1
|
He P, He C, Guo R, Ou Y, Chang Y, Xie Z, Tang X, Xu Y, Zhao Y, Wang H, Guo Z, Bai S, Chen Z, Fan F, Du G, Sun X. Tough and waterproof microneedles overcome mucosal immunotolerance by modulating antigen release patterns. J Control Release 2025; 382:113740. [PMID: 40250628 DOI: 10.1016/j.jconrel.2025.113740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Mucosal vaccines are considered an ideal choice for combating mucosal pathogens due to their ability to neutralize pathogens at the first line of defense. However, the development of mucosal subunit vaccines is constricted by rigorous challenges, such as low immunogenicity, poor antigen delivery efficiency, and mucosal tolerance. Here, a buccal microneedle patch incorporated with engineered nanoparticles loaded with urease B subunit (rUreB) was developed to overcome the above challenges. Specifically, an engineered nanocarrier was developed to protect the antigen and modulate its release profile. Then, the nanoparticles were enriched to form microneedle tips with superior mechanical and waterproof properties, allowing effective penetration of the buccal mucosa and resistance to salivary washout. Besides, the microneedles demonstrated an S-curve antigen release pattern which was crucial for the recruitment of antigen presenting cells (APCs) and the downregulation of mucosal tolerogenic DCs and Treg cells. The buccal microneedle vaccine without any immune stimulators induced potent systemic and mucosal immune responses, resulting in superior protection of mice from the oral challenge of Helicobacter pylori. These results suggested that the rationally designed buccal microneedle vaccine can effectively overcome mucosal delivery barriers and mucosal tolerance, providing a promising alternative strategy for mucosal vaccination of subunit antigens.
Collapse
Affiliation(s)
- Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yangsen Ou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Chang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanhua Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanhao Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhaofei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhengjun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fan Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Zou J, Cui W, Deng N, Li C, Yang W, Ye X, Yao F, Zhang T, Xiao J, Ma C, Wu L, Dong D, Chen J, Guo C, Liu A, Wu H. Fate reversal: Exosome-driven macrophage rejuvenation and bacterial-responsive drug release for infection immunotherapy in diabetes. J Control Release 2025; 382:113730. [PMID: 40250625 DOI: 10.1016/j.jconrel.2025.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Superficial surgical site infection (SSI) is a significant risk factor for the development of periprosthetic joint infection (PJI), particularly in diabetic patients. A high-glucose microenvironment is observed to compromise phagocytosis by inducing cellular senescence, which leads to impaired antibacterial immune function. Exosomes derived from umbilical cord stem cells (H-Exos) can reverse the immunosuppressive microenvironment by rejuvenating senescent cells, thereby terminating excessive, persistent, and ineffective inflammatory responses. Thus, a novel exosome-based immunotherapeutic antibacterial strategy to reverse fate is proposed. Vancomycin & lysostaphin-loaded exosomes are incorporated in a customizable microneedle patch (ExoV-ExoL@MN) for controlled release, enabling tailored treatments for diverse clinical scenarios. While rejuvenating macrophage senescent phenotype, the antibiotics encapsulated within exosomes can be responsively released by the hemolysin secreted by bacteria, triggering rapid bacterial killing. Post-infection clearance, they induce a shift from M1 to M2 macrophage polarization, thereby enhancing anti-inflammatory and reparative responses. Furthermore, the components can be mixed on demand and at any time, allowing for real-time customization and fabrication directly at the clinic (fabrication@clinic). This strategy reverses the immunosuppressive microenvironment by rejuvenating senescent macrophages and effectively combats bacterial invasion into deep tissues through bacteria-responsive antibiotic release, providing a promising approach for preventing and treating SSI-induced PJI.
Collapse
Affiliation(s)
- Jiaxuan Zou
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Wushi Cui
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou 310024, PR China
| | - Congsun Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Weinan Yang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Xiaojun Ye
- Department of Ultrasound, Hangzhou Women's Hospital, Hangzhou 310008, PR China
| | - Feng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Tao Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Jian Xiao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, The First People's Hospital of Jiashan, Jiaxing 314100, PR China
| | - Chiyuan Ma
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Lingfeng Wu
- Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Dahai Dong
- Department of Orthopedics, Suichang County People's Hospital in Zhejiang Province, Lishui 323300, PR China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, PR China.
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310024, PR China.
