1
|
Yan R, Jia D, Qi Y, Wang Q, Chen S. Intestinal tissue-resident memory T cells: Characteristics, functions under physiological and pathological conditions and spatial specificity. J Adv Res 2025:S2090-1232(25)00181-X. [PMID: 40096943 DOI: 10.1016/j.jare.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Tissue-resident memory T (TRM) cells are a distinct subset of memory T cells that persist in non-lymphoid tissues, providing localized and rapid immune responses to infection and malignancy. Unlike circulating memory T cells, TRM cells have unique homing and functional characteristics that are shaped by the tissue microenvironment. In the gut, TRM cells play a pivotal role in maintaining mucosal immunity, exhibiting phenotypic and functional heterogeneity in different intestinal compartments and in response to aging and pathological conditions. AIM OF REVIEW This review aims to systematically examine the definition, spatial heterogeneity and functional roles of intestinal TRM (iTRM) cells. It highlights their contributions to physiological immunity, their involvement in pathological processes such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), and their age-related dynamics. The review also explores emerging therapeutic implications of modulating iTRM cells for intestinal health and disease management. KEY SCIENTIFIC CONCEPTS OF REVIEW: iTRM cells are defined by surface markers like CD69 and CD103, transcriptional regulators such as Hobit, Runx3, Blimp-1, as well as cytokine signals including TGF-β, IFN-β, IL-12. They exhibit spatial and functional heterogeneity across intestinal layers (epithelium versus lamina propria) and regions (small intestine versus colon). In IBD, iTRM cells play a dual role, contributing to both inflammation and tissue repair, whereas in CRC, specific subsets of iTRM cells (e.g., CD8+ CD103+ CD39+) are associated with enhanced antitumor immunity. Aging impacts iTRM functionality, with shifts in the CD4+/CD8+ ratio and reduced cytokine production in elderly individuals. Insights into the metabolic, transcriptional, and environmental regulation of iTRM cells provide avenues for targeted therapies in intestinal diseases, cancer immunotherapy, and interventions to delay intestinal aging.
Collapse
Affiliation(s)
- Ruochen Yan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yadong Qi
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qiwen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province 310001, China.
| |
Collapse
|
2
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Chen X, Chen H. Proteomics and transcriptomics combined reveal specific immunological markers in autoimmune thyroid disease. Front Immunol 2025; 15:1531402. [PMID: 39872521 PMCID: PMC11769792 DOI: 10.3389/fimmu.2024.1531402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Objective The pathogenesis of AITD remains unclear to date. This study employs a combination of proteomics and transcriptomics analysis to identify and validate specific immune response markers in patients with hyperthyroidism and hypothyroidism, thereby providing a scientific basis for the clinical diagnosis and treatment of AITD. Methods By collecting serum and whole blood tissue samples from patients with hyperthyroidism, hypothyroidism, and healthy controls, this study utilizes a combination of transcriptomics and proteomics to analyze changes in immune-related signaling molecules in patients. Specific biomarkers were identified, and the ELISA method was employed to determine the expression levels of these clinical markers and their correlation with clinical features of the patients, ultimately establishing a predictive model. Results Transcriptomic and proteomic analyses were conducted to identify differentially expressed genes and proteins in patients with hyperthyroidism and hypothyroidism compared to healthy controls. Enrichment analysis revealed that these differentially expressed genes and proteins are primarily associated with immune function, antigen-antibody binding, and alterations in immune cells. Through the combined analysis of transcriptomics and proteomics, key genes IGHG3, ISG15, and ZNF683 were identified. ELISA results from clinical patient serum samples indicated that the levels of IGHG3 were significantly higher in both the hyperthyroid and hypothyroid groups compared to the control group (P<0.05). Additionally, the serum levels of ISG15 in the hyperthyroid group were greater than those in both the control and hypothyroid groups (P<0.05), while the serum levels of ZNF683 in the hypothyroid group exceeded those in the control and hyperthyroid groups (P<0.05). Furthermore, all three biomarkers correlated with the thyroid function of the patients. Prediction models for hyperthyroid and hypothyroid patients were constructed using IGHG3, ISG15, and ZNF683, demonstrating good performance metrics and decision effect. Conclusion In patients with hyperthyroidism and hypothyroidism, significant changes primarily occur in immune function and immune cells when compared to healthy individuals. Key signaling molecules were identified: ISG15 for hyperthyroidism, ZNF683 for hypothyroidism, and IGHG3 common to both conditions. These findings provide new biomarkers for the diagnosis and monitoring of clinical patients, thereby offering a scientific basis for research on AITD and personalized treatment approaches.
Collapse
Affiliation(s)
- Xia Chen
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hui Chen
- Department of Endocrinology and Metabolism, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Guo H, Guo L, Wang B, Jiang X, Wu Z, Mo X, Sun Y, Zhang Y, Wang Z, Kong J, Yan C, Huang X. Distinct Immune Homeostasis Remodeling Patterns after HLA-Matched and Haploidentical Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400544. [PMID: 39225336 PMCID: PMC11497014 DOI: 10.1002/advs.202400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/21/2024] [Indexed: 09/04/2024]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a widely used treatment for a variety of hematopoietic disorders, and also provides a valuable platform for investigating the development of donor-derived immune cells in recipients post-HSCT. The immune system remodels from the donor to the recipient during allo-HSCT. However, little is known about the cell profile alterations as donor homeostasis rebalances to recipient homeostasis following HSCT. Here, multi-omics technology is applied at both the single cell and bulk sample levels, as well as spectrum flow cytometry and fluorescent transgenic mouse models, to dissect the dynamics of the rebalanced homeostatic immune system in recipients after allo-HSCT. The data reveal that all immune subpopulations observed in donors are successfully restored in recipients, though with varying levels of abundance. The remodeling of immune homeostasis exhibits different patterns in HLA-matched and haploidentical HSCT, highlighting distinct biases in T cell reconstitution from the central and peripheral pathways. Furthermore, ZNF683 is critical for maintaining the persistence and quiescence of CD8 T-cell in haploidentical HSCT. The research can serve as a foundation for developing novel strategies to induce immune tolerance.
Collapse
Affiliation(s)
- Huidong Guo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Liping Guo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Bixia Wang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Xinya Jiang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic MalignanciesChinese Academy of Medical SciencesBeijing2019RU029China
| | - Zhigui Wu
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Xiao‐Dong Mo
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Yu‐Qian Sun
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Yuan‐Yuan Zhang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Zhi‐Dong Wang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Jun Kong
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Chen‐Hua Yan
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
| | - Xiao‐Jun Huang
- National Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationPeking University People's HospitalPeking University Institute of HematologyPeking UniversityBeijing100044China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic MalignanciesChinese Academy of Medical SciencesBeijing2019RU029China
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
5
|
de Jong MJM, Depuydt MAC, Schaftenaar FH, Liu K, Maters D, Wezel A, Smeets HJ, Kuiper J, Bot I, van Gisbergen K, Slütter B. Resident Memory T Cells in the Atherosclerotic Lesion Associate With Reduced Macrophage Content and Increased Lesion Stability. Arterioscler Thromb Vasc Biol 2024; 44:1318-1329. [PMID: 38634281 DOI: 10.1161/atvbaha.123.320511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Tissue resident memory T (TRM) cells are a T-cell subset that resides at the site of prior antigen recognition to protect the body against reoccurring encounters. Besides their protective function, TRM cells have also been implicated in inflammatory disorders. TRM cells are characterized by the expression of CD69 and transcription factors Hobit (homolog of Blimp-1 [B lymphocyte-induced maturation protein 1] in T cells) and Blimp-1. As the majority of T cells in the arterial intima expresses CD69, TRM cells may contribute to the pathogenesis of atherosclerosis as well. Here, we aimed to assess the presence and potential role of TRM cells in atherosclerosis. METHODS To identify TRM cells in human atherosclerotic lesions, a single-cell RNA-sequencing data set was interrogated, and T-cell phenotypes were compared with that of integrated predefined TRM cells. The presence and phenotype of TRM in atherosclerotic lesions was corroborated using a mouse model that enabled tracking of Hobit-expressing TRM cells. To explore the function of TRM cells during atherogenesis, RAG1-/- (recombination activating gene 1 deficient) LDLr-/- (low-density lipoprotein receptor knockout) mice received a bone marrow transplant from HobitKO/CREBlimp-1flox/flox mice, which exhibit abrogated TRM cell formation, whereafter the mice were fed a Western-type diet for 10 weeks. RESULTS Human atherosclerotic lesions contained T cells that exhibited a TRM cell-associated gene signature. Moreover, a fraction of these T cells clustered together with predefined TRM cells upon integration. The presence of Hobit-expressing TRM cells in the atherosclerotic lesion was confirmed in mice. These lesion-derived TRM cells were characterized by the expression of CD69 and CD49α. Moreover, we demonstrated that this small T-cell subset significantly affects lesion composition, by reducing the amount of intralesional macrophages and increasing collagen content. CONCLUSIONS TRM cells, characterized by the expression of CD69 and CD49α, constitute a minor population in atherosclerotic lesions and are associated with increased lesion stability in a Hobit and Blimp-1 knockout mouse model.
Collapse
MESH Headings
- Animals
- Atherosclerosis/pathology
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Humans
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Macrophages/metabolism
- Macrophages/immunology
- Macrophages/pathology
- Disease Models, Animal
- Immunologic Memory
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Plaque, Atherosclerotic
- Mice, Inbred C57BL
- Mice
- Male
- Mice, Knockout
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Phenotype
- Female
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Aortic Diseases/pathology
- Aortic Diseases/immunology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
Collapse
Affiliation(s)
- Maaike J M de Jong
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Marie A C Depuydt
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Frank H Schaftenaar
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Kun Liu
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - David Maters
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center, The Hague, the Netherlands (A.W., H.J.S.)
