1
|
Gao H, Wu H, Ning L, Zhou L, Cao M, Huang W, Xie X, Wu H, Chen X, Chen F, Song J, Deng K, Chen P. Transplantation of the MSLN-deficient Thymus Generates MSLN Epitope Reactive T Cells to Attenuate Tumor Progression. Cancer Sci 2025; 116:871-883. [PMID: 39853704 PMCID: PMC11967271 DOI: 10.1111/cas.16458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
The development of mesothelin (MSLN) epitope reactive T cells is observed in mice that are immunized with the MSLN vaccine. Engineered T cells expressing MSLN-reactive high-affinity TCR exhibit extraordinary therapeutic effects for invasive pancreatic ductal adenocarcinoma in a mouse model. However, the generation of MSLN-reactive T cells through the introduction of MSLN-deficient thymus and the transplantation of the latter as a cure for cancer treatment have not been tested to date. In the present study, the expression of MSLN was mainly identified in medullary thymic epithelial cells (mTECs) but not in hematopoietic cells, cortical thymic epithelial cells (cTECs), endothelial cells, or fibroblast cells in the thymus. The increasement of activated T cells was observed in MSLN-expressing tumors from MSLN-deficient mice, indicating that MSLN-reactive T cells had developed. Finally, in an AOM-DSS-induced mouse model of colorectal cancer (CRC), transplantation of MSLN-deficient thymus repressed the progression of CRC, accompanied by an increased number of IFNγ-expressing T lymphocytes in the tumors. The data from this study demonstrated that ectopic transplantation of MSLN-deficient thymus induced MSLN-specific antitumor responses to MSLN-expressing tumors, and thus attenuated tumor progression.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Central HospitalShenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney DiseaseShenzhenGuangdongChina
| | - Haiyan Wu
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Lvwen Ning
- Department of Medical LaboratoryShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Liying Zhou
- Department of GynaecologyShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Mengtao Cao
- Department of Medical LaboratoryShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Wenting Huang
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Xihong Xie
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Haidong Wu
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Xiehui Chen
- Department of Medical LaboratoryShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Feiqiang Chen
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Jinqi Song
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Kai Deng
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| | - Pengfei Chen
- Department of Traumatic OrthopedicsShenzhen Longhua District Central HospitalShenzhenGuangdongChina
| |
Collapse
|
2
|
O'Hara J, Dakle P, Nguyen MLT, Barugahare A, Bennett TJ, Udupa VAV, Murray N, Schlegel G, Kapouleas C, Li J, Turner SJ, Russ BE. Notch dependent chromatin remodeling enables Gata3 binding and drives lineage specific CD8 + T cell function. Immunol Cell Biol 2025; 103:365-382. [PMID: 40012375 PMCID: PMC11964803 DOI: 10.1111/imcb.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Activation of CD8+ T cells enable them to control virus infections and tumors. This process involves the differentiation of naïve CD8+ T cells into effector and memory states, driven by specific transcription factors (TFs). Previously, we have shown that Granzyme A (Gzma) induction in activated CD8+ T cells depends on Gata3 and the establishment of a permissive chromatin landscape at the Gzma locus. Interestingly, Gzma expression is independent of IL-4 signaling, which typically upregulates Gata3 in CD4+ T cells, suggesting an alternative pathway for Gata3 induction. Here we demonstrate that Notch signals during CD8+ T cell activation promote Gzma expression. Inhibition of Notch signaling or loss of the Notch transactivator Rbp-j leads to reduced Gzma expression, with transcriptionally repressive chromatin at the Gzma locus. The genome targets of Gata3 differ in effector CD8+ T cells activated with IL-4 compared with those activated with Notch signals or isolated after IAV infection. This indicates that the signals received during CD8+ T cell activation can alter the chromatin landscape, affecting Gata3 function. Furthermore, Gata3 deficiency results in reduced IAV-specific CD8+ T cell responses and decreased Gzma expression, although the Gzma locus maintains a permissive chromatin landscape. These findings suggest that Notch signals received by virus-specific CD8+ T cells prepare the chromatin landscape for Gata3 binding to CD8+ lineage-specific gene loci, promoting effective CD8+ T cell immunity.
Collapse
Affiliation(s)
- Jessie O'Hara
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Pushkar Dakle
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Michelle Ly Thai Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Adele Barugahare
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
- Monash Bioinformatics Platform, Monash Biomedical Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Taylah J Bennett
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Vibha AV Udupa
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Nicholas Murray
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Gemma Schlegel
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Constantine Kapouleas
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Jasmine Li
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Stephen J Turner
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Brendan E Russ
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
3
|
Liatsos GD, Mariolis I, Hadziyannis E, Bamias A, Vassilopoulos D. Review of BCG immunotherapy for bladder cancer. Clin Microbiol Rev 2025; 38:e0019423. [PMID: 39932308 PMCID: PMC11905372 DOI: 10.1128/cmr.00194-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
SUMMARYFor several decades, intravesical Bacillus Calmette-Guérin (iBCG) immunotherapy has been the gold standard adjuvant treatment for high-risk and selected intermediate-risk patients with non-muscle-invasive bladder cancer (NMIBC). In this review, the mechanisms of iBCG immune-mediated anti-cancer activity and resistance are presented. Furthermore, a literature review of short-term and systemic iBCG-related side effects was performed. A high incidence (75.5%) of iBCG-related short-term, self-limiting adverse events was observed, while more severe iBCG-related local/systemic complications (iBCG-rL/SCs) that required medical treatment or hospitalization occurred at a lower rate (2.35%). Disseminated was the most common form of iBCG-rSCs, while two-thirds of the cases were classified as infectious. The implementation of molecular-based techniques resulted in significantly higher diagnostic rates. Anti-tuberculous treatment (ATT) is the mainstay of treatment, while in patients with any iBCG-rL/SC form involving the vasculature, ATT should be combined with surgery. Local and osteoarticular forms have the lowest mortality, but their management necessitates severe and debilitating surgical procedures. The overall iBCG-attributed mortality in patients with iBCG-rL/SC was 7.4%, with disseminated, vascular, and lung involvements exhibiting the highest rates. Given the global shortage of BCG for the last two decades, as well as the paucity of effective options for iBCG-refractory or relapsing NMIBC patients, new therapeutic strategies are being tested with promising early results.
Collapse
Affiliation(s)
- George D. Liatsos
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Ilias Mariolis
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Emilia Hadziyannis
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Attikon University General Hospital, Athens, Greece
| | - Dimitrios Vassilopoulos
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| |
Collapse
|
4
|
Fajardo-Despaigne JE, Lombard-Vadnais F, Pelletier AN, Olazabal A, Boutin L, Pasquin S, Janelle V, Legault L, Delisle JS, Hillhouse EE, Coderre L, Lesage S. Characterization and effective expansion of CD4 -CD8 - TCRαβ + T cells from individuals living with type 1 diabetes. Mol Ther Methods Clin Dev 2025; 33:101400. [PMID: 39877593 PMCID: PMC11772147 DOI: 10.1016/j.omtm.2024.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025]
Abstract
CD4-CD8- TCRαβ+ (double-negative [DN]) T cells represent a rare T cell population that promotes immunological tolerance through various cytotoxic mechanisms. In mice, autologous transfer of DN T cells has shown protective effects against autoimmune diabetes and graft-versus-host disease. Here, we characterized human DN T cells from people living with type 1 diabetes (PWT1D) and healthy controls. We found that while DN T cells and CD8+ T cells share many similarities, DN T cells are a unique T cell population, both at the transcriptomic and protein levels. We also show that by using various cytokine combinations, human DN T cells can be expanded in vitro up to 1,000-fold (mean >250-fold) and remain functional post-expansion. In addition, we report that DN T cells from PWT1D display a phenotype comparable to that of healthy controls, efficiently expand, and are highly functional. As DN T cells are immunoregulatory and can prevent T1D in various mouse models, these observations suggest that autologous DN T cells may be amenable to therapy for the prevention or treatment of T1D.
Collapse
Affiliation(s)
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | | | - Aïnhoa Olazabal
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Lucie Boutin
- Département de Recherche Clinique, CIUSSS de l’Est-de-l’Île-de-Montréal, Montréal, QC, Canada
| | - Sarah Pasquin
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Valérie Janelle
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Laurent Legault
- Département de Recherche Clinique, CIUSSS de l’Est-de-l’Île-de-Montréal, Montréal, QC, Canada
- Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Jean-Sébastien Delisle
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Erin E. Hillhouse
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Lise Coderre
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Lesage
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Bacha R, Alwisi N, Ismail R, Pedersen S, Al-Mansoori L. Unveiling GATA3 Signaling Pathways in Health and Disease: Mechanisms, Implications, and Therapeutic Potential. Cells 2024; 13:2127. [PMID: 39768217 PMCID: PMC11674286 DOI: 10.3390/cells13242127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
GATA binding protein 3 (GATA3), a member of the GATA family transcription factors, is a key player in various physiological and pathological conditions. It is known for its ability to bind to the DNA sequence "GATA", which enables its key role in critical processes in multiple tissues and organs including the immune system, endocrine system, and nervous system. GATA3 also modulates cell differentiation, proliferation, and apoptosis via controlling gene expression. In physiological instances, GATA3 is crucial for maintaining immunological homeostasis by mediating the development of naïve T cells into T helper 2 (Th2). In addition, GATA3 has been demonstrated to play a variety of cellular roles in the growth and maintenance of mammary gland, neuronal, and renal tissues. Conversely, the presence of impaired GATA3 is associated with a variety of diseases, including neurodegenerative diseases, autoimmune diseases, and cancers. Additionally, the altered expression of GATA3 contributes to the worsening of disease progression in hematological malignancies, such as T-cell lymphomas. Therefore, this review explores the multifaceted roles and signaling pathways of GATA3 in health and disease, with a particular emphasis on its potential as a therapeutic and prognostic target for the effective management of diseases.
Collapse
Affiliation(s)
- Rim Bacha
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Nouran Alwisi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Rana Ismail
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Shona Pedersen
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (R.B.); (N.A.); (R.I.)
