1
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
2
|
Everts PA, Podesta L, Lana JF, Shapiro G, Domingues RB, van Zundert A, Alexander RW. The Regenerative Marriage Between High-Density Platelet-Rich Plasma and Adipose Tissue. Int J Mol Sci 2025; 26:2154. [PMID: 40076775 PMCID: PMC11900530 DOI: 10.3390/ijms26052154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The use of autologous biological preparations (ABPs) and their combinations fills the void in healthcare treatment options that exists between surgical procedures, like plastic reconstructive, cosmetic, and orthopedic surgeries; non-surgical musculoskeletal biological procedures; and current pharmaceutical treatments. ABPs, including high-density platelet-rich plasma (HD-PRP), bone marrow aspirate concentrates (BMACs), and adipose tissue preparations, with their unique stromal vascular fractions (SVFs), can play important roles in tissue regeneration and repair processes. They can be easily and safely prepared at the point of care. Healthcare professionals can employ ABPs to mimic the classical wound healing cascade, initiate the angiogenesis cascade, and induce tissue regenerative pathways, aiming to restore the integrity and function of damaged tissues. In this review, we will address combining autologous HD-PRP with adipose tissue, in particular the tissue stromal vascular fraction (t-SVF), as we believe that this biocellular combination demonstrates a synergistic effect, where the HD-PRP constituents enhance the regenerative potential of t-SVF and its adipose-derived mesenchymal stem cells (AD-MSCs) and pericytes, leading to improved functional tissue repair, tissue regeneration, and wound healing in variety of clinical applications. We will address some relevant platelet bio-physiological aspects, since these properties contribute to the synergistic effects of combining HD-PRP with t-SVF, promoting overall better outcomes in chronic inflammatory conditions, soft tissue repair, and tissue rejuvenation.
Collapse
Affiliation(s)
- Peter A. Everts
- Medical School (GBCS), The University of Queensland, Brisbane, QLD 4006, Australia;
- Center for Collaborative Research, Zeo Scientifix, Inc., NOVA Southeastern University, Fort Lauderdale, FL 33328, USA;
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
| | - Luga Podesta
- Bluetail Medical Group and Podesta Orthopedic Sports Medicine, Naples, FL 34109, USA;
- Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
| | - José Fabio Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| | - George Shapiro
- Center for Collaborative Research, Zeo Scientifix, Inc., NOVA Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Rafael Barnabé Domingues
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (R.B.D.)
- Regenerative Medicine Group, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| | - Andre van Zundert
- Medical School (GBCS), The University of Queensland, Brisbane, QLD 4006, Australia;
- Royal Brisbane Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert W. Alexander
- Regenevita Biocellular Aesthetic and Reconstructive Surgery, Cranio-Maxillofacial Surgery, Regenerative Medicine and Wound Healing, Hamilton, MT 5998840, USA;
- Department of Surgery and Maxillofacial Surgery, University of Washington, Seattle, WA 988104, USA
| |
Collapse
|
3
|
de Andrade AG, Vanderley SER, de Farias Marques L, Almeida FS, Cavalcante-Silva LHA, Keesen TSL. Leptin, NK cells, and the weight of immunity: Insights into obesity. Int Immunopharmacol 2025; 147:113992. [PMID: 39755107 DOI: 10.1016/j.intimp.2024.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Obesity is a chronic inflammatory disease that affects more than 1 billion people worldwide and is associated with various metabolic and physiological dysfunctions, directly impacting the dynamics of the immune response, partly due to elevated leptin levels. Leptin is an important peptide hormone that regulates neuroendocrine function and energy homeostasis, with its blood levels reflecting energy reserves, fat mass, or energy deprivation. This hormone also plays a fundamental role in regulating immune function, including the activity of NK cells, which are essential components in antiviral and antitumor activity. In obese individuals, leptin resistance is commonly established, however, NK cells and other immune components remain responsive to this hormone. So far, leptin has demonstrated paradoxical activities of these cells, often associated with a dysfunctional profile when associated with obesity. The excessive fat is usually related to metabolic remodeling in NK cells, resulting in compromised antitumor responses due to reduced cytotoxic capacity and decreased expression of cytokines important for these defense mechanisms, such as IFN-γ. Therefore, this review approaches a better understanding of the immunoendocrine interactions between leptin and NK cells in the context of obesity.
Collapse
Affiliation(s)
- Arthur Gomes de Andrade
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Lorrane de Farias Marques
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Fernanda Silva Almeida
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil.
| |
Collapse
|
4
|
Yildiz R, Ganbold K, Sparman NZR, Rajbhandari P. Immune Regulatory Crosstalk in Adipose Tissue Thermogenesis. Compr Physiol 2025; 15:e70001. [PMID: 39921241 DOI: 10.1002/cph4.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Brown adipose tissue (BAT) and thermogenic beige fat within white adipose tissue (WAT), collectively known as adaptive thermogenic fat, dissipate energy as heat, offering promising therapeutic potential to combat obesity and metabolic disorders. The specific biological functions of these fat depots are determined by their unique interaction with the microenvironments, composed of immune cells, endothelial cells, pericytes, and nerve fibers. Immune cells residing in these depots play a key role in regulating energy expenditure and systemic energy homeostasis. The dynamic microenvironment of thermogenic fat depots is essential for maintaining tissue health and function. Immune cells infiltrate both BAT and beige WAT, contributing to their homeostasis and activation through intricate cellular communications. Emerging evidence underscores the importance of various immune cell populations in regulating thermogenic adipose tissue, though many remain undercharacterized. This review provides a comprehensive overview of the immune cells that regulate adaptive thermogenesis and their complex interactions within the adipose niche, highlighting their potential to influence metabolic health and contribute to therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ramazan Yildiz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Khatanzul Ganbold
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Njeri Z R Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Han SM, Nahmgoong H, Yim KM, Kim JB. How obesity affects adipocyte turnover. Trends Endocrinol Metab 2025; 36:147-160. [PMID: 39095230 DOI: 10.1016/j.tem.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Min Yim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Bum Kim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Lebrusant-Fernandez M, Ap Rees T, Jimeno R, Angelis N, Ng JC, Fraternali F, Li VSW, Barral P. IFN-γ-dependent regulation of intestinal epithelial homeostasis by NKT cells. Cell Rep 2024; 43:114948. [PMID: 39580798 PMCID: PMC11876105 DOI: 10.1016/j.celrep.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Intestinal homeostasis is maintained through the combined functions of epithelial and immune cells that collaborate to preserve the integrity of the intestinal barrier. However, the mechanisms by which immune cell populations regulate intestinal epithelial cell (IEC) homeostasis remain unclear. Here, we use a multi-omics approach to study the immune-epithelial crosstalk and identify CD1d-restricted natural killer T (NKT) cells as key regulators of IEC biology. We find that NKT cells are abundant in the proximal small intestine and show hallmarks of activation at steady state. Subsequently, NKT cells regulate the survival and the transcriptional and cellular composition landscapes of IECs in intestinal organoids, through interferon-γ (IFN-γ) and interleukin-4 secretion. In vivo, lack of NKT cells results in an increase in IEC turnover, while NKT cell activation leads to IFN-γ-dependent epithelial apoptosis. Our findings propose NKT cells as potent producers of cytokines that contribute to the regulation of IEC homeostasis.
Collapse
Affiliation(s)
- Marta Lebrusant-Fernandez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Tom Ap Rees
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Rebeca Jimeno
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK
| | | | - Joseph C Ng
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK; Institute of Structural and Molecular Biology, University College London, London, UK
| | - Franca Fraternali
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK; Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - Patricia Barral
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
8
|
Qin Y, Qian Y, Liu S, Chen R. A double-edged sword role of IFN-γ-producing iNKT cells in sepsis: Persistent suppression of Treg cell formation in an Nr4a1-dependent manner. iScience 2024; 27:111462. [PMID: 39720538 PMCID: PMC11667017 DOI: 10.1016/j.isci.2024.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
Sepsis, a leading cause of mortality in intensive care units worldwide, lacks effective treatments for advanced-stage sepsis. Therefore, understanding the underlying mechanisms of this disease is crucial. This study reveals that invariant natural killer T (iNKT) cells have an opposing role in the progression of sepsis by suppressing regulatory T (Treg) cell differentiation and function. The activation of iNKT cells by α-Galcer enhances interferon (IFN)-γ production. Blocking antibodies or transferring IFN-γ-deficient iNKT cells demonstrates that iNKT cells inhibit Treg differentiation through IFN-γ production. Additionally, iNKT cell-mediated Treg inhibition prevents secondary infection caused by Listeria monocytogenes during the post-septic phase. The transcriptomic analysis of Treg cells further reveals that the suppressive function of Tregs is impaired by iNKT cells. Finally, we demonstrate that iNKT cells inhibit Treg differentiation in an Nr4a1-dependent manner. Our data uncover the dual function of iNKT cells in sepsis progression and provide a potential treatment target for this adverse long-term outcome induced by sepsis.
