2 signaling in hepatic disease progression. We first elaborate its pathological involvement in liver-disease states, such as inflammation, fibrosis, and cirrhosis. We then discuss how therapeutic targeting of this pathway may help to alleviate its disease-related functioning.
Collapse
Affiliation(s)
- Anteneh Getachew
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Muzammal Hussain
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
38
|
Sartorius R, Trovato M, Manco R, D'Apice L, De Berardinis P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 2021; 6:127. [PMID: 34711839 PMCID: PMC8553822 DOI: 10.1038/s41541-021-00391-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are transmembrane proteins belonging to the family of pattern-recognition receptors. They function as sensors of invading pathogens through recognition of pathogen-associated molecular patterns. After their engagement by microbial ligands, TLRs trigger downstream signaling pathways that culminate into transcriptional upregulation of genes involved in immune defense. Here we provide an updated overview on members of the TLR family and we focus on their role in antiviral response. Understanding of innate sensing and signaling of viruses triggered by these receptors would provide useful knowledge to prompt the development of vaccines able to elicit effective and long-lasting immune responses. We describe the mechanisms developed by viral pathogens to escape from immune surveillance mediated by TLRs and finally discuss how TLR/virus interplay might be exploited to guide the design of innovative vaccine platforms.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Manco
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | | |
Collapse
|
39
|
How dendritic cells sense and respond to viral infections. Clin Sci (Lond) 2021; 135:2217-2242. [PMID: 34623425 DOI: 10.1042/cs20210577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
The ability of dendritic cells (DCs) to sense viral pathogens and orchestrate a proper immune response makes them one of the key players in antiviral immunity. Different DC subsets have complementing functions during viral infections, some specialize in antigen presentation and cross-presentation and others in the production of cytokines with antiviral activity, such as type I interferons. In this review, we summarize the latest updates concerning the role of DCs in viral infections, with particular focus on the complex interplay between DC subsets and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Despite being initiated by a vast array of immune receptors, DC-mediated antiviral responses often converge towards the same endpoint, that is the production of proinflammatory cytokines and the activation of an adaptive immune response. Nonetheless, the inherent migratory properties of DCs make them a double-edged sword and often viral recognition by DCs results in further viral dissemination. Here we illustrate these various aspects of the antiviral functions of DCs and also provide a brief overview of novel antiviral vaccination strategies based on DCs targeting.
Collapse
|
40
|
Liao MT, Wu CC, Wu SFV, Lee MC, Hu WC, Tsai KW, Yang CH, Lu CL, Chiu SK, Lu KC. Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients. Antioxidants (Basel) 2021; 10:1440. [PMID: 34573071 PMCID: PMC8471532 DOI: 10.3390/antiox10091440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to burden healthcare systems worldwide. COVID-19 symptoms are highly heterogeneous, and the patient may be asymptomatic or may present with mild to severe or fatal symptoms. Factors, such as age, sex, and comorbidities, are key determinants of illness severity and progression. Aging is accompanied by multiple deficiencies in interferon production by dendritic cells or macrophages in response to viral infections, resulting in dysregulation of inflammatory immune responses and excess oxidative stress. Age-related dysregulation of immune function may cause a more obvious pathophysiological response to SARS-CoV-2 infection in elderly patients and may accelerate the risk of biological aging, even after recovery. For more favorable treatment outcomes, inhibiting viral replication and dampening inflammatory and oxidative responses before induction of an overt cytokine storm is crucial. Resveratrol is a potent antioxidant with antiviral activity. Herein, we describe the reasons for impaired interferon production, owing to aging, and the impact of aging on innate and adaptive immune responses to infection, which leads to inflammation distress and immunosuppression, thereby causing fulminant disease. Additionally, the molecular mechanism by which resveratrol could reverse a state of excessive basal inflammatory and oxidative stress and low antiviral immunity is discussed.
Collapse
Affiliation(s)
- Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (M.-T.L.); (C.-H.Y.)
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Chao Wu
- Department of Internal Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Shu-Fang Vivienne Wu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan; (S.-F.V.W.); (M.-C.L.)
| | - Mei-Chen Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan; (S.-F.V.W.); (M.-C.L.)
| | - Wan-Chung Hu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (W.-C.H.); (K.-W.T.)
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (W.-C.H.); (K.-W.T.)
| | - Chung-Hsiang Yang
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (M.-T.L.); (C.-H.Y.)
