1
|
Evtimov VJ, Nguyen NYN, Hammett MV, Pupovac A, Hudson PJ, Zhuang J, Lee JY, Kim S, Trounson AO, Boyd RL, Shu R. CRISPR-Cas9 knockout of DGKα/ζ improves the anti-tumor activities of TAG-72 CAR-T cells in ovarian cancer. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200962. [PMID: 40207199 PMCID: PMC11981736 DOI: 10.1016/j.omton.2025.200962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
High recurrence and chemoresistance in solid tumors, like ovarian cancer, stress the need for new therapies. Chimeric antigen receptor (CAR)-T cells show promise but face challenges due to tumor heterogeneity and immune suppression in the tumor microenvironment (TME). Thus, novel approaches are needed to further enhance the efficacy of CAR-T cell therapies. In T cell therapies, inhibiting checkpoint molecules is crucial for overcoming exhaustion and boosting anti-tumor activity. Additionally, prioritizing safety by engineering cells to target markers absent on normal healthy cells reduces off-target risks. We targeted tumor-associated glycoprotein 72 (TAG-72), an oncofetal antigen highly expressed in adenocarcinomas like ovarian cancer, by engineering TAG-72 CAR-T cells and used CRISPR-Cas9 to knock out the T cell-inhibitory enzymes diacylglycerol kinase (DGK) α and ζ. DGKα/ζ knockout (KO) did not impact CAR-T cell viability or phenotype. These cells selectively killed TAG-72-expressing cancer cells in vitro and ablated established tumors in vivo for up to 100 days, whereas non-deleted control TAG-72 CAR-T cells showed tumor relapse around 40 days. These findings highlight the potential of CRISPR-induced DGKα/ζ KO to enhance CAR-T cell efficacy against solid tumors such as ovarian cancer, offering a promising avenue for improved cancer therapies.
Collapse
Affiliation(s)
- Vera J. Evtimov
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Nhu-Y N. Nguyen
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Maree V. Hammett
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Aleta Pupovac
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Peter J. Hudson
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Junli Zhuang
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | | | | | - Alan O. Trounson
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Richard L. Boyd
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3168, Australia
| | - Runzhe Shu
- Cartherics Pty Ltd, Notting Hill, VIC 3168, Australia
| |
Collapse
|
2
|
Sakane F, Murakami C, Sakai H. Upstream and downstream pathways of diacylglycerol kinase : Novel phosphatidylinositol turnover-independent signal transduction pathways. Adv Biol Regul 2025; 95:101054. [PMID: 39368888 DOI: 10.1016/j.jbior.2024.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). Mammalian DGK comprise ten isozymes (α-κ) that regulate a wide variety of physiological and pathological events. Recently, we revealed that DGK isozymes use saturated fatty acid (SFA)/monosaturated fatty acid (MUFA)-containing and docosahexaenoic acid (22:6)-containing DG species, but not phosphatidylinositol (PI) turnover-derived 18:0/20:4-DG. For example, DGKδ, which is involved in the pathogenesis of type 2 diabetes, preferentially uses SFA/MUFA-containing DG species, such as 16:0/16:0- and 16:0/18:1-DG species, in high glucose-stimulated skeletal muscle cells. Moreover, DGKδ, which destabilizes the serotonin transporter (SERT) and regulates the serotonergic system in the brain, primarily generates 18:0/22:6-PA. Furthermore, 16:0/16:0-PA is produced by DGKζ in Neuro-2a cells during neuronal differentiation. We searched for SFA/MUFA-PA- and 18:0/22:6-PA-selective binding proteins (candidate downstream targets of DGKδ) and found that SFA/MUFA-PA binds to and activates the creatine kinase muscle type, an energy-metabolizing enzyme, and that 18:0/22:6-PA interacts with and activates Praja-1, an E3 ubiquitin ligase acting on SERT, and synaptojanin-1, a key player in the synaptic vesicle cycle. Next, we searched for SFA/MUFA-DG-generating enzymes upstream of DGKδ. We found that sphingomyelin synthase (SMS)1, SMS2, and SMS-related protein (SMSr) commonly act as phosphatidylcholine (PC)-phospholipase C (PLC) and phosphatidylethanolamine (PE)-PLC, generating SFA/MUFA-DG species, in addition to SMS and ceramide phosphoethanolamine synthase. Moreover, the orphan phosphatase PHOSPHO1 showed PC- and PE-PLC activities that produced SFA/MUFA-DG. Although PC- and PE-PLC activities were first described 70-35 years ago, their proteins and genes were not identified for a long time. We found that DGKδ interacts with SMSr and PHOSPHO1, and that DGKζ binds to SMS1 and SMSr. Taken together, these results strongly suggest that there are previously unrecognized signal transduction pathways that include DGK isozymes and generate and utilize SFA/MUFA-DG/PA or 18:0/22:6-DG/PA but not PI-turnover-derived 18:0/20:4-DG/PA.
Collapse
Affiliation(s)
- Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| |
Collapse
|
3
|
Liu Y, Yang Z, Zhou X, Li Z, Hideki N. Diacylglycerol Kinases and Its Role in Lipid Metabolism and Related Diseases. Int J Mol Sci 2024; 25:13207. [PMID: 39684917 DOI: 10.3390/ijms252313207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Lipids are essential components of eukaryotic membranes, playing crucial roles in membrane structure, energy storage, and signaling. They are predominantly synthesized in the endoplasmic reticulum (ER) and subsequently transported to other organelles. Diacylglycerol kinases (DGKs) are a conserved enzyme family that phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), both of which are key intermediates in lipid metabolism and second messengers involved in numerous cellular processes. Dysregulation of DGK activity is associated with several diseases, including cancer and metabolic disorders. In this review, we provide a comprehensive overview of DGK types, functions, cellular localization, and their potential as therapeutic targets. We also discuss DGKs' roles in lipid metabolism and their physiological functions and related diseases.
Collapse
Affiliation(s)
- Yishi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zehui Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Nakanishi Hideki
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Seo S, Hattori M, Yoshida T. Establishing an evaluation system for T cell activation and anergy based on CD25 expression levels as an indicator. Cytotechnology 2024; 76:749-759. [PMID: 39435413 PMCID: PMC11490625 DOI: 10.1007/s10616-024-00651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/31/2024] [Indexed: 10/23/2024] Open
Abstract
T cell anergy refers to a state where T cells become unresponsive, playing an important role in several types of immune tolerance, such as oral tolerance. This tolerance is vital for preventing some diseases, including food allergies. Understanding the mechanism underlying T cell anergy is essential to addressing food allergies. Previous studies often identified anergic T cells by their decreased ability to produce cytokine compared to the control cells. In the studies, unstimulated or naïve T cells were commonly used as the control cells. These systems could evaluate the hyporesponsiveness of anergic T cells; however, it was challenging to distinguish whether the decrease in cytokine production by anergic T cells was owing to anergy induction or merely a temporarily response to a certain stimulation. This complexity arises because some T cell responses are temporarily suppressed, even by activating stimuli. Therefore, this study aims to explore a new evaluation index that can differentiate the responsiveness of activated T cells from that of anergic T cells compared to the control cells. It was demonstrated that CD25 expression levels serve as an appropriate indicator for distinguishing between T-cell activation and anergy. Conversely, cytokine-producing ability proved inadequate for this purpose. It was found that CD25 expression increased in activated T cells than in naïve T cells, whereas it decreased in anergic T cells after restimulation. This occurred despite decreased cytokine production in the activated and anergic T cells than in the naïve T cells. This new evaluation system, centered on CD25 expression, may help in identifying the mechanism for determining T cell activation and anergy.
Collapse
Affiliation(s)
- Sangwon Seo
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu City, Tokyo, 183-8509 Japan
| | - Makoto Hattori
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu City, Tokyo, 183-8509 Japan
| | - Tadashi Yoshida
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu City, Tokyo, 183-8509 Japan
| |
Collapse
|
5
|
Li L, Huang H, Wang H, Pan Y, Tao H, Zhang S, Karmaus PWF, Fessler MB, Sleasman JW, Zhong XP. DGKα and ζ Deficiency Causes Regulatory T-Cell Dysregulation, Destabilization, and Conversion to Pathogenic T-Follicular Helper Cells to Trigger IgG1-Predominant Autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625360. [PMID: 39651265 PMCID: PMC11623591 DOI: 10.1101/2024.11.26.625360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Regulatory T cells (Tregs) actively engage in immune suppression to prevent autoimmune diseases but also inhibit anti-tumor immunity. Although Tregs express a TCR repertoire with relatively high affinities to self, they are normally quite stable and their inflammatory programs are intrinsically suppressed. We report here that diacylglycerol (DAG) kinases (DGK) ( and ( are crucial for homeostasis, suppression of proinflammatory programs, and stability of Tregs and for enforcing their dependence on CD28 costimulatory signal. Treg-specific deficiency of both DGK( and ( derails signaling, metabolic, and transcriptional programs in Tregs to cause dysregulated phenotypic and functional properties and to unleash conversion to pathogenic exTregs, especially exTreg-T follicular helper (Tfh) 2 cells, leading to uncontrolled effector T cell differentiation, deregulated germinal center (GC) B-cell responses and IgG1/IgE predominant antibodies/autoantibodies, and multiorgan autoimmune diseases. Our data not only illustrate the crucial roles of DGKs in Tregs to maintain self-tolerance but also unveil a Treg-to-self-reactive-pathogenic-exTreg-Tfh-cell program that is suppressed by DGKs and that could exert broad pathogenic roles in autoimmune diseases if unchecked.
Collapse
|
6
|
Hernandez-Lara MA, Richard J, Deshpande DA. Diacylglycerol kinase is a keystone regulator of signaling relevant to the pathophysiology of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 327:L3-L18. [PMID: 38742284 PMCID: PMC11380957 DOI: 10.1152/ajplung.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Signal transduction by G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immunoreceptors converge at the activation of phospholipase C (PLC) for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This is a point for second-messenger bifurcation where DAG via protein kinase C (PKC) and IP3 via calcium activate distinct protein targets and regulate cellular functions. IP3 signaling is regulated by multiple calcium influx and efflux proteins involved in calcium homeostasis. A family of lipid kinases belonging to DAG kinases (DGKs) converts DAG to phosphatidic acid (PA), negatively regulating DAG signaling and pathophysiological functions. PA, through a series of biochemical reactions, is recycled to produce new molecules of PIP2. Therefore, DGKs act as a central switch in terminating DAG signaling and resynthesis of membrane phospholipids precursor. Interestingly, calcium and PKC regulate the activation of α and ζ isoforms of DGK that are predominantly expressed in airway and immune cells. Thus, DGK forms a feedback and feedforward control point and plays a crucial role in fine-tuning phospholipid stoichiometry, signaling, and functions. In this review, we discuss the previously underappreciated complex and intriguing DAG/DGK-driven mechanisms in regulating cellular functions associated with asthma, such as contraction and proliferation of airway smooth muscle (ASM) cells and inflammatory activation of immune cells. We highlight the benefits of manipulating DGK activity in mitigating salient features of asthma pathophysiology and shed light on DGK as a molecule of interest for heterogeneous diseases such as asthma.