Collapse
Affiliation(s)
- Yingyu Qin
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yilin Qian
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shengqiu Liu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rong Chen
- The Affiliated Zhongda Hospital, Clinical Medical College, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Tamura T, Cheng C, Villaseñor-Altamirano A, Yamada K, Ikeda K, Hayashida K, Menon JA, Chen XD, Chung H, Varon J, Chen J, Choi J, Cullen AM, Guo J, Lin X, Olenchock BA, Pinilla-Vera MA, Manandhar R, Sheikh MDA, Hou PC, Lawler PR, Oldham WM, Seethala RR, Baron RM, Bohula EA, Morrow DA, Blumberg RS, Chen F, Merriam LT, Weissman AJ, Brenner MB, Chen X, Ichinose F, Kim EY. Diverse NKT cells regulate early inflammation and neurological outcomes after cardiac arrest and resuscitation. Sci Transl Med 2024; 16:eadq5796. [PMID: 39630883 PMCID: PMC11792709 DOI: 10.1126/scitranslmed.adq5796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024]
Abstract
Neurological injury drives most deaths and morbidity among patients hospitalized for out-of-hospital cardiac arrest (OHCA). Despite its clinical importance, there are no effective pharmacological therapies targeting post-cardiac arrest (CA) neurological injury. Here, we analyzed circulating immune cells from a large cohort of patients with OHCA, finding that lymphopenia independently associated with poor neurological outcomes. Single-cell RNA sequencing of immune cells showed that T cells with features of both innate T cells and natural killer (NK) cells were increased in patients with favorable neurological outcomes. We more specifically identified an early increase in circulating diverse NKT (dNKT) cells in a separate cohort of patients with OHCA who had good neurological outcomes. These cells harbored a diverse T cell receptor repertoire but were consistently specific for sulfatide antigen. In mice, we found that sulfatide-specific dNKT cells trafficked to the brain after CA and resuscitation. In the brains of mice lacking NKT cells (Cd1d-/-), we observed increased inflammatory chemokine and cytokine expression and accumulation of macrophages when compared with wild-type mice. Cd1d-/- mice also had increased neuronal injury, neurological dysfunction, and worse mortality after CA. To therapeutically enhance dNKT cell activity, we treated mice with sulfatide lipid after CA, showing that it improved neurological function. Together, these data show that sulfatide-specific dNKT cells are associated with good neurological outcomes after clinical OHCA and are neuroprotective in mice after CA. Strategies to enhance the number or function of dNKT cells may thus represent a treatment approach for CA.
Collapse
Affiliation(s)
- Tomoyoshi Tamura
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Changde Cheng
- Department of Computational Biology, St Jude Children’s Research Hospital, Nashville 38105, TN
- Department of Medicine, Division of Hematology and Oncology, Stem Cell Biology Program, University of Alabama at Birmingham, Birmingham 35233, AL
| | - Ana Villaseñor-Altamirano
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Kohei Yamada
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Kohei Ikeda
- Harvard Medical School; Boston, MA 02115
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston 02114, MA
| | - Kei Hayashida
- Harvard Medical School; Boston, MA 02115
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston 02114, MA
| | - Jaivardhan A Menon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Xi Dawn Chen
- Broad Institute of Harvard and MIT, Cambridge 02138, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Hattie Chung
- Broad Institute of Harvard and MIT, Cambridge 02138, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Jack Varon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Jiani Chen
- Department of Computational Biology, St Jude Children’s Research Hospital, Nashville 38105, TN
| | - Jiyoung Choi
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Aidan M. Cullen
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Jingyu Guo
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Xi Lin
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02142, USA
| | - Benjamin A. Olenchock
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Cardiovascular Division, Brigham and Women’s Hospital, Boston 02115, MA
| | - Mayra A. Pinilla-Vera
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Reshmi Manandhar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Muhammad Dawood Amir Sheikh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Peter C. Hou
- Harvard Medical School; Boston, MA 02115
- Department of Emergency Medicine, Division of Emergency and Critical Care Medicine, Brigham and Women’s Hospital, Boston 02115, MA
| | - Patrick R. Lawler
- McGill University Health Centre, Montreal, Quebec H3A 2B4, Canada
- University of Toronto, Toronto, Ontario M5R 0A3, Canada
| | - William M. Oldham
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Raghu R. Seethala
- Harvard Medical School; Boston, MA 02115
- Department of Emergency Medicine, Division of Emergency and Critical Care Medicine, Brigham and Women’s Hospital, Boston 02115, MA
| | | | - Rebecca M. Baron
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| | - Erin A. Bohula
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Cardiovascular Division, Brigham and Women’s Hospital, Boston 02115, MA
| | - David A. Morrow
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Cardiovascular Division, Brigham and Women’s Hospital, Boston 02115, MA
| | - Richard S. Blumberg
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA 02142, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge 02138, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Louis T. Merriam
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Alexandra J. Weissman
- Department of Emergency Medicine, University of Pittsburgh School of Medicine; Pittsburgh 15261, PA
| | - Michael B. Brenner
- Harvard Medical School; Boston, MA 02115
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston 02115, MA
| | - Xiang Chen
- Department of Computational Biology, St Jude Children’s Research Hospital, Nashville 38105, TN
| | - Fumito Ichinose
- Harvard Medical School; Boston, MA 02115
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston 02114, MA
| | - Edy Y. Kim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School; Boston, MA 02115
| |
Collapse
|
10
|
Morris I, Vrieling F, Bouwman A, Stienstra R, Kalkhoven E. Lipid accumulation in adipose tissue-resident iNKT cells contributes to an inflammatory phenotype. Adipocyte 2024; 13:2421750. [PMID: 39484712 PMCID: PMC11540091 DOI: 10.1080/21623945.2024.2421750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Reciprocal communication between adipocytes and immune cells is essential to maintain optimal adipose tissue (AT) functionality. Amongst others, adipocytes directly interact with invariant NKT cells (iNKT cells), which in turn secrete various cytokines. A lipid-rich microenvironment, as observed in obesity, skews this adipocyte-driven cytokine output towards a more inflammatory output. Whether a lipid-rich microenvironment also affects iNKT cells directly, however, is unknown. Here, we show that primary mouse iNKT cells isolated from AT can accumulate lipids in lipid droplets (LDs), more so than liver- and spleen-resident iNKT cells. Furthermore, a lipid-rich microenvironment increased the production of the proinflammatory cytokine IFNγ. Next, to an indirect, adipocyte-mediated cue, iNKT cells can directly respond to environmental lipid changes, supporting a potential role as nutrient sensors.
Collapse
Affiliation(s)
- Imogen Morris
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frank Vrieling
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Annemieke Bouwman
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric Kalkhoven
- Ce nter for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Wilkin C, Piette J, Legrand-Poels S. Unravelling metabolic factors impacting iNKT cell biology in obesity. Biochem Pharmacol 2024; 228:116436. [PMID: 39029630 DOI: 10.1016/j.bcp.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Obesity and related diseases have reached epidemic proportions and continue to rise. Beyond creating an economical burden, obesity and its co-morbidities are associated with shortened human life expectancy. Despite major advances, the underlying mechanisms of obesity remain not fully elucidated. Recently, several studies have highlighted that various immune cells are metabolically reprogrammed in obesity, thereby profoundly affecting the immune system. This sheds light on a new field of interest: the impact of obesity-related systemic metabolic changes affecting immune system that could lead to immunosurveillance loss. Among immune cells altered by obesity, invariant Natural Killer T (iNKT) cells have recently garnered intense focus due to their ability to recognize lipid antigen. While iNKT cells are well-described to be affected by obesity, how and to what extent immunometabolic factors (e.g., lipids, glucose, cytokines, adipokines, insulin and free fatty acids) can drive iNKT cells alterations remains unclear, but represent an emerging field of research. Here, we review the current knowledge on iNKT cells in obesity and discuss the immunometabolic factors that could modulate their phenotype and activity.
Collapse
Affiliation(s)
- Chloé Wilkin
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium.
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | | |
Collapse
|
12
|
Vasek D, Holicek P, Galatik F, Kratochvilova A, Porubska B, Somova V, Fikarova N, Hajkova M, Prevorovsky M, Zurmanova JM, Krulova M. Immune response to cold exposure: Role of γδ T cells and TLR2-mediated inflammation. Eur J Immunol 2024; 54:e2350897. [PMID: 38988146 DOI: 10.1002/eji.202350897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The mammalian body possesses remarkable adaptability to cold exposure, involving intricate adjustments in cellular metabolism, ultimately leading to thermogenesis. However, cold-induced stress can impact immune response, primarily through noradrenaline-mediated pathways. In our study, we utilized a rat model subjected to short-term or long-term mild cold exposure to investigate systemic immune response during the cold acclimation. To provide human relevance, we included a group of regular cold swimmers in our study. Our research revealed complex relationship between cold exposure, neural signaling, immune response, and thermogenic regulation. One-day cold exposure triggered stress response, including cytokine production in white adipose tissue, subsequently activating brown adipose tissue, and inducing thermogenesis. We further studied systemic immune response, including the proportion of leukocytes and cytokines production. Interestingly, γδ T cells emerged as possible regulators in the broader systemic response, suggesting their possible contribution in the dynamic process of cold adaptation. We employed RNA-seq to gain further insights into the mechanisms by which γδ T cells participate in the response to cold. Additionally, we challenged rats exposed to cold with the Toll-like receptor 2 agonist, showing significant modulation of immune response. These findings significantly contribute to understanding of the physiological acclimation that occur in response to cold exposure.
Collapse
Affiliation(s)
- Daniel Vasek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Frantisek Galatik
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Kratochvilova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Bianka Porubska
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Somova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Natalie Fikarova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Hajkova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Prevorovsky
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Mo YY, Han YX, Xu SN, Jiang HL, Wu HX, Cai JM, Li L, Bu YH, Xiao F, Liang HD, Wen Y, Liu YZ, Yin YL, Zhou HD. Adipose Tissue Plasticity: A Comprehensive Definition and Multidimensional Insight. Biomolecules 2024; 14:1223. [PMID: 39456156 PMCID: PMC11505740 DOI: 10.3390/biom14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue is composed of adipocytes, stromal vascular fraction, nerves, surrounding immune cells, and the extracellular matrix. Under various physiological or pathological conditions, adipose tissue shifts cellular composition, lipid storage, and organelle dynamics to respond to the stress; this remodeling is called "adipose tissue plasticity". Adipose tissue plasticity includes changes in the size, species, number, lipid storage capacity, and differentiation function of adipocytes, as well as alterations in the distribution and cellular composition of adipose tissue. This plasticity has a major role in growth, obesity, organismal protection, and internal environmental homeostasis. Moreover, certain thresholds exist for this plasticity with significant individualized differences. Here, we comprehensively elaborate on the specific connotation of adipose tissue plasticity and the relationship between this plasticity and the development of many diseases. Meanwhile, we summarize possible strategies for treating obesity in response to adipose tissue plasticity, intending to provide new insights into the dynamic changes in adipose tissue and contribute new ideas to relevant clinical problems.
Collapse
Affiliation(s)
- Yu-Yao Mo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Xin Han
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Jun-Min Cai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yan-Hong Bu
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha 410012, China;
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Han-Dan Liang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Ying Wen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Ze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| |
Collapse
|
14
|
Rong J, Zhang Z, Peng X, Li P, Zhao T, Zhong Y. Mechanisms of hepatic and renal injury in lipid metabolism disorders in metabolic syndrome. Int J Biol Sci 2024; 20:4783-4798. [PMID: 39309427 PMCID: PMC11414397 DOI: 10.7150/ijbs.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Metabolic syndrome (MetS) is a group of metabolic abnormalities that identifies people at risk for diabetes and cardiovascular disease. MetS is characterized by lipid disorders, and non-alcoholic fatty liver disease (NAFLD) and diabetic kidney disease (DKD) are thought to be the common hepatic and renal manifestations of MetS following abnormal lipid metabolism. This paper reviews the molecular mechanisms of lipid deposition in NAFLD and DKD, highlighting the commonalities and differences in lipid metabolic pathways in NAFLD and DKD. Hepatic and renal steatosis is the result of lipid acquisition exceeding lipid processing, i.e., fatty acid uptake and lipid regeneration exceed fatty acid oxidation and export. This process is directly regulated by the interactions of nuclear receptors, transporter proteins and transcription factors, whereas pathways such as oxidative stress, autophagy, cellular pyroptosis and gut flora are also key regulatory hubs for lipid metabolic homeostasis but act slightly differently in the liver and kidney. Such insights based on liver-kidney similarities and differences offer potential options for improved treatment.
Collapse
Affiliation(s)
- Jin Rong
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
- College of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, PR China
| | - Zixuan Zhang
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiaoyu Peng
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Ping Li
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, PR China
| | - Yifei Zhong
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
15
|
Kim TC, Park HJ, Lee SW, Park YH, Van Kaer L, Hong S. Alpha-galactosylceramide pre-treatment attenuates clinical symptoms of LPS-induced acute neuroinflammation by converting pathogenic iNKT cells to anti-inflammatory iNKT10 cells in the brain. Inflamm Res 2024; 73:1511-1527. [PMID: 39028491 DOI: 10.1007/s00011-024-01915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Invariant natural killer T (iNKT) cells play protective or pathogenic roles in a variety of immune and inflammatory diseases. However, whether iNKT cells contribute to the progression of acute neuroinflammation remains unclear. Thus, we addressed this question with a mouse model of lipopolysaccharide (LPS)-induced acute neuroinflammation. METHODS For induction of acute neuroinflammation, wild-type (WT) C57BL/6 (B6) mice were injected intraperitoneally (i.p.) with LPS for either three or five consecutive days, and then these mice were analyzed for brain-infiltrating leukocytes or mouse behaviors, respectively. To examine the role of iNKT cell activation in LPS-induced neuroinflammation, mice were injected i.p. with the iNKT cell agonist α-galactosylceramide (α-GalCer) seven days prior to LPS treatment. Immune cells infiltrated into the brain during LPS-induced neuroinflammation were determined by flow cytometry. In addition, LPS-induced clinical behavior symptoms such as depressive-like behavior and memory impairment in mice were evaluated by the open field and Y-maze tests, respectively. RESULTS We found that iNKT cell-deficient Jα18 mutant mice display delayed disease progression and decreased leukocyte infiltration into the brain compared with WT mice, indicating that iNKT cells contribute to the pathogenesis of LPS-induced neuroinflammation. Since it has been reported that pre-treatment with α-GalCer, an iNKT cell agonist, can convert iNKT cells towards anti-inflammatory phenotypes, we next explored whether pre-activation of iNKT cells with α-GalCer can regulate LPS-induced neuroinflammation. Strikingly, we found that α-GalCer pre-treatment significantly delays the onset of clinical symptoms, including depression-like behavior and memory impairment, while decreasing brain infiltration of pro-inflammatory natural killer cells and neutrophils, in this model of LPS-induced neuroinflammation. Such anti-inflammatory effects of α-GalCer pre-treatment closely correlated with iNKT cell polarization towards IL4- and IL10-producing phenotypes. Furthermore, α-GalCer pre-treatment restored the expression of suppressive markers on brain regulatory T cells during LPS-induced neuroinflammation. CONCLUSION Our findings provide strong evidence that α-GalCer-induced pre-activation of iNKT cells expands iNKT10 cells, mitigating depressive-like behaviors and brain infiltration of inflammatory immune cells induced by LPS-induced acute neuroinflammation. Thus, we suggest the prophylactic potential of iNKT cells and α-GalCer against acute neuroinflammation.
Collapse
Affiliation(s)
- Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, 26339, South Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
| |
Collapse
|
16
|
Pellicci DG, Tavakolinia N, Perriman L, Berzins SP, Menne C. Thymic development of human natural killer T cells: recent advances and implications for immunotherapy. Front Immunol 2024; 15:1441634. [PMID: 39267746 PMCID: PMC11390520 DOI: 10.3389/fimmu.2024.1441634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of lipid-reactive, unconventional T cells that have anti-tumor properties that make them a promising target for cancer immunotherapy. Recent studies have deciphered the developmental pathway of human MAIT and Vγ9Vδ2 γδ-T cells as well as murine iNKT cells, yet our understanding of human NKT cell development is limited. Here, we provide an update in our understanding of how NKT cells develop in the human body and how knowledge regarding their development could enhance human treatments by targeting these cells.
Collapse
Affiliation(s)
- Daniel G Pellicci
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Naeimeh Tavakolinia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Louis Perriman
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Fiona Elsey Cancer Institute, Ballarat, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
- Federation University Australia, Ballarat, VIC, Australia
| | | |
Collapse
|
17
|
O’Neal J, Mavers M, Jayasinghe RG, DiPersio JF. Traversing the bench to bedside journey for iNKT cell therapies. Front Immunol 2024; 15:1436968. [PMID: 39170618 PMCID: PMC11335525 DOI: 10.3389/fimmu.2024.1436968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are immune cells that harness properties of both the innate and adaptive immune system and exert multiple functions critical for the control of various diseases. Prevention of graft-versus-host disease (GVHD) by iNKT cells has been demonstrated in mouse models and in correlative human studies in which high iNKT cell content in the donor graft is associated with reduced GVHD in the setting of allogeneic hematopoietic stem cell transplants. This suggests that approaches to increase the number of iNKT cells in the setting of an allogeneic transplant may reduce GVHD. iNKT cells can also induce cytolysis of tumor cells, and murine experiments demonstrate that activating iNKT cells in vivo or treating mice with ex vivo expanded iNKT cells can reduce tumor burden. More recently, research has focused on testing anti-tumor efficacy of iNKT cells genetically modified to express a chimeric antigen receptor (CAR) protein (CAR-iNKT) cells to enhance iNKT cell tumor killing. Further, several of these approaches are now being tested in clinical trials, with strong safety signals demonstrated, though efficacy remains to be established following these early phase clinical trials. Here we review the progress in the field relating to role of iNKT cells in GVHD prevention and anti- cancer efficacy. Although the iNKT field is progressing at an exciting rate, there is much to learn regarding iNKT cell subset immunophenotype and functional relationships, optimal ex vivo expansion approaches, ideal treatment protocols, need for cytokine support, and rejection risk of iNKT cells in the allogeneic setting.
Collapse
Affiliation(s)
- Julie O’Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| | - Melissa Mavers
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Reyka G. Jayasinghe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
18
|
Heffernan DS, Chun TT, Monaghan SF, Chung CS, Ayala A. invariant Natural Killer T Cells Modulate the Peritoneal Macrophage Response to Polymicrobial Sepsis. J Surg Res 2024; 300:211-220. [PMID: 38824851 PMCID: PMC11246799 DOI: 10.1016/j.jss.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION A dysregulated immune system is a major driver of the mortality and long-term morbidity from sepsis. With respect to macrophages, it has been shown that phenotypic changes are critical to effector function in response to acute infections, including intra-abdominal sepsis. Invariant natural killer T cells (iNKT cells) have emerged as potential central regulators of the immune response to a variety of infectious insults. Specifically, various iNKT cell:macrophage interactions have been noted across a spectrum of diseases, including acute events such as sepsis. However, the potential for iNKT cells to affect peritoneal macrophages during an abdominal septic event is as yet unknown. METHODS Cecal ligation and puncture (CLP) was performed in both wild type (WT) and invariant natural killer T cell knockout (iNKT-/-) mice. 24 h following CLP or sham operation, peritoneal macrophages were collected for analysis. Analysis of macrophage phenotype and function was undertaken to include analysis of bactericidal activity and cytokine or superoxide production. RESULTS Within iNKT-/- mice, a greater degree of intraperitoneal macrophages in response to the sepsis was noted. Compared to WT mice, within iNKT-/- mice, CLP did induce an increase in CD86+ and CD206+, but no difference in CD11b+. Unlike WT mice, intra-abdominal sepsis within iNKT-/- mice induced an increase in Ly6C-int (5.2% versus 14.9%; P < 0.05) and a decrease in Ly6C-high on peritoneal macrophages. Unlike phagocytosis, iNKT cells did not affect macrophage bactericidal activity. Although iNKT cells did not affect interleukin-6 production, iNKT cells did affect IL-10 production and both nitrite and superoxide production from peritoneal macrophages. CONCLUSIONS The observations indicate that iNKT cells affect specific phenotypic and functional aspects of peritoneal macrophages during polymicrobial sepsis. Given that pharmacologic agents that affect iNKT cell functioning are currently in clinical trial, these findings may have the potential for translation to critically ill surgical patients with abdominal sepsis.
Collapse
Affiliation(s)
- Daithi S Heffernan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island.
| | - Tristen T Chun
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Sean F Monaghan
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
19
|
Baiu DC, Sharma A, Schehr JL, Basu J, Smith KA, Ohashi M, Johannsen EC, Kenney SC, Gumperz JE. Human CD4 + iNKT cell adoptive immunotherapy induces anti-tumour responses against CD1d-negative EBV-driven B lymphoma. Immunology 2024; 172:627-640. [PMID: 38736328 PMCID: PMC11223969 DOI: 10.1111/imm.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that are uniquely suitable as off-the-shelf cellular immunotherapies due to their lack of alloreactivity. Two major subpopulations of human iNKT cells have been delineated, a CD4- subset that has a TH1/cytolytic profile, and a CD4+ subset that appears polyfunctional and can produce both regulatory and immunostimulatory cytokines. Whether these two subsets differ in anti-tumour effects is not known. Using live cell imaging, we found that CD4- iNKT cells limited growth of CD1d+ Epstein-Barr virus (EBV)-infected B-lymphoblastoid spheroids in vitro, whereas CD4+ iNKT cells showed little or no direct anti-tumour activity. However, the effects of the two subsets were reversed when we tested them as adoptive immunotherapies in vivo using a xenograft model of EBV-driven human B cell lymphoma. We found that EBV-infected B cells down-regulated CD1d in vivo, and administering CD4- iNKT cells had no discernable impact on tumour mass. In contrast, xenotransplanted mice bearing lymphomas showed rapid reduction in tumour mass after administering CD4+ iNKT cells. Immunotherapeutic CD4+ iNKT cells trafficked to both spleen and tumour and were associated with subsequently enhanced responses of xenotransplanted human T cells against EBV. CD4+ iNKT cells also had adjuvant-like effects on monocyte-derived DCs and promoted antigen-dependent responses of human T cells in vitro. These results show that allogeneic CD4+ iNKT cellular immunotherapy leads to marked anti-tumour activity through indirect pathways that do not require tumour cell CD1d expression and that are associated with enhanced activity of antigen-specific T cells.
Collapse
Affiliation(s)
- Dana C. Baiu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Akshat Sharma
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Jennifer L. Schehr
- Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Jayati Basu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kelsey A. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Makoto Ohashi
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Eric C. Johannsen
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shannon C. Kenney
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jenny E. Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
20
|
Burak MF, Stanley TL, Lawson EA, Campbell SL, Lynch L, Hasty AH, Domingos AI, Dixit VD, Hotamışlıgil GS, Sheedy FJ, Dixon AE, Brinkley TE, Hill JA, Donath MY, Grinspoon SK. Adiposity, immunity, and inflammation: interrelationships in health and disease: a report from 24th Annual Harvard Nutrition Obesity Symposium, June 2023. Am J Clin Nutr 2024; 120:257-268. [PMID: 38705359 PMCID: PMC11347817 DOI: 10.1016/j.ajcnut.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The rapidly evolving field of immunometabolism explores how changes in local immune environments may affect key metabolic and cellular processes, including that of adipose tissue. Importantly, these changes may contribute to low-grade systemic inflammation. In turn, chronic low-grade inflammation affecting adipose tissue may exacerbate the outcome of metabolic diseases. Novel advances in our understanding of immunometabolic processes may critically lead to interventions to reduce disease severity and progression. An important example in this regard relates to obesity, which has a multifaceted effect on immunity, activating the proinflammatory pathways such as the inflammasome and disrupting cellular homeostasis. This multifaceted effect of obesity can be investigated through study of downstream conditions using cellular and systemic investigative techniques. To further explore this field, the National Institutes of Health P30 Nutrition Obesity Research Center at Harvard, in partnership with Harvard Medical School, assembled experts to present at its 24th Annual Symposium entitled "Adiposity, Immunity, and Inflammation: Interrelationships in Health and Disease" on 7 June, 2023. This manuscript seeks to synthesize and present key findings from the symposium, highlighting new research and novel disease-specific advances in the field. Better understanding the interaction between metabolism and immunity offers promising preventative and treatment therapies for obesity-related immunometabolic diseases.
Collapse
Affiliation(s)
- Mehmet Furkan Burak
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - Takara L Stanley
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sophia L Campbell
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lydia Lynch
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, VA Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, United Kingdom
| | - Vishwa D Dixit
- Department of Pathology, Department of Comparative Medicine, Department of Immunobiology, Yale School of Medicine, and Yale Center for Research on Aging, New Haven, CT, United States
| | - Gökhan S Hotamışlıgil
- Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Frederick J Sheedy
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Anne E Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Tina E Brinkley
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marc Y Donath
- Department of Biomedicine, University of Basel, Basel, Switzerland; Clinic of Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Yang X, Tang H, Sun X, Gui Q. M6A modification and T cells in adipose tissue inflammation. Cell Biochem Funct 2024; 42:e4089. [PMID: 38978329 DOI: 10.1002/cbf.4089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Adipose tissue in the obese state can lead to low-grade chronic inflammation while inducing or exacerbating obesity-related metabolic diseases and impairing overall health.T cells, which are essential immune cells similar to macrophages, are widely distributed in adipose tissue and perform their immunomodulatory function; they also cross-talk with other cells in the vascular stromal fraction. Based on a large number of studies, it has been found that N6 methyl adenine (m6A) is one of the most representative of epigenetic modifications, which affects the crosstalk between T cells, as well as other immune cells, in several ways and plays an important role in the development of adipose tissue inflammation and related metabolic diseases. In this review, we first provide an overview of the widespread presence of T cells in adipose tissue and summarize the key role of T cells in adipose tissue inflammation. Next, we explored the effects of m6A modifications on T cells in adipose tissue from the perspective of adipose tissue inflammation. Finally, we discuss the impact of m6a-regulated crosstalk between T cells and immune cells on the prospects for improving adipose tissue inflammation research, providing additional new ideas for the treatment of obesity.
Collapse
Affiliation(s)
- Xiaoting Yang
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Haojun Tang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xuan Sun
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Qingjun Gui
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
22
|
Hayashizaki K, Kamii Y, Kinjo Y. Glycolipid antigen recognition by invariant natural killer T cells and its role in homeostasis and antimicrobial responses. Front Immunol 2024; 15:1402412. [PMID: 38863694 PMCID: PMC11165115 DOI: 10.3389/fimmu.2024.1402412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Due to the COVID-19 pandemic, the importance of developing effective vaccines has received more attention than ever before. To maximize the effects of vaccines, it is important to select adjuvants that induce strong and rapid innate and acquired immune responses. Invariant natural killer T (iNKT) cells, which constitute a small population among lymphocytes, bypass the innate and acquired immune systems through the rapid production of cytokines after glycolipid recognition; hence, their activation could be used as a vaccine strategy against emerging infectious diseases. Additionally, the diverse functions of iNKT cells, including enhancing antibody production, are becoming more understood in recent years. In this review, we briefly describe the functional subset of iNKT cells and introduce the glycolipid antigens recognized by them. Furthermore, we also introduce novel vaccine development taking advantages of iNKT cell activation against infectious diseases.
Collapse
Affiliation(s)
- Koji Hayashizaki
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuhiro Kamii
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Alhamawi RM, Almutawif YA, Aloufi BH, Alotaibi JF, Alharbi MF, Alsrani NM, Alinizy RM, Almutairi WS, Alaswad WA, Eid HMA, Mumena WA. Free sugar intake is associated with reduced proportion of circulating invariant natural killer T cells among women experiencing overweight and obesity. Front Immunol 2024; 15:1358341. [PMID: 38807605 PMCID: PMC11131101 DOI: 10.3389/fimmu.2024.1358341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Background Higher prevalence of obesity has been observed among women compared to men, which can be explained partly by the higher consumption of sweets and physical inactivity. Obesity can alter immune cell infiltration, and therefore increase the susceptibility to develop chronic inflammation and metabolic disorders. In this study, we aimed to explore the association between free sugar intake and other unhealthy lifestyle habits in relation to the proportion of circulating iNKT cells among women with healthy weight and women experiencing overweight and obesity. Methods A cross-sectional study was conducted on 51 Saudi women > 18 years, wherein their daily free sugar intake was assessed using the validated Food Frequency Questionnaire. Data on smoking status, physical activity, and supplement use were also collected. Anthropometric data including height, weight, waist circumference were objectively measured from each participants. The proportion of circulating iNKT cells was determined using flow cytometry. Results Smoking, physical activity, supplement use, and weight status were not associated with proportion of circulating iNKT cells. Significant association was found between proportion of circulating iNKT cells and total free sugar intake and free sugar intake coming from solid food sources only among women experiencing overweight and obesity (Beta: -0.10: Standard Error: 0.04 [95% Confidence Interval: -0.18 to -0.01], p= 0.034) and (Beta: -0.15: Standard Error: 0.05 [95% Confidence Interval: -0.25 to -0.05], p= 0.005), respectively. Conclusion Excessive free sugar consumption may alter iNKT cells and consequently increase the risk for chronic inflammation and metabolic disorders.
Collapse
Affiliation(s)
- Renad M. Alhamawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Yahya A. Almutawif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Bushra H. Aloufi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Jory F. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Manar F. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Nura M. Alsrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Razan M. Alinizy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Waad S. Almutairi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Wed A. Alaswad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Hamza M. A. Eid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Walaa A. Mumena
- Clinical Nutrition Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
24
|
Gutiérrez-Vera C, García-Betancourt R, Palacios PA, Müller M, Montero DA, Verdugo C, Ortiz F, Simon F, Kalergis AM, González PA, Saavedra-Avila NA, Porcelli SA, Carreño LJ. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol 2024; 15:1364774. [PMID: 38629075 PMCID: PMC11018981 DOI: 10.3389/fimmu.2024.1364774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Verdugo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisca Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemi A. Saavedra-Avila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Susca N, Leone P, Prete M, Cozzio S, Racanelli V. Adipose failure through adipocyte overload and autoimmunity. Autoimmun Rev 2024; 23:103502. [PMID: 38101692 DOI: 10.1016/j.autrev.2023.103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Metabolic syndrome poses a great worldwide threat to the health of the patients. Increased visceral adiposity is recognized as the main determinant of the detrimental clinical effects of insulin resistance. Inflammation and immune system activation in the adipose tissue (AT) have a central role in the pathophysiology of metabolic syndrome, but the mechanisms linking increased adiposity to immunity in the AT remain in part elusive. In this review, we support the central role of adipocyte overload and relative adipose failure as key determinants in triggering immune aggression to AT. This provides a mechanistic explanation of the relative metabolic wellness of metabolically normal obese people and the disruption in insulin signaling in metabolically obese lean people.
Collapse
Affiliation(s)
- Nicola Susca
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Patrizia Leone
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Susanna Cozzio
- U.O. di Medicina Interna, Ospedale di Rovereto, Azienda Sanitaria per i Servizi Provinciali di Trento, Trento, Italy
| | - Vito Racanelli
- Centre for Medical Sciences - CISMed, University of Trento and Department of Internal Medicine, Santa Chiara Hospital, Trento, Italy.
| |
Collapse
|
26
|
Cui G, Abe S, Kato R, Ikuta K. Insights into the heterogeneity of iNKT cells: tissue-resident and circulating subsets shaped by local microenvironmental cues. Front Immunol 2024; 15:1349184. [PMID: 38440725 PMCID: PMC10910067 DOI: 10.3389/fimmu.2024.1349184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct subpopulation of innate-like T lymphocytes. They are characterized by semi-invariant T cell receptors (TCRs) that recognize both self and foreign lipid antigens presented by CD1d, a non-polymorphic MHC class I-like molecule. iNKT cells play a critical role in stimulating innate and adaptive immune responses, providing an effective defense against infections and cancers, while also contributing to chronic inflammation. The functions of iNKT cells are specific to their location, ranging from lymphoid to non-lymphoid tissues, such as the thymus, lung, liver, intestine, and adipose tissue. This review aims to provide insights into the heterogeneity of development and function in iNKT cells. First, we will review the expression of master transcription factors that define subsets of iNKT cells and their production of effector molecules such as cytokines and granzymes. In this article, we describe the gene expression profiles contributing to the kinetics, distribution, and cytotoxicity of iNKT cells across different tissue types. We also review the impact of cytokine production in distinct immune microenvironments on iNKT cell heterogeneity, highlighting a recently identified circulating iNKT cell subset. Additionally, we explore the potential of exploiting iNKT cell heterogeneity to create potent immunotherapies for human cancers in the future.
Collapse
Affiliation(s)
- Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryoma Kato
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Satoh M, Iwabuchi K. Contribution of NKT cells and CD1d-expressing cells in obesity-associated adipose tissue inflammation. Front Immunol 2024; 15:1365843. [PMID: 38426085 PMCID: PMC10902011 DOI: 10.3389/fimmu.2024.1365843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Natural killer T (NKT) cell are members of the innate-like T lymphocytes and recognizes lipid antigens presented by CD1d-expressing cells. Obesity-associated inflammation in adipose tissue (AT) leads to metabolic dysfunction, including insulin resistance. When cellular communication is properly regulated among AT-residing immune cells and adipocytes during inflammation, a favorable balance of Th1 and Th2 immune responses is achieved. NKT cells play crucial roles in AT inflammation, influencing the development of diet-induced obesity and insulin resistance. NKT cells interact with CD1d-expressing cells in AT, such as adipocytes, macrophages, and dendritic cells, shaping pro-inflammatory or anti-inflammatory microenvironments with distinct characteristics depending on the antigen-presenting cells. Additionally, CD1d may be involved in the inflammatory process independently of NKT cells. In this mini-review, we provide a brief overview of the current understanding of the interaction between immune cells, focusing on NKT cells and CD1d signaling, which control AT inflammation both in the presence and absence of NKT cells. We aim to enhance our understanding of the mechanisms of obesity-associated diseases.
Collapse
Affiliation(s)
- Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | | |
Collapse
|
28
|
Hebbandi Nanjundappa R, Shao K, Krishnamurthy P, Gershwin ME, Leung PSC, Sokke Umeshappa C. Invariant natural killer T cells in autoimmune cholangiopathies: Mechanistic insights and therapeutic implications. Autoimmun Rev 2024; 23:103485. [PMID: 38040101 DOI: 10.1016/j.autrev.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) constitute a specialized subset of lymphocytes that bridges innate and adaptive immunity through a combination of traits characteristic of both conventional T cells and innate immune cells. iNKT cells are characterized by their invariant T cell receptors and discerning recognition of lipid antigens, which are presented by the non-classical MHC molecule, CD1d. Within the hepatic milieu, iNKT cells hold heightened prominence, contributing significantly to the orchestration of organ homeostasis. Their unique positioning to interact with diverse cellular entities, ranging from epithelial constituents like hepatocytes and cholangiocytes to immunocytes including Kupffer cells, B cells, T cells, and dendritic cells, imparts them with potent immunoregulatory abilities. Emergering knowledge of liver iNKT cells subsets enable to explore their therapeutic potential in autoimmne liver diseases. This comprehensive review navigates the landscape of iNKT cell investigations in immune-mediated cholangiopathies, with a particular focus on primary biliary cholangitis and primary sclerosing cholangitis, across murine models and human subjects to unravel the intricate involvements of iNKT cells in liver autoimmunity. Additionally, we also highlight the prospectives of iNKT cells as therapeutic targets in cholangiopathies. Modulation of the equilibrium between regulatory and proinflammatory iNKT subsets can be defining determinant in the dynamics of hepatic autoimmunity. This discernment not only enriches our foundational comprehension but also lays the groundwork for pioneering strategies to navigate the multifaceted landscape of liver autoimmunity.
Collapse
Affiliation(s)
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| |
Collapse
|
29
|
Zhao W, Li M, Song S, Zhi Y, Huan C, Lv G. The role of natural killer T cells in liver transplantation. Front Cell Dev Biol 2024; 11:1274361. [PMID: 38250325 PMCID: PMC10796773 DOI: 10.3389/fcell.2023.1274361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Natural killer T cells (NKTs) are innate-like lymphocytes that are abundant in the liver and participate in liver immunity. NKT cells express both NK cell and T cell markers, modulate innate and adaptive immune responses. Type I and Type II NKT cells are classified according to the TCR usage, while they recognize lipid antigen in a non-classical major histocompatibility (MHC) molecule CD1d-restricted manner. Once activated, NKT cells can quickly produce cytokines and chemokines to negatively or positively regulate the immune responses, depending on the different NKT subsets. In liver transplantation (LTx), the immune reactions in a series of processes determine the recipients' long-term survival, including ischemia-reperfusion injury, alloresponse, and post-transplant infection. This review provides insight into the research on NKT cells subpopulations in LTx immunity during different processes, and discusses the shortcomings of the current research on NKT cells. Additionally, the CD56-expressing T cells are recognized as a NK-like T cell population, they were also discussed during these processes.
Collapse
Affiliation(s)
- Wenchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
30
|
Jiang Y, Gong F. Immune cells in adipose tissue microenvironment under physiological and obese conditions. Endocrine 2024; 83:10-25. [PMID: 37768512 DOI: 10.1007/s12020-023-03521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE This review will focus on the immune cells in adipose tissue microenvironment and their regulatory roles in metabolic homeostasis of adipose tissue and even the whole body under physiological and obese conditions. METHODS This review used PubMed searches of current literature to examine adipose tissue immune cells and cytokines, as well as the complex interactions between them. RESULTS Aside from serving as a passive energy depot, adipose tissue has shown specific immunological function. Adipose tissue microenvironment is enriched with a large number of immune cells and cytokines, whose physiological regulation plays a crucial role for metabolic homeostasis. However, obesity causes pro-inflammatory alterations in these adipose tissue immune cells, which have detrimental effects on metabolism and increase the susceptibility of individuals to the obesity related diseases. CONCLUSIONS Adipose tissue microenvironment is enriched with various immune cells and cytokines, which regulate metabolic homeostasis of adipose tissue and even the whole body, whether under physiological or obese conditions. Targeting key immune cells and cytokines in adipose tissue microenvironment for obesity treatment becomes an attractive research point.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
31
|
Konstantakopoulou C, Verykokakis M. Key Functions of the Transcription Factor BCL6 During T-Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:79-94. [PMID: 39017840 DOI: 10.1007/978-3-031-62731-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
T lymphocytes consist of several subtypes with distinct functions that help to coordinate an immune response. They are generated within the thymus through a sequential developmental pathway that produces subsets with diverse antigen specificities and functions. Naïve T cells populate peripheral lymphoid organs and are activated upon foreign antigen encounter. While most T cells die soon after activation, a memory population survives and is able to quickly respond to secondary challenges, thus providing long-term immunity to the host. Although cell identity is largely stable and is instructed by cell-specific transcriptional programs, cells may change their transcriptional profiles to be able to adapt to new functionalities. Central to these dynamic processes are transcription factors, which control cell fate decisions, through direct regulation of gene expression. In this book chapter, we review the functions of the transcription factor B-cell lymphoma 6 (BCL6), which directs the fate of several lymphocyte subsets, including helper, cytotoxic, and innate-like T cells, but can also be involved in lymphomagenesis in humans.
Collapse
Affiliation(s)
- Chara Konstantakopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
- Department of Antibody Research Materials, Genmab B.V., Utrecht, The Netherlands
| | - Mihalis Verykokakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece.
| |
Collapse
|
32
|
Ikuta K, Asahi T, Cui G, Abe S, Takami D. Control of the Development, Distribution, and Function of Innate-Like Lymphocytes and Innate Lymphoid Cells by the Tissue Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:111-127. [PMID: 38467976 DOI: 10.1007/978-981-99-9781-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recently, considerable attention has been directed toward innate-like T cells (ITCs) and innate lymphoid cells (ILCs) owing to their indispensable contributions to immune responses, tissue homeostasis, and inflammation. Innate-like T cells include NKT cells, MAIT cells, and γδ T cells, whereas ILCs include NK cells, type 1 ILCs (ILC1s), type 2 ILCs (ILC2s), and type 3 ILCs (ILC3s). Many of these ITCs and ILCs are distributed to specific tissues and remain tissue-resident, while others, such as NK cells and some γδ T cells, circulate through the bloodstream. Nevertheless, recent research has shed light on novel subsets of innate immune cells that exhibit characteristics intermediate between tissue-resident and circulating states under normal and pathological conditions. The local microenvironment frequently influences the development, distribution, and function of these innate immune cells. This review aims to consolidate the current knowledge on the functional heterogeneity of ITCs and ILCs, shaped by local environmental cues, with particular emphasis on IL-15, which governs the activities of the innate immune cells involved in type 1 immune responses.
Collapse
Affiliation(s)
- Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daichi Takami
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Han SM, Park ES, Park J, Nahmgoong H, Choi YH, Oh J, Yim KM, Lee WT, Lee YK, Jeon YG, Shin KC, Huh JY, Choi SH, Park J, Kim JK, Kim JB. Unique adipose tissue invariant natural killer T cell subpopulations control adipocyte turnover in mice. Nat Commun 2023; 14:8512. [PMID: 38129377 PMCID: PMC10739728 DOI: 10.1038/s41467-023-44181-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue invariant natural killer T (iNKT) cells are a crucial cell type for adipose tissue homeostasis in obese animals. However, heterogeneity of adipose iNKT cells and their function in adipocyte turnover are not thoroughly understood. Here, we investigate transcriptional heterogeneity in adipose iNKT cells and their hierarchy using single-cell RNA sequencing in lean and obese mice. We report that distinct subpopulations of adipose iNKT cells modulate adipose tissue homeostasis through adipocyte death and birth. We identify KLRG1+ iNKT cells as a unique iNKT cell subpopulation in adipose tissue. Adoptive transfer experiments showed that KLRG1+ iNKT cells are selectively generated within adipose tissue microenvironment and differentiate into a CX3CR1+ cytotoxic subpopulation in obese mice. In addition, CX3CR1+ iNKT cells specifically kill enlarged and inflamed adipocytes and recruit macrophages through CCL5. Furthermore, adipose iNKT17 cells have the potential to secrete AREG, and AREG is involved in stimulating adipose stem cell proliferation. Collectively, our data suggest that each adipose iNKT cell subpopulation plays key roles in the control of adipocyte turnover via interaction with adipocytes, adipose stem cells, and macrophages in adipose tissue.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeu Park
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Kyung Min Yim
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Taek Lee
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, 03080, Republic of Korea
| | - Yong Geun Jeon
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Cheul Shin
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, 03080, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea.
| | - Jae Bum Kim
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
34
|
Han M, Geng J, Zhang S, Rao J, Zhu Y, Xu S, Wang F, Ma F, Zhou M, Zhou H. Invariant natural killer T cells drive hepatic homeostasis in nonalcoholic fatty liver disease via sustained IL-10 expression in CD170 + Kupffer cells. Eur J Immunol 2023; 53:e2350474. [PMID: 37489253 DOI: 10.1002/eji.202350474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Kupffer cells (KCs) are liver-resident macrophages involved in hepatic inflammatory responses, including nonalcoholic fatty liver disease (NAFLD) development. However, the contribution of KC subsets to liver inflammation remains unclear. Here, using high-dimensional single-cell RNA sequencing, we characterized murine embryo-derived KCs and identified two KC populations with different gene expression profiles: KC-1 and KC-2. KC-1 expressed CD170, exhibiting immunoreactivity and immune-regulatory abilities, while KC-2 highly expressed lipid metabolism-associated genes. In a high-fat diet-induced NAFLD model, KC-1 cells differentiated into pro-inflammatory phenotypes and initiated more frequent communications with invariant natural killer T (iNKT) cells. In KC-1, interleukin (IL)-10 expression was unaffected by the high-fat diet but impaired by iNKT cell ablation and upregulated by iNKT cell adoptive transfer in vivo. Moreover, in a cellular co-culture system, primary hepatic iNKT cells promoted IL-10 expression in RAW264.7 and primary KC-1 cells. CD206 signal blocking in KC-1 or CD206 knockdown in RAW264.7 cells significantly reduced IL-10 expression. In conclusion, we identified two embryo-derived KC subpopulations with distinct transcriptional profiles. The CD206-mediated crosstalk between iNKT and KC-1 cells maintains IL-10 expression in KC-1 cells, affecting hepatic immune balance. Therefore, KC-based therapeutic strategies must consider cellular heterogeneity and the local immune microenvironment for enhanced specificity and efficiency.
Collapse
Affiliation(s)
- Mutian Han
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Jinke Geng
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Shuangshuang Zhang
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Jia Rao
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Yansong Zhu
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| | - Shaodong Xu
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| | - Fei Wang
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
| | - Fang Ma
- Center for Scientific Research, Anhui Medical University, Anhui, China
| | - Meng Zhou
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| | - Hong Zhou
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Anhui, China
- Department of Cell and Biology, College of Life Sciences, Anhui Medical University, Anhui, China
| |
Collapse
|
35
|
Ishikawa H, Nagashima R, Kuno Y, Sasaki H, Kohda C, Iyoda M. Effects of NKT Cells on Metabolic Disorders Caused by High-Fat Diet Using CD1d-Knockout Mice. Diabetes Metab Syndr Obes 2023; 16:2855-2864. [PMID: 37744699 PMCID: PMC10517681 DOI: 10.2147/dmso.s428190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose The purpose of this study was to investigate whether NKT cells play an important role in preventing or exacerbating diseases caused by high-fat diet (HFD) using CD1d-knockout (KO) mice which lack NKT cells. Methods Five-week-old male Balb/c (wild-type; WT) or CD1dKO mice were fed with control-diet (CTD) or HFD for 16 weeks. Results The present study revealed four main findings. First, CD1dKO mice were susceptible to obesity caused by HFD in comparison to WT mice. Second, clinical conditions of fatty liver caused by HFD were comparable between CD1dKO mice and WT mice. Third, HFD-fed WT mice showed high levels of serum biochemical markers, involved in lipid metabolisms, in comparison to WT mice fed a CTD. Notably, the serum concentrations of ALT, T-CHO, TG and HDL-C in CD1dKO mice fed a HFD were almost comparable to those of CD1dKO mice fed a CTD. Fourth, the expression of peroxisome proliferator-activated receptor (PPAR) γ, low-density lipoprotein receptor (LDLR), CD36 of epididymal adipose tissue enhanced and proprotein convertase subtilisin/kexin type (PCSK) 9 in serum decreased. Conclusion NKT cells were responsible for protection against HFD-induced obesity. However, CD1dKO mice were resistant to serum biochemical marker abnormalities after HFD feeding. One possible explanation is that the epididymal adipose tissue of CD1dKO mice could take up greater amounts of excess lipids in serum in comparison to WT mice.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Yoshihiro Kuno
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Hiraku Sasaki
- Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, 270-1695, Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8666, Japan
| |
Collapse
|
36
|
Jeong D, Woo YD, Chung DH. Invariant natural killer T cells in lung diseases. Exp Mol Med 2023; 55:1885-1894. [PMID: 37696892 PMCID: PMC10545712 DOI: 10.1038/s12276-023-01024-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 09/13/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of T cells that are characterized by a restricted T-cell receptor (TCR) repertoire and a unique ability to recognize glycolipid antigens. These cells are found in all tissues, and evidence to date suggests that they play many immunological roles in both homeostasis and inflammatory conditions. The latter include lung inflammatory diseases such as asthma and infections: the roles of lung-resident iNKT cells in these diseases have been extensively researched. Here, we provide insights into the biology of iNKT cells in health and disease, with a particular focus on the role of pulmonary iNKT cells in airway inflammation and other lung diseases.
Collapse
Affiliation(s)
- Dongjin Jeong
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Mukherjee S, Skrede S, Haugstøyl M, López M, Fernø J. Peripheral and central macrophages in obesity. Front Endocrinol (Lausanne) 2023; 14:1232171. [PMID: 37720534 PMCID: PMC10501731 DOI: 10.3389/fendo.2023.1232171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 09/19/2023] Open
Abstract
Obesity is associated with chronic, low-grade inflammation. Excessive nutrient intake causes adipose tissue expansion, which may in turn cause cellular stress that triggers infiltration of pro-inflammatory immune cells from the circulation as well as activation of cells that are residing in the adipose tissue. In particular, the adipose tissue macrophages (ATMs) are important in the pathogenesis of obesity. A pro-inflammatory activation is also found in other organs which are important for energy metabolism, such as the liver, muscle and the pancreas, which may stimulate the development of obesity-related co-morbidities, including insulin resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-induced pro-inflammatory signaling also occurs in the central nervous system (CNS), and that pro-inflammatory activation of immune cells in the brain may be involved in appetite dysregulation and metabolic disturbances in obesity. More recently, it has become evident that microglia, the resident macrophages of the CNS that drive neuroinflammation, may also be activated in obesity and can be relevant for regulation of hypothalamic feeding circuits. In this review, we focus on the action of peripheral and central macrophages and their potential roles in metabolic disease, and how macrophages interact with other immune cells to promote inflammation during obesity.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Martha Haugstøyl
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
39
|
Duquette D, Harmon C, Zaborowski A, Michelet X, O'Farrelly C, Winter D, Koay HF, Lynch L. Human Granzyme K Is a Feature of Innate T Cells in Blood, Tissues, and Tumors, Responding to Cytokines Rather than TCR Stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:633-647. [PMID: 37449888 DOI: 10.4049/jimmunol.2300083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
NK cells and CD8 T cells use cytotoxic molecules to kill virally infected and tumor cell targets. While perforin and granzyme B (GzmB) are the most commonly studied lytic molecules, less is known about granzyme K (GzmK). However, this granzyme has been recently associated with improved prognosis in solid tumors. In this study, we show that, in humans, GzmK is predominantly expressed by innate-like lymphocytes, as well as a newly identified population of GzmK+CD8+ non- mucosal-associated invariant T cells with innate-like characteristics. We found that GzmK+ T cells are KLRG1+EOMES+IL-7R+CD62L-Tcf7int, suggesting that they are central memory T and effector memory T cells. Furthermore, GzmK+ cells are absent/low in cord blood, suggesting that GzmK is upregulated with immune experience. Surprisingly, GzmK+ cells respond to cytokine stimuli alone, whereas TCR stimulation downregulates GzmK expression, coinciding with GzmB upregulation. GzmK+ cells have reduced IFN-γ production compared with GzmB+ cells in each T cell lineage. Collectively, this suggests that GzmK+ cells are not naive, and they may be an intermediate memory-like or preterminally differentiated population. GzmK+ cells are enriched in nonlymphoid tissues such as the liver and adipose. In colorectal cancer, GzmK+ cells are enriched in the tumor and can produce IFN-γ, but GzmK+ expression is mutually exclusive with IL-17a production. Thus, in humans, GzmK+ cells are innate memory-like cells that respond to cytokine stimulation alone and may be important effector cells in the tumor.
Collapse
Affiliation(s)
- Danielle Duquette
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Cathal Harmon
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | | | - Xavier Michelet
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Des Winter
- St. Vincent's University Hospital, Dublin, Ireland
| | - Hui-Fern Koay
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Austria
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
40
|
De Barra C, Khalil M, Mat A, O'Donnell C, Shaamile F, Brennan K, O'Shea D, Hogan AE. Glucagon-like peptide-1 therapy in people with obesity restores natural killer cell metabolism and effector function. Obesity (Silver Spring) 2023. [PMID: 37157931 DOI: 10.1002/oby.23772] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE People with obesity (PWO) have functionally defective natural killer (NK) cells, with a decreased capacity to produce cytokines and kill target cells, underpinned by defective cellular metabolism. It is plausible that the changes in peripheral NK cell activity are contributing to the multimorbidity in PWO, which includes an increased risk of cancer. This study investigated whether therapy with long-acting glucagon-like peptide-1 (GLP-1) analogues, which are an effective treatment for obesity, could restore NK cell functionality in PWO. METHODS In a cohort of 20 PWO, this study investigated whether 6 months of once weekly GLP-1 therapy (semaglutide) could restore human NK cell function and metabolism using multicolor flow cytometry, enzyme-linked immunosorbent assays, and cytotoxicity assays. RESULTS These data demonstrate that PWO who received GLP-1 therapy have improved NK cell function, as measured by cytotoxicity and interferon-γ/granzyme B production. In addition, the study demonstrates increases in a CD98-mTOR-glycolysis metabolic axis, which is critical for NK cell cytokine production. Finally, it shows that the reported improvements in NK cell function appear to be independent of weight loss. CONCLUSIONS The restoration, by GLP-1 therapy, of NK cell functionality in PWO may be contributing to the overall benefits being seen with this class of medication.
Collapse
Affiliation(s)
- Conor De Barra
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, County Kildare, Ireland
| | - Mohammed Khalil
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Arimin Mat
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Cliona O'Donnell
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Ferrah Shaamile
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | | | - Donal O'Shea
- St Vincent's University Hospital & University College Dublin, Dublin 4, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, County Kildare, Ireland
| |
Collapse
|
41
|
Chen K, Dai G, Liu S, Wei Y. Reducing obesity and inflammation in mice with organically-derivatized polyoxovanadate clusters. CHINESE CHEM LETT 2023; 34:107638. [DOI: 10.1016/j.cclet.2022.06.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Morris I, Croes CA, Boes M, Kalkhoven E. Advanced omics techniques shed light on CD1d-mediated lipid antigen presentation to iNKT cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159292. [PMID: 36773690 DOI: 10.1016/j.bbalip.2023.159292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Invariant natural killer T cells (iNKT cells) can be activated through binding antigenic lipid/CD1d complexes to their TCR. Antigenic lipids are processed, loaded, and displayed in complex with CD1d by lipid antigen presenting cells (LAPCs). The mechanism of lipid antigen presentation via CD1d is highly conserved with recent work showing adipocytes are LAPCs that, besides having a role in lipid storage, can activate iNKT cells and play an important role in systemic metabolic disease. Recent studies shed light on parameters potentially dictating cytokine output and how obesity-associated metabolic disease may affect such parameters. By following a lipid antigen's journey, we identify five key areas which may dictate cytokine skew: co-stimulation, structural properties of the lipid antigen, stability of lipid antigen/CD1d complexes, intracellular and extracellular pH, and intracellular and extracellular lipid environment. Recent publications indicate that the combination of advanced omics-type approaches and machine learning may be a fruitful way to interconnect these 5 areas, with the ultimate goal to provide new insights for therapeutic exploration.
Collapse
Affiliation(s)
- Imogen Morris
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands
| | - Cresci-Anne Croes
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
43
|
Look A, Burns D, Tews I, Roghanian A, Mansour S. Towards a better understanding of human iNKT cell subpopulations for improved clinical outcomes. Front Immunol 2023; 14:1176724. [PMID: 37153585 PMCID: PMC10154573 DOI: 10.3389/fimmu.2023.1176724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T lymphocyte population expressing semi-invariant T cell receptors (TCRs) that recognise lipid antigens presented by CD1d. iNKT cells exhibit potent anti-tumour activity through direct killing mechanisms and indirectly through triggering the activation of other anti-tumour immune cells. Because of their ability to induce potent anti-tumour responses, particularly when activated by the strong iNKT agonist αGalCer, they have been the subject of intense research to harness iNKT cell-targeted immunotherapies for cancer treatment. However, despite potent anti-tumour efficacy in pre-clinical models, the translation of iNKT cell immunotherapy into human cancer patients has been less successful. This review provides an overview of iNKT cell biology and why they are of interest within the context of cancer immunology. We focus on the iNKT anti-tumour response, the seminal studies that first reported iNKT cytotoxicity, their anti-tumour mechanisms, and the various described subsets within the iNKT cell repertoire. Finally, we discuss several barriers to the successful utilisation of iNKT cells in human cancer immunotherapy, what is required for a better understanding of human iNKT cells, and the future perspectives facilitating their exploitation for improved clinical outcomes.
Collapse
Affiliation(s)
- Alex Look
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Daniel Burns
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ivo Tews
- Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Salah Mansour
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
44
|
Dieme A, André S, Lapillonne H, Tounian P, Clément K, Dubern B. Characterization of lymphocyte profiles in children with syndromic obesity. Arch Pediatr 2023; 30:212-218. [PMID: 37061360 DOI: 10.1016/j.arcped.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/12/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Little is known about blood lymphocyte subpopulations in children with common (CO) or syndromic (SO) obesity. We aimed to describe the blood lymphocyte profiles of obese children and to search for associations with clinical phenotypes. METHODS Main blood lymphocyte subpopulations were analyzed in 159 children with CO and 34 with SO in a retrospective cohort. Phenotypes included obesity history, body mass index (BMI) Z score, percentage fat mass, and inflammatory parameters. Correlations were performed between phenotypes and circulating lymphocyte profiles. RESULTS Children with SO had a higher BMI Z score (5.5 ± 1.7 SD) than children with CO (4.7 ± 0.9 SD; p = 0.01). Significant differences were found for lymphocyte counts, including a higher percentage of CD19+ B cells (SO = 20.1 ± 6.7 vs. CO = 17.1 ± 6.1%, p = 0.03), despite lower absolute numbers (SO = 0.57 ± 0.20 vs. CO = 0.63 ± 1.9 g/L, p < 0.01). However, no difference in the lymphocyte profile was found between children with SO and those with the most severe CO (BMI Z score ≥ 4.7 SD). CONCLUSION Children with SO have altered blood lymphocyte profiles with increased prevalence of CD19+ B cells, which is closely linked to the degree of obesity severity and inflammatory markers.
Collapse
Affiliation(s)
- A Dieme
- Armand-Trousseau Children's Hospital, Pediatric Nutrition and Gastroenterology Department, Paris, France
| | - S André
- Sorbonne Université, INSERM, Nutrition and Obesities, Systemic Approaches, Nutriomics, Paris, France
| | - H Lapillonne
- Armand-Trousseau Children's Hospital, Biological Hematology Department, Paris, France
| | - P Tounian
- Armand-Trousseau Children's Hospital, Pediatric Nutrition and Gastroenterology Department, Paris, France
| | - K Clément
- Sorbonne Université, INSERM, Nutrition and Obesities, Systemic Approaches, Nutriomics, Paris, France; Hôpital Universitaire Pitié Salpêtrière, Nutrition Department, Paris, France
| | - B Dubern
- Armand-Trousseau Children's Hospital, Pediatric Nutrition and Gastroenterology Department, Paris, France; Sorbonne Université, INSERM, Nutrition and Obesities, Systemic Approaches, Nutriomics, Paris, France.
| |
Collapse
|
45
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
46
|
Wang WB, Lin YD, Zhao L, Liao C, Zhang Y, Davila M, Sun J, Chen Y, Xiong N. Developmentally programmed early-age skin localization of iNKT cells supports local tissue development and homeostasis. Nat Immunol 2023; 24:225-238. [PMID: 36624165 DOI: 10.1038/s41590-022-01399-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023]
Abstract
Skin is exposed to various environmental assaults and undergoes morphological changes immediately after birth. Proper localization and function of immune cells in the skin is crucial for protection and establishment of skin tissue homeostasis. Here we report the discovery of a developmentally programmed process that directs preferential localization of invariant natural killer T (iNKT) cells to the skin for early local homeostatic regulation. We show that iNKT cells are programmed predominantly with a CCR10+ skin-homing phenotype during thymic development in infant and young mice. Early skin localization of iNKT cells is critical for proper commensal bacterial colonization and tissue development. Mechanistically, skin iNKT cells provide a local source of transferrin that regulates iron metabolism in hair follicle progenitor cells and helps hair follicle development. These findings provide molecular insights into the establishment and physiological functions of iNKT cells in the skin during early life.
Collapse
Affiliation(s)
- Wei-Bei Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Luming Zhao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Chang Liao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Micha Davila
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jasmine Sun
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yidong Chen
- Department of Population Health Sciences, and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
- Department of Medicine-Division of Dermatology and Cutaneous Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
47
|
Tissue-specific metabolic profile drives iNKT cell function during obesity and liver injury. Cell Rep 2023; 42:112035. [PMID: 36848232 DOI: 10.1016/j.celrep.2023.112035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 10/21/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct population of lymphocytes characterized by their reactivity to glycolipids presented by CD1d. iNKT cells are found throughout the body, and little is known about their tissue-specific metabolic regulation. Here, we show that splenic and hepatic iNKT cells are metabolically comparable and rely on glycolytic metabolism to support their activation. Deletion of the pyruvate kinase M2 (Pkm2) gene in splenic and hepatic iNKT cells impairs their response to specific stimulation and their ability to mitigate acute liver injury. In contrast, adipose tissue (AT) iNKT cells exhibit a distinctive immunometabolic profile, with AMP-activated protein kinase (AMPK) being necessary for their function. AMPK deficiency impairs AT-iNKT physiology, blocking their capacity to maintain AT homeostasis and their ability to regulate AT inflammation during obesity. Our work deepens our understanding on the tissue-specific immunometabolic regulation of iNKT cells, which directly impacts the course of liver injury and obesity-induced inflammation.
Collapse
|
48
|
Cheng HY, Anggelia MR, Lin CH, Wei FC. Toward transplantation tolerance with adipose tissue-derived therapeutics. Front Immunol 2023; 14:1111813. [PMID: 37187733 PMCID: PMC10175575 DOI: 10.3389/fimmu.2023.1111813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Solid organ and composite tissue allotransplanation have been widely applied to treat end-stage organ failure and massive tissue defects, respectively. Currently there are a lot of research endeavors focusing on induction of transplantation tolerance, to relieve the burden derived from long-term immunosuppressant uptake. The mesenchymal stromal cells (MSCs) have been demonstrated with potent immunomodulatory capacities and applied as promising cellular therapeutics to promote allograft survival and induce tolerance. As a rich source of adult MSCs, adipose tissue provides additional advantages of easy accessibility and good safety profile. In recent years, the stromal vascular fraction (SVF) isolated from adipose tissues following enzymatic or mechanical processing without in vitro culture and expansion has demonstrated immunomodulatory and proangiogenic properties. Furthermore, the secretome of AD-MSCs has been utilized in transplantation field as a potential "cell-free" therapeutics. This article reviews recent studies that employ these adipose-derived therapeutics, including AD-MSCs, SVF, and secretome, in various aspects of organ and tissue allotransplantation. Most reports validate their efficacies in prolonging allograft survival. Specifically, the SVF and secretome have performed well for graft preservation and pretreatment, potentially through their proangiogenic and antioxidative capacities. In contrast, AD-MSCs were suitable for peri-transplantation immunosuppression. The proper combination of AD-MSCs, lymphodepletion and conventional immunosuppressants could consistently induce donor-specific tolerance to vascularized composite allotransplants (VCA). For each type of transplantation, optimizing the choice of therapeutics, timing, dose, and frequency of administration may be required. Future progress in the application of adipose-derived therapeutics to induce transplantation tolerance will be further benefited by continued research into their mechanisms of action and the development of standardized protocols for isolation methodologies, cell culture, and efficacy evaluation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- *Correspondence: Hui-Yun Cheng,
| | - Madonna Rica Anggelia
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
49
|
Redondo-Urzainqui A, Hernández-García E, Cook ECL, Iborra S. Dendritic cells in energy balance regulation. Immunol Lett 2023; 253:19-27. [PMID: 36586424 DOI: 10.1016/j.imlet.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Besides their well-known role in initiating adaptive immune responses, several groups have studied the role of dendritic cells (DCs) in the context of chronic metabolic inflammation, such as in diet-induced obesity (DIO) or metabolic-associated fatty liver disease. DCs also have an important function in maintaining metabolic tissue homeostasis in steady-state conditions. In this review, we will briefly describe the different DC subsets, the murine models available to assess their function, and discuss the role of DCs in regulating energy balance and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Ana Redondo-Urzainqui
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Emma Clare Laura Cook
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
50
|
Cai Z, He B. Adipose tissue aging: An update on mechanisms and therapeutic strategies. Metabolism 2023; 138:155328. [PMID: 36202221 DOI: 10.1016/j.metabol.2022.155328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Aging is a complex biological process characterized by a progressive loss of physiological integrity and increased vulnerability to age-related diseases. Adipose tissue plays central roles in the maintenance of whole-body metabolism homeostasis and has recently attracted significant attention as a biological driver of aging and age-related diseases. Here, we review the most recent advances in our understanding of the molecular and cellular mechanisms underlying age-related decline in adipose tissue function. In particular, we focus on the complex inter-relationship between metabolism, immune, and sympathetic nervous system within adipose tissue during aging. Moreover, we discuss the rejuvenation strategies to delay aging and extend lifespan, including senescent cell ablation (senolytics), dietary intervention, physical exercise, and heterochronic parabiosis. Understanding the pathological mechanisms that underlie adipose tissue aging will be critical for the development of new intervention strategies to slow or reverse aging and age-related diseases.
Collapse
Affiliation(s)
- Zhaohua Cai
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ben He
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|