| | - An Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| | - Haobo Wu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| |
Collapse
|
3
|
Rajendran J, K J, M S S, Alluri LD, Giri J. Bioinspired silk protein modification to develop instant dissolvable microneedles with superior mechanical properties and long-term biomolecule stabilization. J Mater Chem B 2025. [PMID: 40390689 DOI: 10.1039/d4tb02836h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Dissolvable microneedles (DMNs) obtained from silk proteins have been considered most promising due to the biocompatibility, tuneable mechanical properties, and superior biomolecule stabilization properties of their silk matrix, required for cold chain-free storage and transport of therapeutic biomolecules and vaccines. However, despite their excellent potential, silk-based microneedles with instant dissolvability, superior mechanical properties, and storage stability have not yet been reported. Reported DMNs prepared with <5% silk concentration without β-sheets show poor mechanical and storage stability. Conversely, silk MNs prepared using <5% silk treated with an organic solvent or >5% silk may have sufficient mechanical properties but lose their instant dissolubility due to β-sheet formation during solvent treatment and storage, respectively. Thus, herein, we address these challenges for the first time via the biomimetic modification of silk proteins to mimic the molecular structure of human serum albumin (HSA) and silk protein molecules in the silk gland lumen of silkworms, resulting in high solubility and low viscosity. Our biomimetic modified silk (MS) allowed us to prepare DMNs in higher concentrations (>10% w/v up to 20% w/v) with a stabilizing agent (>10% w/v), exhibiting superior mechanical properties of >45 N and instant dissolvability even after 6 months of storage at RT without inducing β-sheet formation. Furthermore, MS-DMN facilitated the exceptional storage stability of platelet-rich plasma (PRP) with >80% retention for six months when stored at 4 °C or 25 °C and >90% at 40 °C at 75% RH for one month, as confirmed through in vitro cell proliferation assay, in ova (CAM assay), and in vivo diabetic wound studies. Thus, our novel biomimetic MS-DMN exhibits superior mechanical properties and exceptional biomolecule storage stability, enabling potential cold chain-free preservation and transportation for various biomedical applications.
Collapse
Affiliation(s)
- Jayakumar Rajendran
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| | - Jeyashree K
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| | - Sujith M S
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| | - Lalitha Devi Alluri
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Hyderabad, Telangana, 500028, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| |
Collapse
|
4
|
Ou M, Cao J, Luo R, Zhu B, Miao R, Yu L, Wang X, Li W, Fu Y, Zhang J, Zhang F, Wang Q, Mei L. Drug-loaded microneedle patches containing regulatory T cell-derived exosomes for psoriasis treatment. Acta Biomater 2025; 198:452-466. [PMID: 40210183 DOI: 10.1016/j.actbio.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperplasia, skin inflammation, and immune dysregulation. These factors contribute to the persistent progression of the disease. While addressing excessive keratinocyte proliferation or inhibiting inflammation may provide temporary therapeutic relief, unresolved immune dysregulation often exacerbates the condition. Therefore, comprehensive treatments that alleviate skin symptoms and regulate immune tolerance are urgently required. An ideal treatment would target multiple factors, including keratinocyte proliferation, inflammation, and immune tolerance, while minimizing systemic side effects. In this study, we developed a dissolvable hyaluronic acid microneedle patch containing regulatory T cell (Treg) exosomes loaded with dimethyl fumarate (DMF) (rExo@DMF MNs). DMF acts as an inhibitor of keratinocyte proliferation and an anti-inflammatory agent through NF-κB suppression and Nrf2 activation, inhibiting the production of pro-inflammatory cytokines and the activation of inflammatory cells. Delivering DMF via Treg exosomes enhances its retention at the lesion site. This system inhibits keratinocyte proliferation and migration, reduces pro-inflammatory cytokine release, and alleviates epidermal hyperplasia and inflammation in an imiquimod-induced psoriasis mouse model. Additionally, Treg exosomes modulate immune responses to promote tolerance. rExo@DMF MNs demonstrate immunomodulatory effects by inhibiting T helper 17 (Th17) cells and inducing regulatory immune cells such as Tregs and tolerogenic dendritic cells (tDCs) differentiation. rExo@DMF MNs alleviate skin symptoms and regulate immune cells in the skin, spleen, and lymph nodes, demonstrating both local and systemic immunoregulation with promising therapeutic potential for psoriasis. STATEMENT OF SIGNIFICANCE: Novel therapies are urgently needed to alleviate skin symptoms and regulate immunity, as current psoriasis treatments focus on symptom relief while neglecting the underlying immune dysfunction, resulting in limited efficacy. Moreover, systemic immunosuppression often leads to severe side effects. This study introduces a hybrid microneedle system (rExo@DMF MNs) that alleviates psoriasis symptoms and modulates immune responses locally and systemically. In addition, rExo@DMF MNs penetrate hyperkeratotic skin, ensuring targeted rExo@DMF release while minimizing systemic exposure and side effects. All components of the system, including hyaluronic acid (a key component of the skin matrix), regulatory T cell-derived exosomes, and DMF (a clinically validated drug), exhibit biocompatibility. This comprehensive approach addresses multiple pathogenic factors, promising an effective and safe psoriasis treatment.
Collapse
Affiliation(s)
- Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Jiahui Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Ran Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Baisong Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Rourou Miao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Liu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Xinyi Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Wen Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Yiqiu Fu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Jinxie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| | - Qiangsong Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
5
|
Wu P, Zhang T, Zhao D, Xie Y, Huang D, Li Z, Huang Y. Microneedle-Enabled Breakthroughs in Nucleic Acid Therapeutics. Adv Healthc Mater 2025:e2501015. [PMID: 40370139 DOI: 10.1002/adhm.202501015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Nucleic acid therapy demonstrates great potential in cancer treatment, infectious disease prevention, and vaccine development due to its advantages, such as rapid production, long-lasting effects, and high target specificity. Although nucleic acid therapy is considered ideal for the development of novel therapeutic strategies, its clinical application still faces numerous challenges, including the lack of efficient delivery systems, insufficient drug formulation stability, and the limitations imposed by the skin barrier on drug dosage delivery. Microneedles, as an innovative transdermal drug delivery technology, can penetrate the stratum corneum and directly access the skin's microcirculation, enabling the efficient delivery of genes and drugs. This technology offers several advantages, such as ease of operation, minimally invasive and painless application, and high safety. Combining microneedle technology with nucleic acid therapy fully leverages the strengths of both approaches, significantly enhancing therapeutic efficacy and bioavailability while maximizing treatment potential. This review explores the application prospects and advantages of combining microneedle delivery systems with nucleic acid therapy.