Collapse
Affiliation(s)
- Miguel A Hernandez-Lara
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Joshua Richard
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
7
|
Yang W, Feng R, Peng G, Wang Z, Cen M, Jing Y, Feng W, Long T, Liu Y, Li Z, Huang K, Chang G. Glycoursodeoxycholic Acid Alleviates Arterial Thrombosis via Suppressing Diacylglycerol Kinases Activity in Platelet. Arterioscler Thromb Vasc Biol 2024; 44:1283-1301. [PMID: 38572646 DOI: 10.1161/atvbaha.124.320728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Glycoursodeoxycholic acid (GUDCA) has been acknowledged for its ability to regulate lipid homeostasis and provide benefits for various metabolic disorders. However, the impact of GUDCA on arterial thrombotic events remains unexplored. The objective of this study is to examine the effects of GUDCA on thrombogenesis and elucidate its underlying mechanisms. METHODS Plasma samples from patients with arterial thrombotic events and diet-induced obese mice were collected to determine the GUDCA concentrations using mass spectrometry. Multiple in vivo murine thrombosis models and in vitro platelet functional assays were conducted to comprehensively evaluate the antithrombotic effects of GUDCA. Moreover, lipidomic analysis was performed to identify the alterations of intraplatelet lipid components following GUDCA treatment. RESULTS Plasma GUDCA level was significantly decreased in patients with arterial thrombotic events and negatively correlated with thrombotic propensity in diet-induced obese mice. GUDCA exhibited prominent suppressing effects on platelet reactivity as evidenced by the attenuation of platelet activation, secretion, aggregation, spreading, and retraction (P<0.05). In vivo, GUDCA administration robustly alleviated thrombogenesis (P<0.05) without affecting hemostasis. Mechanistically, GUDCA inhibited DGK (diacylglycerol kinase) activity, leading to the downregulation of the phosphatidic acid-mediated signaling pathway. Conversely, phosphatidic acid supplementation was sufficient to abolish the antithrombotic effects of GUDCA. More importantly, long-term oral administration of GUDCA normalized the enhanced DGK activity, thereby remarkably alleviating the platelet hyperreactivity as well as the heightened thrombotic tendency in diet-induced obese mice (P<0.05). CONCLUSIONS Our study implicated that GUDCA reduces platelet hyperreactivity and improves thrombotic propensity by inhibiting DGKs activity, which is a potentially effective prophylactic approach and promising therapeutic agent for arterial thrombotic events.
Collapse
Affiliation(s)
- Wenchao Yang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Ruijia Feng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Guiyan Peng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Zhecun Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China (M.C.)
| | - Yexiang Jing
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Weiqi Feng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Ting Long
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Yunchong Liu
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Zilun Li
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Kan Huang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Guangqi Chang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| |
Collapse
|
8
|
Shichi S, Sugiyama K, Asahi Y, Shirakawa C, Nakamoto H, Kimura S, Wakizaka K, Aiyama T, Nagatsu A, Orimo T, Kakisaka T, Taketomi A. Diacylglycerol kinase alpha is a proliferation marker of intrahepatic cholangiocarcinoma associated with the prognosis. Cancer Med 2024; 13:e7238. [PMID: 38716625 PMCID: PMC11077429 DOI: 10.1002/cam4.7238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 03/16/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) has a high recurrence rate and a poor prognosis. Thus, the development of effective treatment and prognostic biomarkers is required. High expression of diacylglycerol kinase alpha (DGKα) is a prognostic factor for the recurrence of hepatocellular carcinoma. However, the relationship between DGKα expression and prognosis in ICC has not been reported. METHODS Immunohistochemistry (IHC) with anti-DGKα antibody was performed on surgical specimens of ICC (n = 69). First, DGKα expression in cancer cells was qualitatively classified into four groups (-, 1+, 2+, 3+) and divided into two groups (DGKα- and DGKα+1 + to 3+). The relationship between clinical features and DGKα expression was analyzed. Second, Ki-67 expression was evaluated as a cell proliferation marker. The number of Ki-67-positive cells was counted, and the relationship with DGKα expression was examined. RESULTS DGKα IHC divided the patients into a DGKα+ group (1+: n = 15; 2+: n = 5; 3+: n = 5) and a DGKα- group (-: n = 44). In the DGKα+ group, patients were older and had advanced disease. Both overall survival and recurrence-free survival (RFS) were significantly worse in the DGKα+ patients. DGKα+ was identified as an independent prognostic factor for RFS by multivariate analysis. Furthermore, the number of Ki-67-positive cells increased in association with the staining levels of DGKα. CONCLUSION Pathological DGKα expression in ICC was a cancer proliferation marker associated with recurrence. This suggests that DGKα may be a potential therapeutic target for ICC.
Collapse
Grants
- 22fk0210091h0002 Japan Agency for Medical Research and Development
- Ono Pharmaceutical Co., Ltd.
- 18K19571 Ministry of Education, Culture, Sports, Science and Technology
- 19H03724 Ministry of Education, Culture, Sports, Science and Technology
- 21K19516 Ministry of Education, Culture, Sports, Science and Technology
- 22H03142 Ministry of Education, Culture, Sports, Science and Technology
- Japan Agency for Medical Research and Development
- Ono Pharmaceutical Co., Ltd.
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Shunsuke Shichi
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Ko Sugiyama
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Yoh Asahi
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Chisato Shirakawa
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Hiroki Nakamoto
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Saori Kimura
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Kazuki Wakizaka
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Takeshi Aiyama
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Akihisa Nagatsu
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Tatsuya Orimo
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Tatsuhiko Kakisaka
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery IHokkaido University Graduate School of MedicineSapporoJapan
| |
Collapse
|
9
|
Seino K, Nakano T, Tanaka T, Hozumi Y, Topham MK, Goto K, Iseki K. Ablation of DGKα facilitates α-smooth muscle actin expression via the Smad and PKCδ signaling pathways during the acute phase of CCl 4 -induced hepatic injury. FEBS Open Bio 2024; 14:300-308. [PMID: 38105414 PMCID: PMC10839370 DOI: 10.1002/2211-5463.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Expression of α-smooth muscle actin (αSMA) is constitutive in vascular smooth muscle cells, but is induced in nonmuscle cells such as hepatic stellate cells (HSCs). HSCs play important roles in both physiological homeostasis and pathological response. HSC activation is characterized by αSMA expression, which is regulated by the TGFβ-induced Smad pathway. Recently, protein kinase C (PKC) was identified to regulate αSMA expression. Diacylglycerol kinase (DGK) metabolizes a second-messenger DG, thereby controlling components of DG-mediated signaling, such as PKC. In the present study we aimed to investigate the putative role of DGKα in αSMA expression. Use of a cellular model indicated that the DGK inhibitor R59949 promotes αSMA expression and PKCδ phosphorylation. It also facilitates Smad2 phosphorylation after 30 min of TGFβ stimulation. Furthermore, immunocytochemical analysis revealed that DGK inhibitor pretreatment without TGFβ stimulation engenders αSMA expression in a granular pattern, whereas DGK inhibitor pretreatment plus TGFβ stimulation significantly induces αSMA incorporation in stress fibers. Through animal model experiments, we observed that DGKα-knockout mice exhibit increased expression of αSMA in the liver after 48 h of carbon tetrachloride injection, together with enhanced phosphorylation levels of Smad2 and PKCδ. Together, these findings suggest that DGKα negatively regulates αSMA expression by acting on the Smad and PKCδ signaling pathways, which differentially regulate stress fiber incorporation and protein expression of αSMA, respectively.
Collapse
Affiliation(s)
- Keiko Seino
- Department of Anatomy and Cell BiologyYamagata University School of MedicineJapan
| | - Tomoyuki Nakano
- Department of Anatomy and Cell BiologyYamagata University School of MedicineJapan
| | - Toshiaki Tanaka
- Department of Anatomy and Cell BiologyYamagata University School of MedicineJapan
| | - Yasukazu Hozumi
- Department of Cell Biology and MorphologyAkita University Graduate School of MedicineJapan
| | | | - Kaoru Goto
- Department of Anatomy and Cell BiologyYamagata University School of MedicineJapan
| | - Ken Iseki
- Department of Emergency and Critical Care Medicine, School of MedicineFukushima Medical UniversityFukushimaJapan
| |
Collapse
|
10
|
Ding M, Gao T, Song Y, Yi L, Li W, Deng C, Zhou W, Xie M, Zhang L. Nanoparticle-based T cell immunoimaging and immunomodulatory for diagnosing and treating transplant rejection. Heliyon 2024; 10:e24203. [PMID: 38312645 PMCID: PMC10835187 DOI: 10.1016/j.heliyon.2024.e24203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
T cells serve a pivotal role in the rejection of transplants, both by directly attacking the graft and by recruiting other immune cells, which intensifies the rejection process. Therefore, monitoring T cells becomes crucial for early detection of transplant rejection, while targeted drug delivery specifically to T cells can significantly enhance the effectiveness of rejection therapy. However, regulating the activity of T cells within transplanted organs is challenging, and the prolonged use of immunosuppressive drugs is associated with notable side effects and complications. Functionalized nanoparticles offer a potential solution by targeting T cells within transplants or lymph nodes, thereby reducing the off-target effects and improving the long-term survival of the graft. In this review, we will provide an overview of recent advancements in T cell-targeted imaging molecular probes for diagnosing transplant rejection and the progress of T cell-regulating nanomedicines for treating transplant rejection. Additionally, we will discuss future directions and the challenges in clinical translation.
Collapse
Affiliation(s)
- Mengdan Ding
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
11
|
Martin-Salgado M, Ochoa-Echeverría A, Mérida I. Diacylglycerol kinases: A look into the future of immunotherapy. Adv Biol Regul 2024; 91:100999. [PMID: 37949728 DOI: 10.1016/j.jbior.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.
Collapse
Affiliation(s)
- Miguel Martin-Salgado
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Isabel Mérida
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain.
| |
Collapse
|
12
|
Kureshi R, Bello E, Kureshi CT, Walsh MJ, Lippert V, Hoffman MT, Dougan M, Longmire T, Wichroski M, Dougan SK. DGKα/ζ inhibition lowers the TCR affinity threshold and potentiates antitumor immunity. SCIENCE ADVANCES 2023; 9:eadk1853. [PMID: 38000024 PMCID: PMC10672170 DOI: 10.1126/sciadv.adk1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023]
Abstract
Diacylglycerol kinases (DGKs) attenuate diacylglycerol (DAG) signaling by converting DAG to phosphatidic acid, thereby suppressing pathways downstream of T cell receptor signaling. Using a dual DGKα/ζ inhibitor (DGKi), tumor-specific CD8 T cells with different affinities (TRP1high and TRP1low), and altered peptide ligands, we demonstrate that inhibition of DGKα/ζ can lower the signaling threshold for T cell priming. TRP1high and TRP1low CD8 T cells produced more effector cytokines in the presence of cognate antigen and DGKi. Effector TRP1high- and TRP1low-mediated cytolysis of tumor cells with low antigen load required antigen recognition, was mediated by interferon-γ, and augmented by DGKi. Adoptive T cell transfer into mice bearing pancreatic or melanoma tumors synergized with single-agent DGKi or DGKi and antiprogrammed cell death protein 1 (PD-1), with increased expansion of low-affinity T cells and increased cytokine production observed in tumors of treated mice. Collectively, our findings highlight DGKα/ζ as therapeutic targets for augmenting tumor-specific CD8 T cell function.
Collapse
Affiliation(s)
- Rakeeb Kureshi
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elisa Bello
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Courtney T.S. Kureshi
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael J. Walsh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Victoria Lippert
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Megan T. Hoffman
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Dougan
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Stephanie K. Dougan
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
13
|
Felten R, Ye T, Schleiss C, Schwikowski B, Sibilia J, Monneaux F, Dumortier H, Jonsson R, Lessard C, Ng F, Takeuchi T, Mariette X, Gottenberg JE. Identification of new candidate drugs for primary Sjögren's syndrome using a drug repurposing transcriptomic approach. Rheumatology (Oxford) 2023; 62:3715-3723. [PMID: 36869684 PMCID: PMC10629788 DOI: 10.1093/rheumatology/kead096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
OBJECTIVES To date, no immunomodulatory drug has demonstrated its efficacy in primary SS (pSS). We sought to analyse potential commonalities between pSS transcriptomic signatures and signatures of various drugs or specific knock-in or knock-down genes. METHODS Gene expression from peripheral blood samples of patients with pSS was compared with that of healthy controls in two cohorts and three public databases. In each of the five datasets, we analysed the 150 most up- and downregulated genes between pSS patients and controls with regard to the differentially expressed genes resulting from the biological action on nine cell lines of 2837 drugs, 2160 knock-in and 3799 knock-down genes in the Connectivity Map database. RESULTS We analysed 1008 peripheral blood transcriptomes from five independent studies (868 patients with pSS and 140 healthy controls). Eleven drugs could represent potential candidate drugs, with histone deacetylases and PI3K inhibitors among the most significantly associated. Twelve knock-in genes were associated with a pSS-like profile and 23 knock-down genes were associated with a pSS-revert profile. Most of those genes (28/35, 80%) were interferon-regulated. CONCLUSION This first drug repositioning transcriptomic approach in SS confirms the interest of targeting interferons and identifies histone deacetylases and PI3K inhibitors as potential therapeutic targets.
Collapse
Affiliation(s)
- Renaud Felten
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, France
- RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Strasbourg, France
| | - Tao Ye
- IGBMC, CNRS UMR7104, Inserm U1258, Université de Strasbourg, Illkirch, France
| | - Cedric Schleiss
- Laboratoire d’Immunologie, Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, France
| | - Benno Schwikowski
- Computational Systems Biomedicine Lab, Institut Pasteur, Paris, France
| | - Jean Sibilia
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Université de Strasbourg, Strasbourg, France
| | - Fanny Monneaux
- Laboratoire d’Immunologie, Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, France
| | - Hélène Dumortier
- Laboratoire d’Immunologie, Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, France
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christopher Lessard
- Department of Pathology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fai Ng
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Tsutomu Takeuchi
- Division of Rheumatology and Clinical Immunology, Keio University, Tokyo, Japan
| | - Xavier Mariette
- Service de Rhumatologie, Hôpital Bicètre, APHP, Université Paris-Saclay, Paris, France
| | - Jacques-Eric Gottenberg
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, Strasbourg, France
- RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Strasbourg, France
| |
Collapse
|
14
|
Khantakova JN, Sennikov SV. T-helper cells flexibility: the possibility of reprogramming T cells fate. Front Immunol 2023; 14:1284178. [PMID: 38022605 PMCID: PMC10646684 DOI: 10.3389/fimmu.2023.1284178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Various disciplines cooperate to find novel approaches to cure impaired body functions by repairing, replacing, or regenerating cells, tissues, or organs. The possibility that a stable differentiated cell can reprogram itself opens the door to new therapeutic strategies against a multitude of diseases caused by the loss or dysfunction of essential, irreparable, and specific cells. One approach to cell therapy is to induce reprogramming of adult cells into other functionally active cells. Understanding the factors that cause or contribute to T cell plasticity is not only of clinical importance but also expands the knowledge of the factors that induce cells to differentiate and improves the understanding of normal developmental biology. The present review focuses on the advances in the conversion of peripheral CD4+ T cells, the conditions of their reprogramming, and the methods proposed to control such cell differentiation.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), Novosibirsk, Russia
| | | |
Collapse
|
15
|
Mendez R, Shaikh M, Lemke MC, Yuan K, Libby AH, Bai DL, Ross MM, Harris TE, Hsu KL. Predicting small molecule binding pockets on diacylglycerol kinases using chemoproteomics and AlphaFold. RSC Chem Biol 2023; 4:422-430. [PMID: 37292058 PMCID: PMC10246554 DOI: 10.1039/d3cb00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 06/10/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are metabolic kinases involved in regulating cellular levels of diacylglycerol and phosphatidic lipid messengers. The development of selective inhibitors for individual DGKs would benefit from discovery of protein pockets available for inhibitor binding in cellular environments. Here we utilized a sulfonyl-triazole probe (TH211) bearing a DGK fragment ligand for covalent binding to tyrosine and lysine sites on DGKs in cells that map to predicted small molecule binding pockets in AlphaFold structures. We apply this chemoproteomics-AlphaFold approach to evaluate probe binding of DGK chimera proteins engineered to exchange regulatory C1 domains between DGK subtypes (DGKα and DGKζ). Specifically, we discovered loss of TH211 binding to a predicted pocket in the catalytic domain when C1 domains on DGKα were exchanged that correlated with impaired biochemical activity as measured by a DAG phosphorylation assay. Collectively, we provide a family-wide assessment of accessible sites for covalent targeting that combined with AlphaFold revealed predicted small molecule binding pockets for guiding future inhibitor development of the DGK superfamily.
Collapse
Affiliation(s)
- Roberto Mendez
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Minhaj Shaikh
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Kun Yuan
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Adam H Libby
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Mark M Ross
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville Virginia 22908 USA
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| |
Collapse
|
16
|
Kudek MR, Xin G, Alson D(T, Holzhauer S, Shen J, Kasmani MY, Riese M, Cui W. Lymphocytic Choriomeningitis Virus Clone 13 Infection Results in CD8 T Cell-Mediated Host Mortality in Diacylglycerol Kinase α-Deficient Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1281-1291. [PMID: 36920384 PMCID: PMC10121876 DOI: 10.4049/jimmunol.2101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Diacylglycerol is a potent element of intracellular secondary signaling cascades whose production is enhanced by cell-surface receptor agonism and function is regulated by enzymatic degradation by diacylglycerol kinases (DGKs). In T cells, stringent regulation of the activity of this second messenger maintains an appropriate balance between effector function and anergy. In this article, we demonstrate that DGKα is an indispensable regulator of TCR-mediated activation of CD8 T cells in lymphocytic choriomeningitis virus Clone 13 viral infection. In the absence of DGKα, Clone 13 infection in a murine model results in a pathologic, proinflammatory state and a multicellular immunopathologic host death that is predominantly driven by CD8 effector T cells.
Collapse
Affiliation(s)
- Matthew R. Kudek
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, and BMT. Medical College of Wisconsin, Milwaukee, WI, USA
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Gang Xin
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Current address: Department of Microbial Infection and Immunity. Ohio State University, Columbus, OH, USA
| | | | | | - Jian Shen
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Microbiology and Immunology. Medical College of Wisconsin, Milwaukee, WI USA
| | - Moujtaba Y. Kasmani
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Microbiology and Immunology. Medical College of Wisconsin, Milwaukee, WI USA
| | - Matthew Riese
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Medicine, Division of Oncology. Medical College of Wisconsin, Milwaukee, WI USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI, USA
- Department of Microbiology and Immunology. Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
17
|
Nabbi A, Danesh A, Espin-Garcia O, Pedersen S, Wellum J, Fu LH, Paulson JN, Geoerger B, Marshall LV, Trippett T, Rossato G, Pugh TJ, Hutchinson KE. Multimodal immunogenomic biomarker analysis of tumors from pediatric patients enrolled to a phase 1-2 study of single-agent atezolizumab. NATURE CANCER 2023; 4:502-515. [PMID: 37038005 PMCID: PMC10132976 DOI: 10.1038/s43018-023-00534-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/24/2023] [Indexed: 04/12/2023]
Abstract
We report herein an exploratory biomarker analysis of refractory tumors collected from pediatric patients before atezolizumab therapy (iMATRIX-atezolizumab, NCT02541604 ). Elevated levels of CD8+ T cells and PD-L1 were associated with progression-free survival and a diverse baseline infiltrating T-cell receptor repertoire was prognostic. Differential gene expression analysis revealed elevated expression of CALCA (preprocalcitonin) and CCDC183 (highly expressed in testes) in patients who experienced clinical activity, suggesting that tumor neoantigens from these genes may contribute to immune response. In patients who experienced partial response or stable disease, elevated Igα2 expression correlated with T- and B-cell infiltration, suggesting that tertiary lymphoid structures existed in these patients' tumors. Consensus gene co-expression network analysis identified core cellular pathways that may play a role in antitumor immunity. Our study uncovers features associated with response to immune-checkpoint inhibition in pediatric patients with cancer and provides biological and translational insights to guide prospective biomarker profiling in future clinical trials.
Collapse
Affiliation(s)
- Arash Nabbi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
- Dalla Lana School of Public Health and Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Pedersen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Johanna Wellum
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lingyan Helen Fu
- Clinical Biomarker Operations, Product Development Oncology, Genentech, South San Francisco, CA, USA
| | - Joseph N Paulson
- Department of Biostatistics, Product Development, Genentech, South San Francisco, CA, USA
| | - Birgit Geoerger
- Gustave Roussy Cancer Centre, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Lynley V Marshall
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, UK
| | - Tanya Trippett
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gianluca Rossato
- Product Development Clinical Oncology, F. Hoffmann-La Roche, Basel, Switzerland
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| | | |
Collapse
|
18
|
Kargar M, Torabizadeh M, Purrahman D, Zayeri ZD, Saki N. Regulatory factors involved in Th17/Treg cell balance of immune thrombocytopenia. Curr Res Transl Med 2023; 71:103389. [PMID: 37062251 DOI: 10.1016/j.retram.2023.103389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Immune thrombocytopenia is a common heterogeneous autoimmune disease that is characterized by decreasing peripheral blood platelet counts and increasing risk of bleeding. Studies have shown that an imbalance between T helper 17 (Th17) and Regulatory T (Treg) cells differentiated from CD4+T-cells is a key factor influencing the development and pathogenesis of immune thrombocytopenia. Th17 cells promote the development of chronic inflammatory disorders and induce autoimmune diseases, whereas Treg cells regulate immune homeostasis and prevent autoimmune diseases. Several regulators affecting the production and maintenance of these cells are also essential for proper regulation of Th17/Treg balance; these regulatory factors include cell surface proteins, miRNAs, and cytokine signaling. In this review, we focus on the function and role of balance between Th17 and Treg cells in immune thrombocytopenia, the regulatory factors, and therapeutic goals of this balance in immune thrombocytopenia.
Collapse
Affiliation(s)
- Masoud Kargar
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Torabizadeh
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
19
|
Zhou D, Liu T, Rao X, Jie X, Chen Y, Wu Z, Deng H, Zhang D, Wang J, Wu G. Targeting diacylglycerol kinase α impairs lung tumorigenesis by inhibiting cyclin D3. Thorac Cancer 2023; 14:1179-1191. [PMID: 36965165 PMCID: PMC10151139 DOI: 10.1111/1759-7714.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Diacylglycerol kinase α (DGKA) is the first member discovered from the diacylglycerol kinase family, and it has been linked to the progression of various types of tumors. However, it is unclear whether DGKA is linked to the development of lung cancer. METHODS We investigated the levels of DGKA in the lung cancer tissues. Cell growth assay, colony formation assay and EdU assay were used to examine the effects of DGKA-targeted siRNAs/shRNAs/drugs on the proliferation of lung cancer cells in vitro. Xenograft mouse model was used to investigate the role of DGKA inhibitor ritanserin on the proliferation of lung cancer cells in vivo. The downstream target of DGKA in lung tumorigenesis was identified by RNA sequencing. RESULTS DGKA is upregulated in the lung cancer cells. Functional assays and xenograft mouse model indicated that the proliferation ability of lung cancer cells was impaired after inhibiting DGKA. And cyclin D3(CCND3) is the downstream target of DGKA promoting lung cancer. CONCLUSIONS Our study demonstrated that DGKA promotes lung tumorigenesis by regulating the CCND3 expression and hence it can be considered as a potential molecular biomarker to evaluate the prognosis of lung cancer patients. What's more, we also demonstrated the efficacy of ritanserin as a promising new medication for treating lung cancer.
Collapse
Affiliation(s)
- Dong Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunshang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huilin Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Yachida N, Hoshino F, Murakami C, Ebina M, Miura Y, Sakane F. Saturated fatty acid- and/or monounsaturated fatty acid-containing phosphatidic acids selectively interact with heat shock protein 27. J Biol Chem 2023; 299:103019. [PMID: 36791913 PMCID: PMC10023972 DOI: 10.1016/j.jbc.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Diacylglycerol kinase (DGK) α, which is a key enzyme in the progression of cancer and, in contrast, in T-cell activity attenuation, preferentially produces saturated fatty acid (SFA)- and/or monounsaturated fatty acid (MUFA)-containing phosphatidic acids (PAs), such as 16:0/16:0-, 16:0/18:0-, and 16:1/16:1-PA, in melanoma cells. In the present study, we searched for the target proteins of 16:0/16:0-PA in melanoma cells and identified heat shock protein (HSP) 27, which acts as a molecular chaperone and contributes to cancer progression. HSP27 more strongly interacted with PA than other phospholipids, including phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, cardiolipin, phosphatidylinositol, phosphatidylinositol 4-monophosphate, and phosphatidylinositol 4,5-bisphosphate. Moreover, HSP27 is more preferentially bound to SFA- and/or MUFA-containing PAs, including 16:0/16:0- and 16:0/18:1-PAs, than PUFA-containing PAs, including 18:0/20:4- and 18:0/22:6-PA. Furthermore, HSP27 and constitutively active DGKα expressed in COS-7 cells colocalized in a DGK activity-dependent manner. Notably, 16:0/16:0-PA, but not phosphatidylcholine or 16:0/16:0-phosphatidylserine, induced oligomer dissociation of HSP27, which enhances its chaperone activity. Intriguingly, HSP27 protein was barely detectable in Jurkat T cells, while the protein band was intensely detected in AKI melanoma cells. Taken together, these results strongly suggest that SFA- and/or MUFA-containing PAs produced by DGKα selectively target HSP27 and regulate its cancer-progressive function in melanoma cells but not in T cells.
Collapse
Affiliation(s)
- Naoto Yachida
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Masayuki Ebina
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan.
| |
Collapse
|
21
|
A Focused Review of Ras Guanine Nucleotide-Releasing Protein 1 in Immune Cells and Cancer. Int J Mol Sci 2023; 24:ijms24021652. [PMID: 36675167 PMCID: PMC9864139 DOI: 10.3390/ijms24021652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.
Collapse
|
22
|
Modified lipidomic profile of cancer-associated small extracellular vesicles facilitates tumorigenic behaviours and contributes to disease progression. Adv Biol Regul 2023; 87:100935. [PMID: 36443198 DOI: 10.1016/j.jbior.2022.100935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Metabolic rewiring is a key feature of cancer cells, which involves the alteration of amino acids, glucose and lipids to support aggressive cancer phenotypes. Changes in lipid metabolism alter cancer growth characteristics, membrane integrity and signalling pathways. Small extracellular vesicles (sEVs) are membrane-bound vesicles secreted by cells into the extracellular environment, where they participate in cell-to-cell communication. Lipids are involved in the formation and cargo assortment of sEVs, resulting in their selective packaging in these vesicles. Further, sEVs participate in different aspects of cancer development, such as proliferation, migration and angiogenesis. Various lipidomic studies have indicated the enrichment of specific lipids in sEVs derived from tumour cells, which aid in their pathological functioning. This paper summarises how the modified lipid profile of sEVs contributes to carcinogenesis and disease progression.
Collapse
|
23
|
de Lima SCG, Fantacini DMC, Furtado IP, Rossetti R, Silveira RM, Covas DT, de Souza LEB. Genome Editing for Engineering the Next Generation of Advanced Immune Cell Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:85-110. [PMID: 37486518 DOI: 10.1007/978-3-031-33325-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.
Collapse
Affiliation(s)
- Sarah Caroline Gomes de Lima
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Izadora Peter Furtado
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Rossetti
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberta Maraninchi Silveira
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Eduardo Botelho de Souza
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
24
|
Velnati S, Centonze S, Rossino G, Purghè B, Antona A, Racca L, Mula S, Ruffo E, Malacarne V, Malerba M, Manfredi M, Graziani A, Baldanzi G. Wiskott-Aldrich syndrome protein interacts and inhibits diacylglycerol kinase alpha promoting IL-2 induction. Front Immunol 2023; 14:1043603. [PMID: 37138877 PMCID: PMC10149931 DOI: 10.3389/fimmu.2023.1043603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Background Phosphorylation of diacylglycerol by diacylglycerol-kinases represents a major inhibitory event constraining T cell activation upon antigen engagement. Efficient TCR signalling requires the inhibition of the alpha isoform of diacylglycerol kinase, DGKα, by an unidentified signalling pathway triggered by the protein adaptor SAP. We previously demonstrated that, in SAP absence, excessive DGKα activity makes the T cells resistant to restimulation-induced cell death (RICD), an apoptotic program counteracting excessive T cell clonal expansion. Results Herein, we report that the Wiskott-Aldrich syndrome protein (WASp) inhibits DGKα through a specific interaction of the DGKα recoverin homology domain with the WH1 domain of WASp. Indeed, WASp is necessary and sufficient for DGKα inhibition, and this WASp function is independent of ARP2/3 activity. The adaptor protein NCK-1 and the small G protein CDC42 connect WASp-mediated DGKα inhibition to SAP and the TCR signalosome. In primary human T cells, this new signalling pathway is necessary for a full response in terms of IL-2 production, while minimally affecting TCR signalling and restimulation-induced cell death. Conversely, in T cells made resistant to RICD by SAP silencing, the enhanced DAG signalling due to DGKα inhibition is sufficient to restore apoptosis sensitivity. Conclusion We discover a novel signalling pathway where, upon strong TCR activation, the complex between WASp and DGKα blocks DGKα activity, allowing a full cytokine response.
Collapse
Affiliation(s)
- Suresh Velnati
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Centonze
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
- Department of Heath Sciences, Università del Piemonte Orientale, Novara, Italy
- *Correspondence: Sara Centonze,
| | - Giulia Rossino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Beatrice Purghè
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Annamaria Antona
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
| | - Luisa Racca
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sabrina Mula
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Elisa Ruffo
- Department of Surgery and Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Valeria Malacarne
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Mario Malerba
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Respiratory Unit, Sant’Andrea Hospital, Vercelli, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Andrea Graziani
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC), University of Turin, Turin, Italy
| | - Gianluca Baldanzi
- Department of Translational Medicine, Universitàdel Piemonte Orientale, Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
25
|
Harabuchi S, Khan O, Bassiri H, Yoshida T, Okada Y, Takizawa M, Ikeda O, Katada A, Kambayashi T. Manipulation of diacylglycerol and ERK-mediated signaling differentially controls CD8 + T cell responses during chronic viral infection. Front Immunol 2022; 13:1032113. [PMID: 36846018 PMCID: PMC9951774 DOI: 10.3389/fimmu.2022.1032113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Activation of T cell receptor (TCR) signaling is critical for clonal expansion of CD8+ T cells. However, the effects of augmenting TCR signaling during chronic antigen exposure is less understood. Here, we investigated the role of diacylglycerol (DAG)-mediated signaling downstream of the TCR during chronic lymphocytic choriomeningitis virus clone 13 (LCMV CL13) infection by blocking DAG kinase zeta (DGKζ), a negative regulator of DAG. Methods We examined the activation, survival, expansion, and phenotype of virus-specific T cell in the acute and chronic phases of LCMV CL13-infected in mice after DGKζ blockade or selective activation of ERK. Results Upon LCMV CL13 infection, DGKζ deficiency promoted early short-lived effector cell (SLEC) differentiation of LCMV-specific CD8+ T cells, but this was followed by abrupt cell death. Short-term inhibition of DGKζ with ASP1570, a DGKζ-selective pharmacological inhibitor, augmented CD8+ T cell activation without causing cell death, which reduced virus titers both in the acute and chronic phases of LCMV CL13 infection. Unexpectedly, the selective enhancement of ERK, one key signaling pathway downstream of DAG, lowered viral titers and promoted expansion, survival, and a memory phenotype of LCMV-specific CD8+ T cells in the acute phase with fewer exhausted T cells in the chronic phase. The difference seen between DGKζ deficiency and selective ERK enhancement could be potentially explained by the activation of the AKT/mTOR pathway by DGKζ deficiency, since the mTOR inhibitor rapamycin rescued the abrupt cell death seen in virus-specific DGKζ KO CD8+ T cells. Discussion Thus, while ERK is downstream of DAG signaling, the two pathways lead to distinct outcomes in the context of chronic CD8+ T cell activation, whereby DAG promotes SLEC differentiation and ERK promotes a memory phenotype.
Collapse
Affiliation(s)
- Shohei Harabuchi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Omar Khan
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Hamid Bassiri
- Division of Infectious Diseases, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Taku Yoshida
- Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Japan
| | - Yohei Okada
- Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Japan
| | - Masaomi Takizawa
- Research Program Management-Applied Research Management, Astellas Pharma Inc., Tokyo, Japan
| | - Osamu Ikeda
- Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
Koike T. Development of Specific PET Tracers for Central Nervous System Drug Targets. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tatsuki Koike
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited
| |
Collapse
|
27
|
Kasmani MY, Ciecko AE, Brown AK, Petrova G, Gorski J, Chen YG, Cui W. Autoreactive CD8 T cells in NOD mice exhibit phenotypic heterogeneity but restricted TCR gene usage. Life Sci Alliance 2022; 5:5/10/e202201503. [PMID: 35667687 PMCID: PMC9170949 DOI: 10.26508/lsa.202201503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
Paired scRNA-seq and scTCR-seq reveals that diabetogenic CD8 T cells in the islets and spleens of NOD mice exhibit phenotypic and clonal heterogeneity despite restricted TCR gene usage. Expression of certain TCR genes correlates with clonal proliferation and effector phenotype. Type 1 diabetes (T1D) is an autoimmune disorder defined by CD8 T cell–mediated destruction of pancreatic β cells. We have previously shown that diabetogenic CD8 T cells in the islets of non-obese diabetic mice are phenotypically heterogeneous, but clonal heterogeneity remains relatively unexplored. Here, we use paired single-cell RNA and T-cell receptor sequencing (scRNA-seq and scTCR-seq) to characterize autoreactive CD8 T cells from the islets and spleens of non-obese diabetic mice. scTCR-seq demonstrates that CD8 T cells targeting the immunodominant β-cell epitope IGRP206-214 exhibit restricted TCR gene usage. scRNA-seq identifies six clusters of autoreactive CD8 T cells in the islets and six in the spleen, including memory and exhausted cells. Clonal overlap between IGRP206-214–reactive CD8 T cells in the islets and spleen suggests these cells may circulate between the islets and periphery. Finally, we identify correlations between TCR genes and T-cell clonal expansion and effector fate. Collectively, our work demonstrates that IGRP206-214–specific CD8 T cells are phenotypically heterogeneous but clonally restricted, raising the possibility of selectively targeting these TCR structures for therapeutic benefit.
Collapse
Affiliation(s)
- Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Ashley E Ciecko
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley K Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Galina Petrova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jack Gorski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA .,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA .,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
28
|
Takahashi D, Yonezawa K, Okizaki Y, Caaveiro JMM, Ueda T, Shimada A, Sakane F, Shimizu N. Ca 2+ -induced structural changes and intramolecular interactions in N-terminal region of diacylglycerol kinase alpha. Protein Sci 2022; 31:e4365. [PMID: 35762720 PMCID: PMC9202544 DOI: 10.1002/pro.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022]
Abstract
Diacylglycerol kinases (DGKs) are multi-domain lipid kinases that modulate the levels of lipid messengers, diacylglycerol, and phosphatidic acid. Recently, increasing attention has been paid to its α isozyme (DGKα) as a potential target for cancer immunotherapy. However, little progress has been made on the structural biology of DGKs, and a detailed understanding of the Ca2+ -triggered activation of DGKα, for which the N-terminal domains likely play a critical role, remains unclear. We have recently shown that Ca2+ binding to DGKα-EF induces conformational changes from a protease-susceptible "open" conformation in the apo state to a well-folded one in its holo state. Here, we further studied the structural properties of DGKα N-terminal (RVH and EF) domains using a series of biophysical techniques. We first revealed that the N-terminal RVH domain is a novel Ca2+ -binding domain, but the Ca2+ -induced conformational changes mainly occur in the EF domain. This was corroborated by NMR experiments showing that the EF domain adopts a molten-globule like structure in the apo state. Further analyses using SEC-SAXS and NMR indicate that the partially unfolded EF domain interacts with RVH domain, likely via hydrophobic interactions in the absence of Ca2+ , and this interaction is modified in the presence of Ca2+ . Taken together, these results present novel insights into the structural rearrangement of DGKα N-terminal domains upon binding to Ca2+ , which is essential for the activation of the enzyme.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
- Center for Digital Green‐Innovation (CDG)Nara Institute of Science and Technology (NAIST)IkomaJapan
| | - Yuki Okizaki
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Jose M. M. Caaveiro
- Department of Global Healthcare, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Tadashi Ueda
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of ScienceChiba UniversityChibaJapan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
| |
Collapse
|
29
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Okada N, Sugiyama K, Shichi S, Shirai Y, Goto K, Sakane F, Kitamura H, Taketomi A. Combination therapy for hepatocellular carcinoma with diacylglycerol kinase alpha inhibition and anti-programmed cell death-1 ligand blockade. Cancer Immunol Immunother 2022; 71:889-903. [PMID: 34482409 PMCID: PMC10991887 DOI: 10.1007/s00262-021-03041-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022]
Abstract
Activation of diacylglycerol kinase alpha (DGKα) augments proliferation and suppresses apoptosis of cancer cells and induces T lymphocyte anergy. We investigated the dual effects of DGKα inhibition on tumorigenesis and anti-tumor immunity with the aim of establishing a novel therapeutic strategy for cancer. We examined the effects of a DGKα inhibitor (DGKAI) on liver cancer cell proliferation and cytokine production by immune cells in vitro and on tumorigenesis and host immunity in a hepatocellular carcinoma (HCC) mouse model. Oral DGKAI significantly suppressed tumor growth and prolonged survival in model mice. Tumor infiltration of T cells and dendritic cells was also enhanced in mice treated with DGKAI, and the production of cytokines and cytotoxic molecules by CD4+ and CD8+ T cells was increased. Depletion of CD8+ T cells reduced the effect of DGKAI. Furthermore, interferon-γ stimulation augmented the expression of programmed cell death-1 ligand (PD-L1) on cancer cells, and DGKAI plus an anti-PD-L1 antibody strongly suppressed the tumor growth. These results suggest that DGKα inhibition may be a promising new treatment strategy for HCC.
Collapse
Affiliation(s)
- Naoki Okada
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ko Sugiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shunsuke Shichi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, N15 W7 Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
31
|
Immune Checkpoint Receptors Signaling in T Cells. Int J Mol Sci 2022; 23:ijms23073529. [PMID: 35408889 PMCID: PMC8999077 DOI: 10.3390/ijms23073529] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
The characterization of the receptors negatively modulating lymphocyte function is rapidly advancing, driven by success in tumor immunotherapy. As a result, the number of immune checkpoint receptors characterized from a functional perspective and targeted by innovative drugs continues to expand. This review focuses on the less explored area of the signaling mechanisms of these receptors, of those expressed in T cells. Studies conducted mainly on PD-1, CTLA-4, and BTLA have evidenced that the extracellular parts of some of the receptors act as decoy receptors for activating ligands, but in all instances, the tyrosine phosphorylation of their cytoplasmatic tail drives a crucial inhibitory signal. This negative signal is mediated by a few key signal transducers, such as tyrosine phosphatase, inositol phosphatase, and diacylglycerol kinase, which allows them to counteract TCR-mediated activation. The characterization of these signaling pathways is of great interest in the development of therapies for counteracting tumor-infiltrating lymphocyte exhaustion/anergy independently from the receptors involved.
Collapse
|
32
|
Granade ME, Manigat LC, Lemke MC, Purow BW, Harris TE. Identification of ritanserin analogs that display DGK isoform specificity. Biochem Pharmacol 2022; 197:114908. [PMID: 34999054 PMCID: PMC8858877 DOI: 10.1016/j.bcp.2022.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 11/15/2022]
Abstract
The diacylglycerol kinase (DGK) family of lipid enzymes catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). Both DAG and PA are lipid signaling molecules that are of notable importance in regulating cell processes such as proliferation, apoptosis, and migration. There are ten mammalian DGK enzymes that appear to have distinct biological functions. DGKα has emerged as a promising therapeutic target in numerous cancers including glioblastoma (GBM) and melanoma as treatment with small molecule DGKα inhibitors results in reduced tumor sizes and prolonged survival. Importantly, DGKα has also been identified as an immune checkpoint due to its promotion of T cell anergy, and its inhibition has been shown to improve T cell activation. There are few small molecule DGKα inhibitors currently available, and the application of existing compounds to clinical settings is hindered by species-dependent variability in potency, as well as concerns regarding isotype specificity particularly amongst other type I DGKs. In order to resolve these issues, we have screened a library of compounds structurally analogous to the DGKα inhibitor, ritanserin, in an effort to identify more potent and specific alternatives. We identified two compounds that more potently and selectively inhibit DGKα, one of which (JNJ-3790339) demonstrates similar cytotoxicity in GBM and melanoma cells as ritanserin. Consistent with its inhibitor profile towards DGKα, JNJ-3790339 also demonstrated improved activation of T cells compared with ritanserin. Together our data support efforts to identify DGK isoform-selective inhibitors as a mechanism to produce pharmacologically relevant cancer therapies.
Collapse
Affiliation(s)
- Mitchell E Granade
- University of Virginia, School of Medicine, Department of Pharmacology, Charlottesville, VA, United States
| | - Laryssa C Manigat
- University of Virginia, School of Medicine, Department of Pathology, Charlottesville, VA, United States
| | - Michael C Lemke
- University of Virginia, School of Medicine, Department of Pharmacology, Charlottesville, VA, United States
| | - Benjamin W Purow
- University of Virginia, Department of Neurology, Division of Neuro-Oncology, Charlottesville, VA, United States.
| | - Thurl E Harris
- University of Virginia, School of Medicine, Department of Pharmacology, Charlottesville, VA, United States.
| |
Collapse
|
33
|
Purow B. Delivering Glioblastoma a Kick-DGKα Inhibition as a Promising Therapeutic Strategy for GBM. Cancers (Basel) 2022; 14:cancers14051269. [PMID: 35267577 PMCID: PMC8909282 DOI: 10.3390/cancers14051269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022] Open
Abstract
Diacylglycerol kinase α (DGKα) inhibition may be particularly relevant for the treatment of glioblastoma (GBM), a relatively common brain malignancy incurable with current therapies. Prior reports have shown that DGKα inhibition has multiple direct activities against GBM cells, including suppressing the oncogenic pathways mTOR and HIF-1α. It also inhibits pathways associated with the normally treatment-resistant mesenchymal phenotype, yielding preferential activity against mesenchymal GBM; this suggests possible utility in combining DGKα inhibition with radiation and other therapies for which the mesenchymal phenotype promotes resistance. The potential for DGKα inhibition to block or reverse T cell anergy also suggests the potential of DGKα inhibition to boost immunotherapy against GBM, which is generally considered an immunologically "cold" tumor. A recent report indicates that DGKα deficiency increases responsiveness of macrophages, indicating that DGKα inhibition could also have the potential to boost macrophage and microglia activity against GBM-which could be a particularly promising approach given the heavy infiltration of these cells in GBM. DGKα inhibition may therefore offer a promising multi-pronged attack on GBM, with multiple direct anti-GBM activities and also the ability to boost both adaptive and innate immune responses against GBM. However, both the direct and indirect benefits of DGKα inhibition for GBM will likely require combinations with other therapies to achieve meaningful efficacy. Furthermore, GBM offers other challenges for the application of DGKα inhibitors, including decreased accessibility from the blood-brain barrier (BBB). The ideal DGKα inhibitor for GBM will combine potency, specificity, and BBB penetrability. No existing inhibitor is known to meet all these criteria, but the strong potential of DGKα inhibition against this lethal brain cancer should help drive development and testing of agents to bring this promising strategy to the clinic for patients with GBM.
Collapse
Affiliation(s)
- Benjamin Purow
- Neurology Department, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
34
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
35
|
Kano T, Tsumagari R, Nakashima A, Kikkawa U, Ueda S, Yamanoue M, Takei N, Shirai Y. RalA, PLD and mTORC1 Are Required for Kinase-Independent Pathways in DGKβ-Induced Neurite Outgrowth. Biomolecules 2021; 11:1814. [PMID: 34944458 PMCID: PMC8699322 DOI: 10.3390/biom11121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Diacylglycerol kinase β (DGKβ) is an enzyme that converts diacylglycerol to phosphatidic acid and is mainly expressed in the cerebral cortex, hippocampus and striatum. We previously reported that DGKβ induces neurite outgrowth and spinogenesis, contributing to higher brain functions, including emotion and memory. To elucidate the mechanisms involved in neuronal development by DGKβ, we investigated the importance of DGKβ activity in the induction of neurite outgrowth using human neuroblastoma SH-SY5Y cells. Interestingly, both wild-type DGKβ and the kinase-negative (KN) mutant partially induced neurite outgrowth, and these functions shared a common pathway via the activation of mammalian target of rapamycin complex 1 (mTORC1). In addition, we found that DGKβ interacted with the small GTPase RalA and that siRNA against RalA and phospholipase D (PLD) inhibitor treatments abolished DGKβKN-induced neurite outgrowth. These results indicate that binding of RalA and activation of PLD and mTORC1 are involved in DGKβKN-induced neurite outgrowth. Taken together with our previous reports, mTORC1 is a key molecule in both kinase-dependent and kinase-independent pathways of DGKβ-mediated neurite outgrowth, which is important for higher brain functions.
Collapse
Affiliation(s)
- Takuya Kano
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (T.K.); (R.T.); (S.U.); (M.Y.)
| | - Ryosuke Tsumagari
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (T.K.); (R.T.); (S.U.); (M.Y.)
| | - Akio Nakashima
- Division of Signal Functions, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan; (A.N.); (U.K.)
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ushio Kikkawa
- Division of Signal Functions, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan; (A.N.); (U.K.)
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (T.K.); (R.T.); (S.U.); (M.Y.)
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (T.K.); (R.T.); (S.U.); (M.Y.)
| | - Nobuyuki Takei
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan;
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (T.K.); (R.T.); (S.U.); (M.Y.)
| |
Collapse
|
36
|
Ware TB, Hsu KL. Advances in chemical proteomic evaluation of lipid kinases-DAG kinases as a case study. Curr Opin Chem Biol 2021; 65:101-108. [PMID: 34311404 PMCID: PMC8671151 DOI: 10.1016/j.cbpa.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Advancements in chemical proteomics and mass spectrometry lipidomics are providing new opportunities to understand lipid kinase activity, specificity, and regulation on a global cellular scale. Here, we describe recent developments in chemical biology of lipid kinases with a focus on those members that phosphorylate diacylglycerols. We further discuss future implications of how these mass spectrometry-based approaches can be adapted for studies of additional lipid kinase members with the aim of bridging the gap between protein and lipid kinase-focused investigations.
Collapse
Affiliation(s)
- Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
37
|
Manigat LC, Granade ME, Taori S, Miller CA, Vass LR, Zhong XP, Harris TE, Purow BW. Loss of Diacylglycerol Kinase α Enhances Macrophage Responsiveness. Front Immunol 2021; 12:722469. [PMID: 34804012 PMCID: PMC8603347 DOI: 10.3389/fimmu.2021.722469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
The diacylglycerol kinases (DGKs) are a family of enzymes responsible for the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). In addition to their primary function in lipid metabolism, DGKs have recently been identified as potential therapeutic targets in multiple cancers, including glioblastoma (GBM) and melanoma. Aside from its tumorigenic properties, DGKα is also a known promoter of T-cell anergy, supporting a role as a recently-recognized T cell checkpoint. In fact, the only significant phenotype previously observed in Dgka knockout (KO) mice is the enhancement of T-cell activity. Herein we reveal a novel, macrophage-specific, immune-regulatory function of DGKα. In bone marrow-derived macrophages (BMDMs) cultured from wild-type (WT) and KO mice, we observed increased responsiveness of KO macrophages to diverse stimuli that yield different phenotypes, including LPS, IL-4, and the chemoattractant MCP-1. Knockdown (KD) of Dgka in a murine macrophage cell line resulted in similar increased responsiveness. Demonstrating in vivo relevance, we observed significantly smaller wounds in Dgka-/- mice with full-thickness cutaneous burns, a complex wound healing process in which macrophages play a key role. The burned area also demonstrated increased numbers of macrophages. In a cortical stab wound model, Dgka-/- brains show increased Iba1+ cell numbers at the needle track versus that in WT brains. Taken together, these findings identify a novel immune-regulatory checkpoint function of DGKα in macrophages with potential implications for wound healing, cancer therapy, and other settings.
Collapse
Affiliation(s)
- Laryssa C. Manigat
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mitchell E. Granade
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Suchet Taori
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, United States
| | - Charlotte Anne Miller
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, United States
| | - Luke R. Vass
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Thurl E. Harris
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Benjamin W. Purow
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
38
|
Sakane F, Hoshino F, Ebina M, Sakai H, Takahashi D. The Roles of Diacylglycerol Kinase α in Cancer Cell Proliferation and Apoptosis. Cancers (Basel) 2021; 13:cancers13205190. [PMID: 34680338 PMCID: PMC8534027 DOI: 10.3390/cancers13205190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Diacylglycerol (DG) kinase (DGK) phosphorylates DG to generate phosphatidic acid (PA). DGKα is highly expressed in several refractory cancer cells, including melanoma, hepatocellular carcinoma, and glioblastoma cells, attenuates apoptosis, and promotes proliferation. In cancer cells, PA produced by DGKα plays an important role in proliferation/antiapoptosis. In addition to cancer cells, DGKα is highly abundant in T cells and induces a nonresponsive state (anergy), representing the main mechanism by which advanced cancers avoid immune action. In T cells, DGKα induces anergy through DG consumption. Therefore, a DGKα-specific inhibitor is expected to be a dual effective anticancer treatment that inhibits cancer cell proliferation and simultaneously activates T cell function. Moreover, the inhibition of DGKα synergistically enhances the anticancer effects of programmed cell death-1/programmed cell death ligand 1 blockade. Taken together, DGKα inhibition provides a promising new treatment strategy for refractory cancers. Abstract Diacylglycerol (DG) kinase (DGK) phosphorylates DG to generate phosphatidic acid (PA). The α isozyme is activated by Ca2+ through its EF-hand motifs and tyrosine phosphorylation. DGKα is highly expressed in several refractory cancer cells including melanoma, hepatocellular carcinoma, and glioblastoma cells. In melanoma cells, DGKα is an antiapoptotic factor that activates nuclear factor-κB (NF-κB) through the atypical protein kinase C (PKC) ζ-mediated phosphorylation of NF-κB. DGKα acts as an enhancer of proliferative activity through the Raf–MEK–ERK pathway and consequently exacerbates hepatocellular carcinoma progression. In glioblastoma and melanoma cells, DGKα attenuates apoptosis by enhancing the phosphodiesterase (PDE)-4A1–mammalian target of the rapamycin pathway. As PA activates PKCζ, Raf, and PDE, it is likely that PA generated by DGKα plays an important role in the proliferation/antiapoptosis of cancer cells. In addition to cancer cells, DGKα is highly abundant in T cells and induces a nonresponsive state (anergy), which represents the main mechanism by which advanced cancers escape immune action. In T cells, DGKα attenuates the activity of Ras-guanyl nucleotide-releasing protein, which is activated by DG and avoids anergy through DG consumption. Therefore, a DGKα-specific inhibitor is expected to be a dual effective anticancer treatment that inhibits cancer cell proliferation and simultaneously enhances T cell functions. Moreover, the inhibition of DGKα synergistically enhances the anticancer effects of programmed cell death-1/programmed cell death ligand 1 blockade. Taken together, DGKα inhibition provides a promising new treatment strategy for refractory cancers.
Collapse
Affiliation(s)
- Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
- Correspondence: ; Tel.: +81-43-290-3695
| | - Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
| | - Masayuki Ebina
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo 693-8501, Japan;
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
39
|
Hattori Y, Yamasaki T, Ohashi T, Miyanohana Y, Kusumoto T, Maeda R, Miyamoto M, Debori Y, Hata A, Zhang Y, Wakizaka H, Wakabayashi T, Fujinaga M, Yamashita R, Zhang MR, Koike T. Design, Synthesis, and Evaluation of 11C-Labeled 3-Acetyl-Indole Derivatives as a Novel Positron Emission Tomography Imaging Agent for Diacylglycerol Kinase Gamma (DGKγ) in Brain. J Med Chem 2021; 64:11990-12002. [PMID: 34347478 DOI: 10.1021/acs.jmedchem.1c00584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diacylglycerol kinase gamma (DGKγ) is a subtype of DGK enzyme, which catalyzes ATP-dependent conversion of diacylglycerol to phosphatidic acid. DGKγ, localized in the brain, plays an important role in the central nervous system. However, its function has not been widely investigated. Positron emission tomography (PET) imaging of DGKγ validates target engagement of therapeutic DGKγ inhibitors and investigates DGKγ levels under normal and disease conditions. In this study, we designed and synthesized a series of 3-acetyl indole derivatives as candidates for PET imaging agents for DGKγ. Among the synthesized compounds, 2-((3-acetyl-1-(6-methoxypyridin-3-yl)-2-methyl-1H-indol-5-yl)oxy)-N-methylacetamide (9) exhibited potent inhibitory activity (IC50 = 30 nM) against DGKγ and desirable physicochemical properties allowing efficient blood-brain barrier penetration and low levels of undesirable nonspecific binding. The radiolabeling of 9 followed by PET imaging of wild-type and DGKγ-deficient mice and rats indicated that [11C]9 ([11C]T-278) specifically binds to DGKγ and yields a high signal-to-noise ratio for DGKγ in rodent brains.
Collapse
Affiliation(s)
- Yasushi Hattori
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomohiro Ohashi
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuhei Miyanohana
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomokazu Kusumoto
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryouta Maeda
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Maki Miyamoto
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuyuki Debori
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akito Hata
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takeshi Wakabayashi
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryo Yamashita
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
40
|
Gu J, Wang C, Cao C, Huang J, Holzhauer S, Desilva H, Wesley EM, Evans DB, Benci J, Wichroski M, Wee S, Riese MJ. DGKζ exerts greater control than DGKα over CD8 + T cell activity and tumor inhibition. Oncoimmunology 2021; 10:1941566. [PMID: 34350062 PMCID: PMC8296965 DOI: 10.1080/2162402x.2021.1941566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Two isoforms of diacylglycerol kinases (DGKs), DGKα and DGKζ, are primarily responsible for terminating DAG-mediated activation of Ras and PKCθ pathways in T cells. A direct comparison of tumor growth between mice lacking each isoform has not been undertaken. We evaluated the growth of three syngeneic tumor cell lines in mice lacking either DGKα or DGKζ in the presence or absence of treatment with anti-PD1 and determined that (i) mice deficient in DGKζ conferred enhanced control of tumor relative to mice deficient in DGKα and (ii) deficiency of DGKζ acted additively with anti-PD1 in tumor control. Consistent with this finding, functional and RNA-sequencing analyses revealed greater changes in stimulated DGKζ-deficient T cells compared with DGKα-deficient T cells, which were enhanced relative to wildtype T cells. DGKζ also imparted greater regulation than DGKα in human T cells. Together, these data support targeting the ζ isoform of DGKs to therapeutically enhance T cell anti-tumor activity.
Collapse
Affiliation(s)
- Junchen Gu
- Oncology Translational Research, Janssen Research & Development, PA
| | - Cindy Wang
- Oncology Research, Janssen Pharmaceutical, Raritan, NJ
| | - Carolyn Cao
- Oncology Discovery, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Jinwen Huang
- Oncology Discovery, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Sandra Holzhauer
- A Division of Versiti, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Heshani Desilva
- Oncology Discovery, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Erin M Wesley
- A Division of Versiti, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Douglas B Evans
- Blood Research Institute, Blood Center of Wisconsin, a Division of Versiti, Milwaukee
| | - Joseph Benci
- Oncology Discovery, Bristol Myers Squibb, Princeton, NJ
| | - Michael Wichroski
- Oncology Discovery, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Susan Wee
- Oncology Discovery, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Matthew J Riese
- A Division of Versiti, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
41
|
Bozelli JC, Yune J, Takahashi D, Sakane F, Epand RM. Membrane morphology determines diacylglycerol kinase α substrate acyl chain specificity. FASEB J 2021; 35:e21602. [PMID: 33977628 DOI: 10.1096/fj.202100264r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Diacylglycerol kinases catalyze the ATP-dependent phosphorylation of diacylglycerol (DAG) to produce phosphatidic acid (PA). In humans, the alpha isoform (DGKα) has emerged as a potential target in the treatment of cancer due to its anti-tumor and pro-immune responses. However, its mechanism of action at a molecular level is not fully understood. In this work, a systematic investigation of the role played by the membrane in the regulation of the enzymatic properties of human DGKα is presented. By using a cell-free system with purified DGKα and model membranes of variable physical and chemical properties, it is shown that membrane physical properties determine human DGKα substrate acyl chain specificity. In model membranes with a flat morphology; DGKα presents high enzymatic activity, but it is not able to differentiate DAG molecular species. Furthermore, DGKα enzymatic properties are insensitive to membrane intrinsic curvature. However, in the presence of model membranes with altered morphology, specifically the presence of physically curved membrane structures, DGKα bears substrate acyl chain specificity for palmitic acid-containing DAG. The present results identify changes in membrane morphology as one possible mechanism for the depletion of specific pools of DAG as well as the production of specific pools of PA by DGKα, adding an extra layer of regulation on the interconversion of these two potent lipid-signaling molecules. It is proposed that the interplay between membrane physical (shape) and chemical (lipid composition) properties guarantee a fine-tuned signal transduction system dependent on the levels and molecular species of DAG and PA.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Jenny Yune
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| |
Collapse
|
42
|
Diacylglycerol Kinase alpha in X Linked Lymphoproliferative Disease Type 1. Int J Mol Sci 2021; 22:ijms22115816. [PMID: 34072296 PMCID: PMC8198409 DOI: 10.3390/ijms22115816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
Diacylglycerol kinases are intracellular enzymes that control the balance between the secondary messengers diacylglycerol and phosphatidic acid. DGKα and DGKζ are the prominent isoforms that restrain the intensity of T cell receptor signalling by metabolizing PLCγ generated diacylglycerol. Thus, their activity must be tightly controlled to grant cellular homeostasis and refine immune responses. DGKα is specifically inhibited by strong T cell activating signals to allow for full diacylglycerol signalling which mediates T cell response. In X-linked lymphoproliferative disease 1, deficiency of the adaptor protein SAP results in altered T cell receptor signalling, due in part to persistent DGKα activity. This activity constrains diacylglycerol levels, attenuating downstream pathways such as PKCθ and Ras/MAPK and decreasing T cell restimulation induced cell death. This is a form of apoptosis triggered by prolonged T cell activation that is indeed defective in CD8+ cells of X-linked lymphoproliferative disease type 1 patients. Accordingly, inhibition or downregulation of DGKα activity restores in vitro a correct diacylglycerol dependent signal transduction, cytokines production and restimulation induced apoptosis. In animal disease models, DGKα inhibitors limit CD8+ expansion and immune-mediated tissue damage, suggesting the possibility of using inhibitors of diacylglycerol kinase as a new therapeutic approach.
Collapse
|
43
|
Islam R, Pupovac A, Evtimov V, Boyd N, Shu R, Boyd R, Trounson A. Enhancing a Natural Killer: Modification of NK Cells for Cancer Immunotherapy. Cells 2021; 10:cells10051058. [PMID: 33946954 PMCID: PMC8146003 DOI: 10.3390/cells10051058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are potent innate immune system effector lymphocytes armed with multiple mechanisms for killing cancer cells. Given the dynamic roles of NK cells in tumor surveillance, they are fast becoming a next-generation tool for adoptive immunotherapy. Many strategies are being employed to increase their number and improve their ability to overcome cancer resistance and the immunosuppressive tumor microenvironment. These include the use of cytokines and synthetic compounds to bolster propagation and killing capacity, targeting immune-function checkpoints, addition of chimeric antigen receptors (CARs) to provide cancer specificity and genetic ablation of inhibitory molecules. The next generation of NK cell products will ideally be readily available as an “off-the-shelf” product and stem cell derived to enable potentially unlimited supply. However, several considerations regarding NK cell source, genetic modification and scale up first need addressing. Understanding NK cell biology and interaction within specific tumor contexts will help identify necessary NK cell modifications and relevant choice of NK cell source. Further enhancement of manufacturing processes will allow for off-the-shelf NK cell immunotherapies to become key components of multifaceted therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Rasa Islam
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Aleta Pupovac
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
| | - Vera Evtimov
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
| | - Nicholas Boyd
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
| | - Runzhe Shu
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
| | - Richard Boyd
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
| | - Alan Trounson
- Cartherics Pty Ltd., Clayton 3168, Australia; (R.I.); (A.P.); (V.E.); (N.B.); (R.S.); (R.B.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
- Correspondence:
| |
Collapse
|
44
|
Diacylglycerol kinase α inhibition cooperates with PD-1-targeted therapies to restore the T cell activation program. Cancer Immunol Immunother 2021; 70:3277-3289. [PMID: 33837851 DOI: 10.1007/s00262-021-02924-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Antibody-based therapies blocking the programmed cell death-1/ligand-1 (PD-1/PD-L1) axis have provided unprecedent clinical success in cancer treatment. Acquired resistance, however, frequently occurs, commonly associated with the upregulation of additional inhibitory molecules. Diacylglycerol kinase (DGK) α limits the extent of Ras activation in response to antigen recognition, and its upregulation facilitates hypofunctional, exhausted T cell states. Pharmacological DGKα targeting restores cytotoxic function of chimeric antigen receptor and CD8+ T cells isolated from solid tumors, suggesting a mechanism to reverse T cell exhausted phenotypes. Nevertheless, the contribution of DGKα downstream of the PD-1/PD-L1 inhibitory axis in human T cells and the consequences of combining DGKα and anti-PD-1/PD-L1 inhibitors are still unresolved relevant issues. MATERIALS AND METHODS We used a human triple parameter reporter cell line to investigate DGKα contribution to the PD-1/PD-L1 inhibitory pathway. We also addressed the impact of deleting DGKα expression in the growth dynamics and systemic tumor-derived effects of a PD-1-related tumor model, the MC38 colon adenocarcinoma. RESULTS We identify DGKα as a contributor to the PD-1/PD-L1 axis that strongly limits the Ras/ERK/AP-1 pathway. DGKα function reinforces exhausted T cell phenotypes ultimately promoting tumor growth and generalized immunosuppression. Pharmacological DGKα inhibition selectively enhances AP-1 transcription and, importantly, cooperates with antibodies blocking the PD-1/PD-L1 interrelation. CONCLUSIONS Our results indicate that DGKα inhibition could provide an important mechanism to revert exhausted T lymphocyte phenotypes and thus favor proper anti-tumor T cell responses. The cooperative effect observed after PD-1/PD-L1 and DGKα blockade offers a promising strategy to improve the efficacy of immunotherapy in the treatment of cancer.
Collapse
|
45
|
ElTanbouly MA, Noelle RJ. Rethinking peripheral T cell tolerance: checkpoints across a T cell's journey. Nat Rev Immunol 2021; 21:257-267. [PMID: 33077935 DOI: 10.1038/s41577-020-00454-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/10/2023]
Abstract
Following their exit from the thymus, T cells are endowed with potent effector functions but must spare host tissue from harm. The fate of these cells is dictated by a series of checkpoints that regulate the quality and magnitude of T cell-mediated immunity, known as tolerance checkpoints. In this Perspective, we discuss the mediators and networks that control the six main peripheral tolerance checkpoints throughout the life of a T cell: quiescence, ignorance, anergy, exhaustion, senescence and death. At the naive T cell stage, two intrinsic checkpoints that actively maintain tolerance are quiescence and ignorance. In the presence of co-stimulation-deficient T cell activation, anergy is a dominant hallmark that mandates T cell unresponsiveness. When T cells are successfully stimulated and reach the effector stage, exhaustion and senescence can limit excessive inflammation and prevent immunopathology. At every stage of the T cell's journey, cell death exists as a checkpoint to limit clonal expansion and to terminate unrestrained responses. Here, we compare and contrast the T cell tolerance checkpoints and discuss their specific roles, with the aim of providing an integrated view of T cell peripheral tolerance and fate regulation.
Collapse
Affiliation(s)
- Mohamed A ElTanbouly
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
46
|
Potential role of diacylglycerol kinases in immune-mediated diseases. Clin Sci (Lond) 2021; 134:1637-1658. [PMID: 32608491 DOI: 10.1042/cs20200389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The mechanism promoting exacerbated immune responses in allergy and autoimmunity as well as those blunting the immune control of cancer cells are of primary interest in medicine. Diacylglycerol kinases (DGKs) are key modulators of signal transduction, which blunt diacylglycerol (DAG) signals and produce phosphatidic acid (PA). By modulating lipid second messengers, DGK modulate the activity of downstream signaling proteins, vesicle trafficking and membrane shape. The biological role of the DGK α and ζ isoforms in immune cells differentiation and effector function was subjected to in deep investigations. DGK α and ζ resulted in negatively regulating synergistic way basal and receptor induced DAG signals in T cells as well as leukocytes. In this way, they contributed to keep under control the immune response but also downmodulate immune response against tumors. Alteration in DGKα activity is also implicated in the pathogenesis of genetic perturbations of the immune function such as the X-linked lymphoproliferative disease 1 and localized juvenile periodontitis. These findings suggested a participation of DGK to the pathogenetic mechanisms underlying several immune-mediated diseases and prompted several researches aiming to target DGK with pharmacologic and molecular strategies. Those findings are discussed inhere together with experimental applications in tumors as well as in other immune-mediated diseases such as asthma.
Collapse
|
47
|
Takao S, Akiyama R, Sakane F. Combined inhibition/silencing of diacylglycerol kinase α and ζ simultaneously and synergistically enhances interleukin-2 production in T cells and induces cell death of melanoma cells. J Cell Biochem 2021; 122:494-506. [PMID: 33399248 DOI: 10.1002/jcb.29876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
The α-isozyme of diacylglycerol kinase (DGK) enhances cancer cell proliferation and, conversely, it promotes the nonresponsive immune state known as T-cell anergy. Moreover, a DGKα-selective inhibitor, CU-3, induced cell death in cancer-derived cells and simultaneously enhanced T-cell interleukin-2 production. In addition to DGKα, DGKζ is also known to induce T-cell anergy. In the present study, we examined whether combined inhibition/silencing of DGKα and DGKζ synergistically enhanced T-cell activity. Combined treatment with CU-3 or DGKα-small interfering RNA (siRNA) and DGKζ-siRNA more potently enhanced T-cell receptor-crosslink-dependent interleukin-2 production in Jurkat T cells than treatment with either alone. Intriguingly, in addition to activating T cells, dual inhibition/silencing of DGKα and DGKζ synergistically reduced viability and increased caspase 3/7 activity in AKI melanoma cells. Taken together, these results indicate that combined inhibition/silencing of DGKα and DGKζ simultaneously and synergistically enhances interleukin-2 production in T cells and induces cell death in melanoma. Therefore, dual inhibition/silencing of these DGK isozymes represents an ideal therapy that potently attenuates cancer cell proliferation and simultaneously enhances immune responses that impact anticancer immunity.
Collapse
Affiliation(s)
- Saki Takao
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Rino Akiyama
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
48
|
Shenoy GN, Bhatta M, Loyall JL, Kelleher RJ, Bernstein JM, Bankert RB. Exosomes Represent an Immune Suppressive T Cell Checkpoint in Human Chronic Inflammatory Microenvironments. Immunol Invest 2020; 49:726-743. [PMID: 32299258 PMCID: PMC7554261 DOI: 10.1080/08820139.2020.1748047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: T cells present in chronic inflammatory tissues such as nasal polyps (from chronic rhinosinusitis patients) have been demonstrated to be hypo-responsive to activation via the TCR, similar to tumor-specific T cells in multiple different human tumor microenvironments. While immunosuppressive exosomes have been known to contribute to the failure of the tumor-associated T cells to respond optimally to activation stimuli, it is not known whether they play a similar role in chronic inflammatory microenvironments. In the current study, we investigate whether exosomes derived from chronic inflammatory microenvironments contribute to the immune suppression of T cells. Methods: Exosomes were isolated by ultracentrifugation and characterized by size and composition using nanoparticle tracking analysis, scanning electron microscopy, antibody arrays and flow exometry. Immunosuppressive ability of the exosomes was measured by quantifying its effect on activation of T cells, using nuclear translocation of NFκB as an activation endpoint. Results: Exosomes were isolated and characterized from two different types of chronic inflammatory tissues - nasal polyps from chronic rhinosinusitis patients and synovial fluid from rheumatoid arthritis patients. These exosomes arrest the activation of T cells stimulated via the TCR. This immune suppression, like that which is seen in tumor microenvironments, is dependent in part upon a lipid, ganglioside GD3, which is expressed on the exosomal surface. Conclusion: Immunosuppressive exosomes present in non-malignant chronic inflammatory tissues represent a new T cell checkpoint, and potentially represent a novel therapeutic target to enhance the response to current therapies and prevent disease recurrences.
Collapse
Affiliation(s)
- Gautam N Shenoy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | | | - Jenni L Loyall
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Raymond J Kelleher
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Joel M Bernstein
- Department of Otolaryngology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Richard B Bankert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
49
|
Nüssing S, Trapani JA, Parish IA. Revisiting T Cell Tolerance as a Checkpoint Target for Cancer Immunotherapy. Front Immunol 2020; 11:589641. [PMID: 33072137 PMCID: PMC7538772 DOI: 10.3389/fimmu.2020.589641] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of cancer. Nevertheless, the majority of patients do not respond to therapy, meaning a deeper understanding of tumor immune evasion strategies is required to boost treatment efficacy. The vast majority of immunotherapy studies have focused on how treatment reinvigorates exhausted CD8+ T cells within the tumor. In contrast, how therapies influence regulatory processes within the draining lymph node is less well studied. In particular, relatively little has been done to examine how tumors may exploit peripheral CD8+ T cell tolerance, an under-studied immune checkpoint that under normal circumstances prevents detrimental autoimmune disease by blocking the initiation of T cell responses. Here we review the therapeutic potential of blocking peripheral CD8+ T cell tolerance for the treatment of cancer. We first comprehensively review what has been learnt about the regulation of CD8+ T cell peripheral tolerance from the non-tumor models in which peripheral tolerance was first defined. We next consider how the tolerant state differs from other states of negative regulation, such as T cell exhaustion and senescence. Finally, we describe how tumors hijack the peripheral tolerance immune checkpoint to prevent anti-tumor immune responses, and argue that disruption of peripheral tolerance may contribute to both the anti-cancer efficacy and autoimmune side-effects of immunotherapy. Overall, we propose that a deeper understanding of peripheral tolerance will ultimately enable the development of more targeted and refined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|