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center, The Hague, the Netherlands (A.W., H.J.S.)
| | - Johan Kuiper
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Ilze Bot
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Klaas van Gisbergen
- van Gisbergen Lab, Tissue Immunity, Champalimaud Research, Lisbon, Portugal (K.v.G.)
| | - Bram Slütter
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| |
Collapse
|
6
|
Park SL, Christo SN, Wells AC, Gandolfo LC, Zaid A, Alexandre YO, Burn TN, Schröder J, Collins N, Han SJ, Guillaume SM, Evrard M, Castellucci C, Davies B, Osman M, Obers A, McDonald KM, Wang H, Mueller SN, Kannourakis G, Berzins SP, Mielke LA, Carbone FR, Kallies A, Speed TP, Belkaid Y, Mackay LK. Divergent molecular networks program functionally distinct CD8 + skin-resident memory T cells. Science 2023; 382:1073-1079. [PMID: 38033053 DOI: 10.1126/science.adi8885] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Skin-resident CD8+ T cells include distinct interferon-γ-producing [tissue-resident memory T type 1 (TRM1)] and interleukin-17 (IL-17)-producing (TRM17) subsets that differentially contribute to immune responses. However, whether these populations use common mechanisms to establish tissue residence is unknown. In this work, we show that TRM1 and TRM17 cells navigate divergent trajectories to acquire tissue residency in the skin. TRM1 cells depend on a T-bet-Hobit-IL-15 axis, whereas TRM17 cells develop independently of these factors. Instead, c-Maf commands a tissue-resident program in TRM17 cells parallel to that induced by Hobit in TRM1 cells, with an ICOS-c-Maf-IL-7 axis pivotal to TRM17 cell commitment. Accordingly, by targeting this pathway, skin TRM17 cells can be ablated without compromising their TRM1 counterparts. Thus, skin-resident T cells rely on distinct molecular circuitries, which can be exploited to strategically modulate local immunity.
Collapse
Affiliation(s)
- Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexandria C Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Luke C Gandolfo
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Ali Zaid
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas N Burn
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jan Schröder
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Stéphane M Guillaume
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Clara Castellucci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brooke Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maleika Osman
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Keely M McDonald
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - George Kannourakis
- Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Francis R Carbone
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Terence P Speed
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Wu Q, Bai S, Su M, Zhang Y, Chen X, Yue T, Xu L, Wang L, Xie D, Li S, Li X, Fu S, Wang L, Tian C, Pan J, Huang Y, Cai Y, Wang Y, Hu F, Li F, Zhang H, Bai L. HIVEP3 inhibits fate decision of CD8+ invariant NKT cells after positive selection. J Leukoc Biol 2023; 114:335-346. [PMID: 37479674 DOI: 10.1093/jleuko/qiad082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
CD8+ invariant natural killer T (iNKT) cells are functionally different from other iNKT cells and are enriched in human but not in mouse. To date, their developmental pathway and molecular basis for fate decision remain unclear. Here, we report enrichment of CD8+ iNKT cells in neonatal mice due to their more rapid maturation kinetics than CD8- iNKT cells. Along developmental trajectories, CD8+ and CD8- iNKT cells separate at stage 0, following stage 0 double-positive iNKT cells, and differ in HIVEP3 expression. HIVEP3 is lowly expressed in stage 0 CD8+ iNKT cells and negatively controls their development, whereas it is highly expressed in stage 0 CD8- iNKT cells and positively controls their development. Despite no effect on IFN-γ, HIVEP3 inhibits granzyme B but promotes interleukin-4 production in CD8+ iNKT cells. Together, we reveal that, as a negative regulator for CD8+ iNKT fate decision, low expression of HIVEP3 in stage 0 CD8+ iNKT cells favors their development and T helper 1-biased cytokine responses as well as high cytotoxicity.
Collapse
Affiliation(s)
- Qielan Wu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Shiyu Bai
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Miya Su
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Yuwei Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Xuran Chen
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Ting Yue
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Linfeng Xu
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Pudong Disctrict, Shanghai 200127, China
| | - Di Xie
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Shuhang Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Xiang Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Sicheng Fu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Lili Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Chenxi Tian
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Jun Pan
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Yuanyuan Huang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Yuting Cai
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Yu Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Fang Hu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Fengyin Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Huimin Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| | - Li Bai
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, 4090 Susong Road, Shushan District, Hefei 230601, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, No. 443 Huangshan Street, Shushan District, Hefei 230027, China
| |
Collapse
|
8
|
Soto-Heredero G, Gómez de Las Heras MM, Escrig-Larena JI, Mittelbrunn M. Extremely Differentiated T Cell Subsets Contribute to Tissue Deterioration During Aging. Annu Rev Immunol 2023; 41:181-205. [PMID: 37126417 DOI: 10.1146/annurev-immunol-101721-064501] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.
Collapse
Affiliation(s)
- Gonzalo Soto-Heredero
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - J Ignacio Escrig-Larena
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
| | - María Mittelbrunn
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
9
|
Kitakaze M, Uemura M, Hara T, Chijimatsu R, Motooka D, Hirai T, Konno M, Okuzaki D, Sekido Y, Hata T, Ogino T, Takahashi H, Miyoshi N, Ofusa K, Mizushima T, Eguchi H, Doki Y, Ishii H. Cancer-specific tissue-resident memory T-cells express ZNF683 in colorectal cancer. Br J Cancer 2023; 128:1828-1837. [PMID: 36869093 PMCID: PMC10147592 DOI: 10.1038/s41416-023-02202-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Tissue-resident memory T (Trm) cells are associated with cytotoxicity not only in viral infection and autoimmune disease pathologies but also in many cancers. Tumour-infiltrating CD103+ Trm cells predominantly comprise CD8 T cells that express cytotoxic activation and immune checkpoint molecules called exhausted markers. This study aimed to investigate the role of Trm in colorectal cancer (CRC) and characterise the cancer-specific Trm. METHODS Immunochemical staining with anti-CD8 and anti-CD103 antibodies for resected CRC tissues was used to identify the tumour-infiltrating Trm cells. The Kaplan-Meier estimator was used to evaluate the prognostic significance. Cells immune to CRC were targeted for single-cell RNA-seq analysis to characterise cancer-specific Trm cells in CRC. RESULTS The number of CD103+/CD8+ tumour-infiltrating lymphocytes (TILs) was a favourable prognostic and predictive factor of the overall survival and recurrence-free survival in patients with CRC. Single-cell RNA-seq analysis of 17,257 CRC-infiltrating immune cells revealed a more increased zinc finger protein 683 (ZNF683) expression in cancer Trm cells than in noncancer Trm cells and in high-infiltrating Trm cells than low-infiltrating Trm in cancer, with an upregulated T-cell receptor (TCR)- and interferon-γ (IFN-γ) signalling-related gene expression in ZNF683+ Trm cells. CONCLUSIONS The number of CD103+/CD8+ TILs is a prognostic predictive factor in CRC. In addition, we identified the ZNF683 expression as one of the candidate markers of cancer-specific Trm cells. IFN-γ and TCR signalling and ZNF683 expression are involved in Trm cell activation in tumours and are promising targets for cancer immunity regulation.
Collapse
Affiliation(s)
- Masatoshi Kitakaze
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Ryota Chijimatsu
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshiro Hirai
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masamitsu Konno
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, 135-0064, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuki Sekido
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Prophoenix Division, Food and Life-Science Laboratory, Idea Consultants, Inc., Osaka-city, Osaka, 559-8519, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Taggenbrock RLRE, van Gisbergen KPJM. ILC1: Development, maturation, and transcriptional regulation. Eur J Immunol 2023; 53:e2149435. [PMID: 36408791 PMCID: PMC10099236 DOI: 10.1002/eji.202149435] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Type 1 Innate Lymphoid cells (ILC1s) are tissue-resident cells that partake in the regulation of inflammation and homeostasis. A major feature of ILC1s is their ability to rapidly respond after infections. The effector repertoire of ILC1s includes the pro-inflammatory cytokines IFN-γ and TNF-α and cytotoxic mediators such as granzymes, which enable ILC1s to establish immune responses and to directly kill target cells. Recent advances in the characterization of ILC1s have considerably furthered our understanding of ILC1 development and maintenance in tissues. In particular, it has become clear how ILC1s operate independently from conventional natural killer cells, with which they share many characteristics. In this review, we discuss recent developments with regards to the differentiation, polarization, and effector maturation of ILC1s. These processes may underlie the observed heterogeneity in ILC1 populations within and between different tissues. Next, we highlight transcriptional programs that control each of the separate steps in the differentiation of ILC1s. These transcriptional programs are shared with other tissue-resident type-1 lymphocytes, such as tissue-resident memory T cells (TRM ) and invariant natural killer T cells (iNKT), highlighting that ILC1s utilize networks of transcriptional regulation that are conserved between lymphocyte lineages to respond effectively to tissue-invading pathogens.
Collapse
Affiliation(s)
- Renske L R E Taggenbrock
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
von Werdt D, Gungor B, Barreto de Albuquerque J, Gruber T, Zysset D, Kwong Chung CKC, Corrêa-Ferreira A, Berchtold R, Page N, Schenk M, Kehrl JH, Merkler D, Imhof BA, Stein JV, Abe J, Turchinovich G, Finke D, Hayday AC, Corazza N, Mueller C. Regulator of G-protein signaling 1 critically supports CD8 + T RM cell-mediated intestinal immunity. Front Immunol 2023; 14:1085895. [PMID: 37153600 PMCID: PMC10158727 DOI: 10.3389/fimmu.2023.1085895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 05/09/2023] Open
Abstract
Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens.
Collapse
Affiliation(s)
- Diego von Werdt
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Bilgi Gungor
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Thomas Gruber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Daniel Zysset
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Cheong K. C. Kwong Chung
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Gastrointestinal Health, Immunology, Nestlé Research, Lausanne, Switzerland
| | - Antonia Corrêa-Ferreira
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Regina Berchtold
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Page
- Department of Pathology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Mirjam Schenk
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - John H. Kehrl
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Doron Merkler
- Department of Pathology, Division of Clinical Pathology, University & University Hospitals of Geneva, Geneva, Switzerland
| | - Beat A. Imhof
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
| | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Gleb Turchinovich
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Finke
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Nadia Corazza
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- *Correspondence: Christoph Mueller, ; Nadia Corazza,
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Department of Biomedicine, and University Children’s Hospital Basel, University of Basel, Basel, Switzerland
- *Correspondence: Christoph Mueller, ; Nadia Corazza,
| |
Collapse
|
12
|
Cheng L, Becattini S. Intestinal CD8 + tissue-resident memory T cells: From generation to function. Eur J Immunol 2022; 52:1547-1560. [PMID: 35985020 PMCID: PMC9804592 DOI: 10.1002/eji.202149759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 08/10/2022] [Indexed: 01/05/2023]
Abstract
Tissue-resident memory T cells (Trm), and particularly the CD8+ subset, have been shown to play a pivotal role in protection against infections and tumors. Studies in animal models and human tissues have highlighted that, while a core functional program is shared by Trm at all anatomical sites, distinct tissues imprint unique features through specific molecular cues. The intestinal tissue is often the target of pathogens for local proliferation and penetration into the host systemic circulation, as well as a prominent site of tumorigenesis. Therefore, promoting the formation of Trm at this location is an appealing therapeutic option. The various segments composing the gastrointestinal tract present distinctive histological and functional characteristics, which may reflect on the imprinting of unique functional features in the respective Trm populations. What these features are, and whether they can effectively be harnessed to promote local and systemic immunity, is still under investigation. Here, we review how Trm are generated and maintained in distinct intestinal niches, analyzing the required molecular signals and the models utilized to uncover them. We also discuss evidence for a protective role of Trm against infectious agents and tumors. Finally, we integrate the knowledge obtained from animal models with that gathered from human studies.
