1
|
Zhang H, Sabiu G, Jung S, Podestà MA, Zhao J, Gempler M, Yamamura M, Miao J, Tsokos GC, Karadagi A, Kawai T, Abdi R, Sage PT. Targeted delivery of IL-21 neutralizing nanotherapeutics to lymph nodes and kidney allografts attenuates B cell alloimmunity. Kidney Int 2025:S0085-2538(25)00322-9. [PMID: 40268164 DOI: 10.1016/j.kint.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION Antibody-mediated rejection (ABMR) after allogeneic kidney transplantation is a substantial clinical problem for which there are no specific treatments. High endothelial venules (HEV) are specialized veins which are normally present only in lymph nodes (LN) facilitating immune cell entry. Here, we show that kidneys undergoing rejection develop HEV-like structures derived from host cells. METHODS We developed a nano-delivery system targeting HEVs to simultaneously deliver therapeutics to draining LN and kidney allografts. RESULTS Using this system, we preferentially delivered IL-21 neutralizing antibody (NP-HEV[ aIL21] ) to draining LN and kidney allografts resulting in improved graft function and recipient survival. The NP-HEV[aIL21] system also decreased alloreactive B cell responses, donor-specific antibody production, and ABMR-like lesions in kidney grafts. CONCLUSION Our study provides a therapeutic strategy to selectively target distinct effector sites to attenuate B-cell alloimmunity while limiting effects of broad systemic immunosuppression in kidney transplantation.
Collapse
Affiliation(s)
- Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gianmarco Sabiu
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; School of Nephrology, University of Milan, Milan, Italy
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manuel A Podestà
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maya Gempler
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Minako Yamamura
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinxu Miao
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ahmad Karadagi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tatsuo Kawai
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Wu W, Cheng Z, Nan Y, Pan G, Wang Y. L-selectin Promotes Migration, Invasion and Inflammatory Response of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via NF-kB Signaling Pathway. Inflammation 2025:10.1007/s10753-025-02242-3. [PMID: 39821520 DOI: 10.1007/s10753-025-02242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by chronic inflammation of the synovium and progressive joint damage. Fibroblast-like synoviocytes (FLSs) exhibit excessive proliferative and aggressive phenotypes and play a major role in the pathophysiology of RA. Previous studies have confirmed the pathologic role of L-selectin in cell adhesion and migration. In rheumatoid arthritis models, L-selectin regulates leukocyte homing, which leads to joint inflammation. Moreover, in L-selectin knockout mice, there is a reduction in joint inflammation. However, the associations of L-selectin with FLSs in RA remain unclear. This study aims to reveal the effect of L-selectin on RA-FLSs and to investigate the molecular mechanism of L-selectin in RA. Our findings indicated that L-selectin was significantly expressed in RA synovial tissues and RA-FLSs. L-selectin silencing reduced RA-FLSs migration and invasion and attenuated the secretion of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 in vitro. Moreover, investigations into mechanisms revealed that L-selectin activated the nuclear factor kappa-B (NF-κB) signaling pathway while blocking this signaling pathway could compromise the effects of L-selectin. Finally, in vivo experiments with a collagen-induced arthritis rat model revealed that silencing L-selectin alleviated inflammatory infiltration of the synovium and cartilage destruction, and validated the NF-κB signaling pathways findings observed in vitro. In summary, we show that L-selectin enhances the migration and invasion of RA-FLSs through the activation of NF-κB signaling pathways, ultimately worsening the progression of RA.
Collapse
Affiliation(s)
- Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Orthopaedics, Affiliated Nantong Hospital of Shanghai University, The Six People's Hospital of Nantong, Nantong, 226001, Jiangsu, China
| | - Zhen Cheng
- Department of Orthopaedics (Sports Medicine), Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Yunyi Nan
- Department of Pain Medicine, Yueqing People's Hospital, Affiliated Yueqing Hospital of Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China
| | - Gang Pan
- Department of Orthopaedics, Affiliated Nantong Hospital of Shanghai University, The Six People's Hospital of Nantong, Nantong, 226001, Jiangsu, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Peterson JM, Smith TA, Rock EP, Magnani JL. Selectins in Biology and Human Disease: Opportunity in E-selectin Antagonism. Cureus 2024; 16:e61996. [PMID: 38983984 PMCID: PMC11232095 DOI: 10.7759/cureus.61996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/11/2024] Open
Abstract
Selectins are cell adhesion proteins discovered in the 1980s. As C-type lectins, selectins contain an essential calcium ion in the ligand-binding pocket and recognize the isomeric tetrasaccharides sialyl Lewisx (sLex) and sialyl Lewisa (sLea). Three selectins, E-selectin, P-selectin, and L-selectin, play distinct, complementary roles in inflammation, hematopoiesis, and tumor biology. They have been implicated in the pathology of diverse inflammatory disorders, and several selectin antagonists have been tested clinically. E-selectin plays a unique role in leukocyte activation, making it an attractive target for intervention, for example, in sickle cell disease (SCD). This review summarizes selectin biology and pathology, structure and ligand binding, and selectin antagonists that have reached clinical testing with an emphasis on E-selectin.
Collapse
Affiliation(s)
| | | | - Edwin P Rock
- Development, GlycoMimetics, Inc., Rockville, USA
| | - John L Magnani
- Research and Development, GlycoTech Corporation, Rockville, USA
| |
Collapse
|
4
|
Takeda-Uchimura Y, Ikezaki M, Akama TO, Ihara Y, Allain F, Nishitsuji K, Uchimura K. GlcNAc6ST2/CHST4 Is Essential for the Synthesis of R-10G-Reactive Keratan Sulfate/Sulfated N-Acetyllactosamine Oligosaccharides in Mouse Pleural Mesothelium. Molecules 2024; 29:764. [PMID: 38398516 PMCID: PMC10893525 DOI: 10.3390/molecules29040764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
We recently showed that 6-sulfo sialyl N-acetyllactosamine (LacNAc) in O-linked glycans recognized by the CL40 antibody is abundant in the pleural mesothelium under physiological conditions and that these glycans undergo complementary synthesis by GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5) in mice. GlcNAc6ST3 is essential for the synthesis of R-10G-positive keratan sulfate (KS) in the brain. The predicted minimum epitope of the R-10G antibody is a dimeric asialo 6-sulfo LacNAc. Whether R-10G-reactive KS/sulfated LacNAc oligosaccharides are also present in the pleural mesothelium was unknown. The question of which GlcNAc6STs are responsible for R-10G-reactive glycans was an additional issue to be clarified. Here, we show that R-10G-reactive glycans are as abundant in the pulmonary pleura as CL40-reactive glycans and that GlcNAc6ST3 is only partially involved in the synthesis of these pleural R-10G glycans, unlike in the adult brain. Unexpectedly, GlcNAc6ST2 is essential for the synthesis of R-10G-positive KS/sulfated LacNAc oligosaccharides in the lung pleura. The type of GlcNAc6ST and the magnitude of its contribution to KS glycan synthesis varied among tissues in vivo. We show that GlcNAc6ST2 is required and sufficient for R-10G-reactive KS synthesis in the lung pleura. Interestingly, R-10G immunoreactivity in KSGal6ST (encoded by Chst1) and C6ST1 (encoded by Chst3) double-deficient mouse lungs was markedly increased. MUC16, a mucin molecule, was shown to be a candidate carrier protein for pleural R-10G-reactive glycans. These results suggest that R-10G-reactive KS/sulfated LacNAc oligosaccharides may play a role in mesothelial cell proliferation and differentiation. Further elucidation of the functions of sulfated glycans synthesized by GlcNAc6ST2 and GlcNAc6ST3, such as R-10G and CL40 glycans, in pathological conditions may lead to a better understanding of the underlying mechanisms of the physiopathology of the lung mesothelium.
Collapse
Affiliation(s)
- Yoshiko Takeda-Uchimura
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka 570-8506, Japan;
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Fabrice Allain
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| | - Kazuchika Nishitsuji
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.)
| | - Kenji Uchimura
- Univ. Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (Y.T.-U.); (F.A.); or (K.N.)
| |
Collapse
|
5
|
Wei Z, Kawashima H. Prevention of Collagen-Induced Arthritis by an Anti-Glycan Monoclonal Antibody Reactive with 6-Sulfo Sialyl Lewis x in DBA/1 Mice. Monoclon Antib Immunodiagn Immunother 2024; 43:3-9. [PMID: 38064497 DOI: 10.1089/mab.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial tissue inflammation, substantially impacting the quality of life of patients. The interaction between L-selectin and its glycoprotein ligands modified with 6-sulfo sialyl Lewis x (6-sulfo sLex) is known to mediate lymphocyte homing to initiate immune responses. Thus, this process could be a potential therapeutic target for RA. Herein, we explored the preventive effects of an anti-6-sulfo sLex monoclonal antibody (mAb), SF1, on collagen-induced arthritis (CIA) in DBA/1 mice. Mice were administered SF1 from day 21 postfirst immunization with type II collagen (CII), and the effects of SF1 on both clinical and histopathological disease progression evoked by the second immunization were examined. SF1 significantly suppressed clinical features and histological levels associated with arthritis severity. Enzyme-linked immunosorbent assay consistently indicated that SF1 inhibited the production of CII-specific IgG2a. Based on the reverse transcription-quantitative PCR analysis, SF1 suppressed the expression of interferon-γ, a T helper 1 cytokine, as well as that of inflammatory cytokines, including tumor necrosis factor-α and interleukin-1β, in draining lymph nodes. Collectively, these results indicate that SF1, an anti-sulfated glycan mAb, could be beneficial in preventing CIA in mice and may afford as a novel agent to treat RA.
Collapse
Affiliation(s)
- Zihong Wei
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Liu W, Xiong W, Liu W, Hirakawa J, Kawashima H. A novel monoclonal antibody against 6-sulfo sialyl Lewis x glycans attenuates murine allergic rhinitis by suppressing Th2 immune responses. Sci Rep 2023; 13:15740. [PMID: 37735247 PMCID: PMC10514285 DOI: 10.1038/s41598-023-43017-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/17/2023] [Indexed: 09/23/2023] Open
Abstract
Lymphocyte homing is mediated by the interaction between L-selectin on lymphocytes and its glycoprotein ligands modified with 6-sulfo sialyl Lewis x (6-sulfo sLex) glycans on high endothelial venules (HEVs) in peripheral lymph nodes (PLNs). However, the lack of specific antibodies reactive with both human and mouse 6-sulfo sLex has limited our understanding of its function in vivo. Here, we generated a novel monoclonal antibody, termed SF1, that specifically reacts with 6-sulfo sLex expressed on HEVs in both species in a manner dependent on sulfate, fucose, and sialic acid modifications. Glycan array and biolayer interferometry analyses indicated that SF1 specifically bound to 6-sulfo sLex with a dissociation constant of 6.09 × 10-9 M. SF1 specifically bound to four glycoproteins from PLNs corresponding to the molecular sizes of L-selectin ligand glycoproteins. Consistently, SF1 inhibited L-selectin-dependent lymphocyte rolling on 6-sulfo sLex-expressing cells ex vivo and lymphocyte homing to PLNs and nasal-associated lymphoid tissues in vivo. Furthermore, SF1 significantly attenuated ovalbumin-induced allergic rhinitis in mice in association with significant suppression of Th2 immune responses. Collectively, these results suggest that SF1 can be useful for the functional analysis of 6-sulfo sLex and may potentially serve as a novel therapeutic agent against immune-related diseases.
Collapse
Affiliation(s)
- Wei Liu
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Wei Xiong
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Wenxin Liu
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Jotaro Hirakawa
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
| |
Collapse
|
7
|
Khanal S, Wieland A, Gunderson AJ. Mechanisms of tertiary lymphoid structure formation: cooperation between inflammation and antigenicity. Front Immunol 2023; 14:1267654. [PMID: 37809103 PMCID: PMC10551175 DOI: 10.3389/fimmu.2023.1267654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
To mount an effective anti-tumor immune response capable of controlling or eliminating disease, sufficient numbers of lymphocytes must be recruited to malignant tissue and allowed to sustain their effector functions. Indeed, higher infiltration of T and B cells in tumor tissue, often referred to as "hot tumors", is prognostic for patient survival and predictive of response to immunotherapy in almost all cancer types. The organization of tertiary lymphoid structures (TLS) in solid tumors is a unique example of a hot tumor whereby T and B lymphocytes aggregate with antigen presenting cells and high endothelial venules reflecting the cellular organization observed in lymphoid tissue. Many groups have reported that the presence of preexisting TLS in tumors is associated with a superior adaptive immune response, response to immunotherapy, and improved survivorship over those without TLS. Accordingly, there is significant interest into understanding the mechanisms of how and why TLS organize so that they can be elicited therapeutically in patients with few or no TLS. Unfortunately, the most commonly used mouse models of cancer do not spontaneously form TLS, thus significantly restricting our understanding of TLS biology. This brief review will summarize our current state of knowledge of TLS neogenesis and address the current gaps in the field.
Collapse
Affiliation(s)
- Shrijan Khanal
- Division of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Andreas Wieland
- Department of Otolaryngology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Andrew J. Gunderson
- Division of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Zhang D, Zhang Y, Zou X, Li M, Zhang H, Du Y, Wang J, Peng C, Dong C, Hou Z. CHST2-mediated sulfation of MECA79 antigens is critical for breast cancer cell migration and metastasis. Cell Death Dis 2023; 14:288. [PMID: 37095090 PMCID: PMC10126008 DOI: 10.1038/s41419-023-05797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Snail is a denoted transcriptional repressor that plays key roles in epithelial-mesenchymal transition (EMT) and metastasis. Lately, a plethora of genes can be induced by stable expression of Snail in multiple cell lines. However, the biological roles of these upregulated genes are largely elusive. Here, we report identification of a gene encoding the key GlcNAc sulfation enzyme CHST2 is induced by Snail in multiple breast cancer cells. Biologically, CHST2 depletion results in inhibition of breast cancer cell migration and metastasis, while overexpression of CHST2 promotes cell migration and lung metastasis in nude mice. In addition, the expression level of MECA79 antigen is elevated and blocking the cell surface MECA79 antigen with specific antibodies can override cell migration mediated by CHST2 upregulation. Moreover, the sulfation inhibitor sodium chlorate effectively inhibits the cell migration induced by CHST2. Collectively, these data provide novel insights into the biology of Snail/CHST2/MECA79 axis in breast cancer progression and metastasis as well as potential therapeutic strategy for the diagnosis and treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Dan Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihong Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuqun Zou
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengying Li
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaning Du
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Wang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chicheng Peng
- Shandong NARUI Biotechnology Co., LTD, Shandong, China
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Vella G, Hua Y, Bergers G. High endothelial venules in cancer: Regulation, function, and therapeutic implication. Cancer Cell 2023; 41:527-545. [PMID: 36827979 DOI: 10.1016/j.ccell.2023.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The lack of sufficient intratumoral CD8+ T lymphocytes is a significant obstacle to effective immunotherapy in cancer. High endothelial venules (HEVs) are organ-specific and specialized postcapillary venules uniquely poised to facilitate the transmigration of lymphocytes to lymph nodes (LNs) and other secondary lymphoid organs (SLOs). HEVs can also form in human and murine cancer (tumor HEVs [TU-HEVs]) and contribute to the generation of diffuse T cell-enriched aggregates or tertiary lymphoid structures (TLSs), which are commonly associated with a good prognosis. Thus, therapeutic induction of TU-HEVs may provide attractive avenues to induce and sustain the efficacy of immunotherapies by overcoming the major restriction of T cell exclusion from the tumor microenvironment. In this review, we provide current insight into the commonalities and discrepancies of HEV formation and regulation in LNs and tumors and discuss the specific function and significance of TU-HEVs in eliciting, predicting, and aiding anti-tumoral immunity.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Yichao Hua
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Rodriguez AB, Parriott G, Engelhard VH. Tumor necrosis factor receptor regulation of peripheral node addressin biosynthetic components in tumor endothelial cells. Front Immunol 2022; 13:1009306. [PMID: 36189308 PMCID: PMC9520236 DOI: 10.3389/fimmu.2022.1009306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor-associated tertiary lymphoid structures are ectopic lymphoid aggregates that have considerable morphological, cellular, and molecular similarity to secondary lymphoid organs, particularly lymph nodes. Tumor vessels expressing peripheral node addressin (PNAd) are hallmark features of these structures. Previous work from our laboratory demonstrated that PNAd is displayed on intratumoral vasculature of murine tumors, and its expression is controlled by the engagement of lymphotoxin-α3, secreted by effector CD8 T cells, with tumor necrosis factor receptors (TNFR) on tumor endothelial cells (TEC). The goals of the present work were: 1) to identify differences in expression of genes encoding the scaffolding proteins and glycosyl transferases associated with PNAd biosynthesis in TEC and lymph node blood endothelial cells (LN BEC); and 2) to determine which of these PNAd associated components are regulated by TNFR signaling. We found that the same genes encoding scaffolding proteins and glycosyl transferases were upregulated in PNAd+ LN BEC and PNAd+ TEC relative to their PNAdneg counterparts. The lower level of PNAd expression on TEC vs LN BEC was associated with relatively lower expression of these genes, particularly the carbohydrate sulfotransferase Chst4. Loss of PNAd on TEC in the absence of TNFR signaling was associated with lack of upregulation of these same genes. A small subset of PNAd+ TEC remaining in the absence of TNFR signaling showed normal upregulation of a subset of these genes, but reduced upregulation of genes encoding the scaffolding proteins podocalyxin and nepmucin, and carbohydrate sulfotransferase Chst2. Lastly, we found that checkpoint immunotherapy augmented both the fraction of TEC expressing PNAd and their surface level of this ligand. This work points to strong similarities in the regulation of PNAd expression on TEC by TNFR signaling and on LN BEC by lymphotoxin-β receptor signaling, and provides a platform for the development of novel strategies that manipulate PNAd expression on tumor vasculature as an element of cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Victor H. Engelhard
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- *Correspondence: Victor H. Engelhard,
| |
Collapse
|
11
|
Hussain B, Kasinath V, Ashton-Rickardt GP, Clancy T, Uchimura K, Tsokos G, Abdi R. High endothelial venules as potential gateways for therapeutics. Trends Immunol 2022; 43:728-740. [PMID: 35931612 PMCID: PMC10804419 DOI: 10.1016/j.it.2022.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/22/2023]
Abstract
High endothelial venules (HEVs) are specialized blood vessels that support the migration of lymphocytes from the bloodstream into lymph nodes (LNs). They are also formed ectopically in mammalian organs affected by chronic inflammation and cancer. The recent arrival of immunotherapy at the forefront of many cancer treatment regimens could boost a crucial role for HEVs as gateways for the treatment of cancer. In this review, we describe the microanatomical and biochemical characteristics of HEVs, mechanisms of formation of newly made HEVs, immunotherapies potentially dependent on HEV-mediated T cell homing to tumors, and finally, how HEV-targeted therapies might be used as a complementary approach to potentially shape the therapeutic landscape for the treatment of cancer and immune-mediated diseases.
Collapse
Affiliation(s)
- Bilal Hussain
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vivek Kasinath
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Thomas Clancy
- Division of Surgical Oncology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kenji Uchimura
- University Lille, CNRS, UMR8576 - UGSF - Unite de Glycogiologie Structurale et Functionelle, 59000 Lille, France
| | - George Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Takeda-Uchimura Y, Ikezaki M, Akama TO, Nishioka K, Ihara Y, Allain F, Nishitsuji K, Uchimura K. Complementary Role of GlcNAc6ST2 and GlcNAc6ST3 in Synthesis of CL40-Reactive Sialylated and Sulfated Glycans in the Mouse Pleural Mesothelium. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144543. [PMID: 35889417 PMCID: PMC9320226 DOI: 10.3390/molecules27144543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
Sialyl 6-sulfo Lewis X (6-sulfo sLeX) and its derivative sialyl 6-sulfo N-acetyllactosamine (LacNAc) are sialylated and sulfated glycans of sialomucins found in the high endothelial venules (HEVs) of secondary lymphoid organs. A component of 6-sulfo sLeX present in the core 1-extended O-linked glycans detected by the MECA-79 antibody was previously shown to exist in the lymphoid aggregate vasculature and bronchial mucosa of allergic and asthmatic lungs. The components of 6-sulfo sLeX in pulmonary tissues under physiological conditions remain to be analyzed. The CL40 antibody recognizes 6-sulfo sLeX and sialyl 6-sulfo LacNAc in O-linked and N-linked glycans, with absolute requirements for both GlcNAc-6-sulfation and sialylation. Immunostaining of normal mouse lungs with CL40 was performed and analyzed. The contribution of GlcNAc-6-O-sulfotransferases (GlcNAc6STs) to the synthesis of the CL40 epitope in the lungs was also elucidated. Here, we show that the expression of the CL40 epitope was specifically detected in the mesothelin-positive mesothelium of the pulmonary pleura. Moreover, GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5), but not GlcNAc6ST1 (encoded by Chst2) or GlcNAc6ST4 (encoded by Chst7), are required for the synthesis of CL40-positive glycans in the lung mesothelium. Furthermore, neither GlcNAc6ST2 nor GlcNAc6ST3 is sufficient for in vivo expression of the CL40 epitope in the lung mesothelium, as demonstrated by GlcNAc6ST1/3/4 triple-knock-out and GlcNAc6ST1/2/4 triple-knock-out mice. These results indicate that CL40-positive sialylated and sulfated glycans are abundant in the pleural mesothelium and are synthesized complementarily by GlcNAc6ST2 and GlcNAc6ST3, under physiological conditions in mice.
Collapse
Affiliation(s)
- Yoshiko Takeda-Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique, University of Lille, Villeneuve d’Ascq, F-59655 Lille, France; (Y.T.-U.); (F.A.)
| | - Midori Ikezaki
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.); (K.N.)
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka 570-8506, Japan;
| | - Kaho Nishioka
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan;
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.); (K.N.)
| | - Fabrice Allain
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique, University of Lille, Villeneuve d’Ascq, F-59655 Lille, France; (Y.T.-U.); (F.A.)
| | - Kazuchika Nishitsuji
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (Y.I.); (K.N.)
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique, University of Lille, Villeneuve d’Ascq, F-59655 Lille, France; (Y.T.-U.); (F.A.)
- Correspondence: ; Tel.: +33-(0)-20-33-72-39
| |
Collapse
|
13
|
Zhang G, Liu X, Jian A, Zheng K, Wang H, Hao J, Zhi S, Zhang X. CHST4 might promote the malignancy of cholangiocarcinoma. PLoS One 2022; 17:e0265069. [PMID: 35294478 PMCID: PMC8926211 DOI: 10.1371/journal.pone.0265069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is reported as an aggressive cancer which leads to high mortality and no effective therapeutic target has yet been discovered. Surgical resection is the main method to treat patients with CCA. However, only one-third of CCA patients have the opportunity to accept the operation, leading to poor prognosis for CCA patients. Therefore, it is necessary to search for new therapeutic targets of CCA or core genes involved in the happening and growth of CCA. Aim In this study, we utilized bioinformatics technology and accessed to several medical databases trying to find the core genes of CCA for the purpose of intervening CCA through figuring out an effective curative target. Methods Firstly, three differentially expressed genes (DEGs) were discovered from GEPIA, and by further observing the distribution and gene expression, CHST4 was obtained as the core gene. Afterwards, correlated genes of CHST4 in CCA were identified using UALCAN to construct a gene expression profile. We obtained PPI network by Search Tool for the Retrieval of Interacting Networks Genes (STRING) and screened core genes using cytoscape software. Functional enrichment analyses were carried out and the expression of CHST in human tissues and tumors was observed. Finally, a CCA model was established for qPCR and staining validation. Results Three differentially expressed genes (DEGs), CHST4, MBOAT4 and RP11-525K10.3, were obtained. All were more over-expressed in CCA samples than the normal, among which the change multiple and the gene expression difference of CHST4 was the most obvious. Therefore, CHST4 was selected as the core gene. We can see in our established protein–protein interaction (PPI) network that CHST4 had the highest degree of connectivity, demonstrating its close association with CCA. We found that genes were mainly enriched in CCs in the PPI networks genes which shows functional enrichment analysis results, including golgi lumen, extracellular space and extracellular region. CHST4 was found very specifically expressed in the bile duct and was significantly different from that in normal tissues. The overexpression of CHST4 was further verified in the established animal model of TAA-induced CCA in rats. Quantitative PCR (qPCR) demonstrated that CHST4 was significantly overexpressed in tumor tissues, verifying the role of CHST4 as the core gene of CCA. Conclusion CHST4 was increasingly expressed in CCA and CHST4 is worth being studied much further in the intervention of CCA.
Collapse
Affiliation(s)
- Guanran Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xuyue Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Aiwen Jian
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Kexin Zheng
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haiyan Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Sujuan Zhi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiaoli Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
14
|
Abstract
Blood vessel endothelial cells (ECs) have long been known to modulate inflammation by regulating immune cell trafficking, activation status and function. However, whether the heterogeneous EC populations in various tissues and organs differ in their immunomodulatory capacity has received insufficient attention, certainly with regard to considering them for alternative immunotherapy. Recent single-cell studies have identified specific EC subtypes that express gene signatures indicative of phagocytosis or scavenging, antigen presentation and immune cell recruitment. Here we discuss emerging evidence suggesting a tissue-specific and vessel type-specific immunomodulatory role for distinct subtypes of ECs, here collectively referred to as 'immunomodulatory ECs' (IMECs). We propose that IMECs have more important functions in immunity than previously recognized, and suggest that these might be considered as targets for new immunotherapeutic approaches.
Collapse
|
15
|
Takeda-Uchimura Y, Nishitsuji K, Ikezaki M, Akama TO, Ihara Y, Allain F, Uchimura K. Beta3Gn-T7 Is a Keratan Sulfate β1,3 N-Acetylglucosaminyltransferase in the Adult Brain. Front Neuroanat 2022; 16:813841. [PMID: 35221933 PMCID: PMC8863611 DOI: 10.3389/fnana.2022.813841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Keratan sulfate (KS) glycan is covalently attached to a core protein of proteoglycans. KS is abundant in neuropils and presents densely in close proximity to the perineuronal region of the perineuronal net-positive neurons in the adult brain under physiological conditions. We previously showed that the synthesis of KS positive for the R-10G antibody in the adult brain is mediated by GlcNAc-6-sulfotransferase 3 (GlcNAc6ST3; encoded by Chst5). Deficiency in both GlcNAc6ST3 and GlcNAc6ST1, encoded by Chst2, completely abolished KS. Protein-tyrosine phosphatase receptor type z1 (Ptprz1)/phosphacan was identified as a KS scaffold. KS requires the extension of GlcNAc by β1,3 N-acetylglucosaminyltransferase (Beta3Gn-T). Members of the Beta3Gn-T family involved in the synthesis of adult brain KS have not been identified. In this study, we show by a method of gene targeting that Beta3Gn-T7, encoded by B3gnt7, is a major Beta3Gn-T for the synthesis of KS in neuropils and the perineuronal region in the adult brain. Intriguingly, the B3gnt7 gene is selectively expressed in oligodendrocyte precursor cells (OPCs) and oligodendrocytes similar to that of GlcNAc6ST3. These results indicate that Beta3Gn-T7 in oligodendrocyte lineage cells may play a role in the formation of neuropils and perineuronal nets in the adult brain through the synthesis of R-10G-positive KS-modified proteoglycan.
Collapse
Affiliation(s)
- Yoshiko Takeda-Uchimura
- Univ. Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan
| | - Fabrice Allain
- Univ. Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Kenji Uchimura
- Univ. Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Kenji Uchimura,
| |
Collapse
|
16
|
Selvaraj C, Abhirami R, Vijayakumar R, Alfaiz FA, Singh SK. Immunological insights of selectins in human disease mechanism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:163-188. [PMID: 35305718 DOI: 10.1016/bs.apcsb.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selectin enzymes are glycoproteins and are an important adhesion molecule in the mammalian immune system, especially in the inflammatory response and the healing process of tissues. Selectins play an important role in a variety of biological processes, including the rolling of leukocytes in endothelial cells, a process known as the adhesion cascade. It has recently been discovered and reported that the selectin mechanism plays a role in cancer and thrombosis disease. This process begins with non-covalent interactions-based selectin-ligand binding and the glycans play a role as a connector between cancer cells and the endothelium in this process. The selectin mechanism is critical for the immune system, but it is also involved in disease mechanisms, earning the selectins the nickname "Selectins-The Two Dr. Jekyll and Mr. Hyde Faces". As a result, the drug for selectins should have a multifaceted role and be a dynamic molecule that targets the disease mechanism specifically. This chapter explores the role of selectins in the disease mechanism at the mechanism level that provides the impact for identifying the selectin inhibitors. Overall, this chapter provides the molecular level insights on selectins, their ligands, involvement in normal and disease mechanisms.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India.
| | - Rajaram Abhirami
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Faiz Abdulaziz Alfaiz
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India.
| |
Collapse
|
17
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
18
|
Kogami A, Fukushima M, Hoshino H, Komeno T, Okoshi T, Murahashi M, Akama TO, Mitoma J, Ohtani H, Kobayashi M. The Conspicuousness of High Endothelial Venules in Angioimmunoblastic T-cell Lymphoma Is Due to Increased Cross-sectional Area, Not Increased Distribution Density. J Histochem Cytochem 2021; 69:645-657. [PMID: 34617807 DOI: 10.1369/00221554211048551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a T-cell lymphoma of follicular helper T-cell origin. Histologically, neoplastic T-cells proliferate to form clusters adjacent to or between arborizing high endothelial venules (HEVs). HEVs in normal lymph nodes express sulfated glycans called peripheral lymph node addressin (PNAd); however, it remains unclear whether PNAd is also expressed on HEVs in AITL. Furthermore, although it is widely accepted that HEVs are conspicuous in AITL due to their proliferation, quantitative histological support for this concept is lacking. To investigate these issues, we employed monoclonal antibodies recognizing PNAd, namely, MECA-79, HECA-452, and 297-11A, and performed quantitative immunohistochemical analysis of HEVs in 36 AITL-affected and 67 normal lymph nodes. Staining with all three antibodies confirmed that AITL HEVs express PNAd. Moreover, AITL HEVs were bound calcium-dependently by L-selectin-IgM fusion proteins, indicating that they function in the recruitment of L-selectin-expressing lymphocytes. Unexpectedly, HEV distribution density was not increased but rather decreased in AITL compared with normal lymph nodes, but HEV cross-sectional area in AITL was significantly greater than that seen in normal lymph nodes. Overall, these results indicate that the prominence of AITL HEVs is likely due to increased cross-sectional area rather than increased distribution density.
Collapse
Affiliation(s)
- Akiya Kogami
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Mana Fukushima
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan.,Omachi Municipal General Hospital, Omachi, Japan
| | - Hitomi Hoshino
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Takuya Komeno
- Department of Hematology, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Tadakazu Okoshi
- Department of Pathology, Japanese Red Cross Fukui Hospital, Fukui, Japan
| | - Masataka Murahashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Tomoya O Akama
- Department of Pharmacology, Kansai Medical University, Hirakata, Japan
| | - Junya Mitoma
- Department of Medical Life Sciences, School of Medical Life Sciences, Kyushu University of Health and Welfare, Nobeoka, Japan
| | - Haruo Ohtani
- Department of Pathology, Mito Saiseikai General Hospital, Mito, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan.,Omachi Municipal General Hospital, Omachi, Japan
| |
Collapse
|
19
|
Vella G, Guelfi S, Bergers G. High Endothelial Venules: A Vascular Perspective on Tertiary Lymphoid Structures in Cancer. Front Immunol 2021; 12:736670. [PMID: 34484246 PMCID: PMC8416033 DOI: 10.3389/fimmu.2021.736670] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
High endothelial venules (HEVs) are specialized postcapillary venules composed of cuboidal blood endothelial cells that express high levels of sulfated sialomucins to bind L-Selectin/CD62L on lymphocytes, thereby facilitating their transmigration from the blood into the lymph nodes (LN) and other secondary lymphoid organs (SLO). HEVs have also been identified in human and murine tumors in predominantly CD3+T cell-enriched areas with fewer CD20+B-cell aggregates that are reminiscent of tertiary lymphoid-like structures (TLS). While HEV/TLS areas in human tumors are predominantly associated with increased survival, tumoral HEVs (TU-HEV) in mice have shown to foster lymphocyte-enriched immune centers and boost an immune response combined with different immunotherapies. Here, we discuss the current insight into TU-HEV formation, function, and regulation in tumors and elaborate on the functional implication, opportunities, and challenges of TU-HEV formation for cancer immunotherapy.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sophie Guelfi
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
20
|
Choe K, Moon J, Lee SY, Song E, Back JH, Song JH, Hyun YM, Uchimura K, Kim P. Stepwise transmigration of T- and B cells through a perivascular channel in high endothelial venules. Life Sci Alliance 2021; 4:4/8/e202101086. [PMID: 34187874 DOI: 10.26508/lsa.202101086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
High endothelial venules (HEVs) effectively recruit circulating lymphocytes from the blood to lymph nodes. HEVs have endothelial cells (ECs) and perivascular sheaths consisting of fibroblastic reticular cells (FRCs). Yet, post-luminal lymphocyte migration steps are not well elucidated. Herein, we performed intravital imaging to investigate post-luminal T- and B-cell migration in popliteal lymph node, consisting of trans-EC migration, crawling in the perivascular channel (a narrow space between ECs and FRCs) and trans-FRC migration. The post-luminal migration of T cells occurred in a PNAd-dependent manner. Remarkably, we found hot spots for the trans-EC and trans-FRC migration of T- and B cells. Interestingly, T- and B cells preferentially shared trans-FRC migration hot spots but not trans-EC migration hot spots. Furthermore, the trans-FRC T-cell migration was confined to fewer sites than trans-EC T-cell migration, and trans-FRC migration of T- and B cells preferentially occurred at FRCs covered by CD11c+ dendritic cells in HEVs. These results suggest that HEV ECs and FRCs with perivascular DCs delicately regulate T- and B-cell entry into peripheral lymph nodes.
Collapse
Affiliation(s)
- Kibaek Choe
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Soo Yun Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eunjoo Song
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ju Hee Back
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Joo-Hye Song
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, Villeneuve d'Ascq, France
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea .,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
21
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
22
|
Jiang L, Jung S, Zhao J, Kasinath V, Ichimura T, Joseph J, Fiorina P, Liss AS, Shah K, Annabi N, Joshi N, Akama TO, Bromberg JS, Kobayashi M, Uchimura K, Abdi R. Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. NANO TODAY 2021; 36:101045. [PMID: 33391389 PMCID: PMC7774643 DOI: 10.1016/j.nantod.2020.101045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cancer patients with malignant involvement of tumor-draining lymph nodes (TDLNs) and distant metastases have the poorest prognosis. A drug delivery platform that targets the primary tumor, TDLNs, and metastatic niches simultaneously, remains to be developed. Here, we generated a novel monoclonal antibody (MHA112) against peripheral node addressin (PNAd), a family of glycoproteins expressed on high endothelial venules (HEVs), which are present constitutively in the lymph nodes (LNs) and formed ectopically in the tumor stroma. MHA112 was endocytosed by PNAd-expressing cells, where it passed through the lysosomes. MHA112 conjugated antineoplastic drug Paclitaxel (Taxol) (MHA112-Taxol) delivered Taxol effectively to the HEV-containing tumors, TDLNs, and metastatic lesions. MHA112-Taxol treatment significantly reduced primary tumor size as well as metastatic lesions in a number of mouse and human tumor xenografts tested. These data, for the first time, indicate that human metastatic lesions contain HEVs and provide a platform that permits simultaneous targeted delivery of antineoplastic drugs to the three key sites of primary tumor, TDLNs, and metastases.
Collapse
Affiliation(s)
- Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Joseph
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Fiorina
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew S. Liss
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard medical School, Boston, MA, 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Osaka, 570-8506, Japan
| | - Jonathan S. Bromberg
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- CNRS, UMR 8576, Unit of Glycobiology Structures and Functions, University of Lille, F-59000 Lille, France
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Huang S, Ziegler CGK, Austin J, Mannoun N, Vukovic M, Ordovas-Montanes J, Shalek AK, von Andrian UH. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 2021; 184:441-459.e25. [PMID: 33333021 PMCID: PMC9612289 DOI: 10.1016/j.cell.2020.11.028] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 09/23/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Barrier tissue immune responses are regulated in part by nociceptors. Nociceptor ablation alters local immune responses at peripheral sites and within draining lymph nodes (LNs). The mechanisms and significance of nociceptor-dependent modulation of LN function are unknown. Using high-resolution imaging, viral tracing, single-cell transcriptomics, and optogenetics, we identified and functionally tested a sensory neuro-immune circuit that is responsive to lymph-borne inflammatory signals. Transcriptomics profiling revealed that multiple sensory neuron subsets, predominantly peptidergic nociceptors, innervate LNs, distinct from those innervating surrounding skin. To uncover LN-resident cells that may interact with LN-innervating sensory neurons, we generated a LN single-cell transcriptomics atlas and nominated nociceptor target populations and interaction modalities. Optogenetic stimulation of LN-innervating sensory fibers triggered rapid transcriptional changes in the predicted interacting cell types, particularly endothelium, stromal cells, and innate leukocytes. Thus, a unique population of sensory neurons monitors peripheral LNs and may locally regulate gene expression.
Collapse
Affiliation(s)
- Siyi Huang
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA.
| | - Carly G K Ziegler
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA 02139, USA; Harvard Graduate Program in Biophysics, Harvard University, Boston, MA 02115, USA
| | - John Austin
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Najat Mannoun
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Marko Vukovic
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jose Ordovas-Montanes
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alex K Shalek
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA; Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Ulrich H von Andrian
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Pecori F, Yokota I, Hanamatsu H, Miura T, Ogura C, Ota H, Furukawa JI, Oki S, Yamamoto K, Yoshie O, Nishihara S. A defined glycosylation regulatory network modulates total glycome dynamics during pluripotency state transition. Sci Rep 2021; 11:1276. [PMID: 33446700 PMCID: PMC7809059 DOI: 10.1038/s41598-020-79666-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) and epiblast-like cells (EpiLCs) recapitulate in vitro the epiblast first cell lineage decision, allowing characterization of the molecular mechanisms underlying pluripotent state transition. Here, we performed a comprehensive and comparative analysis of total glycomes of mouse ESCs and EpiLCs, revealing that overall glycosylation undergoes dramatic changes from early stages of development. Remarkably, we showed for the first time the presence of a developmentally regulated network orchestrating glycosylation changes and identified polycomb repressive complex 2 (PRC2) as a key component involved in this process. Collectively, our findings provide novel insights into the naïve-to-primed pluripotent state transition and advance the understanding of glycosylation complex regulation during early mouse embryonic development.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Ikuko Yokota
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Taichi Miura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Chika Ogura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Hayato Ota
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Osamu Yoshie
- Health and Kampo Institute, 1-11-10 Murasakiyama, Izumi, Sendai, Miyagi, 981-3205, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
- Glycan and Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
| |
Collapse
|
25
|
Yoshida H, Imamura Y, Yoshimura H, Kobayashi M. Induction of High Endothelial Venule-like Vessels in Oral and Cutaneous Lichen Planus: A Comparative Study. J Histochem Cytochem 2020; 68:343-350. [PMID: 32391737 DOI: 10.1369/0022155420923272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lichen planus (LP) is a chronic inflammatory mucocutaneous disease involving the oral mucosa and skin. Both oral LP (OLP) and cutaneous LP (CLP) are histopathologically characterized by dense subepithelial lymphocyte infiltrates; however, the mechanisms underlying lymphocyte recruitment to sites of LP lesions are not fully understood. Here, we assessed the induction of peripheral lymph node addressin (PNAd)-expressing high endothelial venule (HEV)-like vessels in 19 OLP and 17 CLP cases. To do so, we performed immunohistochemical staining for PNAd and CD34, followed by quantitative analysis. We also conducted triple immunohistochemistry for PNAd and either CD3 and CD20 or CD4 and CD8 to identify the lymphocyte subset preferentially recruited via HEV-like vessels. PNAd-expressing HEV-like vessels were induced in and around lymphocyte aggregates in all cases of OLP and in 10 of 17 CLP cases, and these vessels were more frequently observed in OLP relative to CLP. Although the number of T-cells attached per HEV-like vessel exceeded the number of B-cells in both OLP and CLP, the number of CD4+ T-cells attached was greater than the number of CD8+ T-cells only in OLP. These findings combined suggest that PNAd-expressing HEV-like vessels play a more important role in the pathogenesis of OLP compared with CLP.
Collapse
Affiliation(s)
- Hisato Yoshida
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui.,Department of Dentistry and Oral Surgery, Faculty of Medical Sciences, University of Fukui
| | - Yoshiaki Imamura
- Division of Surgical Pathology, University of Fukui Hospital, Eiheiji, Japan
| | - Hitoshi Yoshimura
- Department of Dentistry and Oral Surgery, Faculty of Medical Sciences, University of Fukui
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui
| |
Collapse
|
26
|
Zhang L, Fan Y, Wang X, Yang M, Wu X, Huang W, Lan J, Liao L, Huang W, Yuan L, Pan H, Wu Y, Chen L, Guan J. Carbohydrate Sulfotransferase 4 Inhibits the Progression of Hepatitis B Virus-Related Hepatocellular Carcinoma and Is a Potential Prognostic Marker in Several Tumors. Front Oncol 2020; 10:554331. [PMID: 33178582 PMCID: PMC7593664 DOI: 10.3389/fonc.2020.554331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate sulfotransferase 4 (CHST4) plays an important role in lymphocyte homing and is abnormally expressed in several cancer types; however, its precise function in tumor development and progression is unknown. Here we confirm that CHST4 is aberrantly expressed in various tumor subtypes. In particular, we found that CHST4 expression was downregulated in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) tumors compared to paired normal tissue. We also showed that CHST4 overexpression inhibited the proliferation and metastasis of HCC cells in vitro. Clinically, CHST4 was identified as an independent prognostic factor for HBV-HCC patients. We further illuminated the anti-tumor role and mechanism of CHST4 in HBV-HCC by constructing a FENDRR–miR-10b-5p–CHST4 competing endogenous RNA network. We found that downregulation of CHST4 expression may promote HBV expression and regulate ribonucleoprotein complex biogenesis to promote malignant behaviors in HBV-HCC. CHST4 may also recruit CD4+ T cells, macrophages, dendritic cells, and neutrophils into the tumor microenvironment to inhibit the progression of HBV-HCC. Overall, our findings suggest that CHST4 acts as a tumor suppressor in HCC-HBV and represents a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yao Fan
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mi Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - XiXi Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Lan
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Liwei Liao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqi Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Robbertse L, Richards SA, Stutzer C, Olivier NA, Leisewitz AL, Crafford JE, Maritz-Olivier C. Temporal analysis of the bovine lymph node transcriptome during cattle tick (Rhipicephalus microplus) infestation. Vaccine 2020; 38:6889-6898. [PMID: 32900540 DOI: 10.1016/j.vaccine.2020.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022]
Abstract
Livestock production is a fundamental source of revenue and nutrition, wherein cattle-farming constitutes one of the major agricultural industries. Vectors and vector-borne diseases constitute one of the major factors that decrease the livelihood of all farming communities, more so in resource-poor communities and developing countries. Understanding the immunological responses during tick infestation in cattle is instrumental in the development of novel and improved tick control strategies, such as vaccines. In this study, gene expression patterns were compared within the lymph nodes of three cattle breeds at different life stages of the cattle tick, Rhipicephalus microplus. For Bonsmara (5/8Bos taurus indicus × 3/8B. t. taurus) cattle specifically, some 183 genes were found to be differentially expressed within the lymph nodes during larval and adult tick feeding, relative to uninfested cattle. Overall, the data provides evidence for a transcriptional regulatory network that is activated during immature tick infestation, but is down-regulated towards basal transcriptional levels when adult ticks are feeding. Specific processes in the lymph nodes of Bonsmara cattle were found to be differentially regulated on a transcriptional level. These include: (1) Leukocyte recruitment to the lymph node via chemokines and chemotaxis, (2) Trans-endothelial and intranodal movement on the reticular network, (3) Active regulation of cellular transcription and translation in the lymph node (including leukocyte associated cellular regulatory networks) and (4) Chemokine receptors regulating the movement of cells out of the lymph node. This work provides a first transcriptome analysis of bovine lymph node responses in tick-infested cattle. Findings show a dynamic immune response to tick infestation for the Bonsmara cattle breed, and that suppression of the maturation of the cattle hosts' immunity is especially evident during the larval feeding stages.
Collapse
Affiliation(s)
- Luïse Robbertse
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Sabine A Richards
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Christian Stutzer
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Nicholas A Olivier
- Department of Plant and Soil Sciences, University of Pretoria, South Africa; ACGT Microarray Facility, University of Pretoria, South Africa
| | - Andrew L Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Jan E Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christine Maritz-Olivier
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
28
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
29
|
Preferential expression of sialyl 6'-sulfo N-acetyllactosamine-capped O-glycans on high endothelial venules in human peripheral lymph nodes. J Transl Med 2019; 99:1428-1441. [PMID: 31148596 DOI: 10.1038/s41374-019-0267-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022] Open
Abstract
Lymphocyte "homing", the physiologic trafficking of lymphocytes from the circulation to secondary lymphoid organs, is regulated by sequential adhesive interactions between lymphocytes and endothelial cells that constitute high endothelial venules (HEVs). Initial lymphocyte "rolling" is mediated by relatively weak, transient adhesive interactions between L-selectin expressed on lymphocytes and sulfated mucin-type O-glycans expressed on HEVs. Keratan sulfate galactose (Gal)-6-O-sulfotransferase (KSGal6ST) catalyzes 6-O-sulfation of Gal in keratan sulfate glycosaminoglycan chains but also transfers sulfate to Gal in much shorter glycan chains, such as sialylated N-acetyllactosamine (LacNAc)-capped O-glycans. In mice, KSGal6ST is reportedly expressed in HEVs and functions in synthesizing 6-sulfo Gal-containing O-glycans on HEVs. However, in humans, the presence of 6-sulfo Gal-containing O-glycans on HEVs is not reported. Employing the newly developed monoclonal antibody 297-11A, which recognizes non-sialylated terminal 6'-sulfo LacNAc, we demonstrate that sialyl 6'-sulfo (and/or 6,6'-disulfo) LacNAc-capped O-glycans are preferentially displayed on HEVs in human peripheral lymph nodes (PLNs) and to a lesser extent in mesenteric LNs (MLNs) but not in Peyer's patches (PPs). We also found that the scaffold protein mucosal addressin cell adhesion molecule 1 (MAdCAM-1), which is expressed on HEVs in PPs and MLNs but not PLNs, was modified by 297-11A-positive sulfated glycans less efficiently than was CD34. Moreover, 297-11A-positive sulfated glycans were also displayed on HEV-like vessels induced in tumor-infiltrating lymphocyte (TIL) aggregates formed in various cancers. These findings collectively indicate that 297-11A-positive sulfated glycans potentially play a role in physiologic lymphocyte homing as well as in lymphocyte recruitment under pathologic conditions.
Collapse
|
30
|
Kawakubo M, Komura H, Goso Y, Okumura M, Sato Y, Fujii C, Miyashita M, Arisaka N, Harumiya S, Yamanoi K, Yamada S, Kakuta S, Kawashima H, Fukuda MN, Fukuda M, Nakayama J. Analysis of A4gnt Knockout Mice Reveals an Essential Role for Gastric Sulfomucins in Preventing Gastritis Cystica Profunda. J Histochem Cytochem 2019; 67:759-770. [PMID: 31246144 PMCID: PMC6764063 DOI: 10.1369/0022155419860134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/06/2019] [Indexed: 12/04/2022] Open
Abstract
Gastric adenocarcinoma cells secrete sulfomucins, but their role in gastric tumorigenesis remains unclear. To address that question, we generated A4gnt/Chst4 double-knockout (DKO) mice by crossing A4gnt knockout (KO) mice, which spontaneously develop gastric adenocarcinoma, with Chst4 KO mice, which are deficient in the sulfotransferase GlcNAc6ST-2. A4gnt/Chst4 DKO mice lack gastric sulfomucins but developed gastric adenocarcinoma. Unexpectedly, severe gastric erosion occurred in A4gnt/Chst4 DKO mice at as early as 3 weeks of age, and with aging these lesions were accompanied by gastritis cystica profunda (GCP). Cxcl1, Cxcl5, Ccl2, and Cxcr2 transcripts in gastric mucosa of 5-week-old A4gnt/Chst4 DKO mice exhibiting both hyperplasia and severe erosion were significantly upregulated relative to age-matched A4gnt KO mice, which showed hyperplasia alone. However, upregulation of these genes disappeared in 50-week-old A4gnt/Chst4 DKO mice exhibiting high-grade dysplasia/adenocarcinoma and GCP. Moreover, Cxcl1 and Cxcr2 were downregulated in A4gnt/Chst4 DKO mice relative to age-matched A4gnt KO mice exhibiting adenocarcinoma alone. These combined results indicate that the presence of sulfomucins prevents severe gastric erosion followed by GCP in A4gnt KO mice by transiently regulating a set of inflammation-related genes, Cxcl1, Cxcl5, Ccl2, and Cxcr2 at 5 weeks of age, although sulfomucins were not directly associated with gastric cancer development.
Collapse
Affiliation(s)
- Masatomo Kawakubo
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| | - Hitomi Komura
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Yukinobu Goso
- Department of Biochemistry, Kitasato University
Graduate School of Medical Sciences, Sagamihara, Japan
| | - Motohiro Okumura
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Yoshiko Sato
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| | - Masaki Miyashita
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Nobuhiko Arisaka
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Satoru Harumiya
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
| | - Kazuhiro Yamanoi
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| | - Shigenori Yamada
- Division of Gastroenterology, Iiyama Red Cross
Hospital, Iiyama, Japan
| | - Shigeru Kakuta
- Research Center for Human and Environmental
Sciences, Shinshu University, Matsumoto, Japan
- Department of Biomedical Science, Graduate
School of Agricultural and Life Sciences, The University of Tokyo, Tokyo,
Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology,
Graduate School of Pharmaceutical Sciences, Chiba University, Chiba,
Japan
| | - Michiko N. Fukuda
- Tumor Microenvironment and Cancer Immunology
Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA,
USA
- Laboratory for Drug Discovery, National
Institute of Advanced Industrial Science and Technology, Tsukuba,
Japan
| | - Minoru Fukuda
- Tumor Microenvironment and Cancer Immunology
Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA,
USA
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu
University School of Medicine, Shinshu University, Matsumoto, Japan
- Institute for Biomedical Sciences,
Interdisciplinary Cluster for Cutting Edge Research, Shinshu University,
Matsumoto, Japan
| |
Collapse
|
31
|
Taylor ME, Drickamer K. Mammalian sugar-binding receptors: known functions and unexplored roles. FEBS J 2019; 286:1800-1814. [PMID: 30657247 PMCID: PMC6563452 DOI: 10.1111/febs.14759] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Mammalian glycan-binding receptors, sometimes known as lectins, interact with glycans, the oligosaccharide portions of endogenous mammalian glycoproteins and glycolipids as well as sugars on the surfaces of microbes. These receptors guide glycoproteins out of and back into cells, facilitate communication between cells through both adhesion and signaling, and allow the innate immune system to respond quickly to viral, fungal, bacterial, and parasitic pathogens. For many of the roughly 100 glycan-binding receptors that are known in humans, there are good descriptions of what types of glycans they bind and how selectivity for these ligands is achieved at the molecular level. In some cases, there is also comprehensive evidence for the roles that the receptors play at the cellular and organismal levels. In addition to highlighting these well-understood paradigms for glycan-binding receptors, this review will suggest where gaps remain in our understanding of the physiological functions that they can serve.
Collapse
|
32
|
Narentuya, Takeda-Uchimura Y, Foyez T, Zhang Z, Akama TO, Yagi H, Kato K, Komatsu Y, Kadomatsu K, Uchimura K. GlcNAc6ST3 is a keratan sulfate sulfotransferase for the protein-tyrosine phosphatase PTPRZ in the adult brain. Sci Rep 2019; 9:4387. [PMID: 30867513 PMCID: PMC6416290 DOI: 10.1038/s41598-019-40901-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/04/2019] [Indexed: 01/06/2023] Open
Abstract
Keratan sulfate (KS) is a carbohydrate side chain covalently attached to extracellular proteoglycans. KS is composed of disaccharide units of 6-sulfated N-acetylglucosamine (GlcNAc) and galactose. We have previously shown that GlcNAc-6-O-sulfotransferase (GlcNAc6ST) 1 encoded by Chst2 is an enzyme necessary for the synthesis of GlcNAc-6-sulfated KS chains that are required for neuronal plasticity in the visual cortex of the mouse brain during the critical period, but not in adulthood. Here, we show that GlcNAc-6-sulfated KS recognized by the R-10G anti-KS antibody, of which the minimum epitope structure is Galß1-4GlcNAc(6S)ß1-3Galß1-4GlcNAc(6S), distributes diffusely in neuropils and presents densely in close proximity to the perineuronal region of the perineuronal net (PNN)-positive neurons in the adult visual cortex. Surprisingly, GlcNAc6ST3, which was discovered as an intestinal GlcNAc6ST encoded by Chst5, is a major brain KS sulfotransferase expressed in oligodendrocytes in adulthood. Moreover, we identified an isoform of the protein-tyrosine phosphatase PTPRZ as a R-10G-reactive KS proteoglycan. These results indicate that GlcNAc6ST3 may play a role in synthesis of a component of PNN in the adult brain, and that the KS-modified isoform of PTPRZ encoded by Ptprz1 could be an extracellular molecule associated with PNNs.
Collapse
Affiliation(s)
- Narentuya
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshiko Takeda-Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Tahmina Foyez
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
- Department of Pharmaceutical Sciences, North South University, Dhaka-1229, Bashundhara, Bangladesh
| | - Zui Zhang
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomoya O Akama
- Department of Pharmacology, Kansai Medical University, Osaka, 570-8506, Japan
| | - Hirokazu Yagi
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, 467-8603, Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, Okazaki, 444-8787, Japan
| | - Yukio Komatsu
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
33
|
Veerman K, Tardiveau C, Martins F, Coudert J, Girard JP. Single-Cell Analysis Reveals Heterogeneity of High Endothelial Venules and Different Regulation of Genes Controlling Lymphocyte Entry to Lymph Nodes. Cell Rep 2019; 26:3116-3131.e5. [PMID: 30865898 DOI: 10.1016/j.celrep.2019.02.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
High-endothelial venules (HEVs) are specialized blood vessels allowing recirculation of naive lymphocytes through lymphoid organs. Here, using full-length, single-cell RNA sequencing, RNA fluorescence in situ hybridization (FISH), flow cytometry, and immunohistofluorescence, we reveal the heterogeneity of HEVs in adult mouse peripheral lymph nodes (PLNs) under conditions of homeostasis, antigenic stimulation, and after inhibition of lymphotoxin-β receptor (LTβR) signaling. We demonstrate that HEV endothelial cells are in an activated state during homeostasis, and we identify the genes characteristic of the differentiated HEV phenotype. We show that LTβR signaling regulates many HEV genes and pathways in resting PLNs and that immune stimulation induces a global and temporary inflammatory phenotype in HEVs without compromising their ability to recruit naive lymphocytes. Most importantly, we uncover differences in the regulation of genes controlling lymphocyte trafficking, Glycam1, Fut7, Gcnt1, Chst4, B3gnt3, and Ccl21a, that have implications for HEV function and regulation in health and disease.
Collapse
Affiliation(s)
- Krystle Veerman
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Tardiveau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Frédéric Martins
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, INSERM, UPS, Toulouse, France; Plateforme Genome et Transcriptome (GeT), Genopole Toulouse, Toulouse, France
| | - Juliette Coudert
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
34
|
Tsutsumiuchi T, Hoshino H, Fujieda S, Kobayashi M. Induction of peripheral lymph node addressin in human nasal mucosa with eosinophilic chronic rhinosinusitis. Pathology 2019; 51:268-273. [PMID: 30837082 DOI: 10.1016/j.pathol.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/23/2018] [Accepted: 01/05/2019] [Indexed: 01/28/2023]
Abstract
Eosinophilic chronic rhinosinusitis (ECRS) is characterised by formation of nasal polyps with prominent eosinophilic infiltration; however, how eosinophils are recruited in this pathological setting remains unclear. In the present study, we carried out quantitative immunohistochemical analysis of nasal polyps associated with ECRS (n=30) and non-ECRS (n=30) to evaluate expression of an L-selectin ligand peripheral lymph node addressin (PNAd) on vascular endothelial cells. We found that PNAd was induced primarily on the luminal surface of venular vessels present in nasal mucosa in both ECRS and non-ECRS, while the number of PNAd-expressing vessels in ECRS significantly exceeded that seen in non-ECRS. Moreover, the number of eosinophils attached to the luminal surface of PNAd-expressing vessels in ECRS was significantly greater than that in non-ECRS, while the number of neutrophils and lymphocytes attached did not differ significantly between conditions. Furthermore, eosinophils, which express cell surface L-selectin, adhered to PNAd-expressing Chinese hamster ovary (CHO) cells in a calcium-dependent manner, and that adhesion was significantly inhibited by pretreatment of eosinophils with DREG-56, an anti-human L-selectin monoclonal antibody. These findings combined suggest that interaction between L-selectin and PNAd plays at least a partial role in eosinophil recruitment in human nasal mucosa with ECRS.
Collapse
Affiliation(s)
- Toshiki Tsutsumiuchi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan; Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Hitomi Hoshino
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan.
| |
Collapse
|
35
|
Carlow DA, Tra MC, Ziltener HJ. A cell-extrinsic ligand acquired by activated T cells in lymph node can bridge L-selectin and P-selectin. PLoS One 2018; 13:e0205685. [PMID: 30379850 PMCID: PMC6209203 DOI: 10.1371/journal.pone.0205685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/29/2018] [Indexed: 01/25/2023] Open
Abstract
P-selectin expressed on activated endothelia and platelets supports recruitment of leukocytes expressing P-selectin ligand to sites of inflammation. While monitoring P-selectin ligand expression on activated CD8+ T cells in murine adoptive transfer models, we observed two distinct ligands on responding donor cells, the canonical cell-intrinsic P-selectin ligand PSGL-1 and a second undocumented P-selectin ligand we provisionally named PSL2. PSL2 is unusual among selectin ligands in that it is cell-extrinsic, loaded onto L-selectin expressed by activated T cells but not L-selectin on resting naïve CD8+ T cells. PSL2 display is highest on activated T cells responding in peripheral lymph nodes and low on T cells responding in spleen suggesting that the original source of PSL2 is high endothelial venules, cells known to produce L-selectin ligands. PSL2 is a ligand for both P-selectin and L-selectin and can physically bridge the two selectins. The L-selectin/PSL2 complex can mediate P-selectin-dependent adherence of activated T cells to immobilized P-selectin or to activated platelets, either independently or cooperatively with PSGL-1. PSL2's capacity to bridge between L-selectin on activated T cells and P-selectin reveals an undocumented and unanticipated activity of cell-extrinsic selectin ligands in mediating selectin-selectin connectivity. The timing and circumstances of PSL2 detection on T cells, together with its capacity to support adherence to P-selectin-bearing substrates, are consistent with P-selectin engagement of both PSGL1 and the L-selectin/PSL2 complex during T cell recruitment. Engagement of PSGL-1 and L-selectin/PSL2 would likely deliver distinct signals known to be relevant in this process.
Collapse
Affiliation(s)
- Douglas A. Carlow
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Michelle C. Tra
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hermann J. Ziltener
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Bahmani B, Uehara M, Jiang L, Ordikhani F, Banouni N, Ichimura T, Solhjou Z, Furtmüller GJ, Brandacher G, Alvarez D, von Andrian UH, Uchimura K, Xu Q, Vohra I, Yilmam OA, Haik Y, Azzi J, Kasinath V, Bromberg JS, McGrath MM, Abdi R. Targeted delivery of immune therapeutics to lymph nodes prolongs cardiac allograft survival. J Clin Invest 2018; 128:4770-4786. [PMID: 30277476 PMCID: PMC6205374 DOI: 10.1172/jci120923] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The targeted delivery of therapeutic drugs to lymph nodes (LNs) provides an unprecedented opportunity to improve the outcomes of transplantation and immune-mediated diseases. The high endothelial venule is a specialized segment of LN vasculature that uniquely expresses peripheral node addressin (PNAd) molecules. PNAd is recognized by MECA79 mAb. We previously generated a MECA79 mAb-coated microparticle (MP) that carries tacrolimus. Although this MP trafficked to LNs, it demonstrated limited therapeutic efficacy in our transplant model. Here, we have synthesized a nanoparticle (NP) as a carrier of anti-CD3, and optimized the conjugation strategy to coat the NP surface with MECA79 mAb (MECA79-anti-CD3-NP) to enhance LN accumulation. As compared with nonconjugated NPs, a significantly higher quantity of MECA79-NPs accumulated in the draining lymph node (DLN). Many MECA79-NPs underwent internalization by T cells and dendritic cells within the LNs. Short-term treatment of murine cardiac allograft recipients with MECA79-anti-CD3-NP resulted in significantly prolonged allograft survival in comparison with the control groups. Prolonged graft survival following treatment with MECA79-anti-CD3-NP was characterized by a significant increase in intragraft and DLN Treg populations. Treg depletion abrogated the prolongation of heart allograft survival. We believe this targeted approach of drug delivery could redefine the methods of administering immune therapeutics in transplantation.
Collapse
Affiliation(s)
- Baharak Bahmani
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mayuko Uehara
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liwei Jiang
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Farideh Ordikhani
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Naima Banouni
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhabiz Solhjou
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Georg J Furtmüller
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Alvarez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenji Uchimura
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Universite de Lille 1, Villeneuve d'Ascq, France
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Ishaan Vohra
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Osman A Yilmam
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yousef Haik
- College of Science and Engineering, Hamad bin Khalifa University, Doha, Qatar
| | - Jamil Azzi
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivek Kasinath
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S Bromberg
- Department of Surgery and Microbiology and Immunobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Martina M McGrath
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Abdi
- Transplantation Research Center and.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Yu SY, Hsiao CT, Izawa M, Yusa A, Ishida H, Nakamura S, Yagi H, Kannagi R, Khoo KH. Distinct substrate specificities of human GlcNAc-6-sulfotransferases revealed by mass spectrometry-based sulfoglycomic analysis. J Biol Chem 2018; 293:15163-15177. [PMID: 30093410 PMCID: PMC6166739 DOI: 10.1074/jbc.ra118.001937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Sulfated glycans are known to be involved in several glycan-mediated cell adhesion and recognition pathways. Our mRNA transcript analyses on the genes involved in synthesizing GlcNAc-6-O-sulfated glycans in human colon cancer tissues indicated that GlcNAc6ST-2 (CHST4) is preferentially expressed in cancer cells compared with nonmalignant epithelial cells among the three known major GlcNAc-6-O-sulfotransferases. On the contrary, GlcNAc6ST-3 (CHST5) was only expressed in nonmalignant epithelial cells, whereas GlcNAc6ST-1 (CHST2) was expressed equally in both cancerous and nonmalignant epithelial cells. These results suggest that 6-O-sulfated glycans that are synthesized only by GlcNAc6ST-2 may be highly colon cancer-specific, as supported by immunohistochemical staining of cancer cells using the MECA-79 antibody known to be relatively specific to the enzymatic reaction products of GlcNAc6ST-2. By more precise MS-based sulfoglycomic analyses, we sought to further infer the substrate specificities of GlcNAc6STs via a definitive mapping of various sulfo-glycotopes and O-glycan structures expressed in response to overexpression of transfected GlcNAc6STs in the SW480 colon cancer cell line. By detailed MS/MS sequencing, GlcNAc6ST-3 was shown to preferentially add sulfate onto core 2-based O-glycan structures, but it does not act on extended core 1 structures, whereas GlcNAc6ST-1 prefers core 2-based O-glycans to extended core 1 structures. In contrast, GlcNAc6ST-2 could efficiently add sulfate onto both extended core 1- and core 2-based O-glycans, leading to the production of unique sulfated extended core 1 structures such as R-GlcNAc(6-SO3-)β1-3Galβ1-4GlcNAc(6-SO3-)β1-3Galβ1-3GalNAcα, which are good candidates to be targeted as cancer-specific glycans.
Collapse
Affiliation(s)
- Shin-Yi Yu
- From the Institute of Biological Chemistry and
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | - Akiko Yusa
- the Department of Molecular Pathology and
| | - Hiroji Ishida
- Laboratory for Clinical Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan, and
| | - Shigeo Nakamura
- Laboratory for Clinical Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan, and
| | - Hirokazu Yagi
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan,
- the Department of Molecular Pathology and
- Laboratory for Clinical Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan, and
- the Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | |
Collapse
|
38
|
MyD88 signaling causes autoimmune sialadenitis through formation of high endothelial venules and upregulation of LTβ receptor-mediated signaling. Sci Rep 2018; 8:14272. [PMID: 30250175 PMCID: PMC6155371 DOI: 10.1038/s41598-018-32690-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/13/2018] [Indexed: 01/17/2023] Open
Abstract
Autoimmune sialadenitis (AS), chronic inflammation of the salivary glands (SGs) with focal lymphocyte infiltration, appears in autoimmune diseases such as Sjӧgren’s syndrome. The pathological role of MyD88-dependent innate immune signaling in autoimmune diseases including AS has been studied using mouse models, such as NOD mice. Although AS development in NOD mice was reported to be suppressed by Myd88 deficiency, its specific role remains unclear. Here, we determined the potent suppressive effects of Myd88 deficiency on AS development in lupus-prone B6/lpr mice, which have lymphoproliferation abnormalities, and also in NOD mice, which have no lymphoproliferation abnormalities. This indicates that MyD88 signaling triggers AS through both lymphoproliferation-dependent and -independent mechanisms. To address the MyD88-dependent lymphoproliferation-independent AS manifestation, SGs from C57BL/6 mice were analyzed. Remarkable upregulation of Glycam1 and high endothelial venule (HEV)-associated changes were unexpectedly found in Myd88+/+ mice, compared with Myd88−/− mice. MyD88-dependent HEV-associated changes were also observed in NOD mice. Additionally, Lta, Ltb, and Ltbr in SGs of NOD mice were lowered by Myd88 deficiency. Interestingly, LTβR-induced HEV-associated gene expression in cultured cells was impaired by Myd88 deficiency. Our findings highlight novel roles for MyD88 in AS development, which imply the existence of MyD88-dependent HEV formation in ectopic lymphoid neogenesis.
Collapse
|
39
|
Low S, Hirakawa J, Hoshino H, Uchimura K, Kawashima H, Kobayashi M. Role of MAdCAM-1-Expressing High Endothelial Venule-Like Vessels in Colitis Induced in Mice Lacking Sulfotransferases Catalyzing L-Selectin Ligand Biosynthesis. J Histochem Cytochem 2018; 66:415-425. [PMID: 29350564 PMCID: PMC5977439 DOI: 10.1369/0022155417753363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/18/2017] [Indexed: 01/28/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease histologically characterized by diffuse mononuclear cell infiltrates in colonic mucosa. These inflammatory cells are considered to be recruited via high endothelial venule (HEV)-like vessels displaying mucosal addressin cell adhesion molecule 1 (MAdCAM-1), the ligand for α4β7 integrin, and/or peripheral lymph node addressin (PNAd), an L-selectin ligand. 6- O-sulfation of N-acetylglucosamine in the carbohydrate moiety of PNAd is catalyzed exclusively by N-acetylglucosamine-6- O-sulfotransferase 1 (GlcNAc6ST-1) and GlcNAc6ST-2. To determine the role of 6- O-sulfation of N-acetylglucosamine on HEV-like vessels in UC, we used a chronic dextran sulfate sodium-induced colitis model using mice deficient in both GlcNAc6ST-1 and GlcNAc6ST-2. We found that more inflammatory cells, with expression of tumor necrosis factor α, were infiltrated in double knockout mouse colitis compared with that in wild-type mice. Moreover, the number of MAdCAM-1-positive vessels was increased in double knockout mouse colitis, and these vessels were bound by E-selectin•IgM chimeras that bind to unsulfated sialyl Lewis X (sLeX). These findings suggest that interactions between MAdCAM-1 and α4β7 integrin and/or unsulfated sLeX and L-selectin may become a dominant mechanism for inflammatory cell recruitment in the absence of 6-sulfo sLeX and contribute to more severe colitis phenotypes seen in double knockout mice.
Collapse
Affiliation(s)
- Shulin Low
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Jotaro Hirakawa
- Department of Biochemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- Laboratory of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hitomi Hoshino
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroto Kawashima
- Department of Biochemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- Laboratory of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
40
|
Cheung ST, Miller MS, Pacoma R, Roland J, Liu J, Schumacher AM, Hsieh-Wilson LC. Discovery of a Small-Molecule Modulator of Glycosaminoglycan Sulfation. ACS Chem Biol 2017; 12:3126-3133. [PMID: 29099173 DOI: 10.1021/acschembio.7b00885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycosaminoglycans (GAGs) play critical roles in diverse processes ranging from viral infection to neuroregeneration. Their regiospecific sulfation patterns, which are generated by sulfotransferases, are key structural determinants that underlie their biological activity. Small-molecule modulators of these sulfotransferases could serve as powerful tools for understanding the physiological functions of GAGs, as well as potential therapeutic leads for human diseases. Here, we report the development of the first cell-permeable, small-molecule inhibitor selective for GAG sulfotransferases, which was obtained using a high-throughput screen targeted against Chst15, the sulfotransferase responsible for biosynthesis of chondroitin sulfate-E (CS-E). We demonstrate that the molecule specifically inhibits GAG sulfotransferases in vitro, decreases CS-E and overall sulfation levels on cell-surface and secreted chondroitin sulfate proteoglycans (CSPGs), and reverses CSPG-mediated inhibition of axonal growth. These studies pave the way toward a new set of pharmacological tools for interrogating GAG sulfation-dependent processes and may represent a novel therapeutic approach for neuroregeneration.
Collapse
Affiliation(s)
- Sheldon T. Cheung
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Michelle S. Miller
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Reynand Pacoma
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jason Roland
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Jian Liu
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Andrew M. Schumacher
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Linda C. Hsieh-Wilson
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
41
|
Zhang Z, Takeda-Uchimura Y, Foyez T, Ohtake-Niimi S, Narentuya, Akatsu H, Nishitsuji K, Michikawa M, Wyss-Coray T, Kadomatsu K, Uchimura K. Deficiency of a sulfotransferase for sialic acid-modified glycans mitigates Alzheimer's pathology. Proc Natl Acad Sci U S A 2017; 114:E2947-E2954. [PMID: 28320965 PMCID: PMC5389269 DOI: 10.1073/pnas.1615036114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously showed that microglial keratan sulfate (KS) was induced in amyotrophic lateral sclerosis. However, the functional roles of the glycan and its synthetic enzyme in neurodegenerative diseases, such as Alzheimer's disease (AD), a progressive disorder, are unclear. In our study, KS modified with sialic acids having a molecular mass of 125-220 kDa and the carbohydrate sulfotransferase GlcNAc6ST1 were up-regulated in the brains of two transgenic mouse models (J20 and Tg2576) and the brains of patients with AD. GlcNAc6ST1-deficient J20 (J20/GlcNAc6ST1-/-) mice demonstrated a complete absence of the microglial sialylated KS. J20/GlcNAc6ST1-/- primary microglia showed an increased level of amyloid-β phagocytosis and were hyperresponsive to interleukin 4, a potent antiinflammatory cytokine. Moreover, J20/GlcNAc6ST1-/- mice manifested reduced cerebral amyloid-β deposition. GlcNAc6ST1-synthesizing sialylated KS thus modulates AD pathology. Inhibition of KS synthesis by targeting GlcNAc6ST1 may therefore be beneficial for controlling AD pathogenesis.
Collapse
Affiliation(s)
- Zui Zhang
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshiko Takeda-Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tahmina Foyez
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shiori Ohtake-Niimi
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Narentuya
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura Hospital, Toyohashi, 441-8124, Japan
- Department of Community-Based Medicine, Nagoya City University Graduate School of Medicine, Nagoya, 467-8601, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medicine, Nagoya, 467-8601, Japan
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan;
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| |
Collapse
|
42
|
Hoshino H, Ohta M, Ito M, Uchimura K, Sakai Y, Uehara T, Low S, Fukushima M, Kobayashi M. Apical membrane expression of distinct sulfated glycans represents a novel marker of cholangiolocellular carcinoma. J Transl Med 2016; 96:1246-1255. [PMID: 27748735 DOI: 10.1038/labinvest.2016.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver neoplasm, followed by hepatocellular carcinoma. ICC can be further subclassified as (i) perihilar and (ii) peripheral types, the latter histologically resembling small-sized intrahepatic bile ducts, such as interlobular bile ducts, cholangioles/ductules and the canals of Hering. Cholangiolocellular carcinoma (CoCC), now classified by the World Health Organization as a subtype of combined hepatocellular-cholangiocarcinoma, is currently regarded as a subtype of peripheral-type ICC. The present study was undertaken to determine whether sulfated glycans recognized by the MECA-79 monoclonal antibody could serve as a CoCC marker. Using immunohistochemistry, we show that MECA-79 sulfated glycans are preferentially expressed at the apical membrane of cholangiocytes found in small-sized intrahepatic bile ducts in normal liver and in canalicular structures formed in CoCC. We also report that apical membrane MECA-79 sulfated glycan expression colocalizes with that of mucin 1 (MUC1) core proteins. We also present immunoblotting of Chinese hamster ovary cells overexpressing FLAG-tagged MUC1 to show that MUC1 serves as a MECA-79 scaffold. Furthermore, we report that SSP-25 human ICC cells overexpressing N-acetylglucosamine-6-O-sulfotransferase 2 (GlcNAc6ST-2), but not GlcNAc6ST-1, exhibit membrane expression of MECA-79 sulfated glycans, suggesting that GlcNAc6ST-2 catalyzes MECA-79 epitope biosynthesis in cholangiocytes. Moreover, both wild-type and GlcNAc6ST-1 knockout mice exhibit apical membrane MECA-79 expression in small-sized intrahepatic bile ducts, namely interlobular bile ducts, whereas MECA-79 expression was completely absent in comparable tissues from GlcNAc6ST-1 and GlcNAc6ST-2 double knockout mice. These data collectively indicate that apical membrane localization of MUC1 proteins decorated with GlcNAc6ST-2-dependent MECA-79 sulfated glycans may mark cholangiocytes with cholangiolar/ductular differentiation and could serve as a useful CoCC marker.
Collapse
MESH Headings
- Animals
- Antigens, Surface/biosynthesis
- Antigens, Surface/chemistry
- Antigens, Surface/metabolism
- Antigens, Tumor-Associated, Carbohydrate/biosynthesis
- Bile Duct Neoplasms/metabolism
- Bile Duct Neoplasms/pathology
- Bile Ducts, Intrahepatic/metabolism
- Bile Ducts, Intrahepatic/pathology
- Biomarkers, Tumor/metabolism
- CHO Cells
- Cell Line, Tumor
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Cell Polarity
- Cholangiocarcinoma/metabolism
- Cholangiocarcinoma/pathology
- Cricetinae
- Cricetulus
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Membrane Proteins/biosynthesis
- Membrane Proteins/chemistry
- Mice, Knockout
- Mucin-1/genetics
- Mucin-1/metabolism
- Polysaccharides/biosynthesis
- Polysaccharides/metabolism
- Protein Transport
- Recombinant Proteins/metabolism
- Sulfotransferases/genetics
- Sulfotransferases/metabolism
- Sulfuric Acid Esters/metabolism
- Carbohydrate Sulfotransferases
Collapse
Affiliation(s)
- Hitomi Hoshino
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Makoto Ohta
- Department of Pathology, Fukui Red Cross Hospital, Fukui, Japan
| | - Makoto Ito
- Department of Pathology and Laboratory Medicine, Kariya Toyota General Hospital, Kariya, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Sakai
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shulin Low
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Mana Fukushima
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| |
Collapse
|
43
|
Low S, Sakai Y, Hoshino H, Hirokawa M, Kawashima H, Higuchi K, Imamura Y, Kobayashi M. High endothelial venule-like vessels and lymphocyte recruitment in diffuse sclerosing variant of papillary thyroid carcinoma. Pathology 2016; 48:666-674. [PMID: 27956273 DOI: 10.1016/j.pathol.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/16/2016] [Accepted: 08/08/2016] [Indexed: 01/19/2023]
Abstract
Diffuse sclerosing variant of papillary thyroid carcinoma (DSPTC) is a rare subtype of papillary thyroid carcinoma with a high incidence of lymph node metastasis. One of its characteristic histological features is the presence of dense lymphocyte infiltrates; however, how these lymphocytes are recruited in this pathological setting remains unclear. Here, we analysed 17 DSPTC cases immunohistologically for cell adhesion molecules expressed on endothelial cells. We found that venules morphologically similar to high endothelial venules (HEVs) in secondary lymphoid organs were induced in lymphoid aggregates in DSPTC, and such HEV-like vessels expressed 6-sulfo sialyl Lewis X (sLeX) glycans as well as intercellular adhesion molecule 1 (ICAM-1). Triple immunohistochemistry revealed that CD8+ cytotoxic T cells were the major lymphocyte subset attached to the luminal surface of HEV-like vessels. sLeX-type glycans were also expressed on DSPTC carcinoma cells, which in binding assays were decorated with E-selectin•IgM chimaeras calcium-dependently. These findings collectively suggest that 6-sulfo sLeX glycans, together with ICAM-1, on HEV-like vessels may function to recruit CD8+ cytotoxic T cells in DSPTC. Additionally, sLeX-type glycans on carcinoma cells might partly contribute to highly metastatic properties of DSPTC through interaction with E-selectin expressed on endothelial cells.
Collapse
Affiliation(s)
- Shulin Low
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Hitomi Hoshino
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | | | - Hiroto Kawashima
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kayoko Higuchi
- Department of Diagnostic Pathology, Aizawa Hospital, Matsumoto, Japan
| | - Yoshiaki Imamura
- Division of Surgical Pathology, University of Fukui Hospital, Eiheiji, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan.
| |
Collapse
|
44
|
Weinstein AM, Storkus WJ. Biosynthesis and Functional Significance of Peripheral Node Addressin in Cancer-Associated TLO. Front Immunol 2016; 7:301. [PMID: 27555845 PMCID: PMC4977569 DOI: 10.3389/fimmu.2016.00301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Peripheral node addressin (PNAd) marks high endothelial venules (HEV), which are crucial for the recruitment of lymphocytes into lymphoid organs in non-mucosal tissue sites. PNAd is a sulfated and fucosylated glycoprotein recognized by the prototypic monoclonal antibody, MECA-79. PNAd is the ligand for L-selectin, which is expressed on the surface of naive and central memory T cells, where it mediates leukocyte rolling on vascular endothelial surfaces. Although PNAd was first identified in the HEV of peripheral lymph nodes, recent work suggests a critical role for PNAd in the context of chronic inflammatory diseases, where it can be used as a marker for the formation of tertiary lymphoid organs (TLOs). TLO form in tissues impacted by sustained inflammation, such as the tumor microenvironment where they function as local sites of adaptive immune cell priming. This allows for specific B- and T-cell responses to be initiated or reactivated in inflamed tissues without dependency on secondary lymphoid organs. Recent studies of cancer in mice and humans have identified PNAd as a biomarker of improved disease prognosis. Blockade of PNAd or its ligand, L-selectin, can abrogate protective antitumor immunity in murine models. This review examines pathways regulating PNAd biosynthesis by the endothelial cells integral to HEV and the formation and maintenance of lymphoid structures throughout the body, particularly in the setting of cancer.
Collapse
Affiliation(s)
- Aliyah M Weinstein
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Hiraoka N, Ino Y, Yamazaki-Itoh R. Tertiary Lymphoid Organs in Cancer Tissues. Front Immunol 2016; 7:244. [PMID: 27446075 PMCID: PMC4916185 DOI: 10.3389/fimmu.2016.00244] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) are induced postnatally in non-lymphoid tissues such as those affected by chronic infections, autoimmune diseases, and chronic allograft rejection, and also in cancer tissues. TLOs are thought to provide important lymphocytic functional environments for both cellular and humoral immunity, similar to lymph nodes or Peyer’s patches. TLOs have a structure similar to that of lymph nodes or Peyer’s patches, including T cell zones, B cell follicles, and high endothelial venules (HEV) without encapsulation. Here, we review recent advances in our knowledge of TLOs in human solid cancers, including their location, structure, methods of evaluation, and clinicopathological impact. We also discuss the formation and/or maintenance of TLOs in cancer tissues in association with the tumor immune microenvironment, cancer invasion, and the tissue structure of the cancer stroma.
Collapse
Affiliation(s)
- Nobuyoshi Hiraoka
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan; Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan; Division of Analytical Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshinori Ino
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan; Division of Analytical Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Rie Yamazaki-Itoh
- Division of Molecular Pathology, National Cancer Center Research Institute , Tokyo , Japan
| |
Collapse
|
46
|
Harris N, Koppel J, Zsila F, Juhas S, Il'kova G, Kogan FY, Lahmy O, Wildbaum G, Karin N, Zhuk R, Gregor P. Mechanism of action and efficacy of RX-111, a thieno[2,3-c]pyridine derivative and small molecule inhibitor of protein interaction with glycosaminoglycans (SMIGs), in delayed-type hypersensitivity, TNBS-induced colitis and experimental autoimmune encephalomyelitis. Inflamm Res 2016; 65:285-94. [PMID: 26794621 DOI: 10.1007/s00011-016-0915-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE AND DESIGN Elucidate the mechanism of action of the small molecule inhibitor of protein binding to glycosaminoglycans, RX-111 and assay its anti-inflammatory activity in animal models of inflammatory disease. MATERIALS The glycosaminoglycan, heparin, was used in the mechanism of action study of RX-111. Human T lymphocytes and umbilical vein endothelial cells were used to assay the in vitro activity of RX-111. Mouse and rat models of disease were used to assay the anti-inflammatory activity of RX-111 in vivo. METHODS Circular dichroism and UV/Vis absorption spectroscopy were used to study the binding of RX-111 to the glycosaminoglycan, heparin. T lymphocyte rolling on endothelial cells under shear flow was used to assay RX-111 activity in vitro. Delayed-type hypersensitivity (DTH) and tri-nitrobenzene sulfonic acid (TNBS)-induced colitis in mice and experimental autoimmune encephalomyelitis (EAE) in rats were used to assay anti-inflammatory activity of RX-111 in vivo. RESULTS RX-111 was shown to bind directly to heparin. It inhibited leukocyte rolling on endothelial cells under shear flow and reduced inflammation in the mouse model of DTH. RX-111 was efficacious in the mouse model of inflammatory bowel disease, TNBS-induced colitis and the rat model of multiple sclerosis, EAE. CONCLUSIONS RX-111 exercises its broad spectrum anti-inflammatory activity by a singular mechanism of action, inhibition of protein binding to the cell surface GAG, heparan sulfate. RX-111 and related thieno[2,3-c]pyridine derivatives are potential therapeutics for the treatment of inflammatory and autoimmune diseases.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cell Line, Tumor
- Colitis/chemically induced
- Colitis/drug therapy
- Colitis/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Heparitin Sulfate/metabolism
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/immunology
- Humans
- Hypersensitivity, Delayed/chemically induced
- Hypersensitivity, Delayed/drug therapy
- Hypersensitivity, Delayed/immunology
- Leukocyte Rolling/drug effects
- Male
- Mice, Inbred BALB C
- Myelin Basic Protein/immunology
- Oxazolone
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Rats
- Rats, Inbred Lew
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Thiophenes/pharmacology
- Thiophenes/therapeutic use
- Treatment Outcome
- Trinitrobenzenesulfonic Acid
Collapse
Affiliation(s)
- Nicholas Harris
- Rimonyx Pharmaceuticals Ltd., Rabin Science Park, 70400, Ness-Ziona, Israel.
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude Academic College of Engineering, 21982, Karmiel, Israel.
| | - Juraj Koppel
- Institute of Animal Physiology, Slovak Academy of Sciences, 04001, Kosice, Slovakia
| | - Ferenc Zsila
- Biomolecular Self-Assembly Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Stefan Juhas
- Institute of Animal Physiology, Slovak Academy of Sciences, 04001, Kosice, Slovakia
- Institute of Animal Physiology and Genetics of the ASCR, v. v. i., Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Gabriela Il'kova
- Institute of Animal Physiology, Slovak Academy of Sciences, 04001, Kosice, Slovakia
- GYN-FIV a.s., Záhradnícka 42, 821 085, Bratislava, Slovakia
| | | | - Orly Lahmy
- Rimonyx Pharmaceuticals Ltd., Rabin Science Park, 70400, Ness-Ziona, Israel
| | - Gizi Wildbaum
- Department of Immunology, Rappaport Institute, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Nathan Karin
- Department of Immunology, Rappaport Institute, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Regina Zhuk
- Rimonyx Pharmaceuticals Ltd., Rabin Science Park, 70400, Ness-Ziona, Israel
| | - Paul Gregor
- Rimonyx Pharmaceuticals Ltd., Rabin Science Park, 70400, Ness-Ziona, Israel.
- GISMO Therapeutics Inc., A253 ASTECC-UK, Lexington, KY, 40506, USA.
| |
Collapse
|
47
|
Stanley P. What Have We Learned from Glycosyltransferase Knockouts in Mice? J Mol Biol 2016; 428:3166-3182. [PMID: 27040397 DOI: 10.1016/j.jmb.2016.03.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
There are five major classes of glycan including N- and O-glycans, glycosaminoglycans, glycosphingolipids, and glycophosphatidylinositol anchors, all expressed at the molecular frontier of each mammalian cell. Numerous biological consequences of altering the expression of mammalian glycans are understood at a mechanistic level, but many more remain to be characterized. Mouse mutants with deleted, defective, or misexpressed genes that encode activities necessary for glycosylation have led the way to identifying key functions of glycans in biology. However, with the advent of exome sequencing, humans with mutations in genes involved in glycosylation are also revealing specific requirements for glycans in mammalian development. The aim of this review is to summarize glycosylation genes that are necessary for mouse embryonic development, pathway-specific glycosylation genes whose deletion leads to postnatal morbidity, and glycosylation genes for which effects are mild, but perturbation of the organism may reveal functional consequences. General strategies for generating and interpreting the phenotype of mice with glycosylation defects are discussed in relation to human congenital disorders of glycosylation (CDG).
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
48
|
Ueno R, Miyamoto K, Tanaka N, Moriguchi K, Kadomatsu K, Kusunoki S. Keratan sulfate exacerbates experimental autoimmune encephalomyelitis. J Neurosci Res 2015; 93:1874-80. [PMID: 26340909 DOI: 10.1002/jnr.23640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/08/2015] [Accepted: 08/11/2015] [Indexed: 01/25/2023]
Abstract
Proteoglycans (PGs) are the components of extracellular matrices in the central nervous system (CNS). Keratan sulfate (KS) is a glycosaminoglycan that is included in the KSPG that acts as an inhibitory factor in nerve regeneration after CNS injury. To investigate the role of KS in immune diseases, we induced experimental autoimmune encephalomyelitis (EAE) in mice that were deficient in the N-acetylglucosamine (GlcNAc)-6-O-sulfotransferase 1 (GlcNAc6ST1) gene (KS-KO). KS-KO mice developed less severe EAE and showed repressed recall response in the induction phase. Furthermore, GlcNAc6ST1 might have roles in the passage of the pathogenic lymphocytes through the blood-brain barrier via adhesion molecules. Thus, modulation of KS may become a treatment for neuroimmunological diseases.
Collapse
Affiliation(s)
- Rino Ueno
- Department of Neurology, Kinki University School of Medicine, Osaka-Sayama, Japan
| | - Katsuichi Miyamoto
- Department of Neurology, Kinki University School of Medicine, Osaka-Sayama, Japan
| | - Noriko Tanaka
- Department of Neurology, Kinki University School of Medicine, Osaka-Sayama, Japan
| | - Kota Moriguchi
- Division of Neurology, Department of Internal Medicine 3, National Defense Medical College, Tokorozawa, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University School of Medicine, Nagoya, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kinki University School of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
49
|
Takeda-Uchimura Y, Uchimura K, Sugimura T, Yanagawa Y, Kawasaki T, Komatsu Y, Kadomatsu K. Requirement of keratan sulfate proteoglycan phosphacan with a specific sulfation pattern for critical period plasticity in the visual cortex. Exp Neurol 2015; 274:145-55. [PMID: 26277687 DOI: 10.1016/j.expneurol.2015.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/16/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023]
Abstract
Proteoglycans play important roles in regulating the development and functions of the brain. They consist of a core protein and glycosaminoglycans, which are long sugar chains of repeating disaccharide units with sulfation. A recent study demonstrated that the sulfation pattern of chondroitin sulfate on proteoglycans contributes to regulation of the critical period of experience-dependent plasticity in the mouse visual cortex. In the present study, we investigated the role of keratan sulfate (KS), another glycosaminoglycan, in critical period plasticity in the mouse visual cortex. Immunohistochemical analyses demonstrated the presence of KS containing disaccharide units of N-acetylglucosamine (GlcNAc)-6-sulfate and nonsulfated galactose during the critical period, although KS containing disaccharide units of GlcNAc-6-sulfate and galactose-6-sulfate was already known to disappear before that period. The KS chains were distributed diffusely in the extracellular space and densely around the soma of a large population of excitatory and inhibitory neurons. Electron microscopic analysis revealed that the KS was localized within the perisynaptic spaces and dendrites but not in presynaptic sites. KS was mainly located on phosphacan. In mice deficient in GlcNAc-6-O-sulfotransferase 1, which is one of the enzymes necessary for the synthesis of KS chains, the expression of KS was one half that in wild-type mice. In the knockout mice, monocular deprivation during the critical period resulted in a depression of deprived-eye responses but failed to produce potentiation of nondeprived-eye responses. In addition, T-type Ca(2+) channel-dependent long-term potentiation (LTP), which occurs only during the critical period, was not observed. These results suggest that regulation by KS-phosphacan with a specific sulfation pattern is necessary for the generation of LTP and hence the potentiation of nondeprived-eye responses after monocular deprivation.
Collapse
Affiliation(s)
- Yoshiko Takeda-Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Taketoshi Sugimura
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshisuke Kawasaki
- Research Center for Glycobiotechnology, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Yukio Komatsu
- Department of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
50
|
Foyez T, Takeda-Uchimura Y, Ishigaki S, Narentuya, Zhang Z, Sobue G, Kadomatsu K, Uchimura K. Microglial keratan sulfate epitope elicits in central nervous tissues of transgenic model mice and patients with amyotrophic lateral sclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3053-65. [PMID: 26362733 DOI: 10.1016/j.ajpath.2015.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 12/14/2022]
Abstract
The functional role of 5D4 antibody-reactive keratan sulfate (KS) in the pathogenesis of neurodegenerative diseases is unknown. We therefore studied the expression of 5D4-reactive KS in amyotrophic lateral sclerosis (ALS), a motor neuron-degenerative disease, with the use of SOD1(G93A) ALS model mice and patients with ALS. Histochemical and immunoelectron microscopic characterizations showed that the 5D4-reactive KS is expressed in Mac2/galectin-3-positive activated or proliferating microglia of SOD1(G93A) ALS model mice at disease end stage and that the KS is an O-linked glycan modified with sialic acid and fucose, which was thus far shown to exist in cartilage. Intriguingly, microglial KS was detected in the spinal cord and brainstem but not in the cerebral cortex of SOD1(G93A) mice. We found that KSGal6ST, a galactose-6-sulfotransferase, is required for biosynthesis of the microglial 5D4-reactive KS by generating SOD1(G93A)/KSGal6ST(-/-) mice. The requirement of GlcNAc6ST1 for this synthesis was corroborated by analyzing SOD1(G93A)/GlcNAc6ST1(-/-) mice. These results indicate that both galactose-6- and N acteylglucosamine-6-sulfated KS elicited in the spinal cord and brainstem are associated with the degeneration of spinal and bulbar lower motor neurons in ALS pathology and may play a role in disease progression via microglial activation and proliferation.
Collapse
Affiliation(s)
- Tahmina Foyez
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Narentuya
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Zui Zhang
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|