1
|
Wei Y, Yang J, Zu W, Wang M, Zhao Y. Progression in the In Vitro Macrophage Expansion. J Immunol Res 2025; 2025:9994439. [PMID: 40331017 PMCID: PMC12052461 DOI: 10.1155/jimr/9994439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Macrophages play essential roles in homeostasis and disease, and they were considered terminally differentiated cells that cannot proliferate. However, growing evidence shows that macrophages can self-renew in homeostasis and multiple pathological states in vivo and artificial induction in vitro. With the rise of immune cell therapy based on macrophages, large-scale in vitro expansion of macrophages has become more and more urgent. However, the proliferation of macrophages in vitro is still inefficient because of the heterogeneity of macrophages, complicated crosstalk between macrophages and their microenvironments, and poor understanding of macrophage proliferation regulations. In this review, we summarized the discoveries known to stimulate macrophage proliferation in vitro, including cytokines, small molecule compounds, metabolites, the composition of pathogens and apoptotic cells, natural product extracts, gene editing, and other factors, as well as related mechanisms. It can be concluded that the promotion of macrophage proliferation in vitro covers various approaches and mechanisms. However, it is still necessary to test more strategies and learn more macrophage proliferation mechanisms to achieve large-scale engineering expansion of macrophages in vitro.
Collapse
Affiliation(s)
- Yunpeng Wei
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Jingzhao Yang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Wenhong Zu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Mengran Wang
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Yong Zhao
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Krug SA, Singh R, Yu J, Witt WT, Pilli NR, Wilks A, Barbier M, Robinson KM, Kane MA. Quantification of All-Trans Retinoic Acid and Cytokine Levels After Fungal, Viral and Bacterial Infections in the Lung. J Cell Mol Med 2025; 29:e70391. [PMID: 40031928 PMCID: PMC11875669 DOI: 10.1111/jcmm.70391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 03/05/2025] Open
Abstract
All-trans retinoic acid (atRA) plays a critical role in tissue homeostasis as a master regulator of cellular proliferation, apoptosis and differentiation as well as in immune cell differentiation and function. An active metabolite of vitamin A, atRA has been reported to be reduced in a number of inflammatory conditions in both the lung and gut. Decreases in atRA have been reported in gastrointestinal tissue in inflammatory bowel diseases, radiation-induced gastrointestinal injury and viral infection. In the lung, atRA is reduced in inflammatory conditions including allergic asthma and radiation-induced lung injury; however, the impact of infection on lung atRA is not well defined. In this short communication, we quantified atRA and cytokine levels in the lung after fungal, viral and bacterial infections in mice and determined the correlation between atRA and cytokine levels in the lung. atRA was quantified by LC-MRM3, and seven different inflammatory cytokines were quantified by multiplexed immunoassay in mouse lung challenged with Influenza A, Aspergillus fumigatus, Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus. Combined infections were also investigated. Our results show that there is a significant decrease in atRA after infection regardless of infection type. We show an inverse correlation between the decrease in atRA and the increase in inflammatory cytokines IL-1β, IL-6, IL-10 and IL-12 in lung tissue during infection. Elucidation of the homeostatic regulation of active metabolite atRA is important to understanding disease pathology and may enable future drug development to combat the effects of inflammation and infection.
Collapse
Affiliation(s)
- Samuel A. Krug
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - Ravineel Singh
- Department of Medicine, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - William T. Witt
- Vaccine Development Center, West Virgina University Health Sciences CenterMorgantownWest VirginiaUSA
| | - Nageswara R. Pilli
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| | - Mariette Barbier
- Vaccine Development Center, West Virgina University Health Sciences CenterMorgantownWest VirginiaUSA
| | - Keven M. Robinson
- Department of Medicine, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreMarylandUSA
| |
Collapse
|
3
|
Zhao M, Jankovic D, Link VM, Souza COS, Hornick KM, Oyesola O, Belkaid Y, Lack J, Loke P. Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically. Nat Commun 2025; 16:1030. [PMID: 39863579 PMCID: PMC11762786 DOI: 10.1038/s41467-025-56379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries. IL-4-directed epigenomic remodeling reveals C57BL/6 specific enrichment of NF-κB, IRF, and STAT motifs. Additionally, IL-4-activated C57BL/6 TRMs demonstrate an augmented synergistic response upon in vitro lipopolysaccharide (LPS) exposure, despite naïve BALB/c TRMs displaying a more robust transcriptional response to LPS. Single-cell RNA sequencing (scRNA-seq) analysis of mixed bone marrow chimeras indicates that transcriptional differences and synergy are cell intrinsic within the same tissue environment. Hence, genetic variation alters IL-4-induced cell intrinsic epigenetic reprogramming resulting in strain specific synergistic responses to LPS exposure.
Collapse
Affiliation(s)
- Mingming Zhao
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dragana Jankovic
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camila Oliveira Silva Souza
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Katherine M Hornick
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technology Branch, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Oyebola Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technology Branch, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Png Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
4
|
Wang Y, Zhang Y, Kim K, Han J, Okin D, Jiang Z, Yang L, Subramaniam A, Means TK, Nestlé FO, Fitzgerald KA, Randolph GJ, Lesser CF, Kagan JC, Mathis D, Benoist C. A pan-family screen of nuclear receptors in immunocytes reveals ligand-dependent inflammasome control. Immunity 2024; 57:2737-2754.e12. [PMID: 39571575 PMCID: PMC11634661 DOI: 10.1016/j.immuni.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024]
Abstract
Ligand-dependent transcription factors of the nuclear receptor (NR) family regulate diverse aspects of metazoan biology, enabling communications between distant organs via small lipophilic molecules. Here, we examined the impact of each of 35 NRs on differentiation and homeostatic maintenance of all major immunological cell types in vivo through a "Rainbow-CRISPR" screen. Receptors for retinoic acid exerted the most frequent cell-specific roles. NR requirements varied for resident macrophages of different tissues. Deletion of either Rxra or Rarg reduced frequencies of GATA6+ large peritoneal macrophages (LPMs). Retinoid X receptor alpha (RXRα) functioned conventionally by orchestrating LPM differentiation through chromatin and transcriptional regulation, whereas retinoic acid receptor gamma (RARγ) controlled LPM survival by regulating pyroptosis via association with the inflammasome adaptor ASC. RARγ antagonists activated caspases, and RARγ agonists inhibited cell death induced by several inflammasome activators. Our findings provide a broad view of NR function in the immune system and reveal a noncanonical role for a retinoid receptor in modulating inflammasome pathways.
Collapse
Affiliation(s)
- Yutao Wang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Yanbo Zhang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kyungsub Kim
- Center for Bacterial Pathogenesis and Department of Microbiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jichang Han
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Okin
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhaozhao Jiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Arum Subramaniam
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Terry K Means
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Frank O Nestlé
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gwendalyn J Randolph
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis and Department of Microbiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
5
|
Lee SH, Sacks DL. Resilience of dermis resident macrophages to inflammatory challenges. Exp Mol Med 2024; 56:2105-2112. [PMID: 39349826 PMCID: PMC11542019 DOI: 10.1038/s12276-024-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
The skin serves as a complex barrier organ populated by tissue-resident macrophages (TRMs), which play critical roles in defense, homeostasis, and tissue repair. This review examines the functions of dermis resident TRMs in different inflammatory settings, their embryonic origins, and their long-term self-renewal capabilities. We highlight the M2-like phenotype of dermal TRMs and their specialized functions in perivascular and perineuronal niches. Their interactions with type 2 immune cells, autocrine cytokines such as IL-10, and their phagocytic clearance of apoptotic cells have been explored as mechanisms for M2-like dermal TRM self-maintenance and function. In conclusion, we address the need to bridge murine models with human studies, with the possibility of targeting TRMs to promote skin immunity or restrain cutaneous pathology.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Adhikary K, Sarkar R, Maity S, Sadhukhan I, Sarkar R, Ganguly K, Barman S, Maiti R, Chakraborty S, Chakraborty TR, Bagchi D, Banerjee P. Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals (Basel) 2024; 17:1294. [PMID: 39458935 PMCID: PMC11510503 DOI: 10.3390/ph17101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetes-related ulcers and slow-healing wounds pose a significant health risk to individuals due to their uncertain causes. Mortality rates for diabetes foot ulcers (DFUs) range from 10% after 16 months to 24% after five years. The use of bioactive phytochemicals can play a key role in healing wounds in a predictable time. Recent literature has demonstrated that various natural substances, including flavonoids, saponins, phenolic compounds, and polysaccharides, play key roles at different stages of the wound-healing process through diverse mechanisms. These studies have categorized the compounds according to their characteristics, bioactivities, and modes of action. In this study, we evaluated the role of natural compounds derived from plant sources that have been shown to play a crucial role in immunomodulation. Macrophages are closely involved in immunomodulation within the wound microenvironment and are key players in efferocytosis, inflammation resolution, and tissue regeneration, all of which contribute to successful wound healing. Phytochemicals and their derivatives have shown capabilities in immune regulation, including macrophage migration, nitric oxide synthase inhibition, lymphocyte and T-cell stimulation, cytokine activation, natural killer cell enhancement, and the regulation of NF-κβ, TNF-α, and apoptosis. In this review, we have studied the role of phytochemicals in immunomodulation for the resolution of diabetic wound inflammation.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda 752050, Odisha, India;
| | - Riya Sarkar
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Sriparna Maity
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ishani Sadhukhan
- Department of Food Processing, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Riya Sarkar
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Saurav Barman
- Department of Soil Science, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura 722101, West Bengal, India;
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology, City University of New York (CUNY), Brooklyn, NY 11201, USA
| | - Tandra R. Chakraborty
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Pradipta Banerjee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Wang S, Link F, Munker S, Wang W, Feng R, Liebe R, Li Y, Yao Y, Liu H, Shao C, Ebert MP, Ding H, Dooley S, Weng HL, Wang SS. Retinoic acid generates a beneficial microenvironment for liver progenitor cell activation in acute liver failure. Hepatol Commun 2024; 8:e0483. [PMID: 39023343 PMCID: PMC11262820 DOI: 10.1097/hc9.0000000000000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND When massive necrosis occurs in acute liver failure (ALF), rapid expansion of HSCs called liver progenitor cells (LPCs) in a process called ductular reaction is required for survival. The underlying mechanisms governing this process are not entirely known to date. In ALF, high levels of retinoic acid (RA), a molecule known for its pleiotropic roles in embryonic development, are secreted by activated HSCs. We hypothesized that RA plays a key role in ductular reaction during ALF. METHODS RNAseq was performed to identify molecular signaling pathways affected by all-trans retinoid acid (atRA) treatment in HepaRG LPCs. Functional assays were performed in HepaRG cells treated with atRA or cocultured with LX-2 cells and in the liver tissue of patients suffering from ALF. RESULTS Under ALF conditions, activated HSCs secreted RA, inducing RARα nuclear translocation in LPCs. RNAseq data and investigations in HepaRG cells revealed that atRA treatment activated the WNT-β-Catenin pathway, enhanced stemness genes (SOX9, AFP, and others), increased energy storage, and elevated the expression of ATP-binding cassette transporters in a RARα nuclear translocation-dependent manner. Further, atRA treatment-induced pathways were confirmed in a coculture system of HepaRG with LX-2 cells. Patients suffering from ALF who displayed RARα nuclear translocation in the LPCs had significantly better MELD scores than those without. CONCLUSIONS During ALF, RA secreted by activated HSCs promotes LPC activation, a prerequisite for subsequent LPC-mediated liver regeneration.