Collapse
Affiliation(s)
- Liqing Cheng
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Geneva Centre for Inflammation Research, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Simone Becattini
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Geneva Centre for Inflammation Research, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
13
|
Primary Infection by E. multilocularis Induces Distinct Patterns of Cross Talk between Hepatic Natural Killer T Cells and Regulatory T Cells in Mice. Infect Immun 2022; 90:e0017422. [PMID: 35862712 PMCID: PMC9387288 DOI: 10.1128/iai.00174-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The larval stage of the helminthic cestode Echinococcus multilocularis can inflict tumor-like hepatic lesions that cause the parasitic disease alveolar echinococcosis in humans, with high mortality in untreated patients. Opportunistic properties of the disease have been established based on the increased incidence in immunocompromised patients and mouse models, indicating that an appropriate adaptive immune response is required for the control of the disease. However, cellular interactions and the kinetics of the local hepatic immune responses during the different stages of infection with E. multilocularis remain unknown. In a mouse model of oral infection that mimics the normal infection route in human patients, the networks of the hepatic immune response were assessed using single-cell RNA sequencing (scRNA-seq) of isolated hepatic CD3+ T cells at different infection stages. We observed an early and sustained significant increase in natural killer T (NKT) cells and regulatory T cells (Tregs). Early tumor necrosis factor (TNF)- and integrin-dependent interactions between these two cell types promote the formation of hepatic lesions. At late time points, downregulation of programmed cell death protein 1 (PD-1) and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1)-dependent signaling suppress the resolution of parasite-induced pathology. The obtained data provide fresh insight into the adaptive immune responses and local regulatory pathways at different infection stages of E. multilocularis in mice.
Collapse
|
14
|
Wang X, Lei L, Su Y, Liu J, Yuan N, Gao Y, Yang X, Sun C, Ning B, Zhang B. Pbrm1 intrinsically controls the development and effector differentiation of iNKT cells. J Cell Mol Med 2022; 26:4268-4276. [PMID: 35770325 PMCID: PMC9344823 DOI: 10.1111/jcmm.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Under static condition, the pool size of peripheral invariant natural killer T (iNKT) cells is determined by their homeostatic proliferation, survival and thymic input. However, the underlying mechanism is not fully understood. In the present study, we found that the percentage and number of iNKT cells were significantly reduced in the spleen, but not in the thymus of mice with deletion of polybromo‐1 (Pbrm1) compared to wild type (WT) mice. Pbrm1 deletion did not affect iNKT cell proliferation and survival, instead significantly impaired their development from stage 1 to stage 2. Importantly, loss of Pbrm1 led to a dysfunction of RORγt expression and iNKT17 cell differentiation, but not iNKT1 and iNKT2 proportion. Collectively, our study reveals a novel mechanism of Pbrm1 controlling the peripheral size of iNKT cells through regulating their development and differentiation.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Ning Yuan
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Yang Gao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Bin Ning
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Parga-Vidal L, Taggenbrock RLRE, Beumer-Chuwonpad A, Aglmous H, Kragten NAM, Behr FM, Bovens AA, van Lier RAW, Stark R, van Gisbergen KPJM. Hobit and Blimp-1 regulate T RM abundance after LCMV infection by suppressing tissue exit pathways of T RM precursors. Eur J Immunol 2022; 52:1095-1111. [PMID: 35389518 PMCID: PMC9545210 DOI: 10.1002/eji.202149665] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/17/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2022]
Abstract
Tissue‐resident memory T cells (Trm) are retained in peripheral tissues after infection for enhanced protection against secondary encounter with the same pathogen. We have previously shown that the transcription factor Hobit and its homolog Blimp‐1 drive Trm development after viral infection, but how and when these transcription factors mediate Trm formation remains poorly understood. In particular, the major impact of Blimp‐1 in regulating several aspects of effector T‐cell differentiation impairs study of its specific role in Trm development. Here, we used the restricted expression of Hobit in the Trm lineage to develop mice with a conditional deletion of Blimp‐1 in Trm, allowing us to specifically investigate the role of both transcription factors in Trm differentiation. We found that Hobit and Blimp‐1 were required for the upregulation of CD69 and suppression of CCR7 and S1PR1 on virus‐specific Trm precursors after LCMV infection, underlining a role in their retention within tissues. The early impact of Hobit and Blimp‐1 favored Trm formation and prevented the development of circulating memory T cells. Thus, our findings highlight a role of Hobit and Blimp‐1 at the branching point of circulating and resident memory lineages by suppressing tissue egress of Trm precursors early during infection.
Collapse
Affiliation(s)
- Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Renske L R E Taggenbrock
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ammarina Beumer-Chuwonpad
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hajar Aglmous
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Astrid A Bovens
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rene A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Lu Y, Zhang MX, Pang W, Song TZ, Zheng HY, Tian RR, Zheng YT. Transcription Factor ZNF683 Inhibits SIV/HIV Replication through Regulating IFNγ Secretion of CD8+ T Cells. Viruses 2022; 14:v14040719. [PMID: 35458449 PMCID: PMC9030044 DOI: 10.3390/v14040719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary microbial invasion frequently occurs during AIDS progression in HIV patients. Inflammatory cytokines and other immunoregulatory factors play important roles in this process. We previously established an AIDS model of SIVmac239 infection in northern pig-tailed macaques (NPMs), which were divided into rapid progressor (RP) and slow progressor (SP) groups according to their AIDS progression rates. In this study, we performed 16S rDNA and transcriptome sequencing of the lungs to reveal the molecular mechanism underlying the difference in progression rate between the RPs and SPs. We found that microbial invasion in the RP group was distinct from that in the SP group, showing marker flora of the Family XI, Enterococcus and Ezakiella, and more Lactobacilli. Through pulmonary transcriptome analysis, we found that the transcription factor ZNF683 had higher expression in the SP group than in the RP group. In subsequent functional experiments, we found that ZNF683 increased the proliferation and IFNγ secretion ability of CD8+ T cells, thus decreasing SIV or HIV replication, which may be related to AIDS progression in SIVmac239-infected NPMs. This study helps elucidate the various complexities of disease progression in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ming-Xu Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
| | - Tian-Zhang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
| | - Ren-Rong Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (Y.L.); (M.-X.Z.); (W.P.); (T.-Z.S.); (H.-Y.Z.); (R.-R.T.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Correspondence: ; Tel.: +86-871-65295684
| |
Collapse
|
17
|
Tian Q, Zhang Z, Tan L, Yang F, Xu Y, Guo Y, Wei D, Wu C, Cao P, Ji J, Wang W, Xie X, Zhao Y. Skin and heart allograft rejection solely by long-lived alloreactive T RM cells in skin of severe combined immunodeficient mice. SCIENCE ADVANCES 2022; 8:eabk0270. [PMID: 35080985 PMCID: PMC8791614 DOI: 10.1126/sciadv.abk0270] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Whether induced tissue-resident memory T (TRM) cells in nonlymphoid organs alone can mediate allograft rejection is unknown. By grafting alloskin or heart into severe combined immunodeficient or Rag2KO mice in which a piece of induced CD4+ and/or CD8+ TRM cell-containing MHC-matched or syngeneic skin was transplanted in advance, we addressed this issue. The induced CD4+ TRM cells in the skin alone acutely rejected alloskin or heart grafts. RNA-seq analysis showed that induced CD4+ TRM cells in skin favorably differentiated into TH17-like polarization during the secondary immune response. Inhibition of the key TH17 signaling molecule RORγt attenuated TRM cell-mediated graft rejection. Thus, we offer a unique mouse model to specifically study TRM cell-mediated allograft rejection without the involvement of lymphocytes in lymphoid organs and tissues. Our study provides strong evidence supporting the hypothesis that long-lived alloreactive TRM cells resident in other organs/tissues substantially contribute to organ allograft rejection.
Collapse
Affiliation(s)
- Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Department of Urological Organ Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinan Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changhong Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Jiawei Ji
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Wei Wang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
- Corresponding author. (Y.Z.); (X.X.); (W.W.)
| | - Xubiao Xie
- Department of Urological Organ Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Corresponding author. (Y.Z.); (X.X.); (W.W.)
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Corresponding author. (Y.Z.); (X.X.); (W.W.)
| |
Collapse
|
18
|
Kragten NA, Taggenbrock RL, Vidal LP, van Lier RA, Stark R, van Gisbergen KP. Hobit and Blimp-1 instruct the differentiation of iNKT cells into resident-phenotype lymphocytes after lineage commitment. Eur J Immunol 2021; 52:389-403. [PMID: 34897659 PMCID: PMC9305946 DOI: 10.1002/eji.202149360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
iNKT cells are CD1d‐restricted T cells that play a pro‐inflammatory or regulatory role in infectious and autoimmune diseases. Thymic precursors of iNKT cells eventually develop into distinct iNKT1, iNKT2, and iNKT17 lineages in the periphery. It remains unclear whether iNKT cells retain developmental potential after lineage commitment. iNKT cells acquire a similar phenotype as tissue‐resident memory T cells, suggesting that they also differentiate along a trajectory that enables them to persist in peripheral tissues. Here, we addressed whether lineage commitment and memory differentiation are parallel or sequential developmental programs of iNKT cells. We defined three subsets of peripheral iNKT cells using CD62L and CD69 expression that separate central, effector, and resident memory phenotype cells. The majority of iNKT1 cells displayed a resident phenotype in contrast to iNKT2 and iNKT17 cells. The transcription factor Hobit, which is upregulated in iNKT cells, plays an essential role in their development together with its homolog Blimp‐1. Hobit and Blimp‐1 instructed the differentiation of central memory iNKT cells into resident memory iNKT cells, but did not impact commitment into iNKT1, iNKT2, or iNKT17 lineages. Thus, we conclude that memory differentiation and the establishment of residency occur after lineage commitment through a Hobit and Blimp‐1‐driven transcriptional program.
Collapse
Affiliation(s)
- Natasja Am Kragten
- Dept. of Hematopoiesis, Sanquin Research and Landsteiner Laboratory Amsterdam UMC, Amsterdam, The Netherlands
| | - Renske Lre Taggenbrock
- Dept. of Hematopoiesis, Sanquin Research and Landsteiner Laboratory Amsterdam UMC, Amsterdam, The Netherlands
| | - Loreto Parga Vidal
- Dept. of Hematopoiesis, Sanquin Research and Landsteiner Laboratory Amsterdam UMC, Amsterdam, The Netherlands
| | - Rene Aw van Lier
- Dept. of Hematopoiesis, Sanquin Research and Landsteiner Laboratory Amsterdam UMC, Amsterdam, The Netherlands
| | - Regina Stark
- Dept. of Hematopoiesis, Sanquin Research and Landsteiner Laboratory Amsterdam UMC, Amsterdam, The Netherlands.,Dept. of Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Klaas Pjm van Gisbergen
- Dept. of Hematopoiesis, Sanquin Research and Landsteiner Laboratory Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Li X, Jin C, Chen Q, Zheng X, Xie D, Wu Q, Wang L, Bai S, Zhang H, Bai L. Identification of liver-specific CD24 + invariant NK T cells with low granzyme B production and high proliferative capacity. J Leukoc Biol 2021; 111:1199-1210. [PMID: 34730251 DOI: 10.1002/jlb.1a0621-309r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Invariant NK T (iNKT) cells are innate-like lymphocytes that can recognize the lipid Ag presented by MHC I like molecule CD1d. Distinct tissue distribution of iNKT cells subsets implies a contribution of these subsets to their related tissue regional immunity. iNKT cells are enriched in liver, an organ with unique immunological properties. Whether liver-specific iNKT cells exist and dedicate to the liver immunity remains elusive. Here, a liver-specific CD24+ iNKT subset is shown. Hepatic CD24+ iNKT cells show higher levels of proliferation, glucose metabolism, and mTOR activity comparing to CD24- iNKT cells. Although CD24+ iNKT cells and CD24- iNKT cells in the liver produce similar amounts of cytokines, the hepatic CD24+ iNKT cells exhibit lower granzyme B production. These liver-specific CD24+ iNKT cells are derived from thymus and differentiate into CD24+ iNKT in the liver microenvironment. Moreover, liver microenvironment induces the formation of CD24+ conventional T cells as well, and these cells exhibit higher proliferation ability but lower granzyme B production in comparison with CD24- T cells. The results propose that liver microenvironment might induce the generation of liver-specific iNKT subset that might play an important role in maintaining liver homeostasis.
Collapse
Affiliation(s)
- Xiang Li
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Jin
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qi Chen
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xihua Zheng
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Di Xie
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qielan Wu
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shiyu Bai
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huimin Zhang
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Bai
- Department of Oncology, The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Hsiao CC, Kragten NAM, Piao X, Hamann J, van Gisbergen KPJM. The Inhibitory Receptor GPR56 ( Adgrg1) Is Specifically Expressed by Tissue-Resident Memory T Cells in Mice But Dispensable for Their Differentiation and Function In Vivo. Cells 2021; 10:2675. [PMID: 34685654 PMCID: PMC8534179 DOI: 10.3390/cells10102675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Tissue-resident memory T (TRM) cells with potent antiviral and antibacterial functions protect the epithelial and mucosal surfaces of our bodies against infection with pathogens. The strong proinflammatory activities of TRM cells suggest requirement for expression of inhibitory molecules to restrain these memory T cells under steady state conditions. We previously identified the adhesion G protein-coupled receptor GPR56 as an inhibitory receptor of human cytotoxic lymphocytes that regulates their cytotoxic effector functions. Here, we explored the expression pattern, expression regulation, and function of GPR56 on pathogen-specific CD8+ T cells using two infection models. We observed that GPR56 is expressed on TRM cells during acute infection and is upregulated by the TRM cell-inducing cytokine TGF-β and the TRM cell-associated transcription factor Hobit. However, GPR56 appeared dispensable for CD8+ T-cell differentiation and function upon acute infection with LCMV as well as Listeria monocytogenes. Thus, TRM cells specifically acquire the inhibitory receptor GPR56, but the impact of this receptor on TRM cells after acute infection does not appear essential to regulate effector functions of TRM cells.
Collapse
Affiliation(s)
- Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Natasja A. M. Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - Xianhua Piao
- Department of Pediatrics, Newborn Brain Research Institute, Weill Institute for Neuroscience, University of California, San Francisco, CA 94158, USA;
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Klaas P. J. M. van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
21
|
Feng Y, Wang Z, Yang N, Liu S, Yan J, Song J, Yang S, Zhang Y. Identification of Biomarkers for Cervical Cancer Radiotherapy Resistance Based on RNA Sequencing Data. Front Cell Dev Biol 2021; 9:724172. [PMID: 34414195 PMCID: PMC8369412 DOI: 10.3389/fcell.2021.724172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022] Open
Abstract
Cervical cancer as a common gynecological malignancy threatens the health and lives of women. Resistance to radiotherapy is the primary cause of treatment failure and is mainly related to difference in the inherent vulnerability of tumors after radiotherapy. Here, we investigated signature genes associated with poor response to radiotherapy by analyzing an independent cervical cancer dataset from the Gene Expression Omnibus, including pre-irradiation and mid-irradiation information. A total of 316 differentially expressed genes were significantly identified. The correlations between these genes were investigated through the Pearson correlation analysis. Subsequently, random forest model was used in determining cancer-related genes, and all genes were ranked by random forest scoring. The top 30 candidate genes were selected for uncovering their biological functions. Functional enrichment analysis revealed that the biological functions chiefly enriched in tumor immune responses, such as cellular defense response, negative regulation of immune system process, T cell activation, neutrophil activation involved in immune response, regulation of antigen processing and presentation, and peptidyl-tyrosine autophosphorylation. Finally, the top 30 genes were screened and analyzed through literature verification. After validation, 10 genes (KLRK1, LCK, KIF20A, CD247, FASLG, CD163, ZAP70, CD8B, ZNF683, and F10) were to our objective. Overall, the present research confirmed that integrated bioinformatics methods can contribute to the understanding of the molecular mechanisms and potential therapeutic targets underlying radiotherapy resistance in cervical cancer.
Collapse
Affiliation(s)
- Yue Feng
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhao Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Nan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Sijia Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiazhuo Yan
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiayu Song
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
22
|
Parga-Vidal L, Behr FM, Kragten NAM, Nota B, Wesselink TH, Kavazović I, Covill LE, Schuller MBP, Bryceson YT, Wensveen FM, van Lier RAW, van Dam TJP, Stark R, van Gisbergen KPJM. Hobit identifies tissue-resident memory T cell precursors that are regulated by Eomes. Sci Immunol 2021; 6:6/62/eabg3533. [PMID: 34417257 DOI: 10.1126/sciimmunol.abg3533] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Tissue-resident memory CD8+ T cells (TRM) constitute a noncirculating memory T cell subset that provides early protection against reinfection. However, how TRM arise from antigen-triggered T cells has remained unclear. Exploiting the TRM-restricted expression of Hobit, we used TRM reporter/deleter mice to study TRM differentiation. We found that Hobit was up-regulated in a subset of LCMV-specific CD8+ T cells located within peripheral tissues during the effector phase of the immune response. These Hobit+ effector T cells were identified as TRM precursors, given that their depletion substantially decreased TRM development but not the formation of circulating memory T cells. Adoptive transfer experiments of Hobit+ effector T cells corroborated their biased contribution to the TRM lineage. Transcriptional profiling of Hobit+ effector T cells underlined the early establishment of TRM properties including down-regulation of tissue exit receptors and up-regulation of TRM-associated molecules. We identified Eomes as a key factor instructing the early bifurcation of circulating and resident lineages. These findings establish that commitment of TRM occurs early in antigen-driven T cell differentiation and reveal the molecular mechanisms underlying this differentiation pathway.
Collapse
Affiliation(s)
- Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| | - Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Benjamin Nota
- Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas H Wesselink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Inga Kavazović
- Department of Histology and Embryology, University of Rijeka, Rijeka, Croatia
| | - Laura E Covill
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Margo B P Schuller
- Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Brogelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Felix M Wensveen
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Histology and Embryology, University of Rijeka, Rijeka, Croatia
| | - Rene A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis J P van Dam
- Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands. .,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Dijkgraaf FE, Kok L, Schumacher TNM. Formation of Tissue-Resident CD8 + T-Cell Memory. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a038117. [PMID: 33685935 PMCID: PMC8327830 DOI: 10.1101/cshperspect.a038117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Resident memory CD8+ T (Trm) cells permanently reside in nonlymphoid tissues where they act as a first line of defense against recurrent pathogens. How and when antigen-inexperienced CD8+ T cells differentiate into Trm has been a topic of major interest, as knowledge on how to steer this process may be exploited in the development of vaccines and anticancer therapies. Here, we first review the current understanding of the early signals that CD8+ T cells receive before they have entered the tissue and that govern their capacity to develop into tissue-resident memory T cells. Subsequently, we discuss the tissue-derived factors that promote Trm maturation in situ. Combined, these data sketch a model in which a subset of responding T cells develops a heightened capacity to respond to local cues present in the tissue microenvironment, which thereby imprints their ability to contribute to the tissue-resident memory CD8+ T-cell pool that provide local control against pathogens.
Collapse
Affiliation(s)
- Feline E Dijkgraaf
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 Amsterdam, the Netherlands
| | - Lianne Kok
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 Amsterdam, the Netherlands
| | - Ton N M Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 Amsterdam, the Netherlands
| |
Collapse
|
24
|
Ke X, Zhang R, Yao Q, Duan S, Hong W, Cao M, Zhou Q, Zhong X, Zhao H. Alternative splicing of medaka bcl6aa and its repression by Prdm1a and Prdm1b. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1229-1242. [PMID: 34218391 DOI: 10.1007/s10695-021-00980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Bcl6 and Prdm1 (Blimp1) are a pair of transcriptional factors that repressing each other in mammals. Prdm1 represses the expression of bcl6 by binding a cis-element of the bcl6 gene in mammals. The homologs of Bcl6 and Prdm1 have been identified in teleost fish. However, whether these two factors regulate each other in the same way in fish like that in mammals is not clear. In this study, the regulation of bcl6aa by Prdm1 was investigated in medaka. The mRNA of bcl6aa has three variants (bcl6aaX1-X3) at the 5'-end by alternative splicing detected by RT-PCR. The three variants can be detected in adult tissues and developing embryos of medaka. Prdm1a and prdm1b are expressed in the tissues and embryos where and when bcl6aa is expressed. The expression of prdm1a was high while the expression of bcl6aa was low, and vice versa, detected in the spleen after stimulation with LPS or polyI:C. In vitro reporter assay indicated that bcl6aa could be directly repressed by both Prdm1a and Prdm1b in a dosage-dependent manner. After mutation of the key base, G, of all predicted binding sites in the core promoter region of bcl6aa, the repression by Prdm1a and/or Prdm1b disappeared. The binding site of Prdm1 in the bcl6aa gene is GAAAA(T/G). These results indicate that both Prdm1a and Prdm1b directly repress the expression of bcl6aa by binding their binding sites where the 5'-G is critical in medaka fish.
Collapse
Affiliation(s)
- Xiaomei Ke
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Runshuai Zhang
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Qiting Yao
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Shi Duan
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Wentao Hong
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xueping Zhong
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Haobin Zhao
- Hubei Key Laboratory of Gene Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
25
|
Perdiguero P, Goméz-Esparza MC, Martín D, Bird S, Soleto I, Morel E, Díaz-Rosales P, Tafalla C. Insights Into the Evolution of the prdm1/Blimp1 Gene Family in Teleost Fish. Front Immunol 2020; 11:596975. [PMID: 33193451 PMCID: PMC7662092 DOI: 10.3389/fimmu.2020.596975] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
In mammals, Blimp1 (B lymphocyte-induced maturation protein 1) encoded by the prdm1 gene and its homolog Hobit (homolog of Blimp1 in T cells) encoded by znf683, represent key transcriptional factors that control the development and differentiation of both B and T cells. Despite their essential role in the regulation of acquired immunity, this gene family has been largely unexplored in teleosts to date. Until now, one prdm1 gene has been identified in most teleost species, whereas a znf683 homolog has not yet been reported in any of these species. Focusing our analysis on rainbow trout (Oncorhynchus mykiss), an in silico identification and characterization of prdm1-like genes has been undertaken, confirming that prdm1 and znf683 evolved from a common ancestor gene, acquiring three gene copies after the teleost-specific whole genome duplication event (WGD) and six genes after the salmonid-specific WGD. Additional transcriptional studies to study how each of these genes are regulated in homeostasis, in response to a viral infection or in B cells in different differentiation stages, provide novel insights as to how this gene family evolved and how their encoded products might be implicated in the lymphocyte differentiation process in teleosts.
Collapse
Affiliation(s)
| | | | - Diana Martín
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Steve Bird
- Biomedical Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Esther Morel
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| | | | | |
Collapse
|
26
|
Takamura S. Divergence of Tissue-Memory T Cells: Distribution and Function-Based Classification. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037762. [PMID: 32816841 DOI: 10.1101/cshperspect.a037762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue-resident memory T cells (Trm) comprise the majority of memory cells in nonlymphoid tissues and play a predominant role in immunity at barrier surfaces. A better understanding of Trm cell maintenance and function is essential for the development of vaccines that confer frontline protection. However, it is currently challenging to precisely distinguish Trm cells from other T cells, and this has led to confusion in the literature. Here we highlight gaps in our understanding of tissue memory and discuss recent advances in the classification of Trm cell subsets based on their distribution and functional characteristics.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
27
|
Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. Nat Immunol 2020; 21:1070-1081. [DOI: 10.1038/s41590-020-0723-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/01/2020] [Indexed: 01/01/2023]
|
28
|
Crepeau RL, Ford ML. Programmed T cell differentiation: Implications for transplantation. Cell Immunol 2020; 351:104099. [PMID: 32247511 DOI: 10.1016/j.cellimm.2020.104099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
While T cells play a critical role in protective immunity against infection, they are also responsible for graft rejection in the setting of transplantation. T cell differentiation is regulated by both intrinsic transcriptional pathways as well as extrinsic factors such as antigen encounter and the cytokine milieu. Herein, we review recent discoveries in the transcriptional regulation of T cell differentiation and their impact on the field of transplantation. Recent studies uncovering context-dependent differentiation programs that differ in the setting of infection or transplantation will also be discussed. Understanding the key transcriptional pathways that underlie T cell responses in transplantation has important clinical implications, including development of novel therapeutic agents to mitigate graft rejection.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States.
| |
Collapse
|
29
|
Sinha D, Kumar A, Kumar H, Bandyopadhyay S, Sengupta D. dropClust: efficient clustering of ultra-large scRNA-seq data. Nucleic Acids Res 2019; 46:e36. [PMID: 29361178 PMCID: PMC5888655 DOI: 10.1093/nar/gky007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022] Open
Abstract
Droplet based single cell transcriptomics has recently enabled parallel screening of tens of thousands of single cells. Clustering methods that scale for such high dimensional data without compromising accuracy are scarce. We exploit Locality Sensitive Hashing, an approximate nearest neighbour search technique to develop a de novo clustering algorithm for large-scale single cell data. On a number of real datasets, dropClust outperformed the existing best practice methods in terms of execution time, clustering accuracy and detectability of minor cell sub-types.
Collapse
Affiliation(s)
- Debajyoti Sinha
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India.,Department of Computer Science and Engineering, University of Calcutta, Kolkata 700098, West Bengal, India
| | - Akhilesh Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, Madhya Pradesh, India
| | | | - Debarka Sengupta
- Center for Computational Biology and Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi 110020, India
| |
Collapse
|
30
|
Pascutti MF, Geerman S, Collins N, Brasser G, Nota B, Stark R, Behr F, Oja A, Slot E, Panagioti E, Prier JE, Hickson S, Wolkers MC, Heemskerk MH, Hombrink P, Arens R, Mackay LK, van Gisbergen KP, Nolte MA. Peripheral and systemic antigens elicit an expandable pool of resident memory CD8 + T cells in the bone marrow. Eur J Immunol 2019; 49:853-872. [PMID: 30891737 PMCID: PMC6594027 DOI: 10.1002/eji.201848003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023]
Abstract
BM has been put forward as a major reservoir for memory CD8+ T cells. In order to fulfill that function, BM should "store" memory CD8+ T cells, which in biological terms would require these "stored" memory cells to be in disequilibrium with the circulatory pool. This issue is a matter of ongoing debate. Here, we unequivocally demonstrate that murine and human BM harbors a population of tissue-resident memory CD8+ T (TRM ) cells. These cells develop against various pathogens, independently of BM infection or local antigen recognition. BM CD8+ TRM cells share a transcriptional program with resident lymphoid cells in other tissues; they are polyfunctional cytokine producers and dependent on IL-15, Blimp-1, and Hobit. CD8+ TRM cells reside in the BM parenchyma, but are in close contact with the circulation. Moreover, this pool of resident T cells is not size-restricted and expands upon peripheral antigenic re-challenge. This works extends the role of the BM in the maintenance of CD8+ T cell memory to include the preservation of an expandable reservoir of functional, non-recirculating memory CD8+ T cells, which develop in response to a large variety of peripheral antigens.
Collapse
Affiliation(s)
| | - Sulima Geerman
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands
| | - Nicholas Collins
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneAustralia
| | - Giso Brasser
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands
| | - Benjamin Nota
- Department of Molecular and Cellular HemostasisSanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Regina Stark
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands
| | - Felix Behr
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands
| | - Anna Oja
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands
| | - Edith Slot
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands
| | - Eleni Panagioti
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenThe Netherlands
| | - Julia E. Prier
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneAustralia
| | - Sarah Hickson
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands
| | | | | | - Pleun Hombrink
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenThe Netherlands
| | - Laura K. Mackay
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneAustralia
| | | | - Martijn A. Nolte
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands
- Department of Molecular and Cellular HemostasisSanquin ResearchAmsterdamThe Netherlands
- Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
31
|
Remmerswaal EBM, Hombrink P, Nota B, Pircher H, Ten Berge IJM, van Lier RAW, van Aalderen MC. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8 + T-cell populations in humans. Eur J Immunol 2019; 49:694-708. [PMID: 30883723 PMCID: PMC6593687 DOI: 10.1002/eji.201847897] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/07/2019] [Accepted: 03/14/2018] [Indexed: 11/23/2022]
Abstract
During acute viral infections in mice, IL‐7Rα and KLRG1 together are used to distinguish the short‐lived effector cells (SLEC; IL‐7RαloKLRGhi) from the precursors of persisting memory cells (MPEC; IL‐7RαhiKLRG1lo). We here show that these markers can be used to define distinct subsets in the circulation and lymph nodes during the acute phase and in “steady state” in humans. In contrast to the T cells in the circulation, T cells derived from lymph nodes hardly contain any KLRG1‐expressing cells. The four populations defined by IL‐7Rα and KLRG1 differ markedly in transcription factor, granzyme and chemokine receptor expression. When studying renal transplant recipients experiencing a primary hCMV and EBV infection, we also found that after viral control, during latency, Ki‐67‐negative SLEC can be found in the peripheral blood in considerable numbers. Thus, combined analyses of IL‐7Rα and KLRG1 expression on human herpes virus‐specific CD8+ T cells can be used to separate functionally distinct subsets in humans. As a noncycling IL‐7RαloKLRG1hi population is abundant in healthy humans, we conclude that this combination of markers not only defines short‐lived effector cells during the acute response but also stable effector cells that are formed and remain present during latent herpes infections.
Collapse
Affiliation(s)
- Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pleun Hombrink
- Sanquin Research and Landsteiner laboratory, Amsterdam, The Netherlands
| | - Benjamin Nota
- Sanquin Research and Landsteiner laboratory, Amsterdam, The Netherlands
| | - Hanspeter Pircher
- Institute for Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Ineke J M Ten Berge
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - René A W van Lier
- Sanquin Research and Landsteiner laboratory, Amsterdam, The Netherlands
| | - Michiel C van Aalderen
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Behr FM, Kragten NAM, Wesselink TH, Nota B, van Lier RAW, Amsen D, Stark R, Hombrink P, van Gisbergen KPJM. Blimp-1 Rather Than Hobit Drives the Formation of Tissue-Resident Memory CD8 + T Cells in the Lungs. Front Immunol 2019; 10:400. [PMID: 30899267 PMCID: PMC6416215 DOI: 10.3389/fimmu.2019.00400] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
Tissue-resident memory CD8+ T (TRM) cells that develop in the epithelia at portals of pathogen entry are important for improved protection against re-infection. CD8+ TRM cells within the skin and the small intestine are long-lived and maintained independently of circulating memory CD8+ T cells. In contrast to CD8+ TRM cells at these sites, CD8+ TRM cells that arise after influenza virus infection within the lungs display high turnover and require constant recruitment from the circulating memory pool for long-term persistence. The distinct characteristics of CD8+ TRM cell maintenance within the lungs may suggest a unique program of transcriptional regulation of influenza-specific CD8+ TRM cells. We have previously demonstrated that the transcription factors Hobit and Blimp-1 are essential for the formation of CD8+ TRM cells across several tissues, including skin, liver, kidneys, and the small intestine. Here, we addressed the roles of Hobit and Blimp-1 in CD8+ TRM cell differentiation in the lungs after influenza infection using mice deficient for these transcription factors. Hobit was not required for the formation of influenza-specific CD8+ TRM cells in the lungs. In contrast, Blimp-1 was essential for the differentiation of lung CD8+ TRM cells and inhibited the differentiation of central memory CD8+ T (TCM) cells. We conclude that Blimp-1 rather than Hobit mediates the formation of CD8+ TRM cells in the lungs, potentially through control of the lineage choice between TCM and TRM cells during the differentiation of influenza-specific CD8+ T cells.
Collapse
Affiliation(s)
- Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas H Wesselink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Benjamin Nota
- Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rene A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Zundler S, Becker E, Spocinska M, Slawik M, Parga-Vidal L, Stark R, Wiendl M, Atreya R, Rath T, Leppkes M, Hildner K, López-Posadas R, Lukassen S, Ekici AB, Neufert C, Atreya I, van Gisbergen KPJM, Neurath MF. Hobit- and Blimp-1-driven CD4 + tissue-resident memory T cells control chronic intestinal inflammation. Nat Immunol 2019; 20:288-300. [PMID: 30692620 DOI: 10.1038/s41590-018-0298-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
Although tissue-resident memory T cells (TRM cells) have been shown to regulate host protection in infectious disorders, their function in inflammatory bowel disease (IBD) remains to be investigated. Here we characterized TRM cells in human IBD and in experimental models of intestinal inflammation. Pro-inflammatory TRM cells accumulated in the mucosa of patients with IBD, and the presence of CD4+CD69+CD103+ TRM cells was predictive of the development of flares. In vivo, functional impairment of TRM cells in mice with double knockout of the TRM-cell-associated transcription factors Hobit and Blimp-1 attenuated disease in several models of colitis, due to impaired cross-talk between the adaptive and innate immune system. Finally, depletion of TRM cells led to a suppression of colitis activity. Together, our data demonstrate a central role for TRM cells in the pathogenesis of chronic intestinal inflammation and suggest that these cells could be targets for future therapeutic approaches in IBD.
Collapse
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, The University of Amsterdam, Amsterdam, Netherlands
| | - Emily Becker
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Marta Spocinska
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Monique Slawik
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, The University of Amsterdam, Amsterdam, Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, The University of Amsterdam, Amsterdam, Netherlands
| | - Maximilian Wiendl
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Timo Rath
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sören Lukassen
- Institute of Human Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, The University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC, The University of Amsterdam, Amsterdam, Netherlands
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
34
|
Regulation of the terminal maturation of iNKT cells by mediator complex subunit 23. Nat Commun 2018; 9:3875. [PMID: 30250136 PMCID: PMC6155209 DOI: 10.1038/s41467-018-06372-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
Invariant natural killer T cells (iNKT cells) are a specific subset of T cells that recognize glycolipid antigens and upon activation rapidly exert effector functions. This unique function is established during iNKT cell development; the detailed mechanisms of this process, however, remain to be elucidated. Here the authors show that deletion of the mediator subunit Med23 in CD4+CD8+ double positive (DP) thymocytes completely blocks iNKT cell development at stage 2. This dysregulation is accompanied by a bias in the expression of genes related to the regulation of transcription and metabolism, and functional impairment of the cells including the loss of NK cell characteristics, reduced ability to secrete cytokines and attenuated recruitment capacity upon activation. Moreover, Med23-deficient iNKT cells exhibit impaired anti-tumor activity. Our study identifies Med23 as an essential transcriptional regulator that controls iNKT cell differentiation and terminal maturation. Invariant Natural Killer T cells (iNKT) rapidly exert effector functions upon activation, but the mechanisms of their functional maturation remain to be determined. Here, Xu and colleagues show that the mediator subunit Med23 is a transcriptional regulator controlling iNKT cell terminal maturation.
Collapse
|
35
|
Liu Q, Lu C, Dai W, Li K, Xu J, Huang Y, Li G, Kang Y, Sood AK, Xu C. Association of biobehavioral factors with non-coding RNAs in cervical cancer. Biosci Trends 2018; 12:24-31. [PMID: 29553098 DOI: 10.5582/bst.2017.01325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In order to elucidate the mechanisms underlying the biobehavioral factors responsible for cervical cancer from the perspective of lncRNAs. Tumor samples were obtained from patients with stage Ib-IIb squamous cervical cancer, which were divided into high- and low-risk groups according to biobehavioral risk factors. A lncRNA + mRNA microarray was performed, and the results were validated using qRT-PCR. Gene ontology (GO), pathway, and lncRNA-mRNA co-expression analysis were performed to predict the potential functions of the differentially expressed transcripts. 1,621 lncRNAs and 1,345 mRNAs were found to be differentially expressed between the high-risk and low-risk groups. The results of the qR-TPCR validation were in 100% agreement with the microarray analysis results. GO analysis revealed that the transcripts showing significantly different expression were mainly associated with various aspects of immune response. Pathway analysis indicated that systemic lupus erythematosus signaling was the most significantly down-regulated pathway in the high-risk group. Co-expression analysis indicated NONHSAT002712, NONHSAT095060, and TCONS_00026535 had significant correlations with ZNF683 and BTLA, which were found to be associated with the GO term "adaptive immune response". The levels of genome-wide lncRNAs are significantly altered in cervical tumors from patients with higher biobehavioral risk factors.
Collapse
Affiliation(s)
- Qiyu Liu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Chong Lu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Wanjun Dai
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Ke Li
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Jing Xu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Yunke Huang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University
| | - Guiling Li
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University.,Department of Integrated Traditional Chinese and Western Medicine, Obstetrics and Gynecology Hospital, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Yu Kang
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University.,Department of Integrated Traditional Chinese and Western Medicine, Obstetrics and Gynecology Hospital, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Anil K Sood
- Departments of Gynecologic Oncology, Cancer Biology, and Center for RNA Interference and Noncoding RNA, University of Texas, M.D. Anderson Cancer Center
| | - Congjian Xu
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University.,Department of Integrated Traditional Chinese and Western Medicine, Obstetrics and Gynecology Hospital, Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|
36
|
Houtman M, Ekholm L, Hesselberg E, Chemin K, Malmström V, Reed AM, Lundberg IE, Padyukov L. T-cell transcriptomics from peripheral blood highlights differences between polymyositis and dermatomyositis patients. Arthritis Res Ther 2018; 20:188. [PMID: 30157932 PMCID: PMC6116372 DOI: 10.1186/s13075-018-1688-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/29/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Polymyositis (PM) and dermatomyositis (DM) are two distinct subgroups of idiopathic inflammatory myopathies, a chronic inflammatory disorder clinically characterized by muscle weakness and inflammatory cell infiltrates in muscle tissue. In PM, a major component of inflammatory cell infiltrates is CD8+ T cells, whereas in DM, CD4+ T cells, plasmacytoid dendritic cells, and B cells predominate. In this study, with the aim to differentiate involvement of CD4+ and CD8+ T-cell subpopulations in myositis subgroups, we investigated transcriptomic profiles of T cells from peripheral blood of patients with myositis. METHODS Total RNA was extracted from CD4+ T cells (PM = 8 and DM = 7) and CD8+ T cells (PM = 4 and DM = 5) that were isolated from peripheral blood mononuclear cells via positive selection using microbeads. Sequencing libraries were generated using the Illumina TruSeq Stranded Total RNA Kit and sequenced on an Illumina HiSeq 2500 platform, yielding about 50 million paired-end reads per sample. Differential gene expression analyses were conducted using DESeq2. RESULTS In CD4+ T cells, only two genes, ANKRD55 and S100B, were expressed significantly higher in patients with PM than in patients with DM (false discovery rate [FDR] < 0.05, model adjusted for age, sex, HLA-DRB1*03 status, and RNA integrity number [RIN]). On the contrary, in CD8+ T cells, 176 genes were differentially expressed in patients with PM compared with patients with DM. Of these, 44 genes were expressed significantly higher in CD8+ T cells from patients with PM, and 132 genes were expressed significantly higher in CD8+ T cells from patients with DM (FDR < 0.05, model adjusted for age, sex, and RIN). Gene Ontology analysis showed that genes differentially expressed in CD8+ T cells are involved in lymphocyte migration and regulation of T-cell differentiation. CONCLUSIONS Our data strongly suggest that CD8+ T cells represent a major divergence between PM and DM patients compared with CD4+ T cells. These alterations in the gene expression in T cells from PM and DM patients might advocate for distinct immune mechanisms in these subphenotypes of myositis.
Collapse
Affiliation(s)
- Miranda Houtman
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Louise Ekholm
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Espen Hesselberg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karine Chemin
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ann M Reed
- Department of Pediatrics, Duke Children's Hospital, Duke University Medical Center, Durham, USA
| | - Ingrid E Lundberg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Kragten NA, Behr FM, Vieira Braga FA, Remmerswaal EBM, Wesselink TH, Oja AE, Hombrink P, Kallies A, van Lier RA, Stark R, van Gisbergen KP. Blimp-1 induces and Hobit maintains the cytotoxic mediator granzyme B in CD8 T cells. Eur J Immunol 2018; 48:1644-1662. [DOI: 10.1002/eji.201847771] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Natasja A.M. Kragten
- Dept of Hematopoiesis; Sanquin Research and Landsteiner Laboratory Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
| | - Felix M. Behr
- Dept of Hematopoiesis; Sanquin Research and Landsteiner Laboratory Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
- Dept of Experimental Immunology; Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
| | - Felipe A. Vieira Braga
- Dept of Hematopoiesis; Sanquin Research and Landsteiner Laboratory Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
| | - Ester B. M. Remmerswaal
- Dept of Experimental Immunology; Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
- Renal Transplant Unit; Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
| | - Thomas H. Wesselink
- Dept of Hematopoiesis; Sanquin Research and Landsteiner Laboratory Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
| | - Anna E. Oja
- Dept of Hematopoiesis; Sanquin Research and Landsteiner Laboratory Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
| | - Pleun Hombrink
- Dept of Hematopoiesis; Sanquin Research and Landsteiner Laboratory Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
| | - Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research; Melbourne Australia
- Dept of Microbiology and Immunology; The University of Melbourne; The Peter Doherty Institute for Infection and Immunity; Melbourne Australia
| | - Rene A.W. van Lier
- Dept of Hematopoiesis; Sanquin Research and Landsteiner Laboratory Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
| | - Regina Stark
- Dept of Hematopoiesis; Sanquin Research and Landsteiner Laboratory Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
- Dept of Experimental Immunology; Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
| | - Klaas P.J.M. van Gisbergen
- Dept of Hematopoiesis; Sanquin Research and Landsteiner Laboratory Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
- Dept of Experimental Immunology; Amsterdam UMC; University of Amsterdam; Amsterdam Netherlands
- The Walter and Eliza Hall Institute of Medical Research; Melbourne Australia
- Dept of Microbiology and Immunology; The University of Melbourne; The Peter Doherty Institute for Infection and Immunity; Melbourne Australia
| |
Collapse
|
38
|
Behr FM, Chuwonpad A, Stark R, van Gisbergen KPJM. Armed and Ready: Transcriptional Regulation of Tissue-Resident Memory CD8 T Cells. Front Immunol 2018; 9:1770. [PMID: 30131803 PMCID: PMC6090154 DOI: 10.3389/fimmu.2018.01770] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
A fundamental benefit of immunological memory is the ability to respond in an enhanced manner upon secondary encounter with the same pathogen. Tissue-resident memory CD8 T (TRM) cells contribute to improved protection against reinfection through the generation of immediate effector responses at the site of pathogen entry. Key to the potential of TRM cells to develop rapid recall responses is their location within the epithelia of the skin, lungs, and intestines at prime entry sites of pathogens. TRM cells are among the first immune cells to respond to pathogens that have been previously encountered in an antigen-specific manner. Upon recognition of invading pathogens, TRM cells release IFN-γ and other pro-inflammatory cytokines and chemokines. These effector molecules activate the surrounding epithelial tissue and recruit other immune cells including natural killer (NK) cells, B cells, and circulating memory CD8 T cells to the site of infection. The repertoire of TRM effector functions also includes the direct lysis of infected cells through the release of cytotoxic molecules such as perforin and granzymes. The mechanisms enabling TRM cells to respond in such a rapid manner are gradually being uncovered. In this review, we will address the signals that instruct TRM generation and maintenance as well as the underlying transcriptional network that keeps TRM cells in a deployment-ready modus. Furthermore, we will discuss how TRM cells respond to reinfection of the tissue and how transcription factors may control immediate and proliferative TRM responses.
Collapse
Affiliation(s)
- Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| | - Ammarina Chuwonpad
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
39
|
Wang H, Hogquist KA. How Lipid-Specific T Cells Become Effectors: The Differentiation of iNKT Subsets. Front Immunol 2018; 9:1450. [PMID: 29997620 PMCID: PMC6028555 DOI: 10.3389/fimmu.2018.01450] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
In contrast to peptide-recognizing T cells, invariant natural killer T (iNKT) cells express a semi-invariant T cell receptor that specifically recognizes self- or foreign-lipids presented by CD1d molecules. There are three major functionally distinct effector states for iNKT cells. Owning to these innate-like effector states, iNKT cells have been implicated in early protective immunity against pathogens. Yet, growing evidence suggests that iNKT cells play a role in tissue homeostasis as well. In this review, we discuss current knowledge about the underlying mechanisms that regulate the effector states of iNKT subsets, with a highlight on the roles of a variety of transcription factors and describe how each subset influences different facets of thymus homeostasis.
Collapse
Affiliation(s)
- Haiguang Wang
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
40
|
Krovi SH, Gapin L. Invariant Natural Killer T Cell Subsets-More Than Just Developmental Intermediates. Front Immunol 2018; 9:1393. [PMID: 29973936 PMCID: PMC6019445 DOI: 10.3389/fimmu.2018.01393] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a CD1d-restricted T cell population that can respond to lipid antigenic stimulation within minutes by secreting a wide variety of cytokines. This broad functional scope has placed iNKT cells at the frontlines of many kinds of immune responses. Although the diverse functional capacities of iNKT cells have long been acknowledged, only recently have distinct iNKT cell subsets, each with a marked functional predisposition, been appreciated. Furthermore, the subsets can frequently occupy distinct niches in different tissues and sometimes establish long-term tissue residency where they can impact homeostasis and respond quickly when they sense perturbations. In this review, we discuss the developmental origins of the iNKT cell subsets, their localization patterns, and detail what is known about how different subsets specifically influence their surroundings in conditions of steady and diseased states.
Collapse
Affiliation(s)
- S. Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
41
|
Amsen D, van Gisbergen KPJM, Hombrink P, van Lier RAW. Tissue-resident memory T cells at the center of immunity to solid tumors. Nat Immunol 2018; 19:538-546. [PMID: 29777219 DOI: 10.1038/s41590-018-0114-2] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/17/2018] [Indexed: 02/07/2023]
Abstract
Immune responses in tissues are constrained by the physiological properties of the tissue involved. Tissue-resident memory T cells (TRM cells) are a recently discovered lineage of T cells specialized for life and function within tissues. Emerging evidence has shown that TRM cells have a special role in the control of solid tumors. A high frequency of TRM cells in tumors correlates with favorable disease progression in patients with cancer, and studies of mice have shown that TRM cells are necessary for optimal immunological control of solid tumors. Here we describe what defines TRM cells as a separate lineage and how these cells are generated. Furthermore, we discuss the properties that allow TRM cells to operate in normal and transformed tissues, as well as implications for the treatment of patients with cancer.
Collapse
Affiliation(s)
- Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rene A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Oja AE, Piet B, Helbig C, Stark R, van der Zwan D, Blaauwgeers H, Remmerswaal EBM, Amsen D, Jonkers RE, Moerland PD, Nolte MA, van Lier RAW, Hombrink P. Trigger-happy resident memory CD4 + T cells inhabit the human lungs. Mucosal Immunol 2018; 11:654-667. [PMID: 29139478 DOI: 10.1038/mi.2017.94] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/18/2017] [Indexed: 02/04/2023]
Abstract
Resident memory T cells (TRM) reside in the lung epithelium and mediate protective immunity against respiratory pathogens. Although lung CD8+ TRM have been extensively characterized, the properties of CD4+ TRM remain unclear. Here we determined the transcriptional signature of CD4+ TRM, identified by the expression of CD103, retrieved from human lung resection material. Various tissue homing molecules were specifically upregulated on CD4+ TRM, whereas expression of tissue egress and lymph node homing molecules were low. CD103+ TRM expressed low levels of T-bet, only a small portion expressed Eomesodermin (Eomes), and although the mRNA levels for Hobit were increased, protein expression was absent. On the other hand, the CD103+ TRM showed a Notch signature. CD4+CD103+ TRM constitutively expressed high transcript levels of numerous cytotoxic mediators that was functionally reflected by a fast recall response, magnitude of cytokine production, and a high degree of polyfunctionality. Interestingly, the superior cytokine production appears to be because of an accessible interferon-γ (IFNγ) locus and was partially because of rapid translation of preformed mRNA. Our studies provide a molecular understanding of the maintenance and potential function of CD4+ TRM in the human lung. Understanding the specific properties of CD4+ TRM is required to rationally improve vaccine design.
Collapse
Affiliation(s)
- A E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - B Piet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Respiratory Medicine, OLVG, Amsterdam, The Netherlands
| | - C Helbig
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - D van der Zwan
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - H Blaauwgeers
- Department of Pathology, OLVG, Amsterdam, The Netherlands
| | - E B M Remmerswaal
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Renal Transplant Unit, Division of Internal Medicine, Academic Medical Center, Amsterdam The Netherlands
| | - D Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R E Jonkers
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - P D Moerland
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics and Department of Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - M A Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - P Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Transcription factor YY1 is essential for iNKT cell development. Cell Mol Immunol 2018; 16:547-556. [PMID: 29500401 DOI: 10.1038/s41423-018-0002-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Invariant natural killer T (iNKT) cells develop from CD4+CD8+ double-positive (DP) thymocytes and express an invariant Vα14-Jα18 T-cell receptor (TCR) α-chain. Generation of these cells requires the prolonged survival of DP thymocytes to allow for Vα14-Jα18 gene rearrangements and strong TCR signaling to induce the expression of the iNKT lineage-specific transcription factor PLZF. Here, we report that the transcription factor Yin Yang 1 (YY1) is essential for iNKT cell formation. Thymocytes lacking YY1 displayed a block in iNKT cell development at the earliest progenitor stage. YY1-deficient thymocytes underwent normal Vα14-Jα18 gene rearrangements, but exhibited impaired cell survival. Deletion of the apoptotic protein BIM failed to rescue the defect in iNKT cell generation. Chromatin immunoprecipitation and deep-sequencing experiments demonstrated that YY1 directly binds and activates the promoter of the Plzf gene. Thus, YY1 plays essential roles in iNKT cell development by coordinately regulating cell survival and PLZF expression.
Collapse
|
44
|
Serroukh Y, Gu-Trantien C, Hooshiar Kashani B, Defrance M, Vu Manh TP, Azouz A, Detavernier A, Hoyois A, Das J, Bizet M, Pollet E, Tabbuso T, Calonne E, van Gisbergen K, Dalod M, Fuks F, Goriely S, Marchant A. The transcription factors Runx3 and ThPOK cross-regulate acquisition of cytotoxic function by human Th1 lymphocytes. eLife 2018; 7:30496. [PMID: 29488879 PMCID: PMC5844691 DOI: 10.7554/elife.30496] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/20/2018] [Indexed: 01/07/2023] Open
Abstract
Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Chunyan Gu-Trantien
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | | | - Matthieu Defrance
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy 13288, Aix Marseille Université UM2, Marseille, France
| | - Abdulkader Azouz
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Aurélie Detavernier
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Alice Hoyois
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Martin Bizet
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Emeline Pollet
- Centre d'Immunologie de Marseille-Luminy 13288, Aix Marseille Université UM2, Marseille, France
| | - Tressy Tabbuso
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Emilie Calonne
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Klaas van Gisbergen
- Department of Haematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy 13288, Aix Marseille Université UM2, Marseille, France
| | - François Fuks
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
45
|
Weizman OE, Adams NM, Schuster IS, Krishna C, Pritykin Y, Lau C, Degli-Esposti MA, Leslie CS, Sun JC, O'Sullivan TE. ILC1 Confer Early Host Protection at Initial Sites of Viral Infection. Cell 2017; 171:795-808.e12. [PMID: 29056343 DOI: 10.1016/j.cell.2017.09.052] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
Abstract
Infection is restrained by the concerted activation of tissue-resident and circulating immune cells. Whether tissue-resident lymphocytes confer early antiviral immunity at local sites of primary infection prior to the initiation of circulating responses is not well understood. Furthermore, the kinetics of initial antiviral responses at sites of infection remain unclear. Here, we show that tissue-resident type 1 innate lymphoid cells (ILC1) serve an essential early role in host immunity through rapid production of interferon (IFN)-γ following viral infection. Ablation of Zfp683-dependent liver ILC1 lead to increased viral load in the presence of intact adaptive and innate immune cells critical for mouse cytomegalovirus (MCMV) clearance. Swift production of interleukin (IL)-12 by tissue-resident XCR1+ conventional dendritic cells (cDC1) promoted ILC1 production of IFN-γ in a STAT4-dependent manner to limit early viral burden. Thus, ILC1 contribute an essential role in viral immunosurveillance at sites of initial infection in response to local cDC1-derived proinflammatory cytokines.
Collapse
Affiliation(s)
- Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Iona S Schuster
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuri Pritykin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colleen Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Timothy E O'Sullivan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
46
|
Shin HM, Kapoor VN, Kim G, Li P, Kim HR, Suresh M, Kaech SM, Wherry EJ, Selin LK, Leonard WJ, Welsh RM, Berg LJ. Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the effector response and the generation of memory. PLoS Pathog 2017; 13:e1006544. [PMID: 28827827 PMCID: PMC5578684 DOI: 10.1371/journal.ppat.1006544] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/31/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Virus infections induce CD8+ T cell responses comprised of a large population of terminal effector cells and a smaller subset of long-lived memory cells. The transcription factors regulating the relative expansion versus the long-term survival potential of anti-viral CD8+ T cells are not completely understood. We identified ZBTB32 as a transcription factor that is transiently expressed in effector CD8+ T cells. After acute virus infection, CD8+ T cells deficient in ZBTB32 showed enhanced virus-specific CD8+ T cell responses, and generated increased numbers of virus-specific memory cells; in contrast, persistent expression of ZBTB32 suppressed memory cell formation. The dysregulation of CD8+ T cell responses in the absence of ZBTB32 was catastrophic, as Zbtb32-/- mice succumbed to a systemic viral infection and showed evidence of severe lung pathology. We found that ZBTB32 and Blimp-1 were co-expressed following CD8+ T cell activation, bound to each other, and cooperatively regulated Blimp-1 target genes Eomes and Cd27. These findings demonstrate that ZBTB32 is a key transcription factor in CD8+ effector T cells that is required for the balanced regulation of effector versus memory responses to infection. CD8+ T lymphocytes are essential for immune protection against viruses. In response to an infection, these cells are activated, proliferate, and generate antiviral effector cells that eradicate the infection. Following this, the majority of these effector cells die, leaving a small subset of long-lived virus-specific memory T cells. Our study identifies a transcription factor, ZBTB32, that is required for the regulation of CD8+ T cell responses. In its absence, antiviral CD8+ T cell numbers increase to abnormally high levels, and generate an overabundance of memory T cells. When this dysregulated response occurs following infection with a virus that cannot be rapidly eliminated by the immune system, the infected animals die from immune-mediated tissue damage, indicating the importance of this pathway.
Collapse
Affiliation(s)
- Hyun Mu Shin
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Varun N. Kapoor
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gwanghun Kim
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hang-Rae Kim
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - M. Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan M. Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - E. John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, Pennsylvania, United States of America
| | - Liisa K. Selin
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Warren J. Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raymond M. Welsh
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Leslie J. Berg
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Hobit expression by a subset of human liver-resident CD56 bright Natural Killer cells. Sci Rep 2017; 7:6676. [PMID: 28751776 PMCID: PMC5532267 DOI: 10.1038/s41598-017-06011-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Immune responses show a high degree of tissue specificity shaped by factors influencing tissue egress and retention of immune cells. The transcription factor Hobit was recently shown to regulate tissue-residency in mice. Whether Hobit acts in a similar capacity in humans remains unknown. Our aim was to assess the expression and contribution of Hobit to tissue-residency of Natural Killer (NK) cells in the human liver. The human liver was enriched for CD56bright NK cells showing increased expression levels of the transcription factor Hobit. Hobitpos CD56bright NK cells in the liver exhibited high levels of CD49a, CXCR6 and CD69. Hobitpos CD56bright NK cells in the liver furthermore expressed a unique set of transcription factors with higher frequencies and levels of T-bet and Blimp-1 when compared to Hobitneg CD56bright NK cells. Taken together, we show that the transcription factor Hobit identifies a subset of NK cells in human livers that express a distinct set of adhesion molecules and chemokine receptors consistent with tissue residency. These data suggest that Hobit is involved in regulating tissue-residency of human intrahepatic CD56bright NK cells in a subset of NK cells in inflamed livers.
Collapse
|
48
|
Stelma F, de Niet A, Sinnige MJ, van Dort KA, van Gisbergen KPJM, Verheij J, van Leeuwen EMM, Kootstra NA, Reesink HW. Human intrahepatic CD69 + CD8+ T cells have a tissue resident memory T cell phenotype with reduced cytolytic capacity. Sci Rep 2017; 7:6172. [PMID: 28733665 PMCID: PMC5522381 DOI: 10.1038/s41598-017-06352-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/12/2017] [Indexed: 01/12/2023] Open
Abstract
Tissue resident memory T cells (TRM) have been identified in various tissues, however human liver TRM to date remain unidentified. TRM can be recognized by CD69 and/or CD103 expression and may play a role in the pathology of chronic hepatitis B (CHB) and hepatitis C virus infection (CHC). Liver and paired blood mononuclear cells from 17 patients (including 4 CHB and 6 CHC patients) were isolated and CD8+ T cells were comprehensively analysed by flowcytometry, immunohistochemistry and qPCR. The majority of intrahepatic CD8+ T cells expressed CD69, a marker used to identify TRM, of which a subset co-expressed CD103. CD69 + CD8+ T cells expressed low levels of S1PR1 and KLF2 and a large proportion (>90%) was CXCR6+, resembling liver TRM in mice and liver resident NK cells in human. Cytotoxic proteins were only expressed in a small fraction of liver CD69 + CD8+ T cells in patients without viral hepatitis, however, in livers from CHB patients more CD69 + CD8+ T cells were granzyme B+. In CHC patients, less intrahepatic CD69 + CD8+ T cells were Hobit+ as compared to CHB and control patients. Intrahepatic CD69 + CD8+ T cells likely TRM which have a reduced cytolytic potential. In patients with chronic viral hepatitis TRM have a distinct phenotype.
Collapse
Affiliation(s)
- Femke Stelma
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Annikki de Niet
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marjan J Sinnige
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Karel A van Dort
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, Netherlands
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Ester M M van Leeuwen
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Hendrik W Reesink
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands. .,Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Post M, Cuapio A, Osl M, Lehmann D, Resch U, Davies DM, Bilban M, Schlechta B, Eppel W, Nathwani A, Stoiber D, Spanholtz J, Casanova E, Hofer E. The Transcription Factor ZNF683/HOBIT Regulates Human NK-Cell Development. Front Immunol 2017; 8:535. [PMID: 28555134 PMCID: PMC5430038 DOI: 10.3389/fimmu.2017.00535] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/21/2017] [Indexed: 01/18/2023] Open
Abstract
We identified ZNF683/HOBIT as the most highly upregulated transcription factor gene during ex vivo differentiation of human CD34+ cord blood progenitor cells to CD56+ natural killer (NK) cells. ZNF683/HOBIT mRNA was preferentially expressed in NK cells compared to other human peripheral blood lymphocytes and monocytes. During ex vivo differentiation, ZNF683/HOBIT mRNA started to increase shortly after addition of IL-15 and further accumulated in parallel to the generation of CD56+ NK cells. shRNA-mediated knockdown of ZNF683/HOBIT resulted in a substantial reduction of CD56−CD14− NK-cell progenitors and the following generation of CD56+ NK cells was largely abrogated. The few CD56+ NK cells, which escaped the developmental inhibition in the ZNF683/HOBIT knockdown cultures, displayed normal levels of NKG2A and KIR receptors. Functional analyses of these cells showed no differences in degranulation capacity from control cultures. However, the proportion of IFN-γ-producing cells appeared to be increased upon ZNF683/HOBIT knockdown. These results indicate a key role of ZNF683/HOBIT for the differentiation of the human NK-cell lineage and further suggest a potential negative control on IFN-γ production in more mature human NK cells.
Collapse
Affiliation(s)
- Mirte Post
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Angelica Cuapio
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Osl
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dorit Lehmann
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Resch
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - David M Davies
- Department of Oncology, University College London Cancer Institute, London, UK
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Bernhard Schlechta
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Eppel
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Amit Nathwani
- Department of Oncology, University College London Cancer Institute, London, UK
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute of Cancer Research, Vienna, Austria.,Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Emilio Casanova
- Ludwig Boltzmann Institute of Cancer Research, Vienna, Austria.,Institute of Physiology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Erhard Hofer
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Oja AE, Vieira Braga FA, Remmerswaal EBM, Kragten NAM, Hertoghs KML, Zuo J, Moss PA, van Lier RAW, van Gisbergen KPJM, Hombrink P. The Transcription Factor Hobit Identifies Human Cytotoxic CD4 + T Cells. Front Immunol 2017; 8:325. [PMID: 28392788 PMCID: PMC5364140 DOI: 10.3389/fimmu.2017.00325] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/23/2022] Open
Abstract
The T cell lineage is commonly divided into CD4-expressing helper T cells that polarize immune responses through cytokine secretion and CD8-expressing cytotoxic T cells that eliminate infected target cells by virtue of the release of cytotoxic molecules. Recently, a population of CD4+ T cells that conforms to the phenotype of cytotoxic CD8+ T cells has received increased recognition. These cytotoxic CD4+ T cells display constitutive expression of granzyme B and perforin at the protein level and mediate HLA class II-dependent killing of target cells. In humans, this cytotoxic profile is found within the human cytomegalovirus (hCMV)-specific, but not within the influenza- or Epstein–Barr virus-specific CD4+ T cell populations, suggesting that, in particular, hCMV infection induces the formation of cytotoxic CD4+ T cells. We have previously described that the transcription factor Homolog of Blimp-1 in T cells (Hobit) is specifically upregulated in CD45RA+ effector CD8+ T cells that arise after hCMV infection. Here, we describe the expression pattern of Hobit in human CD4+ T cells. We found Hobit expression in cytotoxic CD4+ T cells and accumulation of Hobit+ CD4+ T cells after primary hCMV infection. The Hobit+ CD4+ T cells displayed highly overlapping characteristics with Hobit+ CD8+ T cells, including the expression of cytotoxic molecules, T-bet, and CX3CR1. Interestingly, γδ+ T cells that arise after hCMV infection also upregulate Hobit expression and display a similar effector phenotype as cytotoxic CD4+ and CD8+ T cells. These findings suggest a shared differentiation pathway in CD4+, CD8+, and γδ+ T cells that may involve Hobit-driven acquisition of long-lived cytotoxic effector function.
Collapse
Affiliation(s)
- Anna E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Amsterdam , Netherlands
| | - Felipe A Vieira Braga
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Amsterdam , Netherlands
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands; Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam-Zuidoost, Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Amsterdam , Netherlands
| | - Kirsten M L Hertoghs
- Department of Experimental Immunology, Academic Medical Center , Amsterdam , Netherlands
| | - Jianmin Zuo
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham , Edgbaston, Birmingham , UK
| | - Paul A Moss
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham , Edgbaston, Birmingham , UK
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Amsterdam , Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory , Amsterdam , Netherlands
| |
Collapse
|