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
6
|
Wang X, Zhao L, Song X, Wu X, Krishnamurthy S, Semba T, Shao S, Knafl M, Coffer LW, Alexander A, Vines A, Bopparaju S, Woodward WA, Chu R, Zhang J, Yam C, Loo LWM, Nasrazadani A, Huong LP, Woodman SE, Futreal A, Tripathy D, Ueno NT. Genomic and transcriptomic analyses identify distinctive features of triple-negative inflammatory breast cancer. NPJ Precis Oncol 2024; 8:265. [PMID: 39558017 PMCID: PMC11574056 DOI: 10.1038/s41698-024-00729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024] Open
Abstract
Triple-negative inflammatory breast cancer (TN-IBC) is the most aggressive type of breast cancer, yet its defining genomic, molecular, and immunological features remain largely unknown. In this study, we performed the largest and most comprehensive genomic and transcriptomic analyses of prospectively collected TN-IBC patient samples from a phase II clinical trial (ClinicalTrials.gov, NCT02876107, registered on August 22, 2016) and compared them to similarly analyzed stage III TN-non-IBC patient samples (ClinicalTrials.gov, NCT02276443, registered on October 21, 2014). We found that TN-IBC tumors have distinctive genomic, molecular, and immunological characteristics, including a lower tumor mutation load than TN-non-IBC, and an association of immunosuppressive tumor-infiltrating immune components with an unfavorable response to neoadjuvant chemotherapy. To our knowledge, this is the only study in which TN-IBC and TN-non-IBC samples were collected prospectively. Our analysis improves the understanding of the molecular landscape of the most aggressive subtype of breast cancer. Further studies are needed to discover novel prognostic biomarkers and druggable targets for TN-IBC.
Collapse
Affiliation(s)
- Xiaoping Wang
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Hawai'i Cancer Center, Honolulu, HI, USA.
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Takashi Semba
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Shao
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Knafl
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Larry W Coffer
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angela Alexander
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita Vines
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Bopparaju
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Randy Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Azadeh Nasrazadani
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le-Petross Huong
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott E Woodman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Hawai'i Cancer Center, Honolulu, HI, USA.
| |
Collapse
|
7
|
Iguchi T, Toma-Hirano M, Takanashi M, Masai H, Miyatake S. Loss of a single Zn finger, but not that of two Zn fingers, of GATA3 drives skin inflammation. Genes Cells 2024. [PMID: 39435584 DOI: 10.1111/gtc.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Transcription factor GATA3 is essential for the developmental processes of T cells. Recently, the silencer of a cytokine IFNγ gene was identified, the inhibitory activity of which requires GATA3. GATA3 has 2 Zn fingers and the commonly used GATA3 deficient mice lack both fingers (D2). We have established a mouse line that lacks only one Zn finger close to the C terminus (D1). The D1 mice line developed dermatitis, which was not observed in D2 mice. The expression of S100a8/S100a9 was elevated in D1 to a level higher than in D2, suggesting their roles in dermatitis development. CD8 T cells of both D1 and D2 lines expressed inhibitory receptors associated with the exhausted state. In the absence of MHC class II, the skin inflammation was exacerbated in both lines. The gene expression pattern of CD8 T cells became similar to that of effector T cells. Blocking Ab against LAG3 upregulated the expression of the effector molecules of T cells. These results suggest that the disfunction of GATA3 can lead to the spontaneous activation of CD8 T cells that causes skin inflammation, and that suppressive activity of MHC class II - LAG3 interaction ameliorates dermatitis development.
Collapse
Affiliation(s)
- Tomohiro Iguchi
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Makiko Toma-Hirano
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, Itabashi, Japan
| | - Masakatsu Takanashi
- Department of Pathology, Graduate School of Environmental Health Sciences, Azabu University, Sagamihara, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Shoichiro Miyatake
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
- Department of Immunology, Graduate School of Environmental Health Sciences, Azabu University, Sagamihara, Japan
| |
Collapse
|
8
|
Zhu J, Wang Y, Chang WY, Malewska A, Napolitano F, Gahan JC, Unni N, Zhao M, Yuan R, Wu F, Yue L, Guo L, Zhao Z, Chen DZ, Hannan R, Zhang S, Xiao G, Mu P, Hanker AB, Strand D, Arteaga CL, Desai N, Wang X, Xie Y, Wang T. Mapping cellular interactions from spatially resolved transcriptomics data. Nat Methods 2024; 21:1830-1842. [PMID: 39227721 DOI: 10.1038/s41592-024-02408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Cell-cell communication (CCC) is essential to how life forms and functions. However, accurate, high-throughput mapping of how expression of all genes in one cell affects expression of all genes in another cell is made possible only recently through the introduction of spatially resolved transcriptomics (SRT) technologies, especially those that achieve single-cell resolution. Nevertheless, substantial challenges remain to analyze such highly complex data properly. Here, we introduce a multiple-instance learning framework, Spacia, to detect CCCs from data generated by SRTs, by uniquely exploiting their spatial modality. We highlight Spacia's power to overcome fundamental limitations of popular analytical tools for inference of CCCs, including losing single-cell resolution, limited to ligand-receptor relationships and prior interaction databases, high false positive rates and, most importantly, the lack of consideration of the multiple-sender-to-one-receiver paradigm. We evaluated the fitness of Spacia for three commercialized single-cell resolution SRT technologies: MERSCOPE/Vizgen, CosMx/NanoString and Xenium/10x. Overall, Spacia represents a notable step in advancing quantitative theories of cellular communications.
Collapse
Affiliation(s)
- James Zhu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Woo Yong Chang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alicia Malewska
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fabiana Napolitano
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey C Gahan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nisha Unni
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Zhao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rongqing Yuan
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fangjiang Wu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren Yue
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhuo Zhao
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Raquibul Hannan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Siyuan Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Douglas Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Neil Desai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xinlei Wang
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, USA.
- Division of Data Science, College of Science, University of Texas at Arlington, Arlington, TX, USA.
| | - Yang Xie
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Parmar R, Pickering H, Ahn R, Rossetti M, Gjertson DW, Ruffin F, Chan LC, Fowler VG, Yeaman MR, Reed EF. Integrated transcriptomic analysis reveals immune signatures distinguishing persistent versus resolving outcomes in MRSA bacteremia. Front Immunol 2024; 15:1373553. [PMID: 38846955 PMCID: PMC11153731 DOI: 10.3389/fimmu.2024.1373553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Staphylococcus aureus bacteremia (SAB) is a life-threatening infection particularly involving methicillin-resistant S. aureus (MRSA). In contrast to resolving MRSA bacteremia (RB), persistent MRSA bacteremia (PB) blood cultures remain positive despite appropriate antibiotic treatment. Host immune responses distinguishing PB vs. RB outcomes are poorly understood. Here, integrated transcriptomic, IL-10 cytokine levels, and genomic analyses sought to identify signatures differentiating PB vs. RB outcomes. Methods Whole-blood transcriptomes of propensity-matched PB (n=28) versus RB (n=30) patients treated with vancomycin were compared in one independent training patient cohort. Gene expression (GE) modules were analyzed and prioritized relative to host IL-10 cytokine levels and DNA methyltransferase-3A (DNMT3A) genotype. Results Differential expression of T and B lymphocyte gene expression early in MRSA bacteremia discriminated RB from PB outcomes. Significant increases in effector T and B cell signaling pathways correlated with RB, lower IL-10 cytokine levels and DNMT3A heterozygous A/C genotype. Importantly, a second PB and RB patient cohort analyzed in a masked manner demonstrated high predictive accuracy of differential signatures. Discussion Collectively, the present findings indicate that human PB involves dysregulated immunity characterized by impaired T and B cell responses associated with excessive IL-10 expression in context of the DNMT3A A/A genotype. These findings reveal distinct immunologic programs in PB vs. RB outcomes, enable future studies to define mechanisms by which host and/or pathogen drive differential signatures and may accelerate prediction of PB outcomes. Such prognostic assessment of host risk could significantly enhance early anti-infective interventions to avert PB and improve patient outcomes.
Collapse
Affiliation(s)
- Rajesh Parmar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Richard Ahn
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - David W. Gjertson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Felicia Ruffin
- Division of Infectious Diseases, Duke University, Durham, NC, United States
| | - Liana C. Chan
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Divisions of Molecular Medicine and Infectious Diseases, Los Angeles County Harbor-UCLA Medical Center, Torrance, CA, United States
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Vance G. Fowler
- Division of Infectious Diseases, Duke University, Durham, NC, United States
| | - Michael R. Yeaman
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Divisions of Molecular Medicine and Infectious Diseases, Los Angeles County Harbor-UCLA Medical Center, Torrance, CA, United States
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
11
|
Terzoli S, Marzano P, Cazzetta V, Piazza R, Sandrock I, Ravens S, Tan L, Prinz I, Balin S, Calvi M, Carletti A, Cancellara A, Coianiz N, Franzese S, Frigo A, Voza A, Calcaterra F, Di Vito C, Della Bella S, Mikulak J, Mavilio D. Expansion of memory Vδ2 T cells following SARS-CoV-2 vaccination revealed by temporal single-cell transcriptomics. NPJ Vaccines 2024; 9:63. [PMID: 38509155 PMCID: PMC10954735 DOI: 10.1038/s41541-024-00853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
γδ T cells provide rapid cellular immunity against pathogens. Here, we conducted matched single-cell RNA-sequencing and γδ-TCR-sequencing to delineate the molecular changes in γδ T cells during a longitudinal study following mRNA SARS-CoV-2 vaccination. While the first dose of vaccine primes Vδ2 T cells, it is the second administration that significantly boosts their immune response. Specifically, the second vaccination uncovers memory features of Vδ2 T cells, shaped by the induction of AP-1 family transcription factors and characterized by a convergent central memory signature, clonal expansion, and an enhanced effector potential. This temporally distinct effector response of Vδ2 T cells was also confirmed in vitro upon stimulation with SARS-CoV-2 spike-peptides. Indeed, the second challenge triggers a significantly higher production of IFNγ by Vδ2 T cells. Collectively, our findings suggest that mRNA SARS-CoV-2 vaccination might benefit from the establishment of long-lasting central memory Vδ2 T cells to confer protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
| | - Paolo Marzano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Likai Tan
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Balin
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Michela Calvi
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Anna Carletti
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Assunta Cancellara
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Nicolò Coianiz
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Sara Franzese
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Alessandro Frigo
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Pieve Emanuele, Italy
- Department of Biomedical Unit, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Francesca Calcaterra
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Clara Di Vito
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Silvia Della Bella
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy.