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei 24352, Taiwan;
| | - Sheng-Kang Chiu
- Division of Infectious Diseases, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Division of Infectious Diseases, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|
41
|
Muhuri M, Maeda Y, Ma H, Ram S, Fitzgerald KA, Tai PW, Gao G. Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest 2021; 131:143780. [PMID: 33393506 DOI: 10.1172/jci143780] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The field of gene therapy has made considerable progress over the past several years. Adeno-associated virus (AAV) vectors have emerged as promising and attractive tools for in vivo gene therapy. Despite the recent clinical successes achieved with recombinant AAVs (rAAVs) for therapeutics, host immune responses against the vector and transgene product have been observed in numerous preclinical and clinical studies. These outcomes have hampered the advancement of AAV gene therapies, preventing them from becoming fully viable and safe medicines. The human immune system is multidimensional and complex. Both the innate and adaptive arms of the immune system seem to play a concerted role in the response against rAAVs. While most efforts have been focused on the role of adaptive immunity and developing ways to overcome it, the innate immune system has also been found to have a critical function. Innate immunity not only mediates the initial response to the vector, but also primes the adaptive immune system to launch a more deleterious attack against the foreign vector. This Review highlights what is known about innate immune responses against rAAVs and discusses potential strategies to circumvent these pathways.
Collapse
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Yukiko Maeda
- Horae Gene Therapy Center.,VIDE Program.,Department of Medicine
| | | | - Sanjay Ram
- Division of Infectious Diseases and Immunology
| | | | - Phillip Wl Tai
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Guangping Gao
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
42
|
Yang Y, Luo S, Huang J, Xiao Y, Fu Y, Liu W, Yin H. Photoactivation of Innate Immunity Receptor TLR8 in Live Mammalian Cells by Genetic Encoding of Photocaged Tyrosine. Chembiochem 2021; 23:e202100344. [PMID: 34460982 DOI: 10.1002/cbic.202100344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Indexed: 11/10/2022]
Abstract
The effectiveness of innate immune responses relies on an intricate balance between activation and regulation. TLR8, a member of the Toll-like receptor (TLR) family, plays a fundamental role in host defense by sensing viral single-stranded RNAs (ssRNAs). However, the molecular recognition and regulatory mechanism of TLR8 is not fully understood, especially in a whole-cell environment. Here, we engineer the first light-controllable TLR8 model by genetically encoding a photocaged tyrosine, NBY, into specific sites of TLR8. In the caged forms, the activity of TLR8 is masked but can be restored upon decaging by exposure to UV light. To explain the mechanism clearly, we divide the sites with light responsiveness into three groups. They can separately block the ligands that bind to the pockets of TLR8, change the interaction modes between two TLR8 protomers, and interfere with the interactions between TLR8 cytosolic domains with its downstream adaptor. Specifically, we use this chemical caging strategy to probe and evaluate the function of several tyrosine sites located at the interface of TLR8 homodimers with a previously unknown regulatory mode, which may provide a new strategy for TLR8 modulator development. Effects on downstream signaling pathways are monitored at the transcriptional and translational levels in various cell lines. By photoactivating specific cells within a larger population, this powerful tool can provide novel mechanistic insights, with potential in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Yi Yang
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuchen Luo
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Jian Huang
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Xiao
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China.,Zhujiang Hospital, Laboratory of Medicine Center, Southern Medical University, Guangzhou, 510282, P. R. China
| | - Yixuan Fu
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Liu
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Hang Yin
- Department of Chemistry, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
43
|
African Swine Fever Virus CD2v Protein Induces β-Interferon Expression and Apoptosis in Swine Peripheral Blood Mononuclear Cells. Viruses 2021; 13:v13081480. [PMID: 34452346 PMCID: PMC8402892 DOI: 10.3390/v13081480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
African swine fever (ASF) is a hemorrhagic disease of swine characterized by massive lymphocyte depletion in lymphoid tissues due to the apoptosis of B and T cells, a process likely triggered by factors released or secreted by infected macrophages. ASFV CD2v (EP402R) has been implicated in viral virulence and immunomodulation in vitro; however, its actual function(s) remains unknown. We found that CD2v expression in swine PK15 cells induces NF-κB-dependent IFN-β and ISGs transcription and an antiviral state. Similar results were observed for CD2v protein treated swine PBMCs and macrophages, the major ASFV target cell. Notably, treatment of swine PBMCs and macrophages with CD2v protein induced apoptosis. Immunoprecipitation and colocalization studies revealed that CD2v interacts with CD58, the natural host CD2 ligand. Additionally, CD58 knockdown in cells or treatment of cells with an NF-κB inhibitor significantly reduced CD2v-mediated NF-κB activation and IFN-β induction. Further, antibodies directed against CD2v inhibited CD2v-induced NF-κB activation and IFN-β transcription in cells. Overall, results indicate that ASFV CD2v activates NF-κB, which induces IFN signaling and apoptosis in swine lymphocytes/macrophages. We propose that CD2v released from infected macrophages may be a significant factor in lymphocyte apoptosis observed in lymphoid tissue during ASFV infection in pigs.
Collapse
|
44
|
Xu S, Mei S, Lu J, Wu H, Dong X, Shi L, Zhou J, Zhang J. Transcriptome Analysis of Microglia Reveals That the TLR2/IRF7 Signaling Axis Mediates Neuroinflammation After Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 13:645649. [PMID: 34276335 PMCID: PMC8278202 DOI: 10.3389/fnagi.2021.645649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Microglia-mediated neuroinflammatory response in the early brain injury after subarachnoid hemorrhage (SAH) has been reported to have an impact on progress, and the mechanism is not completely understood. Here, we performed genome-wide transcriptome analysis of microglia purified from damaged hemisphere of adult mice at 3 days after SAH or sham operation. Robust transcriptional changes were observed between SAH-induced and healthy microglia, indicating rapid activation of microglia after suffering from SAH. We identified 1576 differentially expressed genes (DEGs; 928 upregulated and 648 downregulated) in SAH-induced microglia compared with sham microglia, representing a strong alteration of the genome (6.85% of total ∼23,000 genes). Functional enrichment of these DEGs indicated that cell division, inflammatory response, cytokine production, and leukocyte chemotaxis were strongly activated in SAH-induced microglia. Moreover, we identified and proved that the TLR2/IRF7 signaling axis was involved in the regulation of this microglia-mediated inflammation in SAH mice by performing flow cytometry and immunofluorescence. Together, these results provided a perspective of microglia-mediated neuroinflammatory response in the early stage of SAH and might give a new therapeutic target for SAH.
Collapse
Affiliation(s)
- Shenbin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Dong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingyi Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Mikhailova SV, Shcherbakova LV, Logvinenko NI, Logvinenko II, Voevoda MI. Polymorphism of genes associated with infectious lung diseases in Northern Asian populations and in patients with community-acquired pneumonia. Vavilovskii Zhurnal Genet Selektsii 2021; 25:301-309. [PMID: 35083399 PMCID: PMC8698094 DOI: 10.18699/vj21.51-o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
The innate immune system is the first to respond to invading pathogens. It is responsible for invader recognition, immune-cell recruitment, adaptive-immunity activation, and regulation of inflammation intensity. Previously, two single-nucleotide polymorphisms of innate-immunity genes – rs5743708 (Arg753Gln) of the TLR2 gene
and rs8177374 (Ser180Leu) of the TIRAP gene – have been shown to be associated with both pneumonia and tuberculosis in humans, but the data are contradictory among different ethnic groups. It has also been reported that
rs10902158 at the PKP3-SIGGIR-TMEM16J genetic locus belongs to a haplotype race-specifically associated with tuberculosis. Meanwhile, a gradient of its frequency is observed in Asia. The aim of this work was to assess the effect of
selection for the genotypes of the above-mentioned SNPs on the gene pools of populations living in harsh climatic
conditions that contribute to the development of infectious lung diseases. We estimated the prevalence of these
variants in white and Asian (Chukchis and Yakuts) population samples from Northern Asia and among patients with
community-acquired pneumonia (CAP). Carriage of the rs5743708 A allele was found to predispose to severe CAP
(odds ratio 2.77, p = 0.021), whereas the GG/CT genotype of rs5743708/rs8177374 proved to be protective against
it (odds ratio 0.478, p = 0.022) in white patients. No association of rs10902158 with CAP (total or severe) was found
among whites. Stratification of CAP by causative pathogen may help eliminate the current discrepancies between
different studies. No significant difference in rs5743708 or rs8177374 was found between adolescent and long-lived
white samples. Carriage of the alleles studied is probably not associated with predisposition to longevity among
whites in Siberia. Both white and Asian populations studied were different from Western European and East Asian
populations in the variants’ prevalence. The frequency of the rs8177374 T (Ser180Leu) variant was significantly higher
in the Chukchi sample (p = 0, χ2 = 63.22) relative to the East Asian populations. This result may confirm the hypothesis
about the selection of this allele in the course of human migration into areas with unfavorable climatic conditions.
Collapse
Affiliation(s)
| | - L. V. Shcherbakova
- Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | | | - I. I. Logvinenko
- Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences;
Novosibirsk State Medical University
| | | |
Collapse
|
46
|
Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity. Proc Natl Acad Sci U S A 2021; 118:2018457118. [PMID: 33376202 PMCID: PMC7817192 DOI: 10.1073/pnas.2018457118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) disease risk is associated with reduced sun-exposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (n NationMS = 946, n BIONAT = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-β-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS.
Collapse
|
47
|
Kiefer J, Zeller J, Bogner B, Hörbrand IA, Lang F, Deiss E, Winninger O, Fricke M, Kreuzaler S, Smudde E, Huber-Lang M, Peter K, Woollard KJ, Eisenhardt SU. An Unbiased Flow Cytometry-Based Approach to Assess Subset-Specific Circulating Monocyte Activation and Cytokine Profile in Whole Blood. Front Immunol 2021; 12:641224. [PMID: 33981302 PMCID: PMC8108699 DOI: 10.3389/fimmu.2021.641224] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Monocytes are the third most frequent type of leukocytes in humans, linking innate and adaptive immunity and are critical drivers in many inflammatory diseases. Based on the differential expression of surface antigens, three monocytic subpopulations have been suggested in humans and two in rats with varying inflammatory and phenotype characteristics. Potential intervention strategies that aim to manipulate these cells require an in-depth understanding of monocyte behavior under different conditions. However, monocytes are highly sensitive to their specific activation state and expression of surface markers, which can change during cell isolation and purification. Thus, there is an urgent need for an unbiased functional analysis of activation in monocyte subtypes, which is not affected by the isolation procedure. Here, we present a flow cytometry-based protocol for evaluating subset-specific activation and cytokine expression of circulating blood monocytes both in humans and rats using small whole blood samples (50 - 100 μL). In contrast to previously described monocyte isolation and flow cytometry visualization methods, the presented approach virtually leaves monocyte subsets in a resting state or fixes them in their current state and allows for an unbiased functional endpoint analysis without prior cell isolation. This protocol is a comprehensive tool for studying differential monocyte regulation in the inflammatory and allogeneic immune response in vitro and vivo.
Collapse
Affiliation(s)
- Jurij Kiefer
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Balázs Bogner
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Isabel A Hörbrand
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Friederike Lang
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Emil Deiss
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Oscar Winninger
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Mark Fricke
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Sheena Kreuzaler
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Eva Smudde
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Markus Huber-Lang
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Department of Cardiometabolic Health, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kevin J Woollard
- Centre of Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| |
Collapse
|
48
|
Khawaja A, Bromage DI. The innate immune response in myocarditis. Int J Biochem Cell Biol 2021; 134:105973. [PMID: 33831592 DOI: 10.1016/j.biocel.2021.105973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Acute myocarditis is an inflammatory condition of the heart characterised by cellular injury and the influx of leucocytes, including neutrophils, monocytes, macrophages and lymphocytes. While this response is vital for tissue repair, excessive scar deposition and maladaptive ventricular remodelling can result in a legacy of heart failure. It is increasingly recognised as a clinical phenomenon due, in part, to increased availability of cardiac magnetic resonance imaging in patients presenting with chest pain in the absence of significant coronary artery disease. Emerging epidemiological evidence has associated myocarditis with poor outcomes in the context of left ventricular impairment, and even when the left ventricle is preserved outcomes are less benign than once thought. Despite this, our understanding of the contribution of the inflammatory response to the pathophysiology of acute myocarditis lags behind that of acute myocardial infarction, which is the vanguard cardiovascular condition for inflammation research. We recently reviewed monocyte and macrophage phenotype and function in acute myocardial infarction, concluding that their plasticity and heterogeneity might account for conflicting evidence from attempts to target specific leucocyte subpopulations. Here, we revise our understanding of myocardial inflammation, which is predominantly derived from myocardial infarction research, review experimental evidence for the immune response in acute myocarditis, focusing on innate immunity, and discuss potential future directions for immunotherapy research in acute myocarditis.
Collapse
Affiliation(s)
- Abdullah Khawaja
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Daniel I Bromage
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
49
|
Feng E, Balint E, Poznanski SM, Ashkar AA, Loeb M. Aging and Interferons: Impacts on Inflammation and Viral Disease Outcomes. Cells 2021; 10:708. [PMID: 33806810 PMCID: PMC8004738 DOI: 10.3390/cells10030708] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022] Open
Abstract
As highlighted by the COVID-19 global pandemic, elderly individuals comprise the majority of cases of severe viral infection outcomes and death. A combined inability to control viral replication and exacerbated inflammatory immune activation in elderly patients causes irreparable immune-mediated tissue pathology in response to infection. Key to these responses are type I, II, and III interferons (IFNs), which are involved in inducing an antiviral response, as well as controlling and suppressing inflammation and immunopathology. IFNs support monocyte/macrophage-stimulated immune responses that clear infection and promote their immunosuppressive functions that prevent excess inflammation and immune-mediated pathology. The timing and magnitude of IFN responses to infection are critical towards their immunoregulatory functions and ability to prevent immunopathology. Aging is associated with multiple defects in the ability of macrophages and dendritic cells to produce IFNs in response to viral infection, leading to a dysregulation of inflammatory immune responses. Understanding the implications of aging on IFN-regulated inflammation will give critical insights on how to treat and prevent severe infection in vulnerable individuals. In this review, we describe the causes of impaired IFN production in aging, and the evidence to suggest that these impairments impact the regulation of the innate and adaptive immune response to infection, thereby causing disease pathology.
Collapse
Affiliation(s)
| | | | | | - Ali A. Ashkar
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; (E.F.); (E.B.); (S.M.P.); (M.L.)
| | | |
Collapse
|
50
|
Hilt ZT, Maurya P, Tesoro L, Pariser DN, Ture SK, Cleary SJ, Looney MR, McGrath KE, Morrell CN. β2M Signals Monocytes Through Non-Canonical TGFβ Receptor Signal Transduction. Circ Res 2021; 128:655-669. [PMID: 33508948 PMCID: PMC8319031 DOI: 10.1161/circresaha.120.317119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Circulating monocytes can have proinflammatory or proreparative phenotypes. The endogenous signaling molecules and pathways that regulate monocyte polarization in vivo are poorly understood. We have shown that platelet-derived β2M (β-2 microglobulin) and TGF-β (transforming growth factor β) have opposing effects on monocytes by inducing inflammatory and reparative phenotypes, respectively, but each bind and signal through the same receptor. We now define the signaling pathways involved. OBJECTIVE To determine the molecular mechanisms and signal transduction pathways by which β2M and TGF-β regulate monocyte responses both in vitro and in vivo. METHODS AND RESULTS Wild-type- (WT) and platelet-specific β2M knockout mice were treated intravenously with either β2M or TGF-β to increase plasma concentrations to those in cardiovascular diseases. Elevated plasma β2M increased proinflammatory monocytes, while increased plasma TGFβ increased proreparative monocytes. TGF-βR (TGF-β receptor) inhibition blunted monocyte responses to both β2M and TGF-β in vivo. Using imaging flow cytometry, we found that β2M decreased monocyte SMAD2/3 nuclear localization, while TGF-β promoted SMAD nuclear translocation but decreased noncanonical/inflammatory (JNK [jun kinase] and NF-κB [nuclear factor-κB] nuclear localization). This was confirmed in vitro using both imaging flow cytometry and immunoblots. β2M, but not TGF-β, promoted ubiquitination of SMAD3 and SMAD4, that inhibited their nuclear trafficking. Inhibition of ubiquitin ligase activity blocked noncanonical SMAD-independent monocyte signaling and skewed monocytes towards a proreparative monocyte response. CONCLUSIONS Our findings indicate that elevated plasma β2M and TGF-β dichotomously polarize monocytes. Furthermore, these immune molecules share a common receptor but induce SMAD-dependent canonical signaling (TGF-β) versus noncanonical SMAD-independent signaling (β2M) in a ubiquitin ligase dependent manner. This work has broad implications as β2M is increased in several inflammatory conditions, while TGF-β is increased in fibrotic diseases. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Zachary T. Hilt
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Preeti Maurya
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York, USA
| | - Laura Tesoro
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York, USA
- Cardiology Department, University Francisco de Vitoria/Hospital Ramón y Cajal Research Unit (IRYCIS), CIBERCV, 28223 Madrid, Spain
| | - Daphne N. Pariser
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York, USA
| | - Sara K. Ture
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York, USA
| | - Simon J. Cleary
- Department of Medicine, UCSF, San Francisco, United States of America
| | - Mark R. Looney
- Department of Medicine, UCSF, San Francisco, United States of America
| | - Kathleen E. McGrath
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester School of Medicine, Rochester, New York, USA
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|