Collapse
Affiliation(s)
- Pengfei Wu
- School of Life Science, School of Interdisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical, Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Medical Engineering, School of Interdisciplinary Science, Affiliated Zhuhai People's Hospital, Beijing Institute of Technology, Zhuhai, 519088, P.R. China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250100, P.R. China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, 450040, P. R. China
| | - Tian Zhang
- School of Life Science, School of Interdisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical, Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Medical Engineering, School of Interdisciplinary Science, Affiliated Zhuhai People's Hospital, Beijing Institute of Technology, Zhuhai, 519088, P.R. China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250100, P.R. China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, 450040, P. R. China
| | - Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, 450000, P. R. China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Dong Huang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
- AciMicro Medical Technology, Guangzhou, 510700, P. R. China
| | - Zhihong Li
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Yuanyu Huang
- School of Life Science, School of Interdisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical, Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- School of Medical Engineering, School of Interdisciplinary Science, Affiliated Zhuhai People's Hospital, Beijing Institute of Technology, Zhuhai, 519088, P.R. China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250100, P.R. China
- Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou, 450040, P. R. China
| |
Collapse
|
6
|
Xiang W, Jiang X, Guo L. A Bibliometric Analysis of Microneedle-Mediated Drug Delivery: Trends, Hotspots, and Future Directions. Drug Des Devel Ther 2025; 19:3805-3825. [PMID: 40376038 PMCID: PMC12079042 DOI: 10.2147/dddt.s519048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/16/2025] [Indexed: 05/18/2025] Open
Abstract
Purpose Microneedles can physically penetrate the stratum corneum, creating micropores on the skin, and allowing for drug delivery through direct diffusion, injection, or other methods. As a novel drug delivery method, it possesses significant application potential. This study uses bibliometric analysis to explore the research hotspots and development trends of microneedle-mediated drug delivery. Methods Relevant research articles on microneedle-mediated drug delivery published between 1998 and 2024 in the Web of Science Core Collection (WoSCC) database were retrieved. Data analysis and visualization were performed using VOSviewer, CiteSpace, Scimago Graphica, and Pajek, enabling the prediction of research trends in microneedle-mediated drug delivery. Results In general, research on microneedle-mediated drug delivery has shown a continuous increase. China and the United States are the leading countries in this field of study. Notably, Ryan F. Donnelly (n=224) is the most prominent contributor to this field. The current core research directions include: disease treatment, enhancement of transdermal absorption performance of microneedles, vaccine delivery, and new materials and technologies for microneedle manufacturing. Conclusion Microneedle-mediated drug delivery, as a novel technology and method, holds significant research value and application potential. However, further strengthening of international collaboration and the clinical translation of research findings are needed.
Collapse
Affiliation(s)
- Weiyi Xiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Dis-Ease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Dis-Ease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Linghong Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Dis-Ease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
7
|
Malhotra S, Lijnse T, Cearbhaill EO, Brayden DJ. Devices to overcome the buccal mucosal barrier to administer therapeutic peptides. Adv Drug Deliv Rev 2025; 220:115572. [PMID: 40174726 DOI: 10.1016/j.addr.2025.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Peptide therapeutics are important in healthcare owing to their high target specificity, therapeutic efficacy, and relatively low side effect profile. Injections of these agents have improved thetreatment of chronic diseases including autoimmune, metabolic disorders, and cancer. However, their administration via injections can prove a barrier to patient acceptability of treatments. While oral delivery of these molecules is preferable, oral peptide formulations are associated with limited bioavailability due to degradation in the intestine and low epithelial permeability. Buccal administration of peptides is a potential alternative to injections and oral formulations. Similar to the oral route, the buccal route can promote better patient adherence to dosing regimens, along with the added advantages of not requiring restriction on food or drink consumption before and after administration, as well as avoidance of the liver first-pass metabolism. However, like oral, effective buccal absorption of peptides is still challenging due to the high epithelial permeability barrier. We present a multidisciplinary approach to understanding the buccal physiological barrier to macromolecule permeation and discuss how engineered devices may overcome it. Selected examples of buccal devices can facilitate fast and efficient macromolecule absorption through multiple mechanisms including physical disruption of epithelia, convection-based mass transfer, and a combination of physicochemical strategies. Importantly, minimally invasive devices can be self-applied and are associated with the maintenance of the barrier after exposure. We analysed the critical attributes that are required forthe clinical translation of buccal peptide administration devices. These include performance-driven device development, manufacturing features, patient acceptability, and commercial viability.