Collapse
Affiliation(s)
- Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Link
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
- Liver Center Munich, University Hospital, LMU, Munich, Germany
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Rilu Feng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ye Yao
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hui Liu
- Department of Pathology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Matthias P.A. Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center, Mannheim, Germany
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hong-Lei Weng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shan-Shan Wang
- Beijing Institute of Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Stream A, Corriden R, Döhrmann S, Gallo RL, Nizet V, Anderson EL. The Effect of Retinoic Acid on Neutrophil Innate Immune Interactions With Cutaneous Bacterial Pathogens. INFECTIOUS MICROBES & DISEASES 2024; 6:65-73. [PMID: 38952747 PMCID: PMC11216695 DOI: 10.1097/im9.0000000000000145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Vitamin A and its biologically active derivative, retinoic acid (RA), are important for many immune processes. RA, in particular, is essential for the development of immune cells, including neutrophils, which serve as a front-line defense against infection. While vitamin A deficiency has been linked to higher susceptibility to infections, the precise role of vitamin A/RA in host-pathogen interactions remains poorly understood. Here, we provided evidence that RA boosts neutrophil killing of methicillin-resistant Staphylococcus aureus (MRSA). RA treatment stimulated primary human neutrophils to produce reactive oxygen species, neutrophil extracellular traps, and the antimicrobial peptide cathelicidin (LL-37). Because RA treatment was insufficient to reduce MRSA burden in an in vivo murine model of skin infection, we expanded our analysis to other infectious agents. RA did not affect the growth of a number of common bacterial pathogens, including MRSA, Escherichia coli K1 and Pseudomonas aeruginosa; however, RA directly inhibited the growth of group A Streptococcus (GAS). This antimicrobial effect, likely in combination with RA-mediated neutrophil boosting, resulted in substantial GAS killing in neutrophil killing assays conducted in the presence of RA. Furthermore, in a murine model of GAS skin infection, topical RA treatment showed therapeutic potential by reducing both skin lesion size and bacterial burden. These findings suggest that RA may hold promise as a therapeutic agent against GAS and perhaps other clinically significant human pathogens.
Collapse
Affiliation(s)
- Alexandra Stream
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Ross Corriden
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Simon Döhrmann
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 3, USA
| | - Ericka L. Anderson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
9
|
Loredan DG, Devlin JC, Khanna KM, Loke P. Recruitment and Maintenance of CX3CR1+CD4+ T Cells during Helminth Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:632-644. [PMID: 38180236 PMCID: PMC10954162 DOI: 10.4049/jimmunol.2300451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
Distinct subsets of T lymphocytes express CX3CR1 under inflammatory conditions, but little is known about CX3CR1+CD4+ T cells during type 2 inflammation in helminth infections. In this study, we used a fate-mapping mouse model to characterize CX3CR1+CD4+ T cells during both acute Nippostrongylus brasiliensis and chronic Schistosoma mansoni murine models of helminth infections, revealing CX3CR1+CD4+ T cells to be an activated tissue-homing subset with varying capacity for cytokine production. Tracking these cells over time revealed that maintenance of CX3CR1 itself along with a TH2 phenotype conferred a survival advantage in the inflamed tissue. Single-cell RNA sequencing analysis of fate-mapped CX3CR1+CD4+ T cells from both the peripheral tissue and the spleen revealed a considerable level of diversity and identified a distinct population of BCL6+TCF-1+PD1+CD4+ T cells in the spleen during helminth infections. Conditional deletion of BCL6 in CX3CR1+ cells resulted in fewer CX3CR1+CD4+ T cells during infection, indicating a role in sustaining CD4+ T cell responses to helminth infections. Overall, our studies revealed the behavior and heterogeneity of CX3CR1+CD4+ T cells during type 2 inflammation in helminth infections and identified BCL6 to be important in their maintenance.
Collapse
Affiliation(s)
- Denis G. Loredan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joseph C. Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kamal M. Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - P’ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Wijshake T, Rose J, Wang J, Zielke J, Marlar-Pavey M, Chen W, Collins JJ, Agathocleous M. Schistosome Infection Impacts Hematopoiesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:607-616. [PMID: 38169327 PMCID: PMC10872488 DOI: 10.4049/jimmunol.2300195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Helminth infections are common in animals. However, the impact of a helminth infection on the function of hematopoietic stem cells (HSCs) and other hematopoietic cells has not been comprehensively defined. In this article, we describe the hematopoietic response to infection of mice with Schistosoma mansoni, a parasitic flatworm that causes schistosomiasis. We analyzed the frequency or number of hematopoietic cell types in the bone marrow, spleen, liver, thymus, and blood and observed multiple hematopoietic changes caused by infection. Schistosome infection impaired bone marrow HSC function after serial transplantation. Functional HSCs were present in the infected liver. Infection blocked bone marrow erythropoiesis and augmented spleen erythropoiesis, observations consistent with the anemia and splenomegaly prevalent in schistosomiasis patients. This work defines the hematopoietic response to schistosomiasis, a debilitating disease afflicting more than 200 million people, and identifies impairments in HSC function and erythropoiesis.
Collapse
Affiliation(s)
- Tobias Wijshake
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joseph Rose
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jipeng Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
- Current address: State Key Laboratory of Genetic Engineering, School of Life Sciences at Fudan University, Shanghai, China
| | - Jacob Zielke
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Madeleine Marlar-Pavey
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weina Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Pinos I, Coronel J, Albakri A, Blanco A, McQueen P, Molina D, Sim J, Fisher EA, Amengual J. β-Carotene accelerates the resolution of atherosclerosis in mice. eLife 2024; 12:RP87430. [PMID: 38319073 PMCID: PMC10945528 DOI: 10.7554/elife.87430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
β-Carotene oxygenase 1 (BCO1) catalyzes the cleavage of β-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary β-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that β-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of β-carotene on atherosclerosis resolution. To explore the direct implication of dietary β-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that β-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of β-carotene on atherosclerosis resolution. Our data highlight the potential of β-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Asma'a Albakri
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Amparo Blanco
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Patrick McQueen
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Donald Molina
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - JaeYoung Sim
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, New York University Grossman School of Medicine, NYU Langone Medical CenterNew YorkUnited States
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana ChampaignUrbanaUnited States
- Department of Food Science and Human Nutrition, University of Illinois Urbana ChampaignUrbanaUnited States
| |
Collapse
|
12
|
Zhao M, Jankovic D, Hornick KM, Link VM, Souza COS, Belkaid Y, Lack J, Loke P. Genetic variation in IL-4 activated tissue resident macrophages alters the epigenetic state to determine strain specific synergistic responses to LPS. RESEARCH SQUARE 2024:rs.3.rs-3759654. [PMID: 38712032 PMCID: PMC11071541 DOI: 10.21203/rs.3.rs-3759654/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
How macrophages in the tissue environment integrate multiple stimuli will depend on the genetic background of the host, but this is poorly understood. Here, we investigated C57BL/6 and BALB/c strain specific in vivo IL-4 activation of tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with a greater association of induced genes with super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries. IL-4-directed epigenomic remodeling revealed BL/6 specific enrichment of NF-κB, IRF, and STAT motifs. Additionally, IL-4-activated BL/6 TRMs demonstrated an augmented synergistic response upon in vitro lipopolysaccharide (LPS) exposure compared to BALB/c TRMs, despite naïve BALB/c TRMs displaying a more robust transcriptional response to LPS than naïve BL/6 TRMs. Single-cell RNA sequencing (scRNA-seq) analysis of mixed bone marrow chimeric mice indicated that transcriptional differences between BL/6 and BALB/c TRMs, and synergy between IL-4 and LPS, are cell intrinsic within the same tissue environment. Hence, genetic variation alters IL-4-induced cell intrinsic epigenetic reprogramming resulting in strain specific synergistic responses to LPS exposure.
Collapse
Affiliation(s)
- Mingming Zhao
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Dragana Jankovic
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Katherine M. Hornick
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technology Branch, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA
| | - Verena M. Link
- Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Camila Oliveira Silva Souza
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technology Branch, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Pinos I, Coronel J, Albakri A, Blanco A, McQueen P, Molina D, Sim J, Fisher EA, Amengual J. β-carotene accelerates the resolution of atherosclerosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.07.531563. [PMID: 36945561 PMCID: PMC10028884 DOI: 10.1101/2023.03.07.531563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
β-carotene oxygenase 1 (BCO1) catalyzes the cleavage of β-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary β-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that β-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of β-carotene on atherosclerosis resolution. To explore the direct implication of dietary β-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that β-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of β-carotene on atherosclerosis resolution. Our data highlight the potential of β-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| | - Asma'a Albakri
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Amparo Blanco
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Patrick McQueen
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
| | - Donald Molina
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| | - JaeYoung Sim
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| | - Edward A Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, New York University Grossman School of Medicine, NYU Langone Medical Center, NY
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL
| |
Collapse
|
14
|
Maizels RM, Gause WC. Targeting helminths: The expanding world of type 2 immune effector mechanisms. J Exp Med 2023; 220:e20221381. [PMID: 37638887 PMCID: PMC10460967 DOI: 10.1084/jem.20221381] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
In this new review, Rick Maizels and Bill Gause summarize how type 2 immune responses combat helminth parasites through novel mechanisms, coordinating multiple innate and adaptive cell and molecular players that can eliminate infection and repair-resultant tissue damage.