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
12
|
Zhou Q, Sun Q, Shen Q, Li X, Qian J. Development and implementation of a prognostic model for clear cell renal cell carcinoma based on heterogeneous TLR4 expression. Heliyon 2024; 10:e25571. [PMID: 38380017 PMCID: PMC10877190 DOI: 10.1016/j.heliyon.2024.e25571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Objective Clear cell renal cell carcinoma (ccRCC) is the most common subtype among renal cell carcinomas and has the worst prognosis, originating from renal tubular epithelial cells. Toll-like receptor 4 (TLR4) plays a crucial role in ccRCC proliferation, infiltration, and metastasis. The aim of this study was to construct a prognostic scoring model for ccRCC based on TLR4 expression heterogeneity and to explore its association with immune infiltration, thereby providing insights for the treatment and prognostic evaluation of ccRCC. Methods Using R software, a differential analysis was conducted on normal samples and ccRCC samples, and in conjunction with the KEGG database, a correlation analysis for the clear cell renal cell carcinoma pathway (hsa05211) was carried out. We observed the expression heterogeneity of TLR4 in the TCGA-KIRC cohort and identified its related differential genes (TRGs). Based on the expression levels of TRGs, consensus clustering was employed to identify TLR4-related subtypes, and further clustering heatmaps, principal component, and single-sample gene set enrichment analyses were conducted. Overlapping differential genes (ODEGs) between subtypes were analysed, and combined with survival data, univariate Cox regression, LASSO, and multivariate Cox regression were used to establish a prognostic risk model for ccRCC. This model was subsequently evaluated through ROC analysis, risk factor correlation analysis, independent prognostic factor analysis, and intergroup differential analysis. The ssGSEA model was employed to explore immune heterogeneity in ccRCC, and the performance of the model in predicting patient prognosis was evaluated using box plots and the oncoPredict software package. Results In the TCGA-KIRC cohort, TLR4 expression was notably elevated in ccRCC samples compared to normal samples, correlating with improved survival in the high-expression group. The study identified distinct TLR4-related differential genes and categorized ccRCC into three subtypes with varied survival outcomes. A risk prognosis model based on overlapping differential genes was established, showing significant associations with immune cell infiltration and key immune checkpoints (PD-1, PD-L1, CTLA4). Additionally, drug sensitivity differences were observed between risk groups. Conclusion In the TCGA-KIRC cohort, the expression of TLR4 in ccRCC samples exhibited significant heterogeneity. Through clustering analysis, we identified that the primary immune cells across subtypes are myeloid-derived suppressor cells, central memory CD4 T cells, and regulatory T cells. Furthermore, we successfully constructed a prognostic risk model for ccRCC composed of 17 genes. This model provides valuable references for the prognosis prediction and treatment of ccRCC patients.
Collapse
Affiliation(s)
- Qingbo Zhou
- Department of Internal Medicine, Shaoxing Yuecheng People's Hospital, Shaoxing, China
| | - Qiang Sun
- Department of Internal Medicine, Shaoxing Yuecheng People's Hospital, Shaoxing, China
| | - Qi Shen
- Department of Internal Medicine, Shaoxing Yuecheng People's Hospital, Shaoxing, China
| | - Xinsheng Li
- Department of Internal Medicine, Shaoxing Yuecheng People's Hospital, Shaoxing, China
| | - Jijiang Qian
- Department of Medical Imaging, Shaoxing Yuecheng People's Hospital, Shaoxing, China
| |
Collapse
|
13
|
Zhu J, Wang Y, Chang WY, Malewska A, Napolitano F, Gahan JC, Unni N, Zhao M, Yuan R, Wu F, Yue L, Guo L, Zhao Z, Chen DZ, Hannan R, Zhang S, Xiao G, Mu P, Hanker AB, Strand D, Arteaga CL, Desai N, Wang X, Xie Y, Wang T. Mapping Cellular Interactions from Spatially Resolved Transcriptomics Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558298. [PMID: 37781617 PMCID: PMC10541142 DOI: 10.1101/2023.09.18.558298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Cell-cell communication (CCC) is essential to how life forms and functions. However, accurate, high-throughput mapping of how expression of all genes in one cell affects expression of all genes in another cell is made possible only recently, through the introduction of spatially resolved transcriptomics technologies (SRTs), especially those that achieve single cell resolution. However, significant challenges remain to analyze such highly complex data properly. Here, we introduce a Bayesian multi-instance learning framework, spacia, to detect CCCs from data generated by SRTs, by uniquely exploiting their spatial modality. We highlight spacia's power to overcome fundamental limitations of popular analytical tools for inference of CCCs, including losing single-cell resolution, limited to ligand-receptor relationships and prior interaction databases, high false positive rates, and most importantly the lack of consideration of the multiple-sender-to-one-receiver paradigm. We evaluated the fitness of spacia for all three commercialized single cell resolution ST technologies: MERSCOPE/Vizgen, CosMx/Nanostring, and Xenium/10X. Spacia unveiled how endothelial cells, fibroblasts and B cells in the tumor microenvironment contribute to Epithelial-Mesenchymal Transition and lineage plasticity in prostate cancer cells. We deployed spacia in a set of pan-cancer datasets and showed that B cells also participate in PDL1/PD1 signaling in tumors. We demonstrated that a CD8+ T cell/PDL1 effectiveness signature derived from spacia analyses is associated with patient survival and response to immune checkpoint inhibitor treatments in 3,354 patients. We revealed differential spatial interaction patterns between γδ T cells and liver hepatocytes in healthy and cancerous contexts. Overall, spacia represents a notable step in advancing quantitative theories of cellular communications.
Collapse
Affiliation(s)
- James Zhu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, OH, 45221, USA
| | - Woo Yong Chang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alicia Malewska
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Fabiana Napolitano
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeffrey C. Gahan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nisha Unni
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Min Zhao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rongqing Yuan
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Fangjiang Wu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lauren Yue
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhuo Zhao
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Danny Z. Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Raquibul Hannan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Siyuan Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ariella B. Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Douglas Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlos L. Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Neil Desai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xinlei Wang
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019, USA
- Center for Data Science Research and Education, College of Science, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
14
|
Li L, Liu Y, Zhou W, Yang C, Feng T, Li H. Human chorionic gonadotrophin indirectly activates peripheral γδT cells to produce interleukin-10 during early pregnancy. Immun Inflamm Dis 2024; 12:e1119. [PMID: 38270320 PMCID: PMC10777880 DOI: 10.1002/iid3.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUNDS The immunomodulatory properties of human chorionic gonadotrophin (hCG) have been identified to be critical for successful pregnancy. However, the effects of hCG on peripheral γδT cells during early pregnancy have not been reported previously. METHODS We cocultured the purified γδT cells and peripheral blood mononuclear cells (PBMCs) with early pregnancy-relevant hCG concentrations and investigated the changes in the immune functional characteristics of γδT cells via flow cytometry assays. RESULTS The ratios of CD69+ and IL-10+ γδT cells were increased in early pregnant women compared to nonpregnant women. γδT cells expressed low levels of the mannose receptor (CD206) instead of the classical hCG/LH receptor for hCG. The direct treatment of purified γδT cells with early pregnancy-relevant hCG concentrations may have no significant effects on their immune functions. Interestingly, when PBMCs were treated with the same broad range of hCG concentrations, the ratios of CD69+ and IL-10+ γδT cells to total γδT cells were significantly increased. CONCLUSION Certain early pregnancy-relevant hCG concentrations could enhance the ratios of peripheral CD69+ and IL-10+ γδT cells, contributing to the activation of γδT cells and immunological tolerance during early pregnancy. However, these affects may not be strongly mediated by direct ligand-receptor interactions and they may highly depend on immune microenvironment. Our novel observations propose a perspective into the endocrine-immune dialog that exists between the fetus and maternal immune cells.
Collapse
Affiliation(s)
- Liman Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| | - Yuan Liu
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| | - Wenjie Zhou
- Department of Laboratory Medicine, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Chuan Yang
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease‐Related Molecular NetworkSichuan UniversityChengduChina
| | - Ting Feng
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University HospitalSichuan UniversityChengduChina
| |
Collapse
|
15
|
Malik B, Bartlett NW, Upham JW, Nichol KS, Harrington J, Wark PAB. Severe asthma ILC2s demonstrate enhanced proliferation that is modified by biologics. Respirology 2023; 28:758-766. [PMID: 37114915 PMCID: PMC10946917 DOI: 10.1111/resp.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Type 2 (T2) innate lymphoid cells (ILC2s) contribute to airway inflammation and disease in asthma. We hypothesize that ILC2s isolated from people with severe allergic and eosinophilic asthma would exhibit an enhanced T2 inflammatory activity that would be altered following treatment with mepolizumab and omalizumab. We compare peripheral blood (PB) isolated ILC2's proliferative capacity, IL-5 and IL-13 secretion and phenotype between healthy without asthma (HC), non-asthma allergic (NAA), mild asthma (MA) and severe allergic and eosinophilic asthma (SA) subjects. We then determined the impact of 6 months treatment with either mepolizumab or omalizumab on ILC2s physiology of SA subjects. METHODS ILC2s were sorted and cultured in the presence of IL-2, IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) for 14 days. ILC2s proliferation, phenotypes and functions were assessed using flowcytometry. The ILC2s response was then reassessed following clinically successful treatment of SA subjects with mepolizumab and omalizumab. RESULTS SA ILC2s demonstrated increased proliferative capacity, TSLP receptor (TSLPR), GATA3 and NFATc1 protein expressions and increased IL-5 and IL-13 release. ILC2s were also capable of releasing IL-6 in response to stimulation. Mepolizumab treatment reduced ILC2s proliferative capacity and expression of TSLPR, GATA3 and NFATc1. Both mepolizumab and omalizumab were associated with reduced ILC2s release of IL-5 and IL-13, only mepolizumab reduced IL-6. CONCLUSION ILC2s from severe allergic and eosinophilic asthma demonstrated an active phenotype typified by increased proliferation, TSLPR, GATA3 and NFATc1 expression and increased IL-5, IL-13 and IL-6 release. Mepolizumab reduced markers of ILC2s activation.
Collapse
Affiliation(s)
- Bilal Malik
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Nathan W. Bartlett
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John W. Upham
- Department of Respiratory MedicinePrincess Alexandra HospitalBrisbaneQueenslandAustralia
| | - Kristy S. Nichol
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John Harrington
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| | - Peter A. B. Wark
- Immune Health Program, Hunter Medical Research InstituteUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
16
|
Korchagina AA, Shein SA, Koroleva E, Tumanov AV. Transcriptional control of ILC identity. Front Immunol 2023; 14:1146077. [PMID: 36969171 PMCID: PMC10033543 DOI: 10.3389/fimmu.2023.1146077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are heterogeneous innate immune cells which participate in host defense, mucosal repair and immunopathology by producing effector cytokines similarly to their adaptive immune cell counterparts. The development of ILC1, 2, and 3 subsets is controlled by core transcription factors: T-bet, GATA3, and RORγt, respectively. ILCs can undergo plasticity and transdifferentiate to other ILC subsets in response to invading pathogens and changes in local tissue environment. Accumulating evidence suggests that the plasticity and the maintenance of ILC identity is controlled by a balance between these and additional transcription factors such as STATs, Batf, Ikaros, Runx3, c-Maf, Bcl11b, and Zbtb46, activated in response to lineage-guiding cytokines. However, how interplay between these transcription factors leads to ILC plasticity and the maintenance of ILC identity remains hypothetical. In this review, we discuss recent advances in understanding transcriptional regulation of ILCs in homeostatic and inflammatory conditions.
Collapse
|
17
|
Weiss J, Reneau J, Wilcox RA. PTCL, NOS: An update on classification, risk-stratification, and treatment. Front Oncol 2023; 13:1101441. [PMID: 36845711 PMCID: PMC9947853 DOI: 10.3389/fonc.2023.1101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
The peripheral T-cell lymphomas (PTCL) are relatively rare, heterogeneous, and therapeutically challenging. While significant therapeutic gains and improved understanding of disease pathogenesis have been realized for selected PTCL subtypes, the most common PTCL in North America remains "not otherwise specified (NOS)" and is an unmet need. However, improved understanding of the genetic landscape and ontogeny for the PTCL subtypes currently classified as PTCL, NOS have been realized, and have significant therapeutic implications, which will be reviewed here.
Collapse
Affiliation(s)
- Jonathan Weiss
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, United States
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Abstract
Innate lymphoid cells (ILCs) are transcriptionally and functionally similar to T cells but lack adaptive antigen receptors. They play critical roles in early defense against pathogens. In this review, we summarize recent discoveries of ILC progenitors and discuss possible mechanisms that separate ILCs from T cells. We consider mechanisms of lineage specification in early ILC development and also examine whether differences exist between adult and fetal ILC development.
Collapse
Affiliation(s)
- Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| | | | - Arundhoti Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Geng X, Wang C, Gao X, Chowdhury P, Weiss J, Villegas JA, Saed B, Perera T, Hu Y, Reneau J, Sverdlov M, Wolfe A, Brown N, Harms P, Bailey NG, Inamdar K, Hristov AC, Tejasvi T, Montes J, Barrionuevo C, Taxa L, Casavilca S, de Pádua Covas Lage JLA, Culler HF, Pereira J, Runge JS, Qin T, Tsoi LC, Hong HS, Zhang L, Lyssiotis CA, Ohe R, Toubai T, Zevallos-Morales A, Murga-Zamalloa C, Wilcox RA. GATA-3 is a proto-oncogene in T-cell lymphoproliferative neoplasms. Blood Cancer J 2022; 12:149. [PMID: 36329027 PMCID: PMC9633835 DOI: 10.1038/s41408-022-00745-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Neoplasms originating from thymic T-cell progenitors and post-thymic mature T-cell subsets account for a minority of lymphoproliferative neoplasms. These T-cell derived neoplasms, while molecularly and genetically heterogeneous, exploit transcription factors and signaling pathways that are critically important in normal T-cell biology, including those implicated in antigen-, costimulatory-, and cytokine-receptor signaling. The transcription factor GATA-3 regulates the growth and proliferation of both immature and mature T cells and has recently been implicated in T-cell neoplasms, including the most common mature T-cell lymphoma observed in much of the Western world. Here we show that GATA-3 is a proto-oncogene across the spectrum of T-cell neoplasms, including those derived from T-cell progenitors and their mature progeny, and further define the transcriptional programs that are GATA-3 dependent, which include therapeutically targetable gene products. The discovery that p300-dependent acetylation regulates GATA-3 mediated transcription by attenuating DNA binding has novel therapeutic implications. As most patients afflicted with GATA-3 driven T-cell neoplasms will succumb to their disease within a few years of diagnosis, these findings suggest opportunities to improve outcomes for these patients.
Collapse
Affiliation(s)
- Xiangrong Geng
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Chenguang Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Xin Gao
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Pinki Chowdhury
- Department of Pediatrics, Dayton Children's Hospital, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Jonathan Weiss
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - José A Villegas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Ying Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maria Sverdlov
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Paul Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Nathanael G Bailey
- Division of Hematopathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Alexandra C Hristov
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jaime Montes
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - Luis Taxa
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - Sandro Casavilca
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - J Luís Alberto de Pádua Covas Lage
- Department of Hematology, Hemotherapy and Cell Therapy, Faculty of Medicine, Sao Paulo University, Laboratory of Medical Investigation 31 in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology, Sao Paulo, Brazil
| | - Hebert Fabrício Culler
- Department of Hematology, Hemotherapy and Cell Therapy, Faculty of Medicine, Sao Paulo University, Laboratory of Medical Investigation 31 in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology, Sao Paulo, Brazil
| | - Juliana Pereira
- Department of Hematology, Hemotherapy and Cell Therapy, Faculty of Medicine, Sao Paulo University, Non-Hodgkin's Lymphomas and Histiocytic Disorders, Sao Paulo, Brazil
| | - John S Runge
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hanna S Hong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Rintaro Ohe
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tomomi Toubai
- Department of Internal Medicine III, Division of Hematology and Cell Therapy, Yamagata University of Medicine, Yamagata, Japan
| | | | | | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Wang Y, Xiang Z, An M, Jia H, Bu C, Xue Y, Wei Y, Li R, Qi X, Cheng F, Zhao C, Xue J, Yang P. Livin promotes Th2-type immune response in airway allergic diseases. Immunol Res 2022; 70:624-632. [PMID: 35717553 PMCID: PMC9499890 DOI: 10.1007/s12026-022-09294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES To investigate the effects of livin on the Th2 immune response in airway allergic diseases (AAD) and explore the interaction among livin, GATA3, IL-4 in peripheral blood CD4+ T cells of AAD patients. METHODS WT mice and livin KO mice were developed for model of AAD. Th2 cell levels in the lung tissues and spleen were assessed by flow cytometry. Also, it was assessed in the culture after exposing to livin inhibitor (Lp-15); the protein and mRNA levels of livin, GATA3 and IL-4 in peripheral blood CD4+ T cells isolated from patients with or without AAD were measured by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting, respectively. Finally, Co-immunoprecipitation (Co-IP) was employed to identify the interaction between livin and GATA3. RESULTS Compared with WT mouse, Th2 cell frequency in lung tissues and spleen was significantly decreased in livin KO mouse; after adding Lp-15, the differentiation from Naive CD4+T cells in spleen to Th2 cells was blocked; the protein and mRNA levels of livin, GATA3 and IL-4 in AAD group were higher than that in control group. The levels of livin were positively correlated with IL-4, and GATA3 was also positively correlated with IL-4 and livin. GATA3 was detected in the protein complex co-precipitated with livin antibody, and livin was also detected in the protein complex co-precipitated by GATA3 antibody. CONCLUSION Livin increases the expression of IL-4 and facilitates naive CD4+ T cells to differentiate into Th2 cells, which triggers airway allergy.
Collapse
Affiliation(s)
- Yue Wang
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiyu Xiang
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Miaomiao An
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Huijing Jia
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chunyan Bu
- Department of Otolaryngology, Head & Neck Surgery, The First Hospital of Yulin, Yulin, China
| | - Yanfeng Xue
- Special Needs Ward, Shanxi Cancer Hospital, Taiyuan, China
| | - Yao Wei
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ruiying Li
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xueping Qi
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| | - Fengli Cheng
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| | - Changqing Zhao
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| | - Jinmei Xue
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China.
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China.
| | - Pingchang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
21
|
He F, Wang N, Yu X, Zheng Y, Liu Q, Chen Q, Pu J, Li N, Zou W, Li B, Ran P. GATA3/long noncoding RNA MHC-R regulates the immune activity of dendritic cells in chronic obstructive pulmonary disease induced by air pollution particulate matter. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129459. [PMID: 35780733 DOI: 10.1016/j.jhazmat.2022.129459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous illness associated with aberrant inflammatory immune reaction in the lung in response to noxious particles and gases. Our previous epidemiological studies discovered that long-term exposure to air pollution PM was associated with an increase in the incidence of COPD and lung function decline, but the impact of air pollution on the onset of COPD and its pathogenesis remains obscure. In recent years, long noncoding RNAs (lncRNAs) have been documented to have a crucial role in COPD. Our preliminary study found that the expression of lncRNA MHC-R in the lung tissues of rats exposed to air pollution PM was dramatically elevated, and the specific expression was mainly focused on the immune-related MHC I, antigen-presenting, and adaptive immune response. After transcription factor prediction, it was found that GATA3 could be combined with the specific sequence of the lncRNA MHC-R promoter region. Dendritic cells (DCs) are necessary antigen-presenting cells (APCs) with the most potent antigen-presenting function. We proved that GATA3/lncRNA MHC-R might regulate the immune activities of DCs to participate in the pathogenic mechanism of COPD induced by air pollution PM, which opens up a new way for early COPD diagnosis and treatment.
Collapse
Affiliation(s)
- Fang He
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Nian Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Xiaoyuan Yu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Yufan Zheng
- Zhongshan School of Medical, Sun Yat-sen University//Center for Pain Research, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, Guangdong 510000, China
| | - Qingzi Chen
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Jinding Pu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Naijian Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Weifeng Zou
- Guangzhou Chest Hospital, Guangzhou, Guangdong 510000, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
22
|
Hoog A, Villanueva-Hernández S, Razavi MA, van Dongen K, Eder T, Piney L, Chapat L, de Luca K, Grebien F, Mair KH, Gerner W. Identification of CD4 + T cells with T follicular helper cell characteristics in the pig. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 134:104462. [PMID: 35667468 DOI: 10.1016/j.dci.2022.104462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
T follicular helper (Tfh) cells provide help to germinal center B cells for affinity maturation, class switch and memory formation. Despite these important functions, this subset has not been studied in detail in pigs due to a lack of species-specific antibodies. We investigated putative Tfh cells from lymphoid tissues and blood of healthy pigs by using cross-reactive antibodies for inducible T-cell costimulator (ICOS) and B-cell lymphoma 6 (Bcl-6). In lymph nodes, we identified a CD4+ T cell population with an ICOS+Bcl-6+CD8α+ phenotype, reminiscent of human and murine germinal center Tfh cells. Within blood-derived CD4+ T cells, sorted ICOShiCD25- and ICOSdimCD25dim cells were able to induce the differentiation of CD21+IgM+ B cells into Ig-secreting plasmablasts. Compared to naïve CD4+ T cells, these two phenotypes were 3- to 7-fold enriched for cells expressing the Tfh-related transcripts CD28, CD40LG, IL6R and MAF, as identified by single-cell RNA sequencing. These results provide a first characterization of Tfh cells in swine and confirm their ability to provide B-cell help.
Collapse
Affiliation(s)
- Anna Hoog
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Sonia Villanueva-Hernández
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Mahsa Adib Razavi
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Katinka van Dongen
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Thomas Eder
- Institute for Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Austria
| | - Lauriane Piney
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Ludivine Chapat
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Karelle de Luca
- Laboratory of Veterinary Immunology, Global Innovation, Boehringer Ingelheim Animal Health, Lyon, France
| | - Florian Grebien
- Institute for Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Austria
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria; Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria; Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria.
| |
Collapse
|
23
|
Giles JR, Manne S, Freilich E, Oldridge DA, Baxter AE, George S, Chen Z, Huang H, Chilukuri L, Carberry M, Giles L, Weng NPP, Young RM, June CH, Schuchter LM, Amaravadi RK, Xu X, Karakousis GC, Mitchell TC, Huang AC, Shi J, Wherry EJ. Human epigenetic and transcriptional T cell differentiation atlas for identifying functional T cell-specific enhancers. Immunity 2022; 55:557-574.e7. [PMID: 35263570 PMCID: PMC9214622 DOI: 10.1016/j.immuni.2022.02.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/27/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
The clinical benefit of T cell immunotherapies remains limited by incomplete understanding of T cell differentiation and dysfunction. We generated an epigenetic and transcriptional atlas of T cell differentiation from healthy humans that included exhausted CD8 T cells and applied this resource in three ways. First, we identified modules of gene expression and chromatin accessibility, revealing molecular coordination of differentiation after activation and between central memory and effector memory. Second, we applied this healthy molecular framework to three settings-a neoadjuvant anti-PD1 melanoma trial, a basal cell carcinoma scATAC-seq dataset, and autoimmune disease-associated SNPs-yielding insights into disease-specific biology. Third, we predicted genome-wide cis-regulatory elements and validated this approach for key effector genes using CRISPR interference, providing functional annotation and demonstrating the ability to identify targets for non-coding cellular engineering. These studies define epigenetic and transcriptional regulation of human T cells and illustrate the utility of interrogating disease in the context of a healthy T cell atlas.
Collapse
Affiliation(s)
- Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Freilich
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek A Oldridge
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular Immunotherapies, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sangeeth George
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hua Huang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lakshmi Chilukuri
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Carberry
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lydia Giles
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nan-Ping P Weng
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular Immunotherapies, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi K Amaravadi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular Immunotherapies, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giorgos C Karakousis
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tara C Mitchell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
“Diagnostic and prognostic implications of tumor expression of the GATA-3 gene in nodal peripheral T-cell lymphoma (nPTCL): retrospective data from a Latin American cohort.”. Leuk Res 2022; 114:106794. [DOI: 10.1016/j.leukres.2022.106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/22/2022]
|
25
|
Bai F, Zheng C, Liu X, Chan HL, Liu S, Ma J, Ren S, Zhu WG, Pei XH. Loss of function of GATA3 induces basal-like mammary tumors. Am J Cancer Res 2022; 12:720-733. [PMID: 34976209 PMCID: PMC8692904 DOI: 10.7150/thno.65796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: GATA3 is a transcription factor essential for mammary luminal epithelial cell differentiation. Expression of GATA3 is absent or significantly reduced in basal-like breast cancers. Gata3 loss-of-function impairs cell proliferation, making it difficult to investigate the role of GATA3 deficiency in vivo. We previously demonstrated that CDK inhibitor p18INK4c (p18) is a downstream target of GATA3 and restrains mammary epithelial cell proliferation and tumorigenesis. Whether and how loss-of-function of GATA3 results in basal-like breast cancers remains elusive. Methods: We generated mutant mouse strains with heterozygous germline deletion of Gata3 in p18 deficient backgrounds and developed a Gata3 depleted mammary tumor model system to determine the role of Gata3 loss in controlling cell proliferation and aberrant differentiation in mammary tumor development and progression. Results: Haploid loss of Gata3 reduced mammary epithelial cell proliferation with induction of p18, impaired luminal differentiation, and promoted basal differentiation in mammary glands. p18 deficiency induced luminal type mammary tumors and rescued the proliferative defect caused by haploid loss of Gata3. Haploid loss of Gata3 accelerated p18 deficient mammary tumor development and changed the properties of these tumors, resulting in their malignant and luminal-to-basal transformation. Expression of Gata3 negatively correlated with basal differentiation markers in MMTV-PyMT mammary tumor cells. Depletion of Gata3 in luminal tumor cells also reduced cell proliferation with induction of p18 and promoted basal differentiation. We confirmed that expression of GATA3 and basal markers are inversely correlated in human basal-like breast cancers. Conclusions: This study provides the first genetic evidence demonstrating that loss-of-function of GATA3 directly induces basal-like breast cancer. Our finding suggests that basal-like breast cancer may also originate from luminal type cancer.
Collapse
|
26
|
Elsawy AA, Abol-Enein H, Laymon M, Ahmed AE, Essam A, Hamam ET, Zidan AAA, Zahran MH, Shokeir AA, Awadalla A. Predictive value of immunological markers after bacille Calmette-Guérin induction in bladder cancer. BJU Int 2021; 130:444-453. [PMID: 34448522 DOI: 10.1111/bju.15582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To investigate the predictive value of different immunological markers on treatment outcomes after bacille Calmette-Guérin (BCG) induction in high-risk non-muscle-invasive bladder cancer (NMIBC). PATIENTS AND METHODS Patients who underwent transurethral resection of bladder tumour for NMIBC were assessed for study eligibility. Urine and blood samples were taken from patients at baseline (immediately before first dose of induction) and after induction (4 h after last [sixth] dose). Urine samples were evaluated for interleukin (IL)-2 and IL-10 by solid-phase enzyme-linked immunosorbent assay. Blood samples were evaluated for tumour necrosis factor α (TNF-α), cytotoxic T-lymphocyte antigen 4 (CTLA-4) and transcription factors (TFs) (GATA-binding protein 3 [GATA3], T-box expressed in T cells [T-bet], and forkhead box protein 3 [FoxP3]) using quantitative reverse transcriptase-polymerase chain reaction analysis. Change pattern and fold change of each evaluable marker was assessed in relation to different treatment outcomes (initial complete response [ICR]/recurrence/progression). RESULTS Between July 2013 and May 2019, 204 patients were included. Among evaluable markers, urinary IL-2 and serum TNF-α increased in all patients, serum CTLA-4 and FoxP3+ showed a predominant decreased pattern in 188 (92.2%) and 192 (94.1%) patients, respectively. An ICR was achieved in 186 (91.2%) patients. Serum TNF-α fold change and urinary IL-10 change pattern were significantly associated with an ICR (P = 0.001 and P = 0.03, respectively). At a median (range) follow-up of 37 (20-88) months, 104 (56%) patients developed recurrence. Urinary IL-10, serum CTLA-4, T-bet+ , FoxP3+ change patterns and GATA3+ /T-bet+ ratio were significantly associated with tumour recurrence (P = 0.001, P = 0.001, P = 0.02, P = 0.009 and P = 0.001, respectively). Tumour progression occurred in 34 (18.3%) patients. Urinary IL-10, serum CTLA-4, serum T-bet+ change patterns and GATA3+ /T-bet+ ratio were independent predictors of tumour progression (P = 0.001, P = 0.001, P = 0.02 and P = 0.001, respectively). CONCLUSIONS Urinary IL-10 and serum TNF-α can significantly predict ICR. Moreover, change pattern of urinary IL-10, serum CTLA-4, TFs (GATA3, T-bet and FoxP3) and GATA3+ /T-bet+ ratio after BCG induction can independently predict further BCG response. These markers could be implemented in clinical practice when management options are discussed or in systems with severe BCG shortage.
Collapse
Affiliation(s)
- Amr A Elsawy
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | | | - Mahmoud Laymon
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Asmaa E Ahmed
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ahmed Essam
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Eman T Hamam
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Abdel-Aziz A Zidan
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mohamed H Zahran
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ahmed A Shokeir
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Amira Awadalla
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
27
|
Kasal DN, Liang Z, Hollinger MK, O'Leary CY, Lisicka W, Sperling AI, Bendelac A. A Gata3 enhancer necessary for ILC2 development and function. Proc Natl Acad Sci U S A 2021; 118:e2106311118. [PMID: 34353913 PMCID: PMC8364216 DOI: 10.1073/pnas.2106311118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type 2 helper effector program is driven by the master transcription factor GATA3 and can be expressed by subsets of both innate lymphoid cells (ILCs) and adaptive CD4+ T helper (Th) cells. While ILC2s and Th2 cells acquire their type 2 differentiation program under very different contexts, the distinct regulatory mechanisms governing this common program are only partially understood. Here we show that the differentiation of ILC2s, and their concomitant high level of GATA3 expression, are controlled by a Gata3 enhancer, Gata3 +674/762, that plays only a minimal role in Th2 cell differentiation. Mice lacking this enhancer exhibited defects in several but not all type 2 inflammatory responses, depending on the respective degree of ILC2 and Th2 cell involvement. Our study provides molecular insights into the different gene regulatory pathways leading to the acquisition of the GATA3-driven type 2 helper effector program in innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Zhitao Liang
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Maile K Hollinger
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, IL 60637
| | | | - Wioletta Lisicka
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637
| | - Anne I Sperling
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, IL 60637
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637;
- Department of Pathology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
28
|
E2A-regulated epigenetic landscape promotes memory CD8 T cell differentiation. Proc Natl Acad Sci U S A 2021; 118:2013452118. [PMID: 33859041 DOI: 10.1073/pnas.2013452118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During an acute viral infection, CD8 T cells encounter a myriad of antigenic and inflammatory signals of variable strength, which sets off individual T cells on their own differentiation trajectories. However, the developmental path for each of these cells will ultimately lead to one of only two potential outcomes after clearance of the infection-death or survival and development into memory CD8 T cells. How this cell fate decision is made remains incompletely understood. In this study, we explore the transcriptional changes during effector and memory CD8 T cell differentiation at the single-cell level. Using single-cell, transcriptome-derived gene regulatory network analysis, we identified two main groups of regulons that govern this differentiation process. These regulons function in concert with changes in the enhancer landscape to confer the establishment of the regulatory modules underlying the cell fate decision of CD8 T cells. Furthermore, we found that memory precursor effector cells maintain chromatin accessibility at enhancers for key memory-related genes and that these enhancers are highly enriched for E2A binding sites. Finally, we show that E2A directly regulates accessibility of enhancers of many memory-related genes and that its overexpression increases the frequency of memory precursor effector cells and accelerates memory cell formation while decreasing the frequency of short-lived effector cells. Overall, our results suggest that effector and memory CD8 T cell differentiation is largely regulated by two transcriptional circuits, with E2A serving as an important epigenetic regulator of the memory circuit.
Collapse
|
29
|
Li J, Tu G, Zhang W, Zhang Y, Zhang X, Qiu Y, Wang J, Sun T, Zhu T, Yang C, Rong R. CHBP induces stronger immunosuppressive CD127 + M-MDSC via erythropoietin receptor. Cell Death Dis 2021; 12:177. [PMID: 33579907 PMCID: PMC7881243 DOI: 10.1038/s41419-021-03448-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Erythropoietin (EPO) is not only an erythropoiesis hormone but also an immune-regulatory cytokine. The receptors of EPO (EPOR)2 and tissue-protective receptor (TPR), mediate EPO's immune regulation. Our group firstly reported a non-erythropoietic peptide derivant of EPO, cyclic helix B peptide (CHBP), which could inhibit macrophages inflammation and dendritic cells (DCs) maturation. As a kind of innate immune regulatory cell, myeloid-derived suppressor cells (MDSCs) share a common myeloid progenitor with macrophages and DCs. In this study, we investigated the effects on MDSCs differentiation and immunosuppressive function via CHBP induction. CHBP promoted MDSCs differentiate toward M-MDSCs with enhanced immunosuppressive capability. Infusion of CHBP-induced M-MDSCs significantly prolonged murine skin allograft survival compared to its counterpart without CHBP stimulation. In addition, we found CHBP increased the proportion of CD11b+Ly6G-Ly6Chigh CD127+ M-MDSCs, which exerted a stronger immunosuppressive function compared to CD11b+Ly6G-Ly6Chigh CD127- M-MDSCs. In CHBP induced M-MDSCs, we found that EPOR downstream signal proteins Jak2 and STAT3 were upregulated, which had a strong relationship with MDSC function. In addition, CHBP upregulated GATA-binding protein 3 (GATA-3) protein translation level, which was an upstream signal of CD127 and regulator of STAT3. These effects of CHBP could be reversed if Epor was deficient. Our novel findings identified a new subset of M-MDSCs with better immunosuppressive capability, which was induced by the EPOR-mediated Jak2/GATA3/STAT3 pathway. These results are beneficial for CHBP clinical translation and MDSC cell therapy in the future.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Guowei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
| | - Yi Zhang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
- Zhongshan Hospital Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuepeng Zhang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yue Qiu
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiyan Wang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
- Department of Urology, Shanghai Public Health Clinical Center, Shanghai, 201508, China
| | - Tianle Sun
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215006, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China
- Shanghai Public Health Clinical Center, Shanghai, 201508, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.
- Zhangjiang Institute of Fudan University, Shanghai, 201203, China.
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032, China.
- Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
30
|
Krämer A. Master regulators as order parameters of gene expression states. Phys Rev E 2021; 103:012409. [PMID: 33601603 DOI: 10.1103/physreve.103.012409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/22/2020] [Indexed: 11/07/2022]
Abstract
Cell type-specific gene expression patterns are represented as memory states of a Hopfield neural network model. It is shown that order parameters of this model can be interpreted as concentrations of master transcription regulators that form concurrent positive feedback loops with a large number of downstream regulated genes. The order parameter free energy then defines an epigenetic landscape in which local minima correspond to stable cell states. The model is applied to gene expression data in the context of hematopoiesis.
Collapse
|
31
|
Ribeiro MM, Okawa S, Del Sol A. TransSynW: A single-cell RNA-sequencing based web application to guide cell conversion experiments. Stem Cells Transl Med 2020; 10:230-238. [PMID: 33125830 PMCID: PMC7848352 DOI: 10.1002/sctm.20-0227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
Generation of desired cell types by cell conversion remains a challenge. In particular, derivation of novel cell subtypes identified by single‐cell technologies will open up new strategies for cell therapies. The recent increase in the generation of single‐cell RNA‐sequencing (scRNA‐seq) data and the concomitant increase in the interest expressed by researchers in generating a wide range of functional cells prompted us to develop a computational tool for tackling this challenge. Here we introduce a web application, TransSynW, which uses scRNA‐seq data for predicting cell conversion transcription factors (TFs) for user‐specified cell populations. TransSynW prioritizes pioneer factors among predicted conversion TFs to facilitate chromatin opening often required for cell conversion. In addition, it predicts marker genes for assessing the performance of cell conversion experiments. Furthermore, TransSynW does not require users' knowledge of computer programming and computational resources. We applied TransSynW to different levels of cell conversion specificity, which recapitulated known conversion TFs at each level. We foresee that TransSynW will be a valuable tool for guiding experimentalists to design novel protocols for cell conversion in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Mariana Messias Ribeiro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
32
|
Ibrahim IH, Abdel-Aziz HG, Hassan FE, El-Sameea HS. Role of GATA3 exon 6 germline mutations in breast cancer progression in Egyptian female patients. Exp Biol Med (Maywood) 2020; 246:40-47. [PMID: 32938228 DOI: 10.1177/1535370220958610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPACT STATEMENT GATA3 mutations are known to play an important role in breast cancer progression. The exact role and mechanisms of these mutations remain controversial as some studies suggest a relation to breast tumor growth, while others suggest a relation to longer survival. GATA3 germline mutations are not well studied in breast cancer. In this study, it was hypothesized that different types of GATA3 mutations could contribute to the breast cancer progression in different ways. GATA3 exon 6, which is important for GATA3 protein functions, was reported to have hotspots, and hence it was selected for study. Intronic GATA3 germline mutations were found to be related to favorable prognosis, while protein coding mutations were found to be related to unfavorable prognosis. Bioinformatics study of large publically available datasets showed that GATA3 mutations lead to dysregulation of pathways related to T-cells activation, inflammation, and breast cancer development.
Collapse
Affiliation(s)
- Iman H Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls) Al-Azhar University, Cairo 11765, Egypt
| | - Heba G Abdel-Aziz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls) Al-Azhar University, Cairo 11765, Egypt
| | - Fatema Em Hassan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls) Al-Azhar University, Cairo 11765, Egypt
| | - Hesham Sa El-Sameea
- Department of Clinical Pathology, Faculty of Medicine (New Damietta) Al-Azhar University, Damietta 34711, Egypt
| |
Collapse
|
33
|
El-Arabey AA, Denizli M, Kanlikilicer P, Bayraktar R, Ivan C, Rashed M, Kabil N, Ozpolat B, Calin GA, Salama SA, Abd-Allah AR, Sood AK, Lopez-Berestein G. GATA3 as a master regulator for interactions of tumor-associated macrophages with high-grade serous ovarian carcinoma. Cell Signal 2020; 68:109539. [PMID: 31935430 DOI: 10.1016/j.cellsig.2020.109539] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/03/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecologic cancer. Emerging evidence suggests that tumor-associated macrophages (TAMs) play an immunosuppressive role in the tumor microenvironment and promote tumor growth, angiogenesis, and metastasis in ovarian cancer. Therefore, targeting TAMs in patients with ovarian cancer is an appealing strategy; however, all trials to date have failed. To improve the efficacy of this approach, we sought to elucidate the underlying mechanisms of the role of TAMs in ovarian cancer. We found that the developmental transcription factor GATA3 was highly expressed in HGSOC cell lines but not in the fallopian tube, which is the main origin of HGSOC. GATA3 expression was associated with poor prognosis in HGSOC patients (P < .05) and was found to promote proliferation and migration in HGSOC cell lines. GATA3 was released abundantly from TAM cells via exosomes and contributed to tumor growth in the tumor microenvironment. Moreover, GATA3 acted as a regulator for macrophage polarization and interactions between TAMs and HGSOC to support proliferation, motility, and cisplatin chemoresistance in mutant TP53 HGSOC cell lines. Furthermore, GATA3 played a critical role in the interactions between TAMs and mutant TP53 HGSOC to promote angiogenesis and epithelial-mesenchymal transition with epigenetic regulation. Targeting GATA3 using GATA3siRNA in TAMs impeded GATA3-driven proliferation, migration, cisplatin chemoresistance, and angiogenesis in mutant TP53 HGSOC cell lines. Our findings indicate that GATA3 plays a novel role in immunoediting of HGSOC and demonstrate that GATA3 may serve as a prognostic marker for HGSOC and a promising target in the treatment of HGSOC.
Collapse
MESH Headings
- Apoptosis/genetics
- Cell Communication/genetics
- Cell Line, Tumor
- Cell Movement
- Cell Polarity/genetics
- Endometrial Neoplasms/pathology
- Endothelial Cells/pathology
- Epigenesis, Genetic
- Epithelial-Mesenchymal Transition/genetics
- Exosomes/metabolism
- Exosomes/ultrastructure
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- GATA3 Transcription Factor/metabolism
- Genome, Human
- Humans
- Matrix Metalloproteinase 9/metabolism
- Mutation/genetics
- Neoplasm Grading
- Neoplasm Proteins/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Neovascularization, Pathologic/genetics
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Phosphorylation
- RNA Splice Sites/genetics
- Tumor Microenvironment/genetics
- Tumor Suppressor Protein p53/genetics
- Tumor-Associated Macrophages/metabolism
- Tumor-Associated Macrophages/pathology
Collapse
Affiliation(s)
- Amr Ahmed El-Arabey
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Merve Denizli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinar Kanlikilicer
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohammed Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Nashwa Kabil
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Salama Abdou Salama
- Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Adel Rashad Abd-Allah
- Department of Pharmacology and Toxicology, Al-Azhar University, Faculty of Pharmacy, Cairo, Egypt
| | - Anil K Sood
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
34
|
Früh SP, Saikia M, Eule J, Mazulis CA, Miller JE, Cowulich JM, Oyesola OO, Webb LM, Peng SA, Cubitt RL, Danko CG, Miller WH, Tait Wojno ED. Elevated circulating Th2 but not group 2 innate lymphoid cell responses characterize canine atopic dermatitis. Vet Immunol Immunopathol 2020; 221:110015. [PMID: 32058160 DOI: 10.1016/j.vetimm.2020.110015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
Atopic dermatitis (AD) is an allergic skin disease that causes significant morbidity and affects multiple species. AD is highly prevalent in companion dogs, and the clinical management of the disease remains challenging. An improved understanding of the immunologic and genetic pathways that lead to disease could inform the development of novel treatments. In allergic humans and mouse models of AD, the disease is associated with Th2 and group 2 innate lymphoid cell (ILC2) activation that drives type 2 inflammation. Type 2 inflammation also appears to be associated with AD in dogs, but gaps remain in our understanding of how key type 2-associated cell types such as canine Th2 cells and ILC2s contribute to the pathogenesis of canine AD. Here, we describe previously uncharacterized canine ILC2-like cells and Th2 cells ex vivo that produced type 2 cytokines and expressed the transcription factor Gata3. Increased circulating Th2 cells were associated with chronic canine AD. Single-cell RNA sequencing revealed a unique gene expression signature in T cells in dogs with AD. These findings underline the importance of pro-allergic Th2 cells in orchestrating AD and provide new methods and pathways that can inform the development of improved therapies.
Collapse
Affiliation(s)
- Simon P Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | - Mridusmita Saikia
- Baker Institute for Animal Health and Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Jeremy Eule
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | - Christina A Mazulis
- Section of Dermatology and Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julia E Miller
- Section of Dermatology and Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Joby M Cowulich
- Section of Dermatology and Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Oyebola O Oyesola
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Lauren M Webb
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Seth A Peng
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | - Rebecca L Cubitt
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | - Charles G Danko
- Baker Institute for Animal Health and Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - William H Miller
- Section of Dermatology and Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
35
|
Interleukin-10 production by B cells is regulated by cytokines, but independently of GATA-3 or FoxP3 expression. Cell Immunol 2020; 347:103987. [DOI: 10.1016/j.cellimm.2019.103987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/21/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
|
36
|
Velychko S, Adachi K, Kim KP, Hou Y, MacCarthy CM, Wu G, Schöler HR. Excluding Oct4 from Yamanaka Cocktail Unleashes the Developmental Potential of iPSCs. Cell Stem Cell 2019; 25:737-753.e4. [PMID: 31708402 PMCID: PMC6900749 DOI: 10.1016/j.stem.2019.10.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/23/2019] [Accepted: 10/04/2019] [Indexed: 02/01/2023]
Abstract
Oct4 is widely considered the most important among the four Yamanaka reprogramming factors. Here, we show that the combination of Sox2, Klf4, and cMyc (SKM) suffices for reprogramming mouse somatic cells to induced pluripotent stem cells (iPSCs). Simultaneous induction of Sox2 and cMyc in fibroblasts triggers immediate retroviral silencing, which explains the discrepancy with previous studies that attempted but failed to generate iPSCs without Oct4 using retroviral vectors. SKM induction could partially activate the pluripotency network, even in Oct4-knockout fibroblasts. Importantly, reprogramming in the absence of exogenous Oct4 results in greatly improved developmental potential of iPSCs, determined by their ability to give rise to all-iPSC mice in the tetraploid complementation assay. Our data suggest that overexpression of Oct4 during reprogramming leads to off-target gene activation during reprogramming and epigenetic aberrations in resulting iPSCs and thereby bear major implications for further development and application of iPSC technology. SKM can induce pluripotency in somatic cells in the absence of exogenous Oct4 SM coexpression activates the retroviral silencing machinery in somatic cells Oct4 overexpression drives massive off-target gene activation during reprogramming OSKM, but not SKM, iPSCs show abnormal imprinting and differentiation patterns
Collapse
Affiliation(s)
- Sergiy Velychko
- Department for Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Kenjiro Adachi
- Department for Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Kee-Pyo Kim
- Department for Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Yanlin Hou
- Department for Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Caitlin M MacCarthy
- Department for Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Guangming Wu
- Department for Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 6 Luoxuan Avenue, Haizhu District, 510320 Guangzhou, PRC.
| | - Hans R Schöler
- Department for Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany; Medical Faculty, University of Münster, Domagkstrasse 3, 48449 Münster, Germany.
| |
Collapse
|
37
|
Adoptive Transfer of Interleukin-21-stimulated Human CD8+ T Memory Stem Cells Efficiently Inhibits Tumor Growth. J Immunother 2019; 41:274-283. [PMID: 29864078 PMCID: PMC6012057 DOI: 10.1097/cji.0000000000000229] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Memory stem T (TSCM) cells, a new subset of memory T cells with self-renewal and multipotent capacities, are considered as a promising candidates for adoptive cellular therapy. However, the low proportion of human TSCM cells in total CD8+ T cells limits their utility. Here, we aimed to induce human CD8+ TSCM cells by stimulating naive precursors with interleukin-21 (IL-21). We found that IL-21 promoted the generation of TSCM cells, described as CD45RA+CD45RO−CD62L+CCR7+CD122+CD95+ cells, with a higher efficiency than that observed with other common γ-chain cytokines. Upon adoptive transfer into an A375 melanoma mouse model, these lymphocytes mediated much stronger antitumor responses. Further mechanistic analysis revealed that IL-21 activated the Janus kinase signal transducer and activator of transcription 3 pathway by upregulating signal transducer and activator of transcription 3 phosphorylation and consequently promoting the expression of T-bet and suppressor of cytokine signaling 1, but decreasing the expression of eomesodermin and GATA binding protein 3. Our findings provide novel insights into the generation of human CD8+ TSCM cells and reveal a novel potential clinical application of IL-21.
Collapse
|
38
|
Baumann C, Fröhlich A, Brunner TM, Holecska V, Pinschewer DD, Löhning M. Memory CD8 + T Cell Protection From Viral Reinfection Depends on Interleukin-33 Alarmin Signals. Front Immunol 2019; 10:1833. [PMID: 31447845 PMCID: PMC6692449 DOI: 10.3389/fimmu.2019.01833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022] Open
Abstract
Memory CD8+ cytotoxic T lymphocytes (CTLs) can protect against viral reinfection. However, the signals driving rapid memory CTL reactivation have remained ill-defined. Viral infections can trigger the release of the alarmin interleukin-33 (IL-33) from non-hematopoietic cells. IL-33 signals through its unique receptor ST2 to promote primary effector expansion and activation of CTLs. Here, we show that the transcription factor STAT4 regulated the expression of ST2 on CTLs in vitro and in vivo in primary infections with lymphocytic choriomeningitis virus (LCMV). In the primary antiviral response, IL-33 enhanced effector differentiation and antiviral cytokine production in a CTL-intrinsic manner. Further, using sequential adoptive transfers of LCMV-specific CD8+ T cells, we deciphered the IL-33 dependence of circulating memory CTLs at various stages of their development. IL-33 was found dispensable for the formation and maintenance of memory CTLs, and its absence during priming did not affect their recall response. However, in line with the CTL-boosting role of IL-33 in primary LCMV infections, circulating memory CTLs required IL-33 for efficient secondary expansion, enhanced effector functions, and virus control upon challenge infection. Thus, beyond their effector-promoting activity in primary immune reactions, innate alarmin signals also drive memory T cell recall responses, which has implications for immunity to recurrent diseases.
Collapse
Affiliation(s)
- Claudia Baumann
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Anja Fröhlich
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Vivien Holecska
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| |
Collapse
|
39
|
Murga-Zamalloa C, Wilcox RA. GATA-3 in T-cell lymphoproliferative disorders. IUBMB Life 2019; 72:170-177. [PMID: 31317631 DOI: 10.1002/iub.2130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
GATA-3 regulates the differentiation, proliferation, survival, and function of peripheral T cells and their thymic progenitors. Recent findings, reviewed here, not only implicate GATA-3 in the pathogenesis of molecularly, genetically, and clinically distinct T-cell lymphoproliferative disorders, but also have significant diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Carlos Murga-Zamalloa
- Department of Internal Medicine, Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
40
|
Transcription factors gene expression in chronic rhinosinusitis with and without nasal polyps. Radiol Oncol 2019; 53:323-330. [PMID: 31326962 PMCID: PMC6765166 DOI: 10.2478/raon-2019-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Chronic rhinosinusitis (CRS) current therapeutic approaches still fail in some patients with severe persistent symptoms and recurrences after surgery. We aimed to evaluate the master transcription factors gene expression levels of T cell subtypes in chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal polyps (CRSsNP) that could represent new, up-stream targets for topical DNAzyme treatment. Patients and methods Twenty-two newly diagnosed CRS patients (14 CRSwNP and 8 CRSsNP) were prospectively biopsied and examined histopathologically. Gene expression levels of T-box transcription factor (T-bet, TBX21), GATA binding protein 3 (GATA3), Retinoic acid-related orphan receptor C (RORC) and Forkhead box P3 (FOXP3) were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Results Eosinophilic CRSwNP was characterized by higher level of GATA3 gene expression compared to noneosinophilic CRSwNP, whereas there was no difference in T-bet, RORC and FOXP3 between eosinophilic and noneosinophilic CRSwNP. In CRSsNP, we found simultaneous upregulation of T-bet, GATA3 and RORC gene expression levels in comparison to CRSwNP; meanwhile, there was no difference in FOXP3 gene expression between CRSwNP and CRSsNP. Conclusions In eosinophilic CRSwNP, we confirmed the type 2 inflammation by elevated GATA3 gene expression level. In CRSsNP, we unexpectedly found simultaneous upregulation of T-bet and GATA3 that is currently unexplained; however, it might originate from activated CD8+ cells, abundant in nasal mucosa of CRSsNP patients. The elevated RORC in CRSsNP could be part of homeostatic nasal immune response that might be better preserved in CRSsNP patients compared to CRSwNP patients. Further data on transcription factors expression rates in CRS phenotypes are needed.
Collapse
|
41
|
Rodríguez-Gómez IM, Talker SC, Käser T, Stadler M, Reiter L, Ladinig A, Milburn JV, Hammer SE, Mair KH, Saalmüller A, Gerner W. Expression of T-Bet, Eomesodermin, and GATA-3 Correlates With Distinct Phenotypes and Functional Properties in Porcine γδ T Cells. Front Immunol 2019; 10:396. [PMID: 30915070 PMCID: PMC6421308 DOI: 10.3389/fimmu.2019.00396] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 02/15/2019] [Indexed: 11/25/2022] Open
Abstract
Unlike mice and humans, porcine γδ T cells represent a prominent subset of T cells in blood and secondary lymphatic organs. GATA-3, T-bet and Eomesodermin (Eomes) are transcription factors with crucial functions in T-cell development and functional differentiation, but their expression has not been investigated in porcine γδ T cells so far. We analyzed the expression of these transcription factors in γδ thymocytes, mature γδ T cells from blood, spleen, lymph nodes, and lung tissue as well as in vitro stimulated γδ T cells on the protein level by flow cytometry. GATA-3 was present in more than 80% of all γδ-thymocytes. Extra-thymic CD2− γδ T cells expressed high levels of GATA-3 in all investigated organs and had a CD8α−/dimCD27+perforin− phenotype. T-bet expression was mainly found in a subset of CD2+ γδ T cells with an opposing CD8αhighCD27dim/−perforin+ phenotype. Eomes+ γδ T cells were also found within CD2+ γδ T cells but were heterogeneous in regard to expression of CD8α, CD27, and perforin. Eomes+ γδ T cells frequently co-expressed T-bet and dominated in the spleen. During aging, CD2−GATA-3+ γδ T cells strongly prevailed in young pigs up to an age of about 2 years but declined in older animals where CD2+T-bet+ γδ T cells became more prominent. Despite high GATA-3 expression levels, IL-4 production could not be found in γδ T cells by intracellular cytokine staining. Experiments with sorted and ConA + IL-2 + IL-12 + IL-18-stimulated CD2− γδ T cells showed that proliferating cells start expressing CD2 and T-bet, produce IFN-γ, but retain GATA-3 expression. In summary, our data suggest a role for GATA-3 in the development of γδ-thymocytes and in the function of peripheral CD2−CD8α−/dimCD27+perforin− γδ T cells. In contrast, T-bet expression appears to be restricted to terminal differentiation stages of CD2+ γδ T cells, frequently coinciding with perforin expression. The functional relevance of high GATA-3 expression levels in extra-thymic CD2− γδ T cells awaits further clarification. However, their unique phenotype suggests that they represent a thymus-derived separate lineage of γδ T cells in the pig for which currently no direct counterpart in rodents or humans has been described.
Collapse
Affiliation(s)
- Irene M Rodríguez-Gómez
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stephanie C Talker
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tobias Käser
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lisa Reiter
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jemma V Milburn
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.,Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.,Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.,Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
42
|
Harland KL, Fox A, Nüssing S, Hensen L, Kedzierska K, Turner SJ, Kelso A. Limited Phenotypic and Functional Plasticity of Influenza Virus–Specific Memory CD8+T Cells during Activation in an Alternative Cytokine Environment. THE JOURNAL OF IMMUNOLOGY 2018; 201:3282-3293. [DOI: 10.4049/jimmunol.1701672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
|
43
|
Zhu J. T Helper Cell Differentiation, Heterogeneity, and Plasticity. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a030338. [PMID: 28847903 DOI: 10.1101/cshperspect.a030338] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Naïve CD4 T cells, on activation, differentiate into distinct T helper (Th) subsets that produce lineage-specific cytokines. By producing unique sets of cytokines, effector Th subsets play critical roles in orchestrating immune responses to a variety of infections and are involved in the pathogenesis of many inflammatory diseases including autoimmunity, allergy, and asthma. The differentiation of Th cells relies on the strength of T-cell receptor (TCR) signaling and signals triggered by polarizing cytokines that activate and/or up-regulate particular transcription factors. Several lineage-specific master transcription factors dictate Th cell fates and functions. Although these master regulators cross-regulate each other, their expression can be dynamic. Sometimes, they are even coexpressed, resulting in massive Th-cell heterogeneity and plasticity. Similar regulation mediated by these master regulators is also found in innate lymphoid cells (ILCs) that are innate counterparts of Th cells.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
44
|
Gruenbacher G, Thurnher M. Mevalonate Metabolism in Cancer Stemness and Trained Immunity. Front Oncol 2018; 8:394. [PMID: 30298120 PMCID: PMC6160868 DOI: 10.3389/fonc.2018.00394] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022] Open
Abstract
Mevalonate metabolism provides cancer and immune cells with diverse products to ensure cell functionality. Similar metabolic reprogramming that raises mevalonate metabolism to higher levels appears to drive both, epithelial mesenchymal transition (EMT) of cancer cells, a reverse differentiation program that generates cancer cells with stem cell properties, and immune cell training for increased responsiveness to secondary stimulation. In this review, we address how mevalonate metabolism supports cancer development and stemness on the one hand, and on the other promotes immune responsiveness. In view of this dual nature of mevalonate metabolism, strategies to manipulate this metabolic pathway as part of anti-cancer therapies require careful analysis of risks versus benefits.
Collapse
Affiliation(s)
- Georg Gruenbacher
- Immunotherapy Research Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Research Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Regulation of H3K4me3 at Transcriptional Enhancers Characterizes Acquisition of Virus-Specific CD8 + T Cell-Lineage-Specific Function. Cell Rep 2018; 21:3624-3636. [PMID: 29262339 DOI: 10.1016/j.celrep.2017.11.097] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/08/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs), we mapped the dynamics of ∼25,000 putative CD8+ T cell transcriptional enhancers (TEs) differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3+) chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8+ T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8+ T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation.
Collapse
|
46
|
Liu S, Chan HL, Bai F, Ma J, Scott A, Robbins DJ, Capobianco AJ, Zhu P, Pei XH. Gata3 restrains B cell proliferation and cooperates with p18INK4c to repress B cell lymphomagenesis. Oncotarget 2018; 7:64007-64020. [PMID: 27588406 PMCID: PMC5325421 DOI: 10.18632/oncotarget.11746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
GATA3, a lineage specifier, controls lymphoid cell differentiation and its function in T cell commitment and development has been extensively studied. GATA3 promotes T cell specification by repressing B cell potential in pro T cells and decreased GATA3 expression is essential for early B cell commitment. Inherited genetic variation in GATA3 has been associated with lymphoma susceptibility. However, it remains elusive how the loss of function of GATA3 promotes B cell development and induces B cell lymphomas. In this study, we found that haploid loss of Gata3 by heterozygous germline deletion increased B cell populations in the bone marrow (BM) and spleen, and decreased CD4 T cell populations in the thymus, confirming that Gata3 promotes T and suppresses B cell development. We discovered that haploid loss of Gata3 reduced thymocyte proliferation with induction of p18Ink4c (p18), an inhibitor of CDK4 and CDK6, but enhanced B cell proliferation in the BM and spleen independent of p18. Loss of p18 partially restored Gata3 deficient thymocyte proliferation, but further stimulated Gata3 deficient B cell proliferation in the BM and spleen. Furthermore, we discovered that haploid loss of Gata3 in p18 deficient mice led to the development of B cell lymphomas that were capable of rapidly regenerating tumors when transplanted into immunocompromised mice. These results indicate that Gata3 deficiency promotes B cell differentiation and proliferation, and cooperates with p18 loss to induce B cell lymphomas. This study, for the first time, reveals that Gata3 is a tumor suppressor specifically in B cell lymphomagenesis.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China.,Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - Ho Lam Chan
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - Feng Bai
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - Jinshan Ma
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami.,Xinjiang Uigur Autonomous Region People's Hospital, Xinjiang, 830001, China
| | - Alexandria Scott
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami.,The Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - David J Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami.,Sylvester Cancer Center, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - Anthony J Capobianco
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami.,Sylvester Cancer Center, Miller School of Medicine, University of Miami, FL 33136, Miami
| | - Ping Zhu
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Xin-Hai Pei
- Molecular Oncology Program, Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, FL 33136, Miami.,The Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, FL 33136, Miami.,Sylvester Cancer Center, Miller School of Medicine, University of Miami, FL 33136, Miami
| |
Collapse
|
47
|
Abstract
It had been a great honor for me to work with the late Dr. William E. Paul for 17 years in the Laboratory of Immunology (LI) from 1998 until his passing in 2015. He was such a master in the immunology field. Under his outstanding guidance, my research has been focusing on transcriptional regulation of T helper (Th) cell differentiation, especially, on the role of a master transcription factor GATA3 during Th2 cell differentiation. Just as enormous scientific contributions of Dr. Paul (we all call him Bill) to the immunology community are far beyond his serving as the Chief of the LI, GATA3 also plays important roles in different lymphocytes at various developmental stages besides its critical functions in Th2 cells. In this special review dedicated to the memory of Bill, I will summarize the research that I have carried out in Bill's lab working on GATA3 in the context of related studies by other groups in the field of T cell differentiation and innate lymphoid cell (ILC) development. These include the essential role of GATA3 in regulating Th2/ILC2 differentiation/development and their functions, the critical role of GATA3 during the development of T cells and innate lymphoid cells, and dynamic and quantitative expression of GATA3 in controlling lymphocyte homeostasis and functions.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
48
|
Muehling LM, Lawrence MG, Woodfolk JA. Pathogenic CD4 + T cells in patients with asthma. J Allergy Clin Immunol 2017; 140:1523-1540. [PMID: 28442213 PMCID: PMC5651193 DOI: 10.1016/j.jaci.2017.02.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 02/08/2023]
Abstract
Asthma encompasses a variety of clinical phenotypes that involve distinct T cell-driven inflammatory processes. Improved understanding of human T-cell biology and the influence of innate cytokines on T-cell responses at the epithelial barrier has led to new asthma paradigms. This review captures recent knowledge on pathogenic CD4+ T cells in asthmatic patients by drawing on observations in mouse models and human disease. In patients with allergic asthma, TH2 cells promote IgE-mediated sensitization, airway hyperreactivity, and eosinophilia. Here we discuss recent discoveries in the myriad molecular pathways that govern the induction of TH2 differentiation and the critical role of GATA-3 in this process. We elaborate on how cross-talk between epithelial cells, dendritic cells, and innate lymphoid cells translates to T-cell outcomes, with an emphasis on the actions of thymic stromal lymphopoietin, IL-25, and IL-33 at the epithelial barrier. New concepts on how T-cell skewing and epitope specificity are shaped by multiple environmental cues integrated by dendritic cell "hubs" are discussed. We also describe advances in understanding the origins of atypical TH2 cells in asthmatic patients, the role of TH1 cells and other non-TH2 types in asthmatic patients, and the features of T-cell pathogenicity at the single-cell level. Progress in technologies that enable highly multiplexed profiling of markers within a single cell promise to overcome barriers to T-cell discovery in human asthmatic patients that could transform our understanding of disease. These developments, along with novel T cell-based therapies, position us to expand the assortment of molecular targets that could facilitate personalized treatments.
Collapse
Affiliation(s)
- Lyndsey M Muehling
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Monica G Lawrence
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va
| | - Judith A Woodfolk
- Allergy Division, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
49
|
Boonstra PS, Avery P, Brown N, Hristov AC, Bailey NG, Kaminski MS, Phillips T, Devata S, Mayer T, Wilcox RA. A single center phase II study of ixazomib in patients with relapsed or refractory cutaneous or peripheral T-cell lymphomas. Am J Hematol 2017; 92:1287-1294. [PMID: 28842936 PMCID: PMC6116510 DOI: 10.1002/ajh.24895] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
The transcription factor GATA-3, highly expressed in many cutaneous T-cell lymphoma (CTCL) and peripheral T-cell lymphomas (PTCL), confers resistance to chemotherapy in a cell-autonomous manner. As GATA-3 is transcriptionally regulated by NF-κB, we sought to determine the extent to which proteasomal inhibition impairs NF-κB activation and GATA-3 expression and cell viability in malignant T cells. Proteasome inhibition, NF-κB activity, GATA-3 expression, and cell viability were examined in patient-derived cell lines and primary T-cell lymphoma specimens ex vivo treated with the oral proteasome inhibitor ixazomib. Significant reductions in cell viability, NF-κB activation, and GATA-3 expression were observed preclinically in ixazomib-treated cells. Therefore, an investigator-initiated, single-center, phase II study with this agent in patients with relapsed/refractory CTCL/PTCL was conducted. Concordant with our preclinical observations, a significant reduction in NF-κB activation and GATA-3 expression was observed in an exceptional responder following one month of treatment with ixazomib. While ixazomib had limited activity in this small and heterogeneous cohort of patients, inhibition of the NF-κB/GATA-3 axis in a single exceptional responder suggests that ixazomib may have utility in appropriately selected patients or in combination with other agents.
Collapse
Affiliation(s)
| | - Polk Avery
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | | | - Mark S. Kaminski
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Tycel Phillips
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Sumana Devata
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Tera Mayer
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
50
|
Zhu J. GATA3 Regulates the Development and Functions of Innate Lymphoid Cell Subsets at Multiple Stages. Front Immunol 2017; 8:1571. [PMID: 29184556 PMCID: PMC5694433 DOI: 10.3389/fimmu.2017.01571] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022] Open
Abstract
Innate lymphoid cells (ILCs) are regarded as the innate counterpart of effector CD4 T helper (Th) cells. Just as Th cells, ILCs are classified into distinct subsets based on their functions that are delivered mainly through effector cytokine production. Both ILCs and Th cells play critical roles in various protective immune responses and inflammatory diseases. Similar to Th cell differentiation, the development of ILC subsets depends on several master transcription factors, among which GATA3 is critical for the development and maintenance of type 2 ILCs (ILC2s). However, GATA3 is expressed by all ILC subsets and ILC progenitors, albeit at different levels. In a striking parallel with GATA3 function in T cell development and differentiation, GATA3 also has multiple functions in different ILCs at various stages. In this review, I will discuss how quantitative and dynamic expression of GATA3 regulates the development and functions of ILC subsets.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|