Collapse
Affiliation(s)
- Sahil Malhotra
- UCD School of Medicine, University College Dublin (UCD), -Belfield, Dublin 4, Ireland; Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - Thomas Lijnse
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; School of Mechanical and Materials Engineering, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - Eoin O' Cearbhaill
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; School of Mechanical and Materials Engineering, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - David J Brayden
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; UCD School of Veterinary Medicine, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Kenchegowda M, Angolkar M, Hani U, Al Fatease A, Fatima F, Talath S, Dera AA, Paramshetti S, Gangadharappa HV, Osmani RAM, Kazi HS. Polymeric microneedle advancements in macromolecule drug delivery: current trends, challenges, and future perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04117-8. [PMID: 40244451 DOI: 10.1007/s00210-025-04117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Microneedles (MNs) offer a transformative solution for delivering macromolecules, including proteins, RNA, and peptides. These are critical in treating complex diseases but face significant challenges such as immunogenicity, poor stability, high molecular weight, and delivery efficiency. Unlike conventional methods, MNs efficiently bypass biological barriers like the stratum corneum, enabling precise and minimally invasive transdermal drug delivery. This review explores various MN types such as solid, coated, hollow, hydrogel-forming, and dissolving and their therapeutic applications in cancer immunotherapy, diabetes management, and osteoporosis treatment. For instance, dissolving MNs have been employed for transdermal insulin delivery, enhancing patient compliance and therapeutic outcomes. Similarly, hydrogel MNs have shown promise in sustained drug release for immunotherapy applications. By addressing cost and scalability issues, polymeric MNs demonstrate significant potential for clinical translation, paving the way for innovations in macromolecule delivery, diagnostics, and personalised medicine. This review underscores the pivotal role of MNs in redefining drug delivery systems, offering improved efficacy, patient comfort, and accessibility.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | | | - Riyaz Ali M Osmani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al-Faraa, Abha, 62223, Saudi Arabia.
| | - Heena Shijauddin Kazi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| |
Collapse
|
9
|
Zhong H, Chen Z, Huang J, Yu X, Wang C, Zheng Y, Peng M, Yuan Z. Spray-drying-engineered CS/HA-bilayer microneedles enable sequential drug release for wound healing. J Mater Chem B 2025; 13:4819-4829. [PMID: 40152787 DOI: 10.1039/d5tb00121h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
High incidence and mortality rates of chronic wounds place a heavy burden on global healthcare systems. Achieving phased delivery of antimicrobial and regenerative drugs is crucial for promoting chronic wound healing. Herein, a microneedle (MN) patch with a biphasic release system was developed using a combination of solvent casting and spraying methods. Additionally, a copper/PDMS mold was introduced to address the issue of deformation in the chitosan material during drying on polydimethylsiloxane (PDMS). The MNs have a bilayer structure, with a hyaluronic acid (HA) coating loaded with doxycycline (DOX) for antibacterial action and a chitosan (CS) core loaded with vascular endothelial growth factor (VEGF) for promoting cell migration and proliferation. Notably, in vitro drug release studies showed that the coating drug was released by 98.8% within 10 hours, while the release of the core drug could be sustained for up to 70 hours. In vivo studies showed that chronic wounds on C57 mice treated with CS/HA-bilayer MNs achieved nearly complete healing by day 9. These wounds exhibited reduced inflammatory cell infiltration, increased epithelial tissue regeneration, and enhanced collagen deposition. This work integrates the staged management of bacterial infection and angiogenesis and offers promising prospects for enhancing chronic wound healing.
Collapse
Affiliation(s)
- Haowen Zhong
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zongyou Chen
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiahao Huang
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao Yu
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chengyong Wang
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yue Zheng
- Nanfang Hospital, Southern Medical University, Guangzhou, 510006, China
| | - Mengran Peng
- Department of Dermatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhishan Yuan
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
10
|
Liu Q, Zhao R, Zhang D, Lou Z, Wu J, Hou S, Yang B, Lu Y, Yuan M, Lin S, Wang T, Jin L, Zhang L. Biodegradable Microneedle Patch Confers Crocin with Outstanding Effects in the Treatment of Myocardial Infarction. ACS OMEGA 2025; 10:14176-14187. [PMID: 40256524 PMCID: PMC12004187 DOI: 10.1021/acsomega.4c11540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 04/22/2025]
Abstract
Crocin (CRO), the main active component of Crocus sativus (saffron), exhibits significant therapeutic potential for the treatment of myocardial infarction (MI). However, its clinical application is hindered by poor oral administration due to the intestinal barrier. To overcome this limitation, a CRO-incorporated biodegradable microneedle (CRO-DMN) patch was developed to transdermally deliver CRO into the bloodstream, enhancing its therapeutic effect against MI. The microneedle patch, fabricated from sodium hyaluronate (HA), demonstrated excellent mechanical strength, effectively penetrating the stratum corneum and facilitating CRO infiltration to a depth exceeding 300 μm successfully. Studies revealed that CRO was fully released within 30 min postapplication, and the skin self-healed within 90 min after patch removal. Importantly, administration of CRO-DMNs to MI mice resulted in significant improvements in cardiac function and reductions in infarct size compared with CRO treatment alone. Additionally, CRO-DMNs also provided superior protective effects on the myocardium and mitochondria and significantly increased angiogenesis in the infarction border area. In conclusion, CRO-DMNs represent a promising transdermal drug delivery system that effectively improves the therapeutic efficacy of CRO in the treatment of MI.
Collapse
Affiliation(s)
- Qian Liu
- School
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
- The
First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang
Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Rui Zhao
- School
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Danni Zhang
- School
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Zhaohuan Lou
- School
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Jiangyue Wu
- School
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Shiying Hou
- School
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Bin Yang
- School
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Yunyun Lu
- School
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Mengyao Yuan
- School
of Pharmaceutical Science, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Shudong Lin
- School
of Life Sciences, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| | - Tianlei Wang
- School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia 19104-6243, Pennsylvania, United States
| | - Liang Jin
- School
of Life Sciences, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
- Shanghai
Key Laboratory of Compound Chinese Medicines, The Ministry of Education
Key Laboratory for Standardization of Chinese Medicines, Institute
of Chinese Materia Medica, Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Zhang
- School
of Life Sciences, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
11
|
Zhu A, Ren H, Li X, Yang W, Han X, Hou X, Zhang S, Li S, Xie Y, Yu M, Chen Y, Xu H. Transdermal STING nano-agonists enhance multifaced functions of antigen-specific T cells triggered by sonodynamic cancer vaccination. NANO TODAY 2025; 61:102590. [DOI: 10.1016/j.nantod.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
12
|
Li L, Wang F, Mo S, Deng J, Wang X, Ai J, Xiao Y, Zeng Y, Li Q, Zhang Y, Cai L, Li Z. A Spatially Distributed Microneedle System for Bioorthogonal T Cell-Guided Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416841. [PMID: 39921874 PMCID: PMC11967824 DOI: 10.1002/advs.202416841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/01/2025] [Indexed: 02/10/2025]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents a promising strategy for cancer treatment. However, the diversity of solid tumor antigens and the poor infiltration of CAR-T cells significantly hinder the efficacy of CAR-T therapies against tumors. Here, a spatially distributed microneedle system (SDMNS) is developed that leverages bioorthogonal reactions to activate and guide endogenous T cells to tumors for effective destruction. The SDMNS consists of two dissolving microneedles, each loaded with complementary bioorthogonal groups and applied separately to lymph nodes and tumor sites. One microneedle loaded with two dibenzocyclooctyne (DBCO)-modified antibodies activates T cells and labels them with bioorthogonal groups in lymph nodes. The other microneedle, containing N-azidoacetylmannosamine-tetraacylated (Ac4ManNAz) for glycometabolic labeling of tumor cells, and the T cell chemotactic factor IP10, is applied directly to the tumor site. The in vivo studies demonstrate that SDMNS effectively directs the migration and infiltration of endogenous activated T cells into the tumors. Through a bioorthogonal click reaction, DBCO-modified T cells conjugate with azide (N3)-modified tumor cells, eliciting robust antitumor immune responses and durable immune memory. The SDMNS offers a novel strategy to overcomes tumor heterogeneity by facilitating the directed migration of endogenous T cells.
Collapse
Affiliation(s)
- Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- Dongguan Key Laboratory of Basic, Clinical and Digital Research on Common Orthopedic DiseasesDongguan523059China
| | - Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
| | - Shushan Mo
- College of Pharmaceutical ScienceKey Laboratory of Pharmaceutical Quality Control of Hebei ProvinceHebei UniversityBaoding071002China
| | - Junyao Deng
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510515China
| | - Xueyi Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
| | - Jiacong Ai
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510515China
| | - Yingxian Xiao
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510515China
| | - Yan Zeng
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
| | - Qishan Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510515China
| | - Yixin Zhang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
| | - Limin Cai
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- Dongguan Key Laboratory of Basic, Clinical and Digital Research on Common Orthopedic DiseasesDongguan523059China
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- Guangdong Provincial Key Laboratory of Cardiac Function and MicrocirculationGuangzhou510515China
| |
Collapse
|
13
|
Xian D, Luo R, Lin Q, Wang L, Feng X, Zheng Y, Lin L, Chi J, Yan Y, Quan G, Peng T, Xu Z, Wu C, Lu C. Epsilon-polylysine microneedle potentiating MXene-mediated photothermal ablation for combating antibiotic-resistant bacterial infections. Mater Today Bio 2025; 31:101498. [PMID: 39925715 PMCID: PMC11804737 DOI: 10.1016/j.mtbio.2025.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Antimicrobial peptides show promise in enhancing photothermal therapy, but their application is often limited by the challenge of constructing a delivery system that balances efficacy and safety. Our research demonstrated that the bactericidal efficacy of V2C MXene-mediated photothermal therapy is enhanced in a concentration-dependent relationship with the introduction and coating of the antimicrobial peptide ε-polylysine (EPL). EPL exhibited a dual role in enhancing bacterial binding and disrupting bacterial membranes, thereby increasing heat transfer efficiency and reducing bacterial resistance to photothermal ablation. The core strategy of this study was to exploit the combined membranolytic-photothermal effect of EPL and V2C by extensively applying EPL while regulating V2C nanosheets usage to prevent overheating. This approach aims to achieve potent bactericidal efficacy through photothermal therapy below 60 °C. Consequently, we developed dissolving microneedles incorporated with V2C nanosheets, where EPL served as the antimicrobial agent and primary matrix, increasing its loading capacity and minimizing the need for inactive excipients. Notably, this microneedle achieved a 99.9 % reduction in the abundance of methicillin-resistant Staphylococcus aureus on infected skin after a single application and resulted in a 92-fold reduction in the bacterial load compared to the group treated with commercial Bactroban ointment, with no apparent toxicity to the mice.
Collapse
Affiliation(s)
- Dongyi Xian
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Rui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Qiaoni Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
- Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, B-3000, Leuven, Belgium
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuwei Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiaying Chi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Yilang Yan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Zejun Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
- Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd., Guangzhou, 510515, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou, 511436, China
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
14
|
Ju HJ, Kim JY, Jeong DH, Lee MS, Kim GM, Bae JM, Lee JH. Additional Use of Hyaluronic Acid-Based Dissolving Microneedle Patches to Treat Psoriatic Plaques: A Randomized Controlled Trial. Ann Dermatol 2025; 37:105-113. [PMID: 40165568 PMCID: PMC11965877 DOI: 10.5021/ad.24.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/20/2024] [Accepted: 02/02/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Despite advances in systemic targeted therapies, topical agents remain the primary treatment for localized psoriasis. However, their therapeutic effects are often delayed and unsatisfactory. The dissolving microneedle (DMN) patch, a novel transdermal drug delivery system, enhances the absorption of topical agents through micro-channels. OBJECTIVE To evaluate the efficacy of DMN patches in enhancing drug delivery and improving clinical outcomes in psoriatic plaques. METHODS A prospective, randomized, split-body study was conducted to verify the efficacy of additional use of DMN patches after topical agent application in psoriasis treatment. Patients with mild psoriasis were enrolled and 6 paired lesions per patient were randomized into 3 groups: ointment-only, ointment-with-no needle patch, and ointment-with-DMN patch. Lesions were treated with a topical agent (betamethasone and calcipotriol) once daily for 2 weeks. Modified psoriasis area and severity index (mPASI) scores were measured weekly. In vitro and ex vivo experiments were performed to confirm micro-channel formation, microneedle dissolution, and drug penetration enhancement. RESULTS A total of 132 paired lesions from 22 patients were analyzed. The ointment-with-DMN patch group showed significantly improved mPASI scores (80.4%±20.5%; 5.42→1.06) compared to the ointment-with-no needle patch (64.6%±33.0%; 4.94→1.68) (p<0.05) and ointment-only groups (55.5%±31.4%; 5.00→2.15) (p<0.001). In vitro studies demonstrated 2.1-fold enhanced drug delivery with DMN patches, while ex vivo histological analysis confirmed micro-channel formation. No adverse events, including infection or psoriasis exacerbation, were observed. CONCLUSION The DMN patch is an effective adjunctive tool that enhances transdermal drug delivery and improves therapeutic outcomes in psoriatic plaques, particularly those refractory to topical agents. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02955576.
Collapse
Affiliation(s)
- Hyun Jeong Ju
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Yoon Kim
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - Gyong Moon Kim
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Min Bae
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hae Lee
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
15
|
He P, He C, Wu F, Ou Y, Luo S, Zhang Y, Chang Y, Guo Z, Tang X, Zhao Y, Xu Y, Wang H, Bai S, Du G, Sun X. Microneedle-delivered adeno-associated virus vaccine amplified anti-viral immunity by improving antigen-presenting cells infection. J Control Release 2025; 379:1045-1057. [PMID: 39875077 DOI: 10.1016/j.jconrel.2025.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Adeno-associated viruses (AAV) have significant potential as vaccine carriers due to their excellent biosafety and efficient antigen gene delivery. However, most AAV vaccines show limited capacity to transduce antigen-presenting cells (APCs) following intramuscular injection which may cause inadequate cellular immune responses and undesired side effects due to transducing other tissues or cells. Herein, we developed a soluble microneedle patch for targeting the AAV vaccines to the epidermal and dermal APCs. To preserve the biological activity of the AAV vaccine, the microneedles were fabricated via an optimized two-step low-temperature strategy and using 20 % trehalose as a protective agent. AAV serotype 8, which expresses the trimeric receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AAV8-RBD), remained 100 % biological activity after being loaded into the microneedles (MN-A8R). Upon a single-dose vaccination on the dorsal skin of mice, MN-A8R efficiently recruited APCs to the vaccination site and improved AAV8-RBD infection in APCs. Furthermore, MN-A8R prompted an increased formation of germinal centers in the draining lymph nodes. Compared to hypodermic needle-mediated intradermal injection, MN-A8R induced significantly stronger cellular immune responses and long-lasting, high-quality neutralizing antibodies. Importantly, MN-A8R demonstrated more comprehensive and robust cross-protection against three common SARS-CoV-2 pseudoviruses for at least six months. Our findings highlight the use of optimized polymeric microneedles for preserving AAV vaccine biological activity and enhancing the AAV vaccine efficacy by up-regulating APC infection.
Collapse
Affiliation(s)
- Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fuhua Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yangsen Ou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongshun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Chang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhaofei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanhao Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanhua Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Li Z, Wen X, Lu S, Zheng Y, Zhao P, Mu S, Wang X, Shi Y, Qu F, Chang H. Ice-pop making inspired photothermal ultra-swelling microneedles to facilitate loading and intradermal vaccination of tumor antigen. J Control Release 2025; 379:77-88. [PMID: 39756684 DOI: 10.1016/j.jconrel.2024.12.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Cancer vaccines hold great promise in the fight against cancer. Here, we report an ice-pop making inspired photothermal ultra-swelling microneedle (PUSMN) patch for facilitating and enhancing cancer vaccination. The PUSMN patch consist of an array of microneedles made from photo-crosslinked methacrylated hyaluronic acid and polydopamine, a near-infrared photothermal conversion material, connected to a customized resin handle like an ice-pop stick. Using a fabrication process similar to ice-pop making, the PUSMNs exhibit a rapid swelling ratio of over 2000 %, enabling straightforward and efficient loading of tumor antigen with just a 1-min incubation in the antigen solution, followed by 15 min of drying. The handle not only ensures convenient application but also guarantees full embedding of the PUSMNs in the skin after penetration. Under near-infrared irradiation, PUSMNs efficiently generate local heat, further promoting the activation and maturation of dendritic cells. In vivo vaccination with the model antigen ovalbumin using PUSMNs combined with near-infrared irradiation elicits robust tumor antigen-specific cellular and humoral immune responses, ultimately resulting in delayed tumor growth. Given its ease of use, efficiency, and safety features, this biocompatible PUSMN patch could greatly improve cancer vaccination.
Collapse
Affiliation(s)
- Zhiming Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xueyu Wen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shaojie Lu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanting Zheng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Puxuan Zhao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Sijia Mu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xin Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanan Shi
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Fengli Qu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
17
|
Gao F, Liu X, Ma Z, Tang M, Tang Z, Wu J, Luo M, Tang Y, Wang X, Wang B, Kim BYS, Yang Z, Jiang W, Tang P, Li C. An Integrated Modular Vaccination System for Spatiotemporally Separated Perioperative Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418322. [PMID: 39924759 DOI: 10.1002/adma.202418322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/24/2024] [Indexed: 02/11/2025]
Abstract
The perioperative period is crucial for determining postoperative tumor recurrence and metastasis. Various factors in postoperative lesions can diminish the therapeutic effect of conventional chemoradiotherapy, while emerging immunotherapy is restricted. The combination use of inflammatory inhibitors during treatment is also controversial. Here, a modular microneedle prepared from engineered keratin proteins is reported, which spatially and temporally differentiates the microenvironment of immune cell activation required for immunotherapy from that of wound healing. The recombinant keratin-84-T-based needle root layer, mainly retained in the epidermis, facilitated dendritic cell recruitment to achieve maximum antigen presentation of loaded vaccines. Meanwhile, the recombinant keratin-81-1Aα-based needle tip layer, located within the dermis, rapidly mitigated inflammatory responses while promoting tissue repair and regeneration. Unlike simply mixing immunotherapy and wound treatment, this spatiotemporal segmentation approach maximized the efficacy of immune therapeutics while promoting wound healing, making it suitable for application throughout the perioperative period.
Collapse
Affiliation(s)
- Feiyan Gao
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xinlong Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongyi Ma
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Mei Tang
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongjie Tang
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jin Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Chongqing, 400038, China
| | - Min Luo
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drug and Psychotropic Substance, Chongqing, 401121, China
| | - Yaqin Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing, 400054, China
| | - Xiaoyou Wang
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Wen Jiang
- Department of Radiation oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peng Tang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Chongqing, 400038, China
| | - Chong Li
- State Key Laboratory of Resource Insects, Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
18
|
Nguyen HX. Beyond the Needle: Innovative Microneedle-Based Transdermal Vaccination. MEDICINES (BASEL, SWITZERLAND) 2025; 12:4. [PMID: 39982324 PMCID: PMC11843882 DOI: 10.3390/medicines12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Vaccination represents a critical preventive strategy in the current global healthcare system, serving as an indispensable intervention against diverse pathogenic threats. Although conventional immunization relies predominantly on hypodermic needle-based administration, this method carries substantial limitations, including needle-associated fear, bloodborne pathogen transmission risks, occupational injuries among healthcare workers, waste management issues, and dependence on trained medical personnel. Microneedle technology has emerged as an innovative vaccine delivery system, offering convenient, effective, and minimally invasive administration. These microscale needle devices facilitate targeted antigen delivery to epidermal and dermal tissues, where abundant populations of antigen-presenting cells, specifically Langerhans and dermal dendritic cells, provide robust immunological responses. Multiple research groups have extensively investigated microneedle-based vaccination strategies. This transdermal delivery technique offers several advantages, notably circumventing cold-chain requirements and enabling self-administration. Numerous preclinical investigations and clinical trials have demonstrated the safety profile, immunogenicity, and patient acceptance of microneedle-mediated vaccine delivery across diverse immunization applications. This comprehensive review examines the fundamental aspects of microneedle-based immunization, including vaccination principles, transcutaneous immunization strategies, and microneedle-based transdermal delivery-including classifications, advantages, and barriers. Furthermore, this review addresses critical technical considerations, such as treatment efficacy, application methodologies, wear duration, dimensional optimization, manufacturing processes, regulatory frameworks, and sustainability considerations, followed by an analysis of the future perspective of this technology.
Collapse
Affiliation(s)
- Hiep X Nguyen
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
| |
Collapse
|
19
|
Hou Y, Guo X, Ran J, Lu X, Xie C. Conductive polyphenol microneedles coupled with electroacupuncture to accelerate wound healing and alleviate depressive-like behaviors in diabetes. Bioact Mater 2025; 44:516-530. [PMID: 39584064 PMCID: PMC11583732 DOI: 10.1016/j.bioactmat.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Inflammation and depression are serious complications of diabetes that interact to form a feedback loop and may hinder diabetic wound healing. They share a common pathophysiological basis of abnormal interactions between diabetic wounds and the brain. Here, we propose a strategy combining electroacupuncture (EA) stimulation of the Dazhui acupoint (GV14) with polyphenol-mediated conductive hydrogel microneedles to promote diabetic wound healing and alleviate depression through local wound-brain interactions. The conductive microneedles comprised methacrylated gelatin, dopamine (DA), DA-modified poly(3,4-ethylenedioxythiophene), and Lycium barbarum polysaccharide. EA at GV14 activated the vagus-adrenal axis to inhibit systemic inflammation while DA coupled electrical signals for long-term inhibition of local wound inflammation. EA at GV14 was also found to elevate 5-hydroxytryptamine levels in rats with diabetic wounds, consequently mitigating depressive-like behaviors. Additionally, the polyphenol-mediated conductive hydrogel microneedles, and coupled with EA stimulation promoted healing of wound tissue and peripheral nerves. This strategy regulated both local and systemic inflammation while alleviating depressive-like behaviors in diabetic rats, providing a new clinical perspective for the treatment of diabetes-related and emotional disorders.
Collapse
Affiliation(s)
- Yue Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiaochuan Guo
- Department of Rehabilitation Medicine, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | - Jinhui Ran
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
20
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2025; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
21
|
Chauhan SS, Prasad A, Venuganti VVK. Swellable Biopolymer Composite Microneedle Patch for Pain-Free Collection of Interstitial Fluid to Analyze Multiple Biomolecules. J Biomed Mater Res A 2025; 113:e37809. [PMID: 39400481 DOI: 10.1002/jbm.a.37809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Sampling of interstitial fluid (ISF) using microneedle (MN) patch offers a pain-free minimally invasive alternative to syringe needle-based blood sample collection. However, there is a challenge in the development of MN patch that provides swelling behavior with sufficient mechanical strength for skin penetration. Here, we report fabrication of MN patch made of biopolymer composite containing iota-carrageenan, gelatin, and polyethylene glycol. Calcium chloride was used as a crosslinker to improve mechanical strength. MN patch was characterized for integrity, swelling behavior, mechanical strength, aspiration of fluid from agarose gel, and the excised porcine ear skin. An array of 361 MNs was able to aspirate 36 ± 5 and 14 ± 1 μL fluid after application in agarose gel matrix and the ex vivo porcine skin model, respectively. MN patch applied in vivo rat model for 30 min resulted in the collection of ISF containing 267 ± 128 mg/dL, 24 ± 13 mg/dL, and 0.6 ± 0.4 mIU/mL of glucose, uric acid and thyroid stimulating hormone (TSH), respectively. The concentration of glucose, uric acid, and TSH in rat blood was found to be 199 ± 47 mg/dL, 8.4 ± 6 mg/dL, and 1.1 ± 0.6 mIU/mL at the same time. Furthermore, MN patch applied on the forearm of 10 healthy human volunteers for 30 min was able to aspirate 32 ± 14 μL of ISF. The concentration of glucose, uric acid, and TSH determined from ISF samples of human volunteers was 64 ± 25 mg/dL, 4.2 ± 4.1 mg/dL, and 0.16 ± 0.08 mIU/mL, respectively. The visual analogue scale (VAS) pain score after MN application was lower compared with hypodermic syringe needle insertion. Taken together, biopolymer composite-based swellable MN patch can be developed for collection of ISF for simultaneous determination of multiple biomolecules in a minimally invasive manner.
Collapse
Affiliation(s)
- Shreya Shashank Chauhan
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Aditi Prasad
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
22
|
Xu Y, Bian Q, Zhang Y, Zhang Y, Li D, Ma X, Wang R, Hu W, Hu J, Ye Y, Lin H, Zhang T, Gao J. Single-dose of integrated bilayer microneedles for enhanced hypertrophic scar therapy with rapid anti-inflammatory and sustained inhibition of myofibroblasts. Biomaterials 2025; 312:122742. [PMID: 39106821 DOI: 10.1016/j.biomaterials.2024.122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Hypertrophic scar (HS) tends to raised above skin level with high inflammatory microenvironment and excessive proliferation of myofibroblasts. The HS therapy remains challenging due to dense scar tissue which makes it hard to penetrate, and the side effects resulting from intralesional corticosteroid injection which is the mainstay treatment in clinic. Herein, bilayer microneedle patches combined with dexamethasone and colchicine (DC-MNs) with differential dual-release pattern is designed. Two drugs loaded in commercially available materials HA and PLGA, respectively. Specifically, