1
|
Hammel JH, Arneja A, Cunningham J, Wang M, Schumaecker S, Orihuela YM, Ozulumba T, Zatorski JM, Braciale TJ, Luckey CJ, Pompano RR, Munson JM. Interstitial fluid flow in an engineered human lymph node stroma model modulates T cell egress and stromal change. APL Bioeng 2025; 9:026105. [PMID: 40191604 PMCID: PMC11972091 DOI: 10.1063/5.0247363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/15/2025] [Indexed: 04/09/2025] Open
Abstract
The lymph node (LN) performs essential roles in immunosurveillance throughout the body. Developing in vitro models of this key tissue is of great importance to enhancing physiological relevance in immunoengineering. The LN consists of stromal populations and immune cells, which are highly organized and bathed in constant interstitial fluid flow (IFF). The stroma, notably the fibroblastic reticular cells (FRCs) and the lymphatic endothelial cells (LECs), play crucial roles in guiding T cell migration and are known to be sensitive to fluid flow. During inflammation, interstitial fluid flow rates drastically increase in the LN. It is unknown how these altered flow rates impact crosstalk and cell behavior in the LN, and most existing in vitro models focus on the interactions between T cells, B cells, and dendritic cells rather than with the stroma. To address this gap, we developed a human engineered model of the LN stroma consisting of FRC-laden hydrogel above a monolayer of LECs in a tissue culture insert with gravity-driven interstitial flow. We found that FRCs had enhanced coverage and proliferation in response to high flow rates, while LECs experienced decreased barrier integrity. We added CD4+ and CD8+ T cells and found that their egress was significantly decreased in the presence of interstitial flow, regardless of magnitude. Interestingly, 3.0 μm/s flow, but not 0.8 μm/s flow, correlated with enhanced inflammatory cytokine secretion in the LN stroma. Overall, we demonstrate that interstitial flow is an essential consideration in the lymph node for modulating LN stroma morphology, T cell migration, and inflammation.
Collapse
Affiliation(s)
| | - Abhinav Arneja
- University of Virginia Department of Pathology, 415 Lane Road, Charlottesville, Virginia 22908, USA
| | - Jessica Cunningham
- Virginia Tech Fralin Biomedical Research Institute, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Maosen Wang
- Virginia Tech Fralin Biomedical Research Institute, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | - Sophia Schumaecker
- Virginia Tech Fralin Biomedical Research Institute, 4 Riverside Circle, Roanoke, Virginia 24016, USA
| | | | - Tochukwu Ozulumba
- University of Virginia Department of Chemistry, 409 McCormick Road, Charlottesville, Virginia 22904, USA
| | - Jonathan M. Zatorski
- University of Virginia Department of Chemistry, 409 McCormick Road, Charlottesville, Virginia 22904, USA
| | - Thomas J. Braciale
- University of Virginia Department of Pathology, 415 Lane Road, Charlottesville, Virginia 22908, USA
| | - Chance John Luckey
- University of Virginia Department of Pathology, 415 Lane Road, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
2
|
Zou AE, Kongthong S, Mueller AA, Brenner MB. Fibroblasts in immune responses, inflammatory diseases and therapeutic implications. Nat Rev Rheumatol 2025:10.1038/s41584-025-01259-0. [PMID: 40369134 DOI: 10.1038/s41584-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Once regarded as passive bystander cells of the tissue stroma, fibroblasts have emerged as active orchestrators of tissue homeostasis and disease. From regulating immunity and controlling tissue remodelling to governing cell growth and differentiation, fibroblasts assume myriad roles in guiding normal tissue development, maintenance and repair. By comparison, in chronic inflammatory diseases such as rheumatoid arthritis, fibroblasts recruit and sustain inflammatory leukocytes, become dominant producers of pro-inflammatory factors and catalyse tissue destruction. In other disease contexts, fibroblasts promote fibrosis and impair host control of cancer. Single-cell studies have uncovered striking transcriptional and functional heterogeneity exhibited by fibroblasts in both normal tissues and diseased tissues. In particular, advances in the understanding of fibroblast pathology in rheumatoid arthritis have shed light on pathogenic fibroblast states in other chronic diseases. The differentiation and activation of these fibroblast states is driven by diverse physical and chemical cues within the tissue microenvironment and by cell-intrinsic signalling and epigenetic mechanisms. These insights into fibroblast behaviour and regulation have illuminated therapeutic opportunities for the targeted deletion or modulation of pathogenic fibroblasts across many diseases.
Collapse
Affiliation(s)
- Angela E Zou
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Suppawat Kongthong
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alisa A Mueller
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA and Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Yamamura Y, Sabiu G, Zhao J, Jung S, Seelam AJ, Li X, Song Y, Shirkey MW, Li L, Piao W, Wu L, Zhang T, Ahn S, Kim P, Kasinath V, Azzi JR, Bromberg JS, Abdi R. CXCL12+ fibroblastic reticular cells in lymph nodes facilitate immune tolerance by regulating T cell-mediated alloimmunity. J Clin Invest 2025; 135:e182709. [PMID: 40309773 PMCID: PMC12043101 DOI: 10.1172/jci182709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/27/2025] [Indexed: 05/02/2025] Open
Abstract
Fibroblastic reticular cells (FRCs) are the master regulators of the lymph node (LN) microenvironment. However, the role of specific FRC subsets in controlling alloimmune responses remains to be studied. Single-cell RNA sequencing (scRNA-Seq) of naive and draining LNs (DLNs) of heart-transplanted mice and human LNs revealed a specific subset of CXCL12hi FRCs that expressed high levels of lymphotoxin-β receptor (LTβR) and are enriched in the expression of immunoregulatory genes. CXCL12hi FRCs had high expression of CCL19, CCL21, indoleamine 2,3-dioxygenase (IDO), IL-10, and TGF-β1. Adoptive transfer of ex vivo-expanded FRCs resulted in their homing to LNs and induced immunosuppressive environments in DLNs to promote heart allograft acceptance. Genetic deletion of LTβR and Cxcl12 in FRCs increased alloreactivity, abrogating the effect of costimulatory blockade in prolonging heart allograft survival. As compared with WT recipients, CXCL12+ FRC-deficient recipients exhibited increased differentiation of CD4+ T cells into Th1 cells. Nano delivery of CXCL12 to DLNs improved allograft survival in heart-transplanted mice. Our study highlights the importance of DLN CXCL12hi FRCs in promoting transplant tolerance.
Collapse
Affiliation(s)
- Yuta Yamamura
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gianmarco Sabiu
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Zhao
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sungwook Jung
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andy J. Seelam
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofei Li
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marina W. Shirkey
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lushen Li
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenji Piao
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Soyeon Ahn
- R&D Division, IVIM Technology, Seoul, South Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering
- Korea Advanced Institute of Science and Technology Institute for Health Science and Technology, and
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Vivek Kasinath
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamil R. Azzi
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Bromberg
- Department of Surgery and
- Center of Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Reza Abdi
- Transplantation Research Center and
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Wu L, Kensiski A, Gavzy SJ, Lwin HW, Song Y, France MT, Lakhan R, Kong D, Li L, Saxena V, Piao W, Shirkey MW, Mas VR, Ma B, Bromberg JS. Rapamycin immunomodulation utilizes time-dependent alterations of lymph node architecture, leukocyte trafficking, and gut microbiome. JCI Insight 2025; 10:e186505. [PMID: 40260917 PMCID: PMC12016939 DOI: 10.1172/jci.insight.186505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/27/2025] [Indexed: 04/24/2025] Open
Abstract
Transplant recipients require lifelong, multimodal immunosuppression to prevent rejection by reducing alloreactive immunity. Rapamycin is known to modulate adaptive and innate immunity, but its full mechanism remains incompletely understood. We investigated the understudied effects of rapamycin on lymph node (LN) architecture, leukocyte trafficking, and gut microbiome and metabolism after 3 (early), 7 (intermediate), and 30 (late) days of rapamycin treatment. Rapamycin significantly reduced CD4+ T cells, CD8+ T cells, and Tregs in peripheral LNs, mesenteric LNs, and spleen. Rapamycin induced early proinflammation transition to protolerogenic status by modulating the LN laminin α4/α5 expression ratios (La4/La5) through LN stromal cells, laminin α5 expression, and adjustment of Treg numbers and distribution. Additionally, rapamycin shifted the Bacteroides/Firmicutes ratio and increased amino acid bioavailability in the gut lumen. These effects were evident by 7 days and became most pronounced by 30 days in naive mice, with changes as early as 3 days in allogeneic splenocyte-stimulated mice. These findings reveal what we believe to be a novel mechanism of rapamycin action through time-dependent modulation of LN architecture and gut microbiome, which orchestrates changes in immune cell trafficking, providing a framework for understanding and optimizing immunosuppressive therapies.
Collapse
Affiliation(s)
- Long Wu
- Department of Surgery
- Center for Vascular and Inflammatory Diseases
| | | | - Samuel J. Gavzy
- Department of Surgery
- Center for Vascular and Inflammatory Diseases
| | | | | | - Michael T. France
- Institute for Genome Sciences, and
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ram Lakhan
- Center for Vascular and Inflammatory Diseases
| | - Dejun Kong
- Center for Vascular and Inflammatory Diseases
| | - Lushen Li
- Department of Surgery
- Center for Vascular and Inflammatory Diseases
| | - Vikas Saxena
- Department of Surgery
- Center for Vascular and Inflammatory Diseases
| | - Wenji Piao
- Department of Surgery
- Center for Vascular and Inflammatory Diseases
| | | | | | - Bing Ma
- Institute for Genome Sciences, and
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jonathan S. Bromberg
- Department of Surgery
- Center for Vascular and Inflammatory Diseases
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Pan Y, Zhou H, Sun Z, Zhu Y, Zhang Z, Han J, Liu Y, Wang Q. Regulatory T cells in solid tumor immunotherapy: effect, mechanism and clinical application. Cell Death Dis 2025; 16:277. [PMID: 40216744 PMCID: PMC11992189 DOI: 10.1038/s41419-025-07544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/12/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The tumor-immune response is mobilized to suppress tumorigenesis, while the immune microenvironment and lymph node microenvironment are formed gradually during tumor progression. In fact, tumor surface antigens are not easily recognized by antigen-presenting cells. So it is hard for the immune system to kill the newly formed tumor cells effectively. In a normal immune environment, immune function is always suppressed to maintain the stability of the body, and regulatory T cells play an important role in maintaining immune suppression. However, during tumorigenesis, the suppression of regulatory T cell immune functions is more likely to contribute to tumor cell proliferation and migration leading directly to tumor progression. Therefore, focusing on the role of regulatory T cells in tumor immunity could improve tumor immunotherapy outcomes in the clinic. Regulatory T cells are more mature in hematologic system tumors than in solid tumors. However, there are continuing efforts to apply regulatory T cells for immunotherapy in solid tumors. This review describes the role of regulatory T cells in solid tumor immunotherapy from the perspective of prognosis, immune microenvironment remodeling, and current clinical applications. This summary could help us better understand the mechanisms of regulatory T cells in solid tumor immunotherapy and further expand their clinical application.
Collapse
Affiliation(s)
- Yan Pan
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Hanqiong Zhou
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yichen Zhu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhe Zhang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Jing Han
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Yang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China.
| |
Collapse
|
6
|
Morrison AI, Kuipers JE, Roest HP, van der Laan LJW, de Winde CM, Koning JJ, Gibbs S, Mebius RE. Functional organotypic human lymph node model with native immune cells benefits from fibroblastic reticular cell enrichment. Sci Rep 2025; 15:12233. [PMID: 40210900 PMCID: PMC11986095 DOI: 10.1038/s41598-025-95031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/17/2025] [Indexed: 04/12/2025] Open
Abstract
Lymphoid organ function depends on fibroblastic reticular cells (FRCs), the non-hematopoietic mesenchymal stromal cells that crucially support immune activity in human lymph nodes (LNs). The in vitro study of human immunology requires physiological LN models, yet the inclusion of FRCs in current models is lacking. Here, we created an organotypic LN hydrogel model, containing native immune cells from LN tissue and ex vivo cultured autologous FRCs. During a oneweek culture period, enrichment of FRCs into the LN model benefited the viability of all immune cell populations, particularly B cells, and promoted the presence of certain subsets including CD4+ naïve T cells and unswitched (US) memory B cells. FRCs enhanced the production of immune-related cytokines and chemokines, such as B cell activating factor from the TNF family (BAFF), CXC motif chemokine ligand 12 (CXCL12), CC motif chemokine ligand 19 (CCL19) and interleukin-6 (IL-6). Functionality of the LN model was assessed through T cell activation by CD3 stimulation or initiation of an allogenic reaction with different maturation statuses of monocyte-derived dendritic cells (moDCs). Interestingly, T cell expansion was restricted in FRC-enriched LN models, reflecting an intrinsic characteristic of LN FRCs. As such, this organotypic LN model highlights the influence of FRCs on immune cells and allows an opportunity to further study antigen-induced immune responses, e.g. vaccine or immunotherapy testing.
Collapse
Affiliation(s)
- Andrew I Morrison
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Jesse E Kuipers
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Charlotte M de Winde
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jasper J Koning
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Susan Gibbs
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Department Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Molecular Cell Biology & Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Piao W, Lee ZL, Zapas G, Wu L, Jewell CM, Abdi R, Bromberg JS. Regulatory T cell and endothelial cell crosstalk. Nat Rev Immunol 2025:10.1038/s41577-025-01149-2. [PMID: 40169744 DOI: 10.1038/s41577-025-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Regulatory T (Treg) cells have a central role in the maintenance of immune surveillance and tolerance. They can migrate from lymphoid organs to blood and then into tissues and egress from tissues into draining lymph nodes. Specialized endothelial cells of blood and lymphatic vessels are the key gatekeepers for these processes. Treg cells that transmigrate across single-cell layers of endothelial cells engage in bidirectional crosstalk with these cells and regulate vascular permeability by promoting structural modifications of blood and lymphatic endothelial cells. In turn, blood and lymphatic endothelial cells can modulate Treg cell recirculation and residency. Here, we discuss recent insights into the cellular and molecular mechanisms of the crosstalk between Treg cells and endothelial cells and explore potential therapeutic strategies to target these interactions in autoimmunity, transplantation and cancer.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory Zapas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Long Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Jewell
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Sun M, Angelillo J, Hugues S. Lymphatic transport in anti-tumor immunity and metastasis. J Exp Med 2025; 222:e20231954. [PMID: 39969537 PMCID: PMC11837853 DOI: 10.1084/jem.20231954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Although lymphatic vessels (LVs) are present in many tumors, their importance in cancer has long been underestimated. In contrast to the well-studied tumor-associated blood vessels, LVs were previously considered to function as passive conduits for tumor metastasis. However, emerging evidence over the last two decades has shed light on their critical role in locally shaping the tumor microenvironment (TME). Here we review the involvement of LVs in tumor progression, metastasis, and modulation of anti-tumor immune response.
Collapse
Affiliation(s)
- Mengzhu Sun
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Julien Angelillo
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
9
|
Kong D, WillsonShirkey M, Piao W, Wu L, Luo S, Kensiski A, Zhao J, Lee Y, Abdi R, Zheng H, Bromberg JS. Metabolic Reprogramming of Fibroblastic Reticular Cells in Immunity and Tolerance. Eur J Immunol 2025; 55:e202451321. [PMID: 39555653 DOI: 10.1002/eji.202451321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Fibroblastic reticular cells (FRCs) are pivotal stromal components that maintain the structure of secondary lymphoid tissues and modulate the immune responses within the lymphoid microenvironment. In response to specific immune or inflammatory stimuli, such as infection or autoimmune triggers, FRCs undergo significant metabolic reprogramming. This process, originally characterized in cancer research, involves the regulation of key metabolic enzymes, pathways, and metabolites, resulting in functional transformations of these cells. Specifically, viruses stimulate FRCs to enhance the tricarboxylic acid cycle, while rheumatoid arthritis and sepsis prompt FRCs to increase oxidative phosphorylation. These changes enable FRCs to adapt their functions, such as proliferation or cytokine secretion, thereby effectively regulating the immune microenvironment to meet the dynamic needs of the immune system. This review provides a comprehensive update on the metabolic reprogramming of FRCs, highlighting how these changes support immune tolerance and response under varied physiological conditions.
Collapse
Affiliation(s)
- Dejun Kong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Tianjin Organ Transplantation Research Center, Nankai University affiliated Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Marina WillsonShirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Long Wu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shunqun Luo
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Allision Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Young Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hong Zheng
- Tianjin Organ Transplantation Research Center, Nankai University affiliated Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Hammel JH, Arneja A, Cunningham J, Wang M, Schumaecker S, Orihuela YM, Ozulumba T, Zatorski J, Braciale TJ, Luckey CJ, Pompano RR, Munson JM. Engineered human lymph node stroma model for examining interstitial fluid flow and T cell egress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.622729. [PMID: 39677702 PMCID: PMC11642859 DOI: 10.1101/2024.12.03.622729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The lymph node (LN) performs essential roles in immunosurveillance throughout the body. Developing in vitro models of this key tissue is of great importance to enhancing physiological relevance in immunoengineering. The LN consists of stromal populations and immune cells, which are highly organized and bathed in constant interstitial flow. The stroma, notably the fibroblastic reticular cells (FRCs) and the lymphatic endothelial cells (LECs), play crucial roles in guiding T cell migration and are known to be sensitive to fluid flow. During inflammation, interstitial fluid flow rates drastically increase in the LN. It is unknown how these altered flow rates impact crosstalk and cell behavior in the LN, and most existing in vitro models focus on the interactions between T cells, B cells, and dendritic cells rather than with the stroma. To address this gap, we developed a human engineered model of the LN stroma consisting of FRC-laden hydrogel above a monolayer of LECs in a tissue culture insert with gravity-driven interstitial flow. We found that FRCs had enhanced coverage and proliferation in response to high flow rates, while LECs experienced decreased barrier integrity. We added CD4+ and CD8+ T cells and found that their egress was significantly decreased in the presence of interstitial flow, regardless of magnitude. Interestingly, 3.0 µm/s flow, but not 0.8 µm/s flow, correlated with enhanced inflammatory cytokine secretion in the LN stroma. Overall, we demonstrate that interstitial flow is an essential consideration in the lymph node for modulating LN stroma morphology, T cell migration, and inflammation.
Collapse
|
11
|
Rottmann S, Lukacs-Kornek V. Isolation, Purification, and Comprehensive Flow Cytometry Assessment of Lung Stromal Cells. Curr Protoc 2024; 4:e70078. [PMID: 39697109 DOI: 10.1002/cpz1.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Stromal cells are non-hematopoietic cells that consist of endothelial cells and various mesenchymal cell populations. The composition of the stromal cell compartment is diverse in different organs. Numerous recent studies demonstrated that the lung environment contains heterogeneous mesenchymal stromal cell populations with distinctive genomic signatures and location preferences. Besides their role in supporting organ structure and remodeling tissue, mesenchymal stromal cells fulfill critical immune functions. These stromal cells show alterations during lung fibrosis and infectious disorders like COVID-19 or flu infection. To date, their identification and isolation were challenging, and most information about their heterogeneity was derived from scRNAseq data. In this protocol, we describe an isolation, comprehensive flow cytometry assessment, and purification strategy for murine lung stromal cells. The described method is optimized for minimizing cell death while keeping a high level of cell purity. This protocol can be also used for ex-vivo analysis of these cells in downstream functional assays. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of stromal cells from murine lung tissue Basic Protocol 2: Flow cytometry assessment of lung stromal populations Basic Protocol 3: Purification of lung fibroblastic stromal cells Alternate Protocol: Positive selection of fibroblastic stromal cells.
Collapse
Affiliation(s)
- Sophia Rottmann
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
12
|
Beckers D, Jainarayanan AK, Dustin ML, Capera J. T Cell Resistance: On the Mechanisms of T Cell Non-activation. Immune Netw 2024; 24:e42. [PMID: 39801736 PMCID: PMC11711127 DOI: 10.4110/in.2024.24.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Immunological tolerance is a fundamental arm of any functioning immune system. Not only does tolerance mitigate collateral damage from host immune responses, but in doing so permits a robust response sufficient to clear infection as necessary. Yet, despite occupying such a cornerstone, research aiming to unravel the intricacies of tolerance induction is mired by interchangeable and often misused terminologies, with markers and mechanistic pathways that beg the question of redundancy. In this review we aim to define these boarders by providing new perspectives to long-standing theories of tolerance. Given the central role of T cells in enforcing immune cascades, in this review we choose to explore immunological tolerance through the perspective of T cell 'resistance to activation,' to delineate the contexts in which one tolerance mechanism has evolved over the other. By clarifying the important biological markers and cellular players underpinning T cell resistance to activation, we aim to encourage more purposeful and directed research into tolerance and, more-over, potential therapeutic strategies in autoimmune diseases and cancer. The tolerance field is in much need of reclassification and consideration, and in this review, we hope to open that conversation.
Collapse
Affiliation(s)
- Daniel Beckers
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Ashwin K. Jainarayanan
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jesusa Capera
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
13
|
Bessell E, Finlay RE, James LK, Ludewig B, Harris NL, Krebs P, Hepworth MR, Dubey LK. Stromal cell and B cell dialogue potentiates IL-33-enriched lymphoid niches to support eosinophil recruitment and function during type 2 immunity. Cell Rep 2024; 43:114620. [PMID: 39141517 DOI: 10.1016/j.celrep.2024.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/27/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
Eosinophils are involved in host protection against multicellular organisms. However, their recruitment to the mesenteric lymph node (mLN) during type 2 immunity is understudied. Our results demonstrate that eosinophil association with lymphoid stromal niches constructed by fibroblastic reticular cells (FRCs) and lymphatic endothelial cells is diminished in mice selectively lacking interleukin (IL)-4Rα or lymphotoxin-β (LTβ) expression on B cells. Furthermore, eosinophil survival, activation, and enhanced Il1rl1 receptor expression are driven by stromal cell and B cell dialogue. The ligation of lymphotoxin-β receptor (LTβR) on FRCs improves eosinophil survival and significantly augments IL-33 expression and eosinophil homing to the mLN, thus confirming the significance of lymphotoxin signaling for granulocyte recruitment. Eosinophil-deficient ΔdblGATA-1 mice show diminished mLN expansion, reduced interfollicular region (IFR) alarmin expression, and delayed helminth clearance, elucidating their importance in type 2 immunity. These findings provide insight into dialogue between stromal cells and B cells, which govern mLN eosinophilia, and the relevance of these mechanisms during type 2 immunity.
Collapse
Affiliation(s)
- Emily Bessell
- William Harvey Research Institute (WHRI), Barts & The London School of Medicine & Dentistry, Queen Mary University of London (QMUL), London, UK; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland; Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rachel E Finlay
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Louisa K James
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nicola L Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Matthew R Hepworth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Lalit Kumar Dubey
- William Harvey Research Institute (WHRI), Barts & The London School of Medicine & Dentistry, Queen Mary University of London (QMUL), London, UK; Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Cinti I, Vezyrgianni K, Denton AE. Unravelling the contribution of lymph node fibroblasts to vaccine responses. Adv Immunol 2024; 164:1-37. [PMID: 39523027 DOI: 10.1016/bs.ai.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaccination is one of the most effective medical interventions, saving millions of lives and reducing the morbidity of infections across the lifespan, from infancy to older age. The generation of plasma cells and memory B cells that produce high affinity class switched antibodies is central to this protection, and these cells are the ultimate output of the germinal centre response. Optimal germinal centre responses require different immune cells to interact with one another in the right place and at the right time and this delicate cellular ballet is coordinated by a network of interconnected stromal cells. In this review we will discuss the various types of lymphoid stromal cells and how they coordinate immune cell homeostasis, the induction and maintenance of the germinal centre response, and how this is disorganised in older bodies.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kassandra Vezyrgianni
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.
| |
Collapse
|
15
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
16
|
Qian H, Deng C, Chen S, Zhang X, He Y, Lan J, Wang A, Shi G, Liu Y. Targeting pathogenic fibroblast-like synoviocyte subsets in rheumatoid arthritis. Arthritis Res Ther 2024; 26:103. [PMID: 38783357 PMCID: PMC11112866 DOI: 10.1186/s13075-024-03343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Fibroblast-like synoviocytes (FLSs) play a central role in RA pathogenesis and are the main cellular component in the inflamed synovium of patients with rheumatoid arthritis (RA). FLSs are emerging as promising new therapeutic targets in RA. However, fibroblasts perform many essential functions that are required for sustaining tissue homeostasis. Direct targeting of general fibroblast markers on FLSs is challenging because fibroblasts in other tissues might be altered and side effects such as reduced wound healing or fibrosis can occur. To date, no FLS-specific targeted therapies have been applied in the clinical management of RA. With the help of high-throughput technologies such as scRNA-seq in recent years, several specific pathogenic FLS subsets in RA have been identified. Understanding the characteristics of these pathogenic FLS clusters and the mechanisms that drive their differentiation can provide new insights into the development of novel FLS-targeting strategies for RA. Here, we discuss the pathogenic FLS subsets in RA that have been elucidated in recent years and potential strategies for targeting pathogenic FLSs.
Collapse
Affiliation(s)
- Hongyan Qian
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Chaoqiong Deng
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Jingying Lan
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
| | - Aodi Wang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China.
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China.
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China.
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55th, Zhenhai Road, Xiamen, XM, 361000, China.
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China.
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China.
| |
Collapse
|
17
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
18
|
Ju W, Cai HH, Zheng W, Li DM, Zhang W, Yang XH, Yan ZX. Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review). Oncol Lett 2024; 27:81. [PMID: 38249813 PMCID: PMC10797314 DOI: 10.3892/ol.2024.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Malignant melanoma (MM) is a highly aggressive tumour that can easily metastasize through the lymphatic system at the early stages. Lymph node (LN) involvement and lymphatic vessel (LV) density (LVD) represent a harbinger of an adverse prognosis, indicating a strong link between the state of the lymphatic system and the advancement of MM. Permeable capillary lymphatic vessels are the optimal conduits for melanoma cell (MMC) invasion, and lymphatic endothelial cells (LECs) can also release a variety of chemokines that actively attract MMCs expressing chemokine ligands through a gradient orientation. Moreover, due to the lower oxidative stress environment in the lymph compared with the blood circulation, MMCs are more likely to survive and colonize. The number of LVs surrounding MM is associated with tumour-infiltrating lymphocytes (TILs), which is crucial for the effectiveness of immunotherapy. On the other hand, MMCs can release various endothelial growth factors such as VEGF-C/D-VEGFR3 to mediate LN education and promote lymphangiogenesis. Tumour-derived extracellular vesicles are also used to promote lymphangiogenesis and create a microenvironment that is more conducive to tumour progression. MM is surrounded by a large number of lymphocytes. However, both LECs and MMCs are highly plastic, playing multiple roles in evading immune surveillance. They achieve this by expressing inhibitory ligands or reducing antigen recognition. In recent years, tertiary lymphoid structures have been shown to be associated with response to anti-immune checkpoint therapy, which is often a positive prognostic feature in MM. The present review discusses the interaction between lymphangiogenesis and MM metastasis, and it was concluded that the relationship between LVD and TILs and patient prognosis is analogous to a dynamically tilted scale.
Collapse
Affiliation(s)
- Wei Ju
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Hong-Hua Cai
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Wei Zheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - De-Ming Li
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Zhang
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Xi-Hu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Zhi-Xin Yan
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| |
Collapse
|
19
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
20
|
De Martin A, Stanossek Y, Pikor NB, Ludewig B. Protective fibroblastic niches in secondary lymphoid organs. J Exp Med 2024; 221:e20221220. [PMID: 38038708 PMCID: PMC10691961 DOI: 10.1084/jem.20221220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) are specialized fibroblasts of secondary lymphoid organs that provide the structural foundation of the tissue. Moreover, FRCs guide immune cells to dedicated microenvironmental niches where they provide lymphocytes and myeloid cells with homeostatic growth and differentiation factors. Inflammatory processes, including infection with pathogens, induce rapid morphological and functional adaptations that are critical for the priming and regulation of protective immune responses. However, adverse FRC reprogramming can promote immunopathological tissue damage during infection and autoimmune conditions and subvert antitumor immune responses. Here, we review recent findings on molecular pathways that regulate FRC-immune cell crosstalk in specialized niches during the generation of protective immune responses in the course of pathogen encounters. In addition, we discuss how FRCs integrate immune cell-derived signals to ensure protective immunity during infection and how therapies for inflammatory diseases and cancer can be developed through improved understanding of FRC-immune cell interactions.