Collapse
Affiliation(s)
- Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - William C. Gause
- Center for Immunity and Inflammation, Rutgers Biomedical Health Sciences Institute for Infectious and Inflammatory Diseases, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| |
Collapse
|
15
|
Zarek CM, Dende C, Coronado J, Pendse M, Dryden P, Hooper LV, Reese TA. Preexisting helminth challenge exacerbates infection and reactivation of gammaherpesvirus in tissue resident macrophages. PLoS Pathog 2023; 19:e1011691. [PMID: 37847677 PMCID: PMC10581490 DOI: 10.1371/journal.ppat.1011691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023] Open
Abstract
Even though gammaherpesvirus and parasitic infections are endemic in parts of the world, there is a lack of understanding about the outcome of coinfection. In humans, coinfections usually occur sequentially, with fluctuating order and timing in different hosts. However, experimental studies in mice generally do not address the variables of order and timing of coinfections. We sought to examine the variable of coinfection order in a system of gammaherpesvirus-helminth coinfection. Our previous work demonstrated that infection with the intestinal parasite, Heligmosomoides polygyrus, induced transient reactivation from latency of murine gammaherpesvirus-68 (MHV68). In this report, we reverse the order of coinfection, infecting with H. polygyrus first, followed by MHV68, and examined the effects of preexisting parasite infection on MHV68 acute and latent infection. We found that preexisting parasite infection increased the propensity of MHV68 to reactivate from latency. However, when we examined the mechanism for reactivation, we found that preexisting parasite infection increased the ability of MHV68 to reactivate in a vitamin A dependent manner, a distinct mechanism to what we found previously with parasite-induced reactivation after latency establishment. We determined that H. polygyrus infection increased both acute and latent MHV68 infection in a population of tissue resident macrophages, called large peritoneal macrophages. We demonstrate that this population of macrophages and vitamin A are required for increased acute and latent infection during parasite coinfection.
Collapse
Affiliation(s)
- Christina M. Zarek
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chaitanya Dende
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jaime Coronado
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mihir Pendse
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Phillip Dryden
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lora V. Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tiffany A. Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
16
|
Loredan DG, Devlin JC, Lacey KA, Howard N, Chen Z, Zwack EE, Lin JD, Ruggles KV, Khanna KM, Torres VJ, Loke P. Single-Cell Analysis of CX3CR1+ Cells Reveals a Pathogenic Role for BIRC5+ Myeloid Proliferating Cells Driven by Staphylococcus aureus Leukotoxins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:836-843. [PMID: 37466391 PMCID: PMC10450158 DOI: 10.4049/jimmunol.2300166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
Our previous studies identified a population of stem cell-like proliferating myeloid cells within inflamed tissues that could serve as a reservoir for tissue macrophages to adopt different activation states depending on the microenvironment. By lineage-tracing cells derived from CX3CR1+ precursors in mice during infection and profiling by single-cell RNA sequencing, in this study, we identify a cluster of BIRC5+ myeloid cells that expanded in the liver during chronic infection with either the parasite Schistosoma mansoni or the bacterial pathogen Staphylococcus aureus. In the absence of tissue-damaging toxins, S. aureus infection does not elicit these BIRC5+ cells. Moreover, deletion of BIRC5 from CX3CR1-expressing cells results in improved survival during S. aureus infection. Hence the combination of single-cell RNA sequencing and genetic fate-mapping CX3CR1+ cells revealed a toxin-dependent pathogenic role for BIRC5 in myeloid cells during S. aureus infection.
Collapse
Affiliation(s)
- Denis G. Loredan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY
| | - Joseph C. Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Nina Howard
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ze Chen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei City, Taiwan
| | - Kelly V. Ruggles
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Kamal M. Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY
| | - P’ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Gonzalez MA, Lu DR, Yousefi M, Kroll A, Lo CH, Briseño CG, Watson JEV, Novitskiy S, Arias V, Zhou H, Plata Stapper A, Tsai MK, Ashkin EL, Murray CW, Li CM, Winslow MM, Tarbell KV. Phagocytosis increases an oxidative metabolic and immune suppressive signature in tumor macrophages. J Exp Med 2023; 220:e20221472. [PMID: 36995340 PMCID: PMC10067971 DOI: 10.1084/jem.20221472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
Phagocytosis is a key macrophage function, but how phagocytosis shapes tumor-associated macrophage (TAM) phenotypes and heterogeneity in solid tumors remains unclear. Here, we utilized both syngeneic and novel autochthonous lung tumor models in which neoplastic cells express the fluorophore tdTomato (tdTom) to identify TAMs that have phagocytosed neoplastic cells in vivo. Phagocytic tdTompos TAMs upregulated antigen presentation and anti-inflammatory proteins, but downregulated classic proinflammatory effectors compared to tdTomneg TAMs. Single-cell transcriptomic profiling identified TAM subset-specific and common gene expression changes associated with phagocytosis. We uncover a phagocytic signature that is predominated by oxidative phosphorylation (OXPHOS), ribosomal, and metabolic genes, and this signature correlates with worse clinical outcome in human lung cancer. Expression of OXPHOS proteins, mitochondrial content, and functional utilization of OXPHOS were increased in tdTompos TAMs. tdTompos tumor dendritic cells also display similar metabolic changes. Our identification of phagocytic TAMs as a distinct myeloid cell state links phagocytosis of neoplastic cells in vivo with OXPHOS and tumor-promoting phenotypes.
Collapse
Affiliation(s)
- Michael A. Gonzalez
- Amgen Research, Oncology, South San Francisco, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel R. Lu
- Amgen Research, Research Biomics, South San Francisco, CA, USA
| | - Maryam Yousefi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ashley Kroll
- Amgen Research, Oncology, South San Francisco, CA, USA
| | - Chen Hao Lo
- Amgen Research, Oncology, South San Francisco, CA, USA
| | | | | | | | - Vanessa Arias
- Amgen Research, Research Biomics, South San Francisco, CA, USA
| | - Hong Zhou
- Amgen Research, Research Biomics, South San Francisco, CA, USA
| | | | - Min K. Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily L. Ashkin
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Chi-Ming Li
- Amgen Research, Research Biomics, South San Francisco, CA, USA
| | - Monte M. Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
18
|
Brioschi S, Belk JA, Peng V, Molgora M, Rodrigues PF, Nguyen KM, Wang S, Du S, Wang WL, Grajales-Reyes GE, Ponce JM, Yuede CM, Li Q, Baer JM, DeNardo DG, Gilfillan S, Cella M, Satpathy AT, Colonna M. A Cre-deleter specific for embryo-derived brain macrophages reveals distinct features of microglia and border macrophages. Immunity 2023; 56:1027-1045.e8. [PMID: 36791722 PMCID: PMC10175109 DOI: 10.1016/j.immuni.2023.01.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/27/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Genetic tools to target microglia specifically and efficiently from the early stages of embryonic development are lacking. We generated a constitutive Cre line controlled by the microglia signature gene Crybb1 that produced nearly complete recombination in embryonic brain macrophages (microglia and border-associated macrophages [BAMs]) by the perinatal period, with limited recombination in peripheral myeloid cells. Using this tool in combination with Flt3-Cre lineage tracer, single-cell RNA-sequencing analysis, and confocal imaging, we resolved embryonic-derived versus monocyte-derived BAMs in the mouse cortex. Deletion of the transcription factor SMAD4 in microglia and embryonic-derived BAMs using Crybb1-Cre caused a developmental arrest of microglia, which instead acquired a BAM specification signature. By contrast, the development of genuine BAMs remained unaffected. Our results reveal that SMAD4 drives a transcriptional and epigenetic program that is indispensable for the commitment of brain macrophages to the microglia fate and highlight Crybb1-Cre as a tool for targeting embryonic brain macrophages.
Collapse
Affiliation(s)
- Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA.
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Vincent Peng
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Patrick Fernandes Rodrigues
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Khai M Nguyen
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Shoutang Wang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Siling Du
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Wei-Le Wang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Jennifer M Ponce
- McDonnell Genome Institute, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Qingyun Li
- Department of Neuroscience, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Department of Genetics, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - David G DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Department of Medicine, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA; Siteman Cancer Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|
19
|
Finlay CM, Parkinson JE, Zhang L, Chan BHK, Ajendra J, Chenery A, Morrison A, Kaymak I, Houlder EL, Murtuza Baker S, Dickie BR, Boon L, Konkel JE, Hepworth MR, MacDonald AS, Randolph GJ, Rückerl D, Allen JE. T helper 2 cells control monocyte to tissue-resident macrophage differentiation during nematode infection of the pleural cavity. Immunity 2023; 56:1064-1081.e10. [PMID: 36948193 PMCID: PMC7616141 DOI: 10.1016/j.immuni.2023.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 10/07/2022] [Accepted: 02/21/2023] [Indexed: 03/24/2023]
Abstract
The recent revolution in tissue-resident macrophage biology has resulted largely from murine studies performed in C57BL/6 mice. Here, using both C57BL/6 and BALB/c mice, we analyze immune cells in the pleural cavity. Unlike C57BL/6 mice, naive tissue-resident large-cavity macrophages (LCMs) of BALB/c mice failed to fully implement the tissue-residency program. Following infection with a pleural-dwelling nematode, these pre-existing differences were accentuated with LCM expansion occurring in C57BL/6, but not in BALB/c mice. While infection drove monocyte recruitment in both strains, only in C57BL/6 mice were monocytes able to efficiently integrate into the resident pool. Monocyte-to-macrophage conversion required both T cells and interleukin-4 receptor alpha (IL-4Rα) signaling. The transition to tissue residency altered macrophage function, and GATA6+ tissue-resident macrophages were required for host resistance to nematode infection. Therefore, during tissue nematode infection, T helper 2 (Th2) cells control the differentiation pathway of resident macrophages, which determines infection outcome.
Collapse
Affiliation(s)
- Conor M Finlay
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK; Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College, Dublin D08 W9RT, Ireland.
| | - James E Parkinson
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Lili Zhang
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Brian H K Chan
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Jesuthas Ajendra
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Alistair Chenery
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Anya Morrison
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Irem Kaymak
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Emma L Houlder
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Syed Murtuza Baker
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK; Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Ben R Dickie
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Salford M6 8HD, UK
| | | | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Gwendalyn J Randolph
- Department of Pathology & Immunology, Washington University, St. Louis, MO 63110, USA
| | - Dominik Rückerl
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
20
|
Miyamoto T, Murphy B, Zhang N. Intraperitoneal metastasis of ovarian cancer: new insights on resident macrophages in the peritoneal cavity. Front Immunol 2023; 14:1104694. [PMID: 37180125 PMCID: PMC10167029 DOI: 10.3389/fimmu.2023.1104694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer metastasis occurs primarily in the peritoneal cavity. Orchestration of cancer cells with various cell types, particularly macrophages, in the peritoneal cavity creates a metastasis-favorable environment. In the past decade, macrophage heterogeneities in different organs as well as their diverse roles in tumor settings have been an emerging field. This review highlights the unique microenvironment of the peritoneal cavity, consisting of the peritoneal fluid, peritoneum, and omentum, as well as their own resident macrophage populations. Contributions of resident macrophages in ovarian cancer metastasis are summarized; potential therapeutic strategies by targeting such cells are discussed. A better understanding of the immunological microenvironment in the peritoneal cavity will provide a stepping-stone to new strategies for developing macrophage-based therapies and is a key step toward the unattainable eradication of intraperitoneal metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Taito Miyamoto
- Immunology, Metastasis & Microenvironment Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, United States
| | | | - Nan Zhang
- Immunology, Metastasis & Microenvironment Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
21
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
22
|
Pinos I, Yu J, Pilli N, Kane MA, Amengual J. Functional characterization of interleukin 4 and retinoic acid signaling crosstalk during alternative macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159291. [PMID: 36754230 PMCID: PMC9974901 DOI: 10.1016/j.bbalip.2023.159291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023]
Abstract
Retinoic acid possesses potent immunomodulatory properties in various cell types, including macrophages. In this study, we first investigated the effects at the transcriptional and functional levels of exogenous retinoic acid in murine bone marrow-derived macrophages (BMDMs) in the presence or absence of interleukin 4 (IL4), a cytokine with potent anti-inflammatory properties. We examined the effect of IL4 on vitamin A homeostasis in macrophages by quantifying retinoid synthesis and secretion. Our RNAseq data show that exogenous retinoic acid synergizes with IL4 to regulate anti-inflammatory pathways such as oxidative phosphorylation and phagocytosis. Efferocytosis and lysosomal degradation assays validated gene expression changes at the functional level. IL4 treatment altered the expression of several genes involved in vitamin A transport and conversion to retinoic acid. Radiolabeling experiments and mass spectrometry assays revealed that IL4 stimulates retinoic acid production and secretion in a signal transducer and activator of transcription 6 (STAT6)-dependent manner. In summary, our studies highlight the key role of exogenous and endogenous retinoic acid in shaping the anti-inflammatory response of macrophages.
Collapse
Affiliation(s)
- Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States; Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, United States.
| |
Collapse
|
23
|
Petrellis G, Piedfort O, Katsandegwaza B, Dewals BG. Parasitic worms affect virus coinfection: a mechanistic overview. Trends Parasitol 2023; 39:358-372. [PMID: 36935340 DOI: 10.1016/j.pt.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/19/2023]
Abstract
Helminths are parasitic worms that coevolve with their host, usually resulting in long-term persistence through modulating host immunity. The multifarious mechanisms altering the immune system induced by helminths have significant implications on the control of coinfecting pathogens such as viruses. Here, we explore the recent literature to highlight the main immune alterations and mechanisms that affect the control of viral coinfection. Insights from these mechanisms are valuable in the understanding of clinical observations in helminth-prevalent areas and in the design of new therapeutic and vaccination strategies to control viral diseases.
Collapse
Affiliation(s)
- Georgios Petrellis
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Ophélie Piedfort
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Brunette Katsandegwaza
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Benjamin G Dewals
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium.
| |
Collapse
|
24
|
Loredan DG, Devlin JC, Lacey KA, Howard N, Chen Z, Zwack EE, Lin JD, Ruggles KV, Khanna KM, Torres VJ, Loke PN. Single-cell analysis of CX3CR1 + cells reveal a pathogenic role for BIRC5 + myeloid proliferating cells driven by Staphylococcus aureus leukotoxins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.529760. [PMID: 36909517 PMCID: PMC10002671 DOI: 10.1101/2023.02.27.529760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Our previous studies identified a population of stem cell-like proliferating myeloid cells within inflamed tissues that could serve as a reservoir for tissue macrophages to adopt different activation states depending on the microenvironment. By lineage tracing cells derived from CX3CR1 + precursors in mice during infection and profiling by scRNA-seq, here we identify a cluster of BIRC5 + myeloid cells that expanded in the liver during either chronic infection with the parasite Schistosoma mansoni or the bacterial pathogen Staphylococcus aureus . In the absence of tissue damaging toxins, S. aureus infection does not elicit these BIRC5 + cells. Moreover, deletion of BIRC5 from CX3CR1 expressing cells results in improved survival during S. aureus infection. Hence, the combination of scRNA-Seq and genetic fate mapping CX3CR1 + cells revealed a toxin dependent pathogenic role for BIRC5 in myeloid cells during S. aureus infection.
Collapse
|
25
|
Wijshake T, Wang J, Rose J, Marlar-Pavey M, Collins JJ, Agathocleous M. Helminth infection impacts hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528073. [PMID: 36798229 PMCID: PMC9934639 DOI: 10.1101/2023.02.10.528073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Helminth infections are common in animals. However, the impact of a helminth infection on the function of hematopoietic stem cells (HSCs) and other hematopoietic cells has not been comprehensively defined. Here we describe the hematopoietic response to infection of mice with Schistosoma mansoni, a parasitic flatworm which causes schistosomiasis. We analyzed the frequency or number of hematopoietic cell types in the bone marrow, spleen, liver, thymus, and blood, and observed multiple hematopoietic changes caused by infection. Schistosome infection impaired bone marrow HSC function after serial transplantation. Functional HSCs were present in the infected liver. Infection blocked bone marrow erythropoiesis and augmented spleen erythropoiesis, observations consistent with the anemia and splenomegaly prevalent in schistosomiasis patients. This work defines the hematopoietic response to schistosomiasis, a debilitating disease afflicting more than 200 million people, and identifies impairments in HSC function and erythropoiesis.
Collapse
Affiliation(s)
- Tobias Wijshake
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jipeng Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences at Fudan University, Shanghai, China
| | - Joseph Rose
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Madeleine Marlar-Pavey
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
26
|
Peroni DG, Hufnagl K, Comberiati P, Roth-Walter F. Lack of iron, zinc, and vitamins as a contributor to the etiology of atopic diseases. Front Nutr 2023; 9:1032481. [PMID: 36698466 PMCID: PMC9869175 DOI: 10.3389/fnut.2022.1032481] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Micronutritional deficiencies are common in atopic children suffering from atopic dermatitis, food allergy, rhinitis, and asthma. A lack of iron, in particular, may impact immune activation with prolonged deficiencies of iron, zinc, vitamin A, and vitamin D associated with a Th2 signature, maturation of macrophages and dendritic cells (DCs), and the generation of IgE antibodies. In contrast, the sufficiency of these micronutrients establishes immune resilience, promotion of regulatory cells, and tolerance induction. As micronutritional deficiencies mimic an infection, the body's innate response is to limit access to these nutrients and also impede their dietary uptake. Here, we summarize our current understanding of the physiological function of iron, zinc, and vitamins A and D in relation to immune cells and the clinical consequences of deficiencies in these important nutrients, especially in the perinatal period. Improved dietary uptake of iron is achieved by vitamin C, vitamin A, and whey compounds, whereas zinc bioavailability improves through citrates and proteins. The addition of oil is essential for the dietary uptake of beta-carotene and vitamin D. As for vitamin D, the major source comes via sun exposure and only a small amount is consumed via diet, which should be factored into clinical nutritional studies. We summarize the prevalence of micronutritional deficiencies of iron, zinc, and vitamins in the pediatric population as well as nutritional intervention studies on atopic diseases with whole food, food components, and micronutrients. Dietary uptake via the lymphatic route seems promising and is associated with a lower atopy risk and symptom amelioration. This review provides useful information for clinical studies and concludes/emphasizes that a healthy, varied diet containing dairy products, fish, nuts, fruits, and vegetables as well as supplementing foods or supplementation with micronutrients as needed is essential to combat the atopic march.
Collapse
Affiliation(s)
- Diego G. Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pasquale Comberiati
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria,*Correspondence: Franziska Roth-Walter, ;
| |
Collapse
|
27
|
Wang Z, He Y, Cun Y, Li Q, Zhao Y, Luo Z. Transcriptomic analysis identified SLC40A1 as a key iron metabolism-related gene in airway macrophages in childhood allergic asthma. Front Cell Dev Biol 2023; 11:1164544. [PMID: 37123407 PMCID: PMC10133523 DOI: 10.3389/fcell.2023.1164544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: Asthma is the most common chronic condition in children, with allergic asthma being the most common phenotype, accounting for approximately 80% of cases. Growing evidence suggests that disruption of iron homeostasis and iron regulatory molecules may be associated with childhood allergic asthma. However, the underlying molecular mechanism remains unclear. Methods: Three childhood asthma gene expression datasets were analyzed to detect aberrant expression profiles of iron metabolism-related genes in the airways of children with allergic asthma. Common iron metabolism-related differentially expressed genes (DEGs) across the three datasets were identified and were subjected to functional enrichment analysis. Possible correlations between key iron metabolism-related DEGs and type 2 airway inflammatory genes were investigated. Single-cell transcriptome analysis further identified major airway cell subpopulations driving key gene expression. Key iron metabolism-related gene SLC40A1 was validated in bronchoalveolar lavage (BAL) cells from childhood asthmatics with control individuals by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunofluorescence. The intracellular iron content in BAL cells was assessed by Perls iron staining and the iron levels in BAL supernatant was measured by iron assay to assess airway iron metabolism status in childhood asthmatics. Results: Five common iron metabolism-related DEGs were identified, which were functionally related to iron homeostasis. Among these genes, downregulated SLC40A1 was strongly correlated with type 2 airway inflammatory markers and the gene signature of SLC40A1 could potentially be used to determine type 2-high and type 2-low subsets in childhood allergic asthmatics. Further single-cell transcriptomic analysis identified airway macrophages driving SLC40A1 expression. Immunofluorescence staining revealed colocalization of FPN (encoded by SLC40A1) and macrophage marker CD68. Down-regulation of SLC40A1 (FPN) was validated by qRT-PCR and immunofluorescence analysis. Results further indicated reduced iron levels in the BAL fluid, but increased iron accumulation in BAL cells in childhood allergic asthma patients. Furthermore, decreased expression of SLC40A1 was closely correlated with reduced iron levels in the airways of children with allergic asthma. Discussion: Overall, these findings reveal the potential role of the iron metabolism-related gene SLC40A1 in the pathogenesis of childhood allergic asthma.
Collapse
Affiliation(s)
- Zhili Wang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yu He
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yupeng Cun
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qinyuan Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengxiu Luo,
| |
Collapse
|
28
|
Immune Impairment Associated with Vitamin A Deficiency: Insights from Clinical Studies and Animal Model Research. Nutrients 2022; 14:nu14235038. [PMID: 36501067 PMCID: PMC9738822 DOI: 10.3390/nu14235038] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Vitamin A (VA) is critical for many biological processes, including embryonic development, hormone production and function, the maintenance and modulation of immunity, and the homeostasis of epithelium and mucosa. Specifically, VA affects cell integrity, cytokine production, innate immune cell activation, antigen presentation, and lymphocyte trafficking to mucosal surfaces. VA also has been reported to influence the gut microbiota composition and diversity. Consequently, VA deficiency (VAD) results in the imbalanced production of inflammatory and immunomodulatory cytokines, intestinal inflammation, weakened mucosal barrier functions, reduced reactive oxygen species (ROS) and disruption of the gut microbiome. Although VAD is primarily known to cause xerophthalmia, its role in the impairment of anti-infectious defense mechanisms is less defined. Infectious diseases lead to temporary anorexia and lower dietary intake; furthermore, they adversely affect VA status by interfering with VA absorption, utilization and excretion. Thus, there is a tri-directional relationship between VAD, immune response and infections, as VAD affects immune response and predisposes the host to infection, and infection decreases the intestinal absorption of the VA, thereby contributing to secondary VAD development. This has been demonstrated using nutritional and clinical studies, radiotracer studies and knockout animal models. An in-depth understanding of the relationship between VAD, immune response, gut microbiota and infections is critical for optimizing vaccine efficacy and the development of effective immunization programs for countries with high prevalence of VAD. Therefore, in this review, we have comprehensively summarized the existing knowledge regarding VAD impacts on immune responses to infections and post vaccination. We have detailed pathological conditions associated with clinical and subclinical VAD, gut microbiome adaptation to VAD and VAD effects on the immune responses to infection and vaccines.
Collapse
|
29
|
Jiang T, Zhang H, Li Y, Jayakumar P, Liao H, Huang H, Billiar TR, Deng M. Intraperitoneal injection of class A TLR9 agonist enhances anti-PD-1 immunotherapy in colorectal peritoneal metastases. JCI Insight 2022; 7:e160063. [PMID: 36278484 PMCID: PMC9714777 DOI: 10.1172/jci.insight.160063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/31/2022] [Indexed: 07/02/2024] Open
Abstract
Peritoneal metastases are associated with a low response rate to immune checkpoint blockade (ICB) therapy. The numbers of peritoneal resident macrophages (PRMs) are reversely correlated with the response rate to ICB therapy. We have previously shown that TLR9 in fibroblastic reticular cells (FRCs) plays a critical role in regulating peritoneal immune cell recruitment. However, the role of TLR9 in FRCs in regulating PRMs is unclear. Here, we demonstrated that the class A TLR9 agonist, ODN1585, markedly enhanced the efficacy of anti-PD-1 therapy in mouse models of colorectal peritoneal metastases. ODN1585 injected i.p. reduced the numbers of Tim4+ PRMs and enhanced CD8+ T cell antitumor immunity. Mechanistically, treatment of ODN1585 suppressed the expression of genes required for retinoid metabolism in FRCs, and this was associated with reduced expression of the PRM lineage-defining transcription factor GATA6. Selective deletion of TLR9 in FRCs diminished the benefit of ODN1585 in anti-PD-1 therapy in reducing peritoneal metastases. The crosstalk between PRMs and FRCs may be utilized to develop new strategies to improve the efficacy of ICB therapy for peritoneal metastases.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Hongji Zhang
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Yiming Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Preethi Jayakumar
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Hong Liao
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hai Huang
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meihong Deng
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
30
|
Souza COS, Elias-Oliveira J, Pastore MR, Fontanari C, Rodrigues VF, Rodriguez V, Gardinassi LG, Faccioli LH. CD18 controls the development and activation of monocyte-to-macrophage axis during chronic schistosomiasis. Front Immunol 2022; 13:929552. [PMID: 36263057 PMCID: PMC9574367 DOI: 10.3389/fimmu.2022.929552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by worms of the genus Schistosoma spp. The progression of disease results in intense tissue fibrosis and high mortality rate. After egg deposition by adult worms, the inflammatory response is characterized by the robust activation of type 2 immunity. Monocytes and macrophages play critical roles during schistosomiasis. Inflammatory Ly6Chigh monocytes are recruited from the blood to the inflammatory foci and differentiate into alternatively activated macrophages (AAMs), which promote tissue repair. The common chain of β2-integrins (CD18) regulates monocytopoiesis and mediates resistance to experimental schistosomiasis. There is still limited knowledge about mechanisms controlled by CD18 that impact monocyte development and effector cells such as macrophages during schistosomiasis. Here, we show that CD18low mice chronically infected with S. mansoni display monocyte progenitors with reduced proliferative capacity, resulting in the accumulation of the progenitor cell denominated proliferating-monocyte (pMo). Consequently, inflammatory Ly6Chigh and patrolling Ly6Clow monocytes are reduced in the bone marrow and blood. Mechanistically, low CD18 expression decreases Irf8 gene expression in pMo progenitor cells, whose encoded transcription factor regulates CSFR1 (CD115) expression on the cell surface. Furthermore, low CD18 expression affects the accumulation of inflammatory Ly6Chigh CD11b+ monocytes in the liver while the adoptive transference of these cells to infected-CD18low mice reduced the inflammatory infiltrate and fibrosis in the liver. Importantly, expression of Il4, Chil3l3 and Arg1 was downregulated, CD206+PD-L2+ AAMs were reduced and there were lower levels of IL-10 in the liver of CD18low mice chronically infected with S. mansoni. Overall, these findings suggest that CD18 controls the IRF8-CD115 axis on pMo progenitor cells, affecting their proliferation and maturation of monocytes. At the same time, CD18 is crucial for the appropriate polarization and function of AAMs and tissue repair during chronic schistosomiasis.
Collapse
Affiliation(s)
- Camila O. S. Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Elias-Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marcella R. Pastore
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Biociências e Biotecnologia Aplicadas à Farmácia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Caroline Fontanari
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa F. Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanderlei Rodriguez
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Luiz G. Gardinassi
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lúcia H. Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Lúcia H. Faccioli,
| |
Collapse
|
31
|
Peng J, Federman HG, Hernandez C, Siracusa MC. Communication is key: Innate immune cells regulate host protection to helminths. Front Immunol 2022; 13:995432. [PMID: 36225918 PMCID: PMC9548658 DOI: 10.3389/fimmu.2022.995432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parasitic helminth infections remain a significant global health issue and are responsible for devastating morbidity and economic hardships. During infection, helminths migrate through different host organs, which results in substantial tissue damage and the release of diverse effector molecules by both hematopoietic and non-hematopoietic cells. Thus, host protective responses to helminths must initiate mechanisms that help to promote worm clearance while simultaneously mitigating tissue injury. The specialized immunity that promotes these responses is termed type 2 inflammation and is initiated by the recruitment and activation of hematopoietic stem/progenitor cells, mast cells, basophils, eosinophils, dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, and group 2 innate lymphoid cells. Recent work has also revealed the importance of neuron-derived signals in regulating type 2 inflammation and antihelminth immunity. These studies suggest that multiple body systems coordinate to promote optimal outcomes post-infection. In this review, we will describe the innate immune events that direct the scope and intensity of antihelminth immunity. Further, we will highlight the recent progress made in our understanding of the neuro-immune interactions that regulate these pathways and discuss the conceptual advances they promote.
Collapse
Affiliation(s)
- Jianya Peng
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Hannah G. Federman
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Christina M. Hernandez
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Mark C. Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- *Correspondence: Mark C. Siracusa,
| |
Collapse
|
32
|
Lai CW, Bagadia P, Barisas DAG, Jarjour NN, Wong R, Ohara T, Muegge BD, Lu Q, Xiong S, Edelson BT, Murphy KM, Stappenbeck TS. Mesothelium-Derived Factors Shape GATA6-Positive Large Cavity Macrophages. THE JOURNAL OF IMMUNOLOGY 2022; 209:742-750. [DOI: 10.4049/jimmunol.2200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/15/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The local microenvironment shapes macrophage differentiation in each tissue. We hypothesized that in the peritoneum, local factors in addition to retinoic acid can support GATA6-driven differentiation and function of peritoneal large cavity macrophages (LCMs). We found that soluble proteins produced by mesothelial cells lining the peritoneal cavity maintained GATA6 expression in cultured LCMs. Analysis of global gene expression of isolated mesothelial cells highlighted mesothelin (Msln) and its binding partner mucin 16 (Muc16) as candidate secreted ligands that potentially regulate GATA6 expression in peritoneal LCMs. Mice deficient for either of these molecules showed diminished GATA6 expression in peritoneal and pleural LCMs that was most prominent in aged mice. The more robust phenotype in older mice suggested that monocyte-derived macrophages were the target of Msln and Muc16. Cell transfer and bone marrow chimera experiments supported this hypothesis. We found that lethally irradiated Msln−/− and Muc16−/− mice reconstituted with wild-type bone marrow had lower levels of GATA6 expression in peritoneal and pleural LCMs. Similarly, during the resolution of zymosan-induced inflammation, repopulated peritoneal LCMs lacking expression of Msln or Muc16 expressed diminished GATA6. These data support a role for mesothelial cell–produced Msln and Muc16 in local macrophage differentiation within large cavity spaces such as the peritoneum. The effect appears to be most prominent on monocyte-derived macrophages that enter into this location as the host ages and also in response to infection.
Collapse
Affiliation(s)
- Chin-Wen Lai
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Derek A. G. Barisas
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Nicholas N. Jarjour
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Rachel Wong
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Takahiro Ohara
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Brian D. Muegge
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Qiuhe Lu
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | | |
Collapse
|
33
|
Gao J, Mei H, Sun J, Li H, Huang Y, Tang Y, Duan L, Liu D, Pang Y, Wang Q, Gao Y, Song K, Zhao J, Zhang C, Liu J. Neuropilin-1-Mediated SARS-CoV-2 Infection in Bone Marrow-Derived Macrophages Inhibits Osteoclast Differentiation. Adv Biol (Weinh) 2022; 6:e2200007. [PMID: 35195371 PMCID: PMC9073998 DOI: 10.1002/adbi.202200007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Indexed: 01/27/2023]
Abstract
In humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause medical complications across various tissues and organs. Despite the advances to understanding the pathogenesis of SARS-CoV-2, its tissue tropism and interactions with host cells have not been fully understood. Existing clinical data have revealed disordered calcium and phosphorus metabolism in Coronavirus Disease 2019 (COVID-19) patients, suggesting possible infection or damage in the human skeleton system by SARS-CoV-2. Herein, SARS-CoV-2 infection in mouse models with wild-type and beta strain (B.1.351) viruses is investigated, and it is found that bone marrow-derived macrophages (BMMs) can be efficiently infected in vivo. Single-cell RNA sequencing (scRNA-Seq) analyses of infected BMMs identify distinct clusters of susceptible macrophages, including those related to osteoblast differentiation. Interestingly, SARS-CoV-2 entry on BMMs is dependent on the expression of neuropilin-1 (NRP1) rather than the widely recognized receptor angiotensin-converting enzyme 2 (ACE2). The loss of NRP1 expression during BMM-to-osteoclast differentiation or NRP1 neutralization and knockdown can significantly inhibit SARS-CoV-2 infection in BMMs. Importantly, it is found that authentic SARS-CoV-2 infection impedes BMM-to-osteoclast differentiation. Collectively, this study provides evidence for NRP1-mediated SARS-CoV-2 infection in BMMs and establishes a potential link between disturbed osteoclast differentiation and disordered skeleton metabolism in COVID-19 patients.
Collapse
Affiliation(s)
- Junjie Gao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Jing Sun
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Hao Li
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Yuege Huang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China,Shanghai Clinical Research and Trial CenterShanghai201210China,Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China,University of Chinese Academy of SciencesBeijing100049China
| | - Yanhong Tang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Linwei Duan
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Delin Liu
- Centre for Orthopaedic ResearchSchool of SurgeryThe University of Western AustraliaNedlandsWestern Australia6009Australia
| | - Yidan Pang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Qiyang Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Youshui Gao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Ke Song
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Jincun Zhao
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Changqing Zhang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Shanghai Sixth People's HospitalShanghai200233China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China,Shanghai Clinical Research and Trial CenterShanghai201210China,Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| |
Collapse
|
34
|
Loke P, Lin JD. Redefining inflammatory macrophage phenotypes across stages and tissues by single-cell transcriptomics. Sci Immunol 2022; 7:eabo4652. [PMID: 35427177 DOI: 10.1126/sciimmunol.abo4652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Single-cell transcriptomic data identifies major activation paths of monocyte-derived macrophages as a framework for inflammatory tissue macrophages.
Collapse
Affiliation(s)
- P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City 10617, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
35
|
Jayakumar P, Laganson A, Deng M. GATA6 + Peritoneal Resident Macrophage: The Immune Custodian in the Peritoneal Cavity. Front Pharmacol 2022; 13:866993. [PMID: 35401237 PMCID: PMC8984154 DOI: 10.3389/fphar.2022.866993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Peritoneal resident macrophages (PRMs) have been a prominent topic in the research field of immunology due to their critical roles in immune surveillance in the peritoneal cavity. PRMs initially develop from embryonic progenitor cells and are replenished by bone marrow origin monocytes during inflammation and aging. Furthermore, PRMs have been shown to crosstalk with other cells in the peritoneal cavity to control the immune response during infection, injury, and tumorigenesis. With the advance in genetic studies, GATA-binding factor 6 (GATA6) has been identified as a lineage determining transcription factor of PRMs controlling the phenotypic and functional features of PRMs. Here, we review recent advances in the developmental origin, the phenotypic identity, and functions of PRMs, emphasizing the role of GATA6 in the pathobiology of PRMs in host defense, tissue repairing, and peritoneal tumorigenesis.
Collapse
Affiliation(s)
- Preethi Jayakumar
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Andrea Laganson
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Meihong Deng
- Department of Surgery, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
36
|
Lee SE, Rudd BD, Smith NL. Fate-mapping mice: new tools and technology for immune discovery. Trends Immunol 2022; 43:195-209. [PMID: 35094945 PMCID: PMC8882138 DOI: 10.1016/j.it.2022.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
The fate-mapping mouse has become an essential tool in the immunologist's toolbox. Although traditionally used by developmental biologists to trace the origins of cells, immunologists are turning to fate-mapping to better understand the development and function of immune cells. Thus, an expansion in the variety of fate-mapping mouse models has occurred to answer fundamental questions about the immune system. These models are also being combined with new genetic tools to study cancer, infection, and autoimmunity. In this review, we summarize different types of fate-mapping mice and describe emerging technologies that might allow immunologists to leverage this valuable tool and expand our functional knowledge of the immune system.
Collapse
Affiliation(s)
- Scarlett E Lee
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
37
|
Miller AP, Black M, Amengual J. Fenretinide inhibits vitamin A formation from β-carotene and regulates carotenoid levels in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159070. [PMID: 34742949 PMCID: PMC8688340 DOI: 10.1016/j.bbalip.2021.159070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
N-[4-hydroxyphenyl]retinamide, commonly known as fenretinide, a synthetic retinoid with pleiotropic benefits for human health, is currently utilized in clinical trials for cancer, cystic fibrosis, and COVID-19. However, fenretinide reduces plasma vitamin A levels by interacting with retinol-binding protein 4 (RBP4), which often results in reversible night blindness in patients. Cell culture and in vitro studies show that fenretinide binds and inhibits the activity of β-carotene oxygenase 1 (BCO1), the enzyme responsible for endogenous vitamin A formation. Whether fenretinide inhibits vitamin A synthesis in mammals, however, remains unknown. The goal of this study was to determine if the inhibition of BCO1 by fenretinide affects vitamin A formation in mice fed β-carotene. Our results show that wild-type mice treated with fenretinide for ten days had a reduction in tissue vitamin A stores accompanied by a two-fold increase in β-carotene in plasma (P < 0.01) and several tissues. These effects persisted in RBP4-deficient mice and were independent of changes in intestinal β-carotene absorption, suggesting that fenretinide inhibits vitamin A synthesis in mice. Using Bco1-/- and Bco2-/- mice we also show that fenretinide regulates intestinal carotenoid and vitamin E uptake by activating vitamin A signaling during short-term vitamin A deficiency. This study provides a deeper understanding of the impact of fenretinide on vitamin A, carotenoid, and vitamin E homeostasis, which is crucial for the pharmacological utilization of this retinoid.
Collapse
Affiliation(s)
- Anthony P Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America.
| | - Molly Black
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America.
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America; Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
38
|
Dichtl S, Sanin DE, Koss CK, Willenborg S, Petzold A, Tanzer MC, Dahl A, Kabat AM, Lindenthal L, Zeitler L, Satzinger S, Strasser A, Mann M, Roers A, Eming SA, El Kasmi KC, Pearce EJ, Murray PJ. Gene-selective transcription promotes the inhibition of tissue reparative macrophages by TNF. Life Sci Alliance 2022; 5:5/4/e202101315. [PMID: 35027468 PMCID: PMC8761491 DOI: 10.26508/lsa.202101315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Pro-inflammatory TNF is a highly gene-selective inhibitor of the gene expression program of tissue repair and wound healing macrophages. Anti-TNF therapies are a core anti-inflammatory approach for chronic diseases such as rheumatoid arthritis and Crohn’s Disease. Previously, we and others found that TNF blocks the emergence and function of alternative-activated or M2 macrophages involved in wound healing and tissue-reparative functions. Conceivably, anti-TNF drugs could mediate their protective effects in part by an altered balance of macrophage activity. To understand the mechanistic basis of how TNF regulates tissue-reparative macrophages, we used RNAseq, scRNAseq, ATACseq, time-resolved phospho-proteomics, gene-specific approaches, metabolic analysis, and signaling pathway deconvolution. We found that TNF controls tissue-reparative macrophage gene expression in a highly gene-specific way, dependent on JNK signaling via the type 1 TNF receptor on specific populations of alternative-activated macrophages. We further determined that JNK signaling has a profound and broad effect on activated macrophage gene expression. Our findings suggest that TNF’s anti-M2 effects evolved to specifically modulate components of tissue and reparative M2 macrophages and TNF is therefore a context-specific modulator of M2 macrophages rather than a pan-M2 inhibitor.
Collapse
Affiliation(s)
| | - David E Sanin
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Carolin K Koss
- Boehringer Ingelheim Pharma GmbH and Co KG, Biberach, Germany
| | | | - Andreas Petzold
- Deep Sequencing Group, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Maria C Tanzer
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Dahl
- Deep Sequencing Group, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Agnieszka M Kabat
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | | | - Leonie Zeitler
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Matthias Mann
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | | | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
39
|
Chen F, El-Naccache DW, Ponessa JJ, Lemenze A, Espinosa V, Wu W, Lothstein K, Jin L, Antao O, Weinstein JS, Damani-Yokota P, Khanna K, Murray PJ, Rivera A, Siracusa MC, Gause WC. Helminth resistance is mediated by differential activation of recruited monocyte-derived alveolar macrophages and arginine depletion. Cell Rep 2022; 38:110215. [PMID: 35021079 PMCID: PMC9403845 DOI: 10.1016/j.celrep.2021.110215] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophages are known to mediate anti-helminth responses, but it remains uncertain which subsets are involved or how macrophages actually kill helminths. Here, we show rapid monocyte recruitment to the lung after infection with the nematode parasite Nippostrongylus brasiliensis. In this inflamed tissue microenvironment, these monocytes differentiate into an alveolar macrophage (AM)-like phenotype, expressing both SiglecF and CD11c, surround invading parasitic larvae, and preferentially kill parasites in vitro. Monocyte-derived AMs (Mo-AMs) express type 2-associated markers and show a distinct remodeling of the chromatin landscape relative to tissue-derived AMs (TD-AMs). In particular, they express high amounts of arginase-1 (Arg1), which we demonstrate mediates helminth killing through L-arginine depletion. These studies indicate that recruited monocytes are selectively programmed in the pulmonary environment to express AM markers and an anti-helminth phenotype.
Collapse
Affiliation(s)
- Fei Chen
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Darine W El-Naccache
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - John J Ponessa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Pediatrics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Wenhui Wu
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Katherine Lothstein
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Linhua Jin
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Olivia Antao
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Jason S Weinstein
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Payal Damani-Yokota
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Kamal Khanna
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Pediatrics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Mark C Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| | - William C Gause
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
40
|
Eddins DJ, Kosters A, Waters J, Sosa J, Phillips M, Yadava K, Herzenberg LA, Kuipers HF, Ghosn EEB. Hematopoietic Stem Cell Requirement for Macrophage Regeneration Is Tissue Specific. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:3028-3037. [PMID: 34810224 DOI: 10.4049/jimmunol.2100344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
Tissue-resident macrophages (TRMΦ) are important immune sentinels responsible for maintaining tissue and immune homeostasis within their specific niche. Recently, the origins of TRMΦ have undergone intense scrutiny, in which now most TRMΦ are thought to originate early during embryonic development independent of hematopoietic stem cells (HSCs). We previously characterized two distinct subsets of mouse peritoneal cavity macrophages (MΦ) (large and small peritoneal MΦ) whose origins and relationship to both fetal and adult long-term (LT) HSCs have not been fully investigated. In this study, we employ highly purified LT-HSC transplantation and in vivo lineage tracing to show a dual ontogeny for large and small peritoneal MΦ, in which the initial wave of peritoneal MΦ is seeded from yolk sac-derived precursors, which later require LT-HSCs for regeneration. In contrast, transplanted fetal and adult LT-HSCs are not able to regenerate brain-resident microglia. Thus, we demonstrate that LT-HSCs retain the potential to develop into TRMΦ, but their requirement is tissue specific in the peritoneum and brain.
Collapse
Affiliation(s)
- Devon J Eddins
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA.,Division of Rheumatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.,Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| | - Astrid Kosters
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeffrey Waters
- Department of Genetics, Stanford University, Stanford, CA; and
| | - Jasmine Sosa
- Department of Genetics, Stanford University, Stanford, CA; and
| | - Megan Phillips
- Department of Genetics, Stanford University, Stanford, CA; and
| | - Koshika Yadava
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Eliver Eid Bou Ghosn
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA; .,Division of Rheumatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.,Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
41
|
Stephensen CB, Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr 2021; 126:1663-1672. [PMID: 33468263 PMCID: PMC7884725 DOI: 10.1017/s0007114521000246] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
SARS-CoV2 infects respiratory epithelial cells via its cellular receptor angiotensin-converting enzyme 2, causing a viral pneumonia with pronounced inflammation resulting in significant damage to the lungs and other organ systems, including the kidneys, though symptoms and disease severity are quite variable depending on the intensity of exposure and presence of underlying conditions that may affect the immune response. The resulting disease, coronavirus disease 2019 (COVID-19), can cause multi-organ system dysfunction in patients requiring hospitalisation and intensive care treatment. Serious infections like COVID-19 often negatively affect nutritional status, and the resulting nutritional deficiencies may increase disease severity and impair recovery. One example is the viral infection measles, where associated vitamin A (VA) deficiency increases disease severity and appropriately timed supplementation during recovery reduces mortality and hastens recovery. VA may play a similar role in COVID-19. First, VA is important in maintaining innate and adaptive immunity to promote clearance of a primary infection as well as minimise risks from secondary infections. Second, VA plays a unique role in the respiratory tract, minimising damaging inflammation, supporting repair of respiratory epithelium and preventing fibrosis. Third, VA deficiency may develop during COVID-19 due to specific effects on lung and liver stores caused by inflammation and impaired kidney function, suggesting that supplements may be needed to restore adequate status. Fourth, VA supplementation may counteract adverse effects of SARS-CoV2 on the angiotensin system as well as minimises adverse effects of some COVID-19 therapies. Evaluating interactions of SARS-CoV2 infection with VA metabolism may thus provide improved COVID-19 therapy.
Collapse
Affiliation(s)
- C. B. Stephensen
- Immunity and Disease Prevention Research Unit, USDA Western Human Nutrition Research Center, and Nutrition Department, University of California, Davis, CA, USA
| | - G. Lietz
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| |
Collapse
|
42
|
Lechner A, Bohnacker S, Esser-von Bieren J. Macrophage regulation & function in helminth infection. Semin Immunol 2021; 53:101526. [PMID: 34802871 DOI: 10.1016/j.smim.2021.101526] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.
Collapse
Affiliation(s)
- Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany.
| |
Collapse
|
43
|
Woo V, Eshleman EM, Hashimoto-Hill S, Whitt J, Wu SE, Engleman L, Rice T, Karns R, Qualls JE, Haslam DB, Vallance BA, Alenghat T. Commensal segmented filamentous bacteria-derived retinoic acid primes host defense to intestinal infection. Cell Host Microbe 2021; 29:1744-1756.e5. [PMID: 34678170 DOI: 10.1016/j.chom.2021.09.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/14/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Interactions between the microbiota and mammalian host are essential for defense against infection, but the microbial-derived cues that mediate this relationship remain unclear. Here, we find that intestinal epithelial cell (IEC)-associated commensal bacteria, segmented filamentous bacteria (SFB), promote early protection against the pathogen Citrobacter rodentium, independent of CD4+ T cells. SFB induced histone modifications in IECs at sites enriched for retinoic acid receptor motifs, suggesting that SFB may enhance defense through retinoic acid (RA). Consistent with this, inhibiting RA signaling suppressed SFB-induced protection. Intestinal RA levels were elevated in SFB mice, despite the inhibition of mammalian RA production, indicating that SFB directly modulate RA. Interestingly, RA was produced by intestinal bacteria, and the loss of bacterial-intrinsic aldehyde dehydrogenase activity decreased the RA levels and increased infection. These data reveal RA as an unexpected microbiota-derived metabolite that primes innate defense and suggests that pre- and probiotic approaches to elevate RA could prevent or combat infections.
Collapse
Affiliation(s)
- Vivienne Woo
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Seika Hashimoto-Hill
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jordan Whitt
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Shu-En Wu
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Laura Engleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Taylor Rice
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Joseph E Qualls
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - David B Haslam
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Bruce A Vallance
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
44
|
STAT1-Dependent Recruitment of Ly6C hiCCR2 + Inflammatory Monocytes and M2 Macrophages in a Helminth Infection. Pathogens 2021; 10:pathogens10101287. [PMID: 34684235 PMCID: PMC8540143 DOI: 10.3390/pathogens10101287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 1 signaling is critical for IFN-γ-mediated immune responses and resistance to protozoan and viral infections. However, its role in immunoregulation during helminth parasitic infections is not fully understood. Here, we used STAT1-/- mice to investigate the role of this transcription factor during a helminth infection caused by the cestode Taenia crassiceps and show that STAT1 is a central molecule favoring susceptibility to this infection. STAT1-/- mice displayed lower parasite burdens at 8 weeks post-infection compared to STAT1+/+ mice. STAT1 mediated the recruitment of inflammatory monocytes and the development of alternatively activated macrophages (M2) at the site of infection. The absence of STAT1 prevented the recruitment of CD11b+Ly6ChiLy6G- monocytic cells and therefore their suppressive activity. This failure was associated with the defective expression of CCR2 on CD11b+Ly6ChiLy6G- cells. Importantly, CD11b+Ly6ChiLy6G- cells highly expressed PDL-1 and suppressed T-cell proliferation elicited by anti-CD3 stimulation. PDL-1+ cells were mostly absent in STAT1-/- mice. Furthermore, only STAT1+/+ mice developed M2 macrophages at 8 weeks post-infection, although macrophages from both T. crassiceps-infected STAT1+/+ and STAT1-/- mice responded to IL-4 in vitro, and both groups of mice were able to produce the Th2 cytokine IL-13. This suggests that CD11b+CCR2+Ly6ChiLy6G- cells give rise to M2 macrophages in this infection. In summary, a lack of STAT1 resulted in impaired recruitment of CD11b+CCR2+Ly6ChiLy6G- cells, failure to develop M2 macrophages, and increased resistance against T. crassiceps infection.
Collapse
|
45
|
Lin JD, Loke P. Helminth infections and cardiovascular diseases: A role for the microbiota and Mϕs? J Leukoc Biol 2021; 110:1269-1276. [PMID: 34467547 DOI: 10.1002/jlb.5mr0721-786r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are rising in developing countries with increasing urbanization and lifestyle changes and remains a major cause of death in the developed world. In this mini review, we discuss the possibility that the effect of helminth infections on the immune system and the microbiota may affect risk factors in cardiovascular diseases such as atherosclerosis, as part of the hygiene hypothesis. The effects of Type 2 immune responses induced by helminths and helminth derived molecules on regulating metabolism and Mϕ function could be a mechanistic link for further investigation. We emphasize the complexity and difficulties in determining indirect or direct and causal relationships between helminth infection status and cardiovascular diseases. New experimental models, such as rewilding laboratory mice, whereby different aspects of the environment and host genetics can be carefully dissected may provide further mechanistic insights and therapeutic strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, Taiwan
| | - P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Midha IK, Kumar N, Kumar A, Madan T. Mega doses of retinol: A possible immunomodulation in Covid-19 illness in resource-limited settings. Rev Med Virol 2021; 31:1-14. [PMID: 33382930 PMCID: PMC7883262 DOI: 10.1002/rmv.2204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Of all the nutrients, vitamin A has been the most extensively evaluated for its impact on immunity. There are three main forms of vitamin A, retinol, retinal and retinoic acid (RA) with the latter being most biologically active and all-trans-RA (ATRA) its main derivative. Vitamin A is a key regulator of the functions of various innate and adaptive immune cells and promotes immune-homeostasis. Importantly, it augments the interferon-based innate immune response to RNA viruses decreasing RNA virus replication. Several clinical trials report decreased mortality in measles and Ebola with vitamin A supplementation.During the Covid-19 pandemic interventions such as convalescent plasma, antivirals, monoclonal antibodies and immunomodulator drugs have been tried but most of them are difficult to implement in resource-limited settings. The current review explores the possibility of mega dose vitamin A as an affordable adjunct therapy for Covid-19 illness with minimal reversible side effects. Insight is provided into the effect of vitamin A on ACE-2 expression in the respiratory tract and its association with the prognosis of Covid-19 patients. Vitamin A supplementation may aid the generation of protective immune response to Covid-19 vaccines. An overview of the dosage and safety profile of vitamin A is presented along with recommended doses for prophylactic/therapeutic use in randomised controlled trials in Covid-19 patients.
Collapse
Affiliation(s)
| | | | - Amit Kumar
- Dwight D. Eisenhower VA Medical CenterLeavenworthKansasUSA
| | - Taruna Madan
- Department of Innate ImmunityICMR‐National Institute for Research in Reproductive HealthMumbaiIndia
| |
Collapse
|
47
|
Gao L, Fan F, Wang L, Tang B, Wen Z, Tang J, Dai T, Jin H. Polarization of macrophages in the trigeminal ganglion of rats with pulpitis. J Oral Rehabil 2021; 49:228-236. [PMID: 34398484 DOI: 10.1111/joor.13245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dental pulp tissues are rich in pain-related afferent nerve fibers, which originate from primary sensory neurons in the trigeminal ganglion (TG). The mechanisms of central nervous system (CNS) underlying ectopic pain following peripheral inflammation have been reported that the macrophages as inflammatory and immunologic mediators in the TG play an important role in the process of pulpitis and hyperalgesia. OBJECTIVE(S) To observe the polarization response and dynamic distribution of macrophages in the TG during the development of dental pulp inflammation. METHODS A rat model of pulpitis was established using complete Freund's adjuvant (CFA). Hematoxylin-eosin (HE), immunohistochemistry (IHC), immunofluorescence (IF), toluidine blue (TB) staining, and RT-qPCR were performed to observe the expression of macrophage-related factors in the TG. RESULTS The results of IHC staining showed that M2 macrophages labeled with CD206 were observed in the TG of both the control and CFA groups. The statistical analysis indicated that the number of CD206-positive macrophages in the TG increased significantly at 24 h after CFA-induced pulpitis, reached a peak at 2 weeks, and then returned to the normal level after 6 weeks. The ratio of M2/M1 in the CFA groups was significantly lower than that in the control group from 24 to 72 h, and this pattern was reversed at 2 weeks after CFA-induced pulpitis; then, the ratio increased significantly and was maintained at a high level for 4 weeks. RT-qPCR results showed that the expression of IL-10 in the TG increased significantly from 1 to 4 weeks after CFA-induced pulpitis. CONCLUSION The trend of M2 macrophages was opposite to that of M1 macrophages in the TG during the process of pulpitis induced by CFA, which is consistent with the expression of macrophage-related cytokines. Macrophage polarization in the TG may participate in the neuroinflammation response induced by dental pulpitis.
Collapse
Affiliation(s)
- Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Fan Fan
- School of Stomatology, Dalian Medical University, Dalian, China.,Department of Stomatology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Lina Wang
- School of Stomatology, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Bohan Tang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Zhihao Wen
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Jing Tang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Ting Dai
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Haiwei Jin
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| |
Collapse
|
48
|
Forman R, Logunova L, Smith H, Wemyss K, Mair I, Boon L, Allen JE, Muller W, Pennock JL, Else KJ. Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathog 2021; 17:e1009768. [PMID: 34329367 PMCID: PMC8357096 DOI: 10.1371/journal.ppat.1009768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/11/2021] [Accepted: 06/29/2021] [Indexed: 01/24/2023] Open
Abstract
The intestinal nematode parasite Trichuris muris dwells in the caecum and proximal colon driving an acute resolving intestinal inflammation dominated by the presence of macrophages. Notably, these macrophages are characterised by their expression of RELMα during the resolution phase of the infection. The RELMα+ macrophage phenotype associates with the presence of alternatively activated macrophages and work in other model systems has demonstrated that the balance of classically and alternatively activated macrophages is critically important in enabling the resolution of inflammation. Moreover, in the context of type 2 immunity, RELMα+ alternatively activated macrophages are associated with the activation of macrophages via the IL4Rα. Despite a breadth of inflammatory pathologies associated with the large intestine, including those that accompany parasitic infection, it is not known how colonic macrophages are activated towards an alternatively activated phenotype. Here, we address this important knowledge gap by using Trichuris muris infection, in combination with transgenic mice (IL4Rαfl/fl.CX3CR1Cre) and IL4Rα-deficient/wild-type mixed bone marrow chimaeras. We make the unexpected finding that education of colonic macrophages towards a RELMα+, alternatively activated macrophage phenotype during T. muris infection does not require IL4Rα expression on macrophages. Further, this independence is maintained even when the mice are treated with an anti-IFNγ antibody during infection to create a strongly polarised Th2 environment. In contrast to RELMα, PD-L2 expression on macrophages post infection was dependent on IL4Rα signalling in the macrophages. These novel data sets are important, revealing a surprising cell-intrinsic IL4R alpha independence of the colonic RELMα+ alternatively activated macrophage during Trichuris muris infection. Infection of mice with Trichuris muris, a whipworm parasite results in inflammation of the large intestine. Inflammation is temporary; once the parasite has been cleared, damage to the intestinal tissue heals. During inflammation white blood cells move in to the gut tissue. These cells are dominated by a cell type called the macrophage. Macrophages which accumulate in the intestine post-infection express a protein called RELMα. These RELMα-expressing macrophages are thought to help resolve inflammation and have traditionally been associated with IL-4 and IL-13-driven activation. We set out to determine whether the macrophages which emerge during T. muris infection need to respond to IL-4 and/or IL-13 in order to express RELMα. We did this by creating a transgenic mouse where the common IL4Rα chain of the IL-4 and IL-13 receptor was absent from macrophages. To our surprise, macrophages were able to express RELMα regardless of whether the macrophage could or could not respond to IL-14/IL-13. This new knowledge is important as in some inflammatory conditions, treatments seeking to encourage alternatively activated macrophages have been proposed. Such treatments require an understanding of both the important and the redundant signals as well as recognition that activating signals may be disparate in different tissue environments.
Collapse
Affiliation(s)
- Ruth Forman
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (RF); (KJE)
| | - Larisa Logunova
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Louis Boon
- Polpharma Biologics, Utrecht, The Netherlands
| | - Judith E. Allen
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Werner Muller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Joanne L. Pennock
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (RF); (KJE)
| |
Collapse
|
49
|
Overbey EG, Ng TT, Catini P, Griggs LM, Stewart P, Tkalcic S, Hawkins RD, Drechsler Y. Transcriptomes of an Array of Chicken Ovary, Intestinal, and Immune Cells and Tissues. Front Genet 2021; 12:664424. [PMID: 34276773 PMCID: PMC8278112 DOI: 10.3389/fgene.2021.664424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
While the chicken (Gallus gallus) is the most consumed agricultural animal worldwide, the chicken transcriptome remains understudied. We have characterized the transcriptome of 10 cell and tissue types from the chicken using RNA-seq, spanning intestinal tissues (ileum, jejunum, proximal cecum), immune cells (B cells, bursa, macrophages, monocytes, spleen T cells, thymus), and reproductive tissue (ovary). We detected 17,872 genes and 24,812 transcripts across all cell and tissue types, representing 73% and 63% of the current gene annotation, respectively. Further quantification of RNA transcript biotypes revealed protein-coding and lncRNAs specific to an individual cell/tissue type. Each cell/tissue type also has an average of around 1.2 isoforms per gene, however, they all have at least one gene with at least 11 isoforms. Differential expression analysis revealed a large number of differentially expressed genes between tissues of the same category (immune and intestinal). Many of these differentially expressed genes in immune cells were involved in cellular processes relating to differentiation and cell metabolism as well as basic functions of immune cells such as cell adhesion and signal transduction. The differential expressed genes of the different segments of the chicken intestine (jejunum, ileum, proximal cecum) correlated to the metabolic processes in nutrient digestion and absorption. These data should provide a valuable resource in understanding the chicken genome.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Genome Sciences, Interdepartmental Astrobiology Program, University of Washington, Seattle, WA, United States
| | - Theros T Ng
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Pietro Catini
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Lisa M Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Paul Stewart
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Suzana Tkalcic
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - R David Hawkins
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
50
|
Vellozo NS, Rigoni TS, Lopes MF. New Therapeutic Tools to Shape Monocyte Functional Phenotypes in Leishmaniasis. Front Immunol 2021; 12:704429. [PMID: 34249011 PMCID: PMC8267810 DOI: 10.3389/fimmu.2021.704429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 01/25/2023] Open
Abstract
In the innate immunity to Leishmania infection tissue-resident macrophages and inflammatory monocytes accumulate host-cell, effector, and efferocytosis functions. In addition, neutrophils, as host, effector, and apoptotic cells, as well as tissue-resident and monocyte-derived dendritic cells (DCs) imprint innate and adaptive immunity to Leishmania parasites. Macrophages develop phenotypes ranging from antimicrobial M1 to parasite-permissive M2, depending on mouse strain, Leishmania species, and T-cell cytokines. The Th1 (IFN-γ) and Th2 (IL-4) cytokines, which induce classically-activated (M1) or alternatively-activated (M2) macrophages, underlie resistance versus susceptibility to leishmaniasis. While macrophage phenotypes have been well discussed, new developments addressed the monocyte functional phenotypes in Leishmania infection. Here, we will emphasize the role of inflammatory monocytes to access how potential host-directed therapies for leishmaniasis, such as all-trans-retinoic acid (ATRA) and the ligand of Receptor Activator of Nuclear Factor-Kappa B (RANKL) might modulate immunity to Leishmania infection, by directly targeting monocytes to develop M1 or M2 phenotypes.
Collapse
Affiliation(s)
- Natália S Vellozo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís S Rigoni
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela F Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|