Collapse
Affiliation(s)
- Angelina De Martin
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Natalia Barbara Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
21
|
Delclaux I, Ventre KS, Jones D, Lund AW. The tumor-draining lymph node as a reservoir for systemic immune surveillance. Trends Cancer 2024; 10:28-37. [PMID: 37863720 PMCID: PMC10843049 DOI: 10.1016/j.trecan.2023.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
Early in solid tumor development, antigens are presented in tumor-draining lymph nodes (tdLNs), a process that is necessary to set up immune surveillance. Recent evidence indicates that tdLNs fuel systemic tumor-specific T cell responses which may halt cancer progression and facilitate future responses to immunotherapy. These protective responses, however, are subject to progressive dysfunction exacerbated by lymph node (LN) metastasis. We discuss emerging preclinical and clinical literature indicating that the tdLN is a crucial reservoir for systemic immunity that can potentiate immune surveillance. We also discuss the impact of LN metastasis and argue that a better understanding of the relationship between LN metastasis and systemic immunity will be necessary to direct regional disease management in the era of immunotherapy.
Collapse
Affiliation(s)
- Ines Delclaux
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Katherine S Ventre
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, USA
| | - Dennis Jones
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
22
|
Jayewickreme T, Benoist C, Mathis D. Lymph node stromal cell responses to perinatal T cell waves, a temporal atlas. Proc Natl Acad Sci U S A 2023; 120:e2316957120. [PMID: 38079541 PMCID: PMC10740392 DOI: 10.1073/pnas.2316957120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
The perinatal period is a critical time window in establishing T cell tolerance. Regulatory T cells (Tregs) made during the first 2 wk of life are key drivers of perinatal tolerance induction, but how these cells are generated and operate has not been established. To elucidate the unique environment murine perinatal Tregs encounter within the lymph nodes (LNs) as they first emerge from the thymus, and how it evolves over the succeeding days, we employed single-cell RNA sequencing to generate an atlas of the early LN niche. A highly dynamic picture emerged, the stromal cell compartment showing the most striking changes and putative interactions with other LN cell compartments. In particular, LN stromal cells showed increasing potential for lymphocyte interactions with age. Analogous studies on mice lacking α:β T cells or enriched for autoreactive α:β T cells revealed an acute stromal cell response to α:β T cell dysfunction, largely reflecting dysregulation of Tregs. Punctual ablation of perinatal Tregs induced stromal cell activation that was dependent on both interferon-gamma signaling and activation of conventional CD4+ T cells. These findings elucidate some of the earliest cellular and molecular events in perinatal induction of T cell tolerance, providing a framework for future explorations.
Collapse
Affiliation(s)
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
23
|
Lancaster JN. Aging of lymphoid stromal architecture impacts immune responses. Semin Immunol 2023; 70:101817. [PMID: 37572552 PMCID: PMC10929705 DOI: 10.1016/j.smim.2023.101817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The secondary lymphoid organs (SLOs) undergo structural changes with age, which correlates with diminishing immune responses against infectious disease. A growing body of research suggests that the aged tissue microenvironment can contribute to decreased immune function, independent of intrinsic changes to hematopoietic cells with age. Stromal cells impart structural integrity, facilitate fluid transport, and provide chemokine and cytokine signals that are essential for immune homeostasis. Mechanisms that drive SLO development have been described, but their roles in SLO maintenance with advanced age are unknown. Disorganization of the fibroblasts of the T cell and B cell zones may reduce the maintenance of naïve lymphocytes and delay immune activation. Reduced lymphatic transport efficiency with age can also delay the onset of the adaptive immune response. This review focuses on recent studies that describe age-associated changes to the stroma of the lymph nodes and spleen. We also review recent investigations into stromal cell biology, which include high-dimensional analysis of the stromal cell transcriptome and viscoelastic testing of lymph node mechanical properties, as they constitute an important framework for understanding aging of the lymphoid tissues.
Collapse
Affiliation(s)
- Jessica N Lancaster
- Department of Immunology, Mayo Clinic, 13400 E. Shea Blvd., Scottsdale, AZ, USA; Department of Cancer Biology, Mayo Clinic, 13400 E. Shea Blvd., Scottsdale, AZ, USA.
| |
Collapse
|
24
|
Sonar SA, Watanabe M, Nikolich JŽ. Disorganization of secondary lymphoid organs and dyscoordination of chemokine secretion as key contributors to immune aging. Semin Immunol 2023; 70:101835. [PMID: 37651849 PMCID: PMC10840697 DOI: 10.1016/j.smim.2023.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Aging is characterized by progressive loss of organ and tissue function, and the immune system is no exception to that inevitable principle. Of all the age-related changes in the body, reduction of the size of, and naïve T (Tn) cell output from, the thymus occurs earliest, being prominent already before or by the time of puberty. Therefore, to preserve immunity against new infections, over much of their lives, vertebrates dominantly rely on peripheral maintenance of the Tn cell pool in the secondary lymphoid organs (SLO). However, SLO structure and function subsequently also deteriorate with aging. Several recent studies have made a convincing case that this deterioration is of major importance to the erosion of protective immunity in the last third of life. Specifically, the SLO were found to accumulate multiple degenerative changes with aging. Importantly, the results from adoptive transfer and parabiosis studies teach us that the old microenvironment is the limiting factor for protective immunity in old mice. In this review, we discuss the extent, mechanisms, and potential role of stromal cell aging in the age-related alteration of T cell homeostatic maintenance and immune function decline. We use that discussion to frame the potential strategies to correct the SLO stromal aging defects - in the context of other immune rejuvenation approaches, - to improve functional immune responses and protective immunity in older adults.
Collapse
Affiliation(s)
- Sandip Ashok Sonar
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; the Aegis Consortium for Pandemic-free Future, University of Arizona Health Sciences, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
25
|
Viúdez-Pareja C, Kreft E, García-Caballero M. Immunomodulatory properties of the lymphatic endothelium in the tumor microenvironment. Front Immunol 2023; 14:1235812. [PMID: 37744339 PMCID: PMC10512957 DOI: 10.3389/fimmu.2023.1235812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate complex and dynamic structure composed of various cell types, including tumor, stromal and immune cells. Within this complex network, lymphatic endothelial cells (LECs) play a crucial role in regulating immune responses and influencing tumor progression and metastatic dissemination to lymph node and distant organs. Interestingly, LECs possess unique immunomodulatory properties that can either promote or inhibit anti-tumor immune responses. In fact, tumor-associated lymphangiogenesis can facilitate tumor cell dissemination and metastasis supporting immunoevasion, but also, different molecular mechanisms involved in LEC-mediated anti-tumor immunity have been already described. In this context, the crosstalk between cancer cells, LECs and immune cells and how this communication can shape the immune landscape in the TME is gaining increased interest in recent years. In this review, we present a comprehensive and updated report about the immunomodulatory properties of the lymphatic endothelium within the TME, with special focus on primary tumors and tumor-draining lymph nodes. Furthermore, we outline emerging research investigating the potential therapeutic strategies targeting the lymphatic endothelium to enhance anti-tumor immune responses. Understanding the intricate mechanisms involved in LEC-mediated immune modulation in the TME opens up new possibilities for the development of innovative approaches to fight cancer.
Collapse
Affiliation(s)
- Cristina Viúdez-Pareja
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Ewa Kreft
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
26
|
Mezyk-Kopec R, Potin L, Medellin JEG, Salles CM, Swartz MA. TGF-β Signaling Prevents MHC Class II-Expressing Lymphatic Endothelial Cells from Reactivating Human Allogenic Memory CD4+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:782-790. [PMID: 37486193 PMCID: PMC11155268 DOI: 10.4049/jimmunol.2200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
Lymphatic endothelial cells (LECs) express MHC class II (MHC-II) upon IFN-γ stimulation, yet recent evidence suggests that LECs cannot activate naive or memory CD4+ T cells. In this article, we show that IFN-γ-activated human dermal LECs can robustly reactivate allogeneic human memory CD4+ T cells (hCD4+ TMs), but only when TGF-β signaling is inhibited. We found that in addition to upregulating MHC-II, IFN-γ also induces LECs to upregulate glycoprotein A repetitions predominant, which anchors latent TGF-β to the membrane and potentially inhibits T cell activation. Indeed, hCD4+ TM proliferation was substantially increased when LEC-CD4+ TM cultures were treated with a TGF-β receptor type 1 inhibitor or when glycoprotein A repetitions predominant expression was silenced in LECs. Reactivated hCD4+ TMs were characterized by their proliferation, CD25 expression, and cytokine secretion. CD4+ TM reactivation was dependent on LEC expression of MHC-II, confirming direct TCR engagement. Although CD80 and CD86 were not detected on LECs, the costimulatory molecules OX40L and ICOSL were upregulated upon cytokine stimulation; however, blocking these did not affect CD4+ TM reactivation by LECs. Finally, we found that human dermal LECs also supported the maintenance of Foxp3-expressing hCD4+ TMs independently of IFN-γ-induced MHC-II. Together, these results demonstrate a role for LECs in directly modulating CD4+ TM reactivation under inflammatory conditions and point to LEC-expressed TGF-β as a negative regulator of this activation.
Collapse
Affiliation(s)
- Renata Mezyk-Kopec
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Krakow, Poland
| | - Lambert Potin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | | | - Calixto M. Salles
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
- Committee on Immunology, University of Chicago, Chicago, Illinois
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Laaker C, Baenen C, Kovács KG, Sandor M, Fabry Z. Immune cells as messengers from the CNS to the periphery: the role of the meningeal lymphatic system in immune cell migration from the CNS. Front Immunol 2023; 14:1233908. [PMID: 37662908 PMCID: PMC10471710 DOI: 10.3389/fimmu.2023.1233908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to "drain" out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions.
Collapse
Affiliation(s)
- Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Cameron Baenen
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Kristóf G. Kovács
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
28
|
Apollonio B, Spada F, Petrov N, Cozzetto D, Papazoglou D, Jarvis P, Kannambath S, Terranova-Barberio M, Amini RM, Enblad G, Graham C, Benjamin R, Phillips E, Ellis R, Nuamah R, Saqi M, Calado DP, Rosenquist R, Sutton LA, Salisbury J, Zacharioudakis G, Vardi A, Hagner PR, Gandhi AK, Bacac M, Claus C, Umana P, Jarrett RF, Klein C, Deutsch A, Ramsay AG. Tumor-activated lymph node fibroblasts suppress T cell function in diffuse large B cell lymphoma. J Clin Invest 2023; 133:e166070. [PMID: 37219943 PMCID: PMC10313378 DOI: 10.1172/jci166070] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Recent transcriptomic-based analysis of diffuse large B cell lymphoma (DLBCL) has highlighted the clinical relevance of LN fibroblast and tumor-infiltrating lymphocyte (TIL) signatures within the tumor microenvironment (TME). However, the immunomodulatory role of fibroblasts in lymphoma remains unclear. Here, by studying human and mouse DLBCL-LNs, we identified the presence of an aberrantly remodeled fibroblastic reticular cell (FRC) network expressing elevated fibroblast-activated protein (FAP). RNA-Seq analyses revealed that exposure to DLBCL reprogrammed key immunoregulatory pathways in FRCs, including a switch from homeostatic to inflammatory chemokine expression and elevated antigen-presentation molecules. Functional assays showed that DLBCL-activated FRCs (DLBCL-FRCs) hindered optimal TIL and chimeric antigen receptor (CAR) T cell migration. Moreover, DLBCL-FRCs inhibited CD8+ TIL cytotoxicity in an antigen-specific manner. Notably, the interrogation of patient LNs with imaging mass cytometry identified distinct environments differing in their CD8+ TIL-FRC composition and spatial organization that associated with survival outcomes. We further demonstrated the potential to target inhibitory FRCs to rejuvenate interacting TILs. Cotreating organotypic cultures with FAP-targeted immunostimulatory drugs and a bispecific antibody (glofitamab) augmented antilymphoma TIL cytotoxicity. Our study reveals an immunosuppressive role of FRCs in DLBCL, with implications for immune evasion, disease pathogenesis, and optimizing immunotherapy for patients.
Collapse
Affiliation(s)
- Benedetta Apollonio
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | | | | | - Domenico Cozzetto
- BRC Translational Bioinformatics at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Despoina Papazoglou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Peter Jarvis
- 5th Surgical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Shichina Kannambath
- BRC Genomics Research Platform at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
| | | | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University and Hospital, Uppsala, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University and Hospital, Uppsala, Sweden
| | - Charlotte Graham
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Reuben Benjamin
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Elisabeth Phillips
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | | | - Rosamond Nuamah
- BRC Genomics Research Platform at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Mansoor Saqi
- BRC Translational Bioinformatics at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Dinis P. Calado
- Immunity & Cancer Laboratory, Francis Crick Institute, London, United Kingdom
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lesley A. Sutton
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jon Salisbury
- Department of Haematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Anna Vardi
- Hematology Department and HCT Unit, G. Papanikolaou Hospital, Thessaloniki, Greece
| | | | | | - Marina Bacac
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Pablo Umana
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Ruth F. Jarrett
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | | | - Alan G. Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
29
|
Fletcher AL, Good-Jacobson KL. New fibroblast network connections support lymphocytic cellular service. Nat Immunol 2023:10.1038/s41590-023-01537-7. [PMID: 37322180 DOI: 10.1038/s41590-023-01537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
30
|
Combes AJ, Samad B, Krummel MF. Defining and using immune archetypes to classify and treat cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00578-2. [PMID: 37277485 DOI: 10.1038/s41568-023-00578-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
Tumours are surrounded by a host immune system that can suppress or promote tumour growth. The tumour microenvironment (TME) has often been framed as a singular entity, suggesting a single type of immune state that is defective and in need of therapeutic intervention. By contrast, the past few years have highlighted a plurality of immune states that can surround tumours. In this Perspective, we suggest that different TMEs have 'archetypal' qualities across all cancers - characteristic and repeating collections of cells and gene-expression profiles at the level of the bulk tumour. We discuss many studies that together support a view that tumours typically draw from a finite number (around 12) of 'dominant' immune archetypes. In considering the likely evolutionary origin and roles of these archetypes, their associated TMEs can be predicted to have specific vulnerabilities that can be leveraged as targets for cancer treatment with expected and addressable adverse effects for patients.
Collapse
Affiliation(s)
- Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Bushra Samad
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
31
|
Jin L, Gao W, Chen P, Zhao W, Zhao Y, Li D, Zhou J, Yu B, Dong G. Murine neonatal dermal fibroblast acquires a lymphoid tissue organizer cell-like activity upon synergistic activation of TNF-α receptor and LTβ receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119399. [PMID: 36402207 DOI: 10.1016/j.bbamcr.2022.119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Tertiary lymphoid organs (TLOs) are ectopic aggregates of immune cells. As accumulating studies demonstrate TLOs as a predictor of better prognosis in certain cancers, targeting TLO formation, which is tightly regulated by the lymphoid tissue organizer cells (LTOs), has become intriguing in cancer treatment. However, the clinical outcome of these attempts is limited, because the approaches for activating tumor adjacent LTO is lack and little is known about what type of self-cell can be used as LTO to initiate TLO formation. Here we demonstrate that co-stimulation with membrane-bound ligand LTα1β2 and soluble TNF-α could induced an LTO-like activity in murine neonatal dermal fibroblast, featured by high expression of cell migration-associated chemokines and adhesion molecules that resemble typical LTO gene signature. Furthermore, the LTO-phenotypic dermal fibroblast could enhance the attachment and survival of T and B cell and proliferation of T cell. These findings suggest dermal fibroblast as a promising target for TLO induction to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Lujia Jin
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenxing Gao
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Zhou
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Biyue Yu
- School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Guanglong Dong
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
32
|
Liu Y, Rao P, Qian H, Shi Y, Chen S, Lan J, Mu D, Chen R, Zhang X, Deng C, Liu G, Shi G. Regulatory Fibroblast-Like Synoviocytes Cell Membrane Coated Nanoparticles: A Novel Targeted Therapy for Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204998. [PMID: 36509660 PMCID: PMC9896074 DOI: 10.1002/advs.202204998] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Fibroblast-like synoviocytes (FLS) are the main cell component in the inflamed joints of patients with rheumatoid arthritis (RA). FLS intimately interact with infiltrating T cells. Fibroblasts have potent inhibitory effects on T cells, leading to the resolution of inflammation and immune tolerance. However, this "regulatory" phenotype is defect in RA, and FLS in RA instead act as "proinflammatory" phenotype mediating inflammation perpetuation. Signals that orchestrate fibroblast heterogeneity remain unclear. Here, it is demonstrated that different cytokines can induce distinct phenotypes of FLS. Interferon-gamma (IFN-γ) is pivotal in inducing the regulatory phenotype of FLS (which is termed FLSreg ) characterized by high expressions of several inhibitory molecules. Rapamycin enhances the effect of IFN-γ on FLS. Based on the characteristics of FLSreg , a novel biomimetic therapeutic strategy for RA is designed by coating cell membrane derived from FLSreg induced by IFN-γ and rapamycin on nanoparticles, which is called FIRN. FIRN show good efficacy, stability, and inflammatory joint targeting ability in an RA mouse model. The findings clarify how fibroblast phenotypes are modulated in the inflammatory microenvironment and provide insights into novel therapeutic designs for autoimmune diseases based on regulatory fibroblasts.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Xiamen Municipal Clinical Research Center for Immune DiseaseXiamen361001China
| | - Peishi Rao
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Department of Rheumatology and ImmunologyPeking University People's HospitalBeijing100044China
| | - Hongyan Qian
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Xiamen Municipal Clinical Research Center for Immune DiseaseXiamen361001China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen361001China
| | - Shiju Chen
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Xiamen Municipal Clinical Research Center for Immune DiseaseXiamen361001China
| | - Jingying Lan
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
| | - Dan Mu
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen361001China
| | - Rongjuan Chen
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Xiamen Municipal Clinical Research Center for Immune DiseaseXiamen361001China
| | - Chaoqiong Deng
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsCenter for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen361001China
| | - Guixiu Shi
- Department of Rheumatology and Clinical ImmunologyThe First Affiliated Hospital of Xiamen UniversityXiamen361001China
- School of MedicineXiamen UniversityXiamen361103China
- Xiamen Municipal Clinical Research Center for Immune DiseaseXiamen361001China
| |
Collapse
|
33
|
Extracellular Vesicles Are Important Mediators That Regulate Tumor Lymph Node Metastasis via the Immune System. Int J Mol Sci 2023; 24:ijms24021362. [PMID: 36674900 PMCID: PMC9865533 DOI: 10.3390/ijms24021362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Extracellular vesicles (EVs) are particles with a lipid bilayer structure, and they are secreted by various cells in the body. EVs interact with and modulate the biological functions of recipient cells by transporting their cargoes, such as nucleic acids and proteins. EVs influence various biological phenomena, including disease progression. They also participate in tumor progression by stimulating a variety of signaling pathways and regulating immune system activation. EVs induce immune tolerance by suppressing CD8+ T-cell activation or polarizing macrophages toward the M2 phenotype, which results in tumor cell proliferation, migration, invasion, and metastasis. Moreover, immune checkpoint molecules are also expressed on the surface of EVs that are secreted by tumors that express these molecules, allowing tumor cells to not only evade immune cell attack but also acquire resistance to immune checkpoint inhibitors. During tumor metastasis, EVs contribute to microenvironmental changes in distant organs before metastatic lesions appear; thus, EVs establish a premetastatic niche. In particular, lymph nodes are adjacent organs that are connected to tumor lesions via lymph vessels, so that tumor cells metastasize to draining lymph nodes at first, such as sentinel lymph nodes. When EVs influence the microenvironment of lymph nodes, which are secondary lymphoid tissues, the immune response against tumor cells is weakened; subsequently, tumor cells spread throughout the body. In this review, we will discuss the association between EVs and tumor progression via the immune system as well as the clinical application of EVs as biomarkers and therapeutic agents.
Collapse
|
34
|
Brom VC, Strauss AC, Sieberath A, Salber J, Burger C, Wirtz DC, Schildberg FA. Agonistic and antagonistic targeting of immune checkpoint molecules differentially regulate osteoclastogenesis. Front Immunol 2023; 14:988365. [PMID: 36817431 PMCID: PMC9931766 DOI: 10.3389/fimmu.2023.988365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Immune checkpoint inhibitors are used in the treatment of various cancers and have been extensively researched with regard to inflammatory and autoimmune diseases. However, this revolutionary therapeutic strategy often provokes critical auto-inflammatory adverse events, such as inflammatory reactions affecting the cardiovascular, gastrointestinal, nervous, and skeletal systems. Because the function of these immunomodulatory co-receptors is highly cell-type specific and the role of macrophages as osteoclast precursors is widely published, we aimed to analyze the effect of immune checkpoint inhibitors on these bone-resorbing cells. Methods We established an in vitro model of osteoclastogenesis using human peripheral blood mononuclear cells, to which various immune checkpoints and corresponding antagonistic antibodies were administered. Formation of osteoclasts was quantified and cell morphology was analyzed via immunofluorescence staining, cell size measurements, and calculation of cell numbers in a multitude of samples. Results These methodical approaches for osteoclast research achieved objective, comparable, and reproducible results despite the great heterogeneity in the form, size, and number of osteoclasts. In addition to the standardization of experimental analyses involving osteoclasts, our study has revealed the substantial effects of agonistic and antagonistic checkpoint modulation on osteoclastogenesis, confirming the importance of immune checkpoints in bone homeostasis. Discussion Our work will enable more robust and reproducible investigations into the use of immune checkpoint inhibitors in conditions with diminished bone density such as osteoporosis, aseptic loosening of endoprostheses, cancer, as well as the side effects of cancer therapy, and might even pave the way for novel individualized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Victoria C Brom
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C Strauss
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Alexander Sieberath
- Department of Experimental Surgery, Centre for Clinical Research, Ruhr-Universität Bochum, Bochum, Germany
| | - Jochen Salber
- Department of Experimental Surgery, Centre for Clinical Research, Ruhr-Universität Bochum, Bochum, Germany.,Department of Surgery, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
35
|
The Lymphatic Endothelium in the Context of Radioimmuno-Oncology. Cancers (Basel) 2022; 15:cancers15010021. [PMID: 36612017 PMCID: PMC9817924 DOI: 10.3390/cancers15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The study of lymphatic tumor vasculature has been gaining interest in the context of cancer immunotherapy. These vessels constitute conduits for immune cells' transit toward the lymph nodes, and they endow tumors with routes to metastasize to the lymph nodes and, from them, toward distant sites. In addition, this vasculature participates in the modulation of the immune response directly through the interaction with tumor-infiltrating leukocytes and indirectly through the secretion of cytokines and chemokines that attract leukocytes and tumor cells. Radiotherapy constitutes the therapeutic option for more than 50% of solid tumors. Besides impacting transformed cells, RT affects stromal cells such as endothelial and immune cells. Mature lymphatic endothelial cells are resistant to RT, but we do not know to what extent RT may affect tumor-aberrant lymphatics. RT compromises lymphatic integrity and functionality, and it is a risk factor to the onset of lymphedema, a condition characterized by deficient lymphatic drainage and compromised tissue homeostasis. This review aims to provide evidence of RT's effects on tumor vessels, particularly on lymphatic endothelial cell physiology and immune properties. We will also explore the therapeutic options available so far to modulate signaling through lymphatic endothelial cell receptors and their repercussions on tumor immune cells in the context of cancer. There is a need for careful consideration of the RT dosage to come to terms with the participation of the lymphatic vasculature in anti-tumor response. Here, we provide new approaches to enhance the contribution of the lymphatic endothelium to radioimmuno-oncology.
Collapse
|
36
|
Pezoldt J, Wiechers C, Zou M, Litovchenko M, Biocanin M, Beckstette M, Sitnik K, Palatella M, van Mierlo G, Chen W, Gardeux V, Floess S, Ebel M, Russeil J, Arampatzi P, Vafardanejad E, Saliba AE, Deplancke B, Huehn J. Postnatal expansion of mesenteric lymph node stromal cells towards reticular and CD34 + stromal cell subsets. Nat Commun 2022; 13:7227. [PMID: 36433946 PMCID: PMC9700677 DOI: 10.1038/s41467-022-34868-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gut-draining mesenteric lymph nodes (LN) provide the framework to shape intestinal adaptive immune responses. Based on the transcriptional signatures established by our previous work, the composition and immunomodulatory function of LN stromal cells (SC) vary according to location. Here, we describe the single-cell composition and development of the SC compartment within mesenteric LNs derived from postnatal to aged mice. We identify CD34+ SC and fibroblastic reticular stromal cell (FRC) progenitors as putative progenitors, both supplying the typical rapid postnatal mesenteric LN expansion. We further establish the location-specific chromatin accessibility and DNA methylation landscape of non-endothelial SCs and identify a microbiota-independent core epigenomic signature, showing characteristic differences between SCs from mesenteric and skin-draining peripheral LNs. The epigenomic landscape of SCs points to dynamic expression of Irf3 along the differentiation trajectories of FRCs. Accordingly, a mesenchymal stem cell line acquires a Cxcl9+ FRC molecular phenotype upon lentiviral overexpression of Irf3, and the relevance of Irf3 for SC biology is further underscored by the diminished proportion of Ccl19+ and Cxcl9+ FRCs in LNs of Irf3-/- mice. Together, our data constitute a comprehensive transcriptional and epigenomic map of mesenteric LNSC development in early life and dissect location-specific, microbiota-independent properties of non-endothelial SCs.
Collapse
Affiliation(s)
- Joern Pezoldt
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany ,grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Carolin Wiechers
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mangge Zou
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Maria Litovchenko
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marjan Biocanin
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Beckstette
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany ,grid.512472.7Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research and Hannover Medical School, 30625 Hannover, Germany ,grid.7491.b0000 0001 0944 9128Genome Informatics Group, Bielefeld Institute for Bioinformatics Infrastructure, Department of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Katarzyna Sitnik
- grid.6583.80000 0000 9686 6466Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martina Palatella
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Guido van Mierlo
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wanze Chen
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vincent Gardeux
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Stefan Floess
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Maria Ebel
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Julie Russeil
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Panagiota Arampatzi
- grid.8379.50000 0001 1958 8658Core Unit Systems Medicine, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Ehsan Vafardanejad
- grid.498164.6Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- grid.498164.6Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| | - Bart Deplancke
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jochen Huehn
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany ,grid.10423.340000 0000 9529 9877Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
37
|
Shaikh H, Pezoldt J, Mokhtari Z, Gamboa Vargas J, Le DD, Peña Mosca J, Arellano Viera E, Kern MA, Graf C, Beyersdorf N, Lutz MB, Riedel A, Büttner-Herold M, Zernecke A, Einsele H, Saliba AE, Ludewig B, Huehn J, Beilhack A. Fibroblastic reticular cells mitigate acute GvHD via MHCII-dependent maintenance of regulatory T cells. JCI Insight 2022; 7:154250. [PMID: 36227687 DOI: 10.1172/jci.insight.154250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
Acute graft versus host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT) inflicted by alloreactive T cells primed in secondary lymphoid organs (SLOs) and subsequent damage to aGvHD target tissues. In recent years, Treg transfer and/or expansion has emerged as a promising therapy to modulate aGvHD. However, cellular niches essential for fostering Tregs to prevent aGvHD have not been explored. Here, we tested whether and to what extent MHC class II (MHCII) expressed on Ccl19+ fibroblastic reticular cells (FRCs) shape the donor CD4+ T cell response during aGvHD. Animals lacking MHCII expression on Ccl19-Cre-expressing FRCs (MHCIIΔCcl19) showed aberrant CD4+ T cell activation in the effector phase, resulting in exacerbated aGvHD that was associated with significantly reduced expansion of Foxp3+ Tregs and invariant NK T (iNKT) cells. Skewed Treg maintenance in MHCIIΔCcl19 mice resulted in loss of protection from aGvHD provided by adoptively transferred donor Tregs. In contrast, although FRCs upregulated costimulatory surface receptors, and although they degraded and processed exogenous antigens after myeloablative irradiation, FRCs were dispensable to activate alloreactive CD4+ T cells in 2 mouse models of aGvHD. In summary, these data reveal an immunoprotective, MHCII-mediated function of FRC niches in secondary lymphoid organs (SLOs) after allo-HCT and highlight a framework of cellular and molecular interactions that regulate CD4+ T cell alloimmunity.
Collapse
Affiliation(s)
- Haroon Shaikh
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Joern Pezoldt
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zeinab Mokhtari
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Juan Gamboa Vargas
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Duc-Dung Le
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Josefina Peña Mosca
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Estibaliz Arellano Viera
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Michael Ag Kern
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Caroline Graf
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Niklas Beyersdorf
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany.,Institute for Virology and Immunobiology, Würzburg University, Würzburg, Germany
| | - Manfred B Lutz
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany.,Institute for Virology and Immunobiology, Würzburg University, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Centre, University Hospital of Würzburg, Würzburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection (HZI), Würzburg, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| |
Collapse
|
38
|
Zhao Y, Wei K, Chi H, Xia Z, Li X. IL-7: A promising adjuvant ensuring effective T cell responses and memory in combination with cancer vaccines? Front Immunol 2022; 13:1022808. [PMID: 36389666 PMCID: PMC9650235 DOI: 10.3389/fimmu.2022.1022808] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer vaccines exhibit specificity, effectiveness, and safety as an alternative immunotherapeutic strategy to struggle against malignant diseases, especially with the rapid development of mRNA cancer vaccines in recent years. However, how to maintain long-term immune memory after vaccination, especially T cells memory, to fulfill lasting surveillance against cancers, is still a challenging issue for researchers all over the world. IL-7 is critical for the development, maintenance, and proliferation of T lymphocytes, highlighting its potential role as an adjuvant in the development of cancer vaccines. Here, we summarized the IL-7/IL-7 receptor signaling in the development of T lymphocytes, the biological function of IL-7 in the maintenance and survival of T lymphocytes, the performance of IL-7 in pre-clinical and clinical trials of cancer vaccines, and the rationale to apply IL-7 as an adjuvant in cancer vaccine-based therapeutic strategy.
Collapse
Affiliation(s)
- Yue Zhao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kongyuan Wei
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Hao Chi
- Clinical Medical Collage, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Lee J, Park BC, Jang NY, Lee S, Cho YK, Sharma P, Byun SW, Jeon K, Jeon Y, Park U, Ro HJ, Park HR, Kim Y, Lee D, Chung S, Kim YK, Cho N. Inducing Ectopic T Cell Clusters Using Stromal Vascular Fraction Spheroid-Based Immunotherapy to Enhance Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203842. [PMID: 36058002 PMCID: PMC9534947 DOI: 10.1002/advs.202203842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/21/2022] [Indexed: 05/09/2023]
Abstract
Tertiary lymphoid structures (TLSs) provide specialized niches for immune cells, resulting in improved prognoses for patients undergoing cancer immunotherapy. Shaping TLS-like niches may improve anti-cancer immunity and overcome the current limitations of immune cell-based immunotherapy. Here, it is shown that stromal vascular fraction (SVF) from adipose tissues can enhance dendritic cell (DC)-mediated T cell immunity by inducing ectopic T lymphocyte clusters. SVF cells expanded ex vivo have phenotypes and functions similar to those of fibroblastic reticular cells in a secondary lymphoid organ, and their properties can be modulated using three-dimensional spheroid culture and coculture with DCs spiked with antigen-loaded iron oxide-zinc oxide core-shell nanoparticles. Thereby, the combination of SVF spheroids and mature DCs significantly augments T cell recruitment and retention at the injection site. This strategy elicits enhanced antigen-specific immune response and anti-tumoral immunity in mice, illustrating the potential for a novel immunotherapeutic design using SVF as a structural scaffold for TLS.
Collapse
Affiliation(s)
- Jae‐Won Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
- Institute of Endemic DiseasesCollege of MedicineSeoul National UniversitySeoul03080Korea
| | - Bum Chul Park
- Department of Materials Science and EngineeringKorea UniversitySeoul02481Korea
- Brain Korea Center for Smart Materials and DevicesKorea UniversitySeoul02841Korea
| | - Na Yoon Jang
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Sihyeon Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Young Kyu Cho
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Prashant Sharma
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Sang Won Byun
- Department of Materials Science and EngineeringKorea UniversitySeoul02481Korea
| | - Kyeongseok Jeon
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Yun‐Hui Jeon
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
| | - Uni Park
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Hyo Jin Ro
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Hyo Ree Park
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Yuri Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
- Institute of Endemic DiseasesCollege of MedicineSeoul National UniversitySeoul03080Korea
| | - Dong‐Sup Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
| | - Seok Chung
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and EngineeringKorea UniversitySeoul02481Korea
- Brain Korea Center for Smart Materials and DevicesKorea UniversitySeoul02841Korea
| | - Nam‐Hyuk Cho
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
- Institute of Endemic DiseasesCollege of MedicineSeoul National UniversitySeoul03080Korea
- Seoul National University Bundang HospitalSeongnam‐siGyeonggi‐do13620Republic of Korea
| |
Collapse
|
40
|
Stinson WA, Miner CA, Zhao FR, Lundgren AJ, Poddar S, Miner JJ. The IFN-γ receptor promotes immune dysregulation and disease in STING gain-of-function mice. JCI Insight 2022; 7:155250. [PMID: 36073546 PMCID: PMC9536275 DOI: 10.1172/jci.insight.155250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
STING gain-of-function mutations cause STING-associated vasculopathy with onset in infancy (SAVI) in humans, a disease characterized by spontaneous lung inflammation and fibrosis. Mice with STING gain-of-function mutations (SAVI mice) develop αβ T cell–dependent lung disease and also lack lymph nodes. Although SAVI has been regarded as a type I interferonopathy, the relative contributions of the three interferon receptors are incompletely understood. Here, we show that STING gain of function led to upregulation of IFN-γ–induced chemokines in the lungs of SAVI mice and that deletion of the type II IFN receptor (IFNGR1), but not the type I IFN receptor (IFNAR1) or type III IFN receptor (IFNλR1), ameliorated lung disease and restored lymph node development in SAVI mice. Furthermore, deletion of IFNGR1, but not IFNAR1 or IFNλR1, corrected the ratio of effector to Tregs in SAVI mice and in mixed bone marrow chimeric mice. Finally, cultured SAVI mouse macrophages were hyperresponsive to IFN-γ, but not IFN-β, in terms of Cxcl9 upregulation and cell activation. These results demonstrate that IFNGR1 plays a major role in autoinflammation and immune dysregulation mediated by STING gain of function.
Collapse
Affiliation(s)
- W Alexander Stinson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Cathrine A Miner
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fang R Zhao
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Annena Jane Lundgren
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Subhajit Poddar
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.,Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
41
|
Jeong J, Tanaka M, Iwakiri Y. Hepatic lymphatic vascular system in health and disease. J Hepatol 2022; 77:206-218. [PMID: 35157960 PMCID: PMC9870070 DOI: 10.1016/j.jhep.2022.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
In recent years, significant advances have been made in the study of lymphatic vessels with the identification of their specific markers and the development of research tools that have accelerated our understanding of their role in tissue homeostasis and disease pathogenesis in many organs. Compared to other organs, the lymphatic system in the liver is understudied despite its obvious importance for hepatic physiology and pathophysiology. In this review, we describe fundamental aspects of the hepatic lymphatic system and its role in a range of liver-related pathological conditions such as portal hypertension, ascites formation, malignant tumours, liver transplantation, congenital liver diseases, non-alcoholic fatty liver disease, and hepatic encephalopathy. The article concludes with a discussion regarding the modulation of lymphangiogenesis as a potential therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
42
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
McCright J, Naiknavare R, Yarmovsky J, Maisel K. Targeting Lymphatics for Nanoparticle Drug Delivery. Front Pharmacol 2022; 13:887402. [PMID: 35721179 PMCID: PMC9203826 DOI: 10.3389/fphar.2022.887402] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022] Open
Abstract
The lymphatics transport material from peripheral tissues to lymph nodes, where immune responses are formed, before being transported into systemic circulation. With key roles in transport and fluid homeostasis, lymphatic dysregulation is linked to diseases, including lymphedema. Fluid within the interstitium passes into initial lymphatic vessels where a valve system prevents fluid backflow. Additionally, lymphatic endothelial cells produce key chemokines, such as CCL21, that direct the migration of dendritic cells and lymphocytes. As a result, lymphatics are an attractive delivery route for transporting immune modulatory treatments to lymph nodes where immunotherapies are potentiated in addition to being an alternative method of reaching systemic circulation. In this review, we discuss the physiology of lymphatic vessels and mechanisms used in the transport of materials from peripheral tissues to lymph nodes. We then summarize nanomaterial-based strategies to take advantage of lymphatic transport functions for delivering therapeutics to lymph nodes or systemic circulation. We also describe opportunities for targeting lymphatic endothelial cells to modulate transport and immune functions.
Collapse
Affiliation(s)
| | | | | | - Katharina Maisel
- Department of Bioengineering, University of Maryland College Park, College Park, MD, United States
| |
Collapse
|
44
|
Kim D, Kim M, Kim TW, Choe YH, Noh HS, Jeon HM, Kim H, Lee Y, Hur G, Lee KM, Shin K, Lee SI, Lee SH. Lymph node fibroblastic reticular cells regulate differentiation and function of CD4 T cells via CD25. J Exp Med 2022; 219:e20200795. [PMID: 35315876 PMCID: PMC8943836 DOI: 10.1084/jem.20200795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 03/31/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Lymph node fibroblastic reticular cells (LN-FRCs) provide functional structure to LNs and play important roles in interactions between T cells and antigen-presenting cells. However, the direct impact of LN-FRCs on naive CD4+ T cell differentiation has not been explored. Here, we show that T cell zone FRCs of LNs (LN-TRCs) express CD25, the α chain of the IL-2 receptor heterotrimer. Moreover, LN-TRCs trans-present IL-2 to naive CD4+ T cells through CD25, thereby facilitating early IL-2-mediated signaling. CD25-deficient LN-TRCs exhibit attenuated STAT5 phosphorylation in naive CD4+ T cells during T cell differentiation, promoting T helper 17 (Th17) cell differentiation and Th17 response-related gene expression. In experimental autoimmune disease models, disease severity was elevated in mice lacking CD25 in LN-TRCs. Therefore, our results suggest that CD25 expression on LN-TRCs regulates CD4+ T cell differentiation by modulating early IL-2 signaling of neighboring, naive CD4+ T cells, influencing the overall properties of immune responses.
Collapse
Affiliation(s)
- Dongeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Biomedical Science and Engineering Interdisciplinary Program, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- VA Palo Alto Health Care System, Stanford University School of Medicine, Stanford, CA
| | - Mingyo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Tae Woo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yong-ho Choe
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Hae Sook Noh
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Hyun Min Jeon
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - HyunSeok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Youngeun Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gayeong Hur
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- R&D Division, GenoFocus Inc., Daejeon, South Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Kihyuk Shin
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, South Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Sang-il Lee
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Biomedical Science and Engineering Interdisciplinary Program, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
45
|
Hypoxia orchestrates the lymphovascular–immune ensemble in cancer. Trends Cancer 2022; 8:771-784. [DOI: 10.1016/j.trecan.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022]
|
46
|
Li T, Liu T, Zhao Z, Xu X, Zhan S, Zhou S, Jiang N, Zhu W, Sun R, Wei F, Feng B, Guo H, Yang R. The Lymph Node Microenvironment May Invigorate Cancer Cells With Enhanced Metastatic Capacities. Front Oncol 2022; 12:816506. [PMID: 35295999 PMCID: PMC8918682 DOI: 10.3389/fonc.2022.816506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer metastasis, a typical malignant biological behavior involving the distant migration of tumor cells from the primary site to other organs, contributed majorly to cancer-related deaths of patients. Although constant efforts have been paid by researchers to elucidate the mechanisms of cancer metastasis, we are still far away from the definite answer. Recently, emerging evidence demonstrated that cancer metastasis is a continuous coevolutionary process mediated by the interactions between tumor cells and the host organ microenvironment, and epigenetic reprogramming of metastatic cancer cells may confer them with stronger metastatic capacities. The lymph node served as the first metastatic niche for many types of cancer, and the appearance of lymph node metastasis predicted poor prognosis. Importantly, multiple immune cells and stromal cells station and linger in the lymph nodes, which constitutes the complexity of the lymph node microenvironment. The active cross talk between cancer cells and immune cells could happen unceasingly within the metastatic environment of lymph nodes. Of note, diverse immune cells have been found to participate in the formation of malignant properties of tumor, including stemness and immune escape. Based on these available evidence and data, we hypothesize that the metastatic microenvironment of lymph nodes could drive cancer cells to metastasize to further organs through epigenetic mechanisms.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyan Xu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shoubin Zhan
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengkai Zhou
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ning Jiang
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Wenjie Zhu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Sun
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fayun Wei
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baofu Feng
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong Yang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
47
|
Kerdidani D, Aerakis E, Verrou KM, Angelidis I, Douka K, Maniou MA, Stamoulis P, Goudevenou K, Prados A, Tzaferis C, Ntafis V, Vamvakaris I, Kaniaris E, Vachlas K, Sepsas E, Koutsopoulos A, Potaris K, Tsoumakidou M. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J Exp Med 2022; 219:212965. [PMID: 35029648 PMCID: PMC8764966 DOI: 10.1084/jem.20210815] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
A key unknown of the functional space in tumor immunity is whether CD4 T cells depend on intratumoral MHCII cancer antigen recognition. MHCII-expressing, antigen-presenting cancer-associated fibroblasts (apCAFs) have been found in breast and pancreatic tumors and are considered to be immunosuppressive. This analysis shows that antigen-presenting fibroblasts are frequent in human lung non-small cell carcinomas, where they seem to actively promote rather than suppress MHCII immunity. Lung apCAFs directly activated the TCRs of effector CD4 T cells and at the same time produced C1q, which acted on T cell C1qbp to rescue them from apoptosis. Fibroblast-specific MHCII or C1q deletion impaired CD4 T cell immunity and accelerated tumor growth, while inducing C1qbp in adoptively transferred CD4 T cells expanded their numbers and reduced tumors. Collectively, we have characterized in the lungs a subset of antigen-presenting fibroblasts with tumor-suppressive properties and propose that cancer immunotherapies might be strongly dependent on in situ MHCII antigen presentation.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Emmanouil Aerakis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Kleio-Maria Verrou
- Greek Research Infrastructure for Personalized Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias Angelidis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Katerina Douka
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Maria-Anna Maniou
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Petros Stamoulis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Katerina Goudevenou
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Alejandro Prados
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | - Christos Tzaferis
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece.,Greek Research Infrastructure for Personalized Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasileios Ntafis
- Animal House Facility, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece
| | | | - Evangelos Kaniaris
- Department of Respiratory Medicine, Sotiria Chest Hospital, Athens, Greece
| | | | - Evangelos Sepsas
- Department of Thoracic Surgery, Sotiria Chest Hospital, Athens, Greece
| | | | | | - Maria Tsoumakidou
- Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," Vari, Greece.,Greek Research Infrastructure for Personalized Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
48
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
49
|
Fu H, Lu J, Zhang X, Wang B, Sun Y, Lei Y, Shen F, Kassegne K, Han ET, Cheng Y. Identification of the Recombinant Plasmodium vivax Surface-Related Antigen as a Possible Immune Evasion Factor Against Human Splenic Fibroblasts by Targeting ITGB1. Front Cell Dev Biol 2021; 9:764109. [PMID: 34938733 PMCID: PMC8685506 DOI: 10.3389/fcell.2021.764109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium vivax-infected erythrocytes can enter the spleen and evade spleen clearance to establish chronic infections. However, the mechanism underlying P. vivax immune evasion in the spleen is still unclear. Human splenic fibroblasts (HSF), also known as barrier cells, play an essential role in the immune function of spleen. A hypothesis holds that P. vivax-infected erythrocytes induce spleen structural remodeling to form barrier cells. Subsequently, these infected erythrocytes can selectively cytoadhere to these barrier cells to escape spleen clearance. In this work, we found that P. vivax surface-related antigen (PvSRA; PlasmoDB ID: PVX_084970), an exported protein on infected erythrocyte membrane, could bind with HSF. Considering the above hypothesis, we speculated that PvSRA might be involved in P. vivax immune evasion by changing HSF cell performance. To investigate this speculation, RNA sequencing, protein microarray, and bioinformatics analysis technologies were applied, and in vitro validations were further performed. The results showed that the recombinant PvSRA attracted HSF migration and interacted with HSF by targeting integrin β1 (ITGB1) along with changes in HSF cell performance, such as focal adhesion, extracellular matrix, actin cytoskeleton, and cell cycle. This study indicated that PvSRA might indeed participate in the immune evasion of P. vivax in the spleen by changing HSF function through PvSRA-ITGB1 axis.
Collapse
Affiliation(s)
- Haitian Fu
- Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jiachen Lu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xinxin Zhang
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Bo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yifan Sun
- Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yao Lei
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Feihu Shen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kokouvi Kassegne
- Chinese Center for Tropical Diseases Research, School of Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
50
|
Onder L, Cheng HW, Ludewig B. Visualization and functional characterization of lymphoid organ fibroblasts. Immunol Rev 2021; 306:108-122. [PMID: 34866192 PMCID: PMC9300201 DOI: 10.1111/imr.13051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Fibroblastic reticular cells (FRCs) are specialized stromal cells of lymphoid organs that generate the structural foundation of the tissue and actively interact with immune cells. Distinct FRC subsets position lymphocytes and myeloid cells in specialized niches where they present processed or native antigen and provide essential growth factors and cytokines for immune cell activation and differentiation. Niche‐specific functions of FRC subpopulations have been defined using genetic targeting, high‐dimensional transcriptomic analyses, and advanced imaging methods. Here, we review recent findings on FRC‐immune cell interaction and the elaboration of FRC development and differentiation. We discuss how imaging approaches have not only shaped our understanding of FRC biology, but have critically advanced the niche concept of immune cell maintenance and control of immune reactivity.
Collapse
Affiliation(s)
- Lucas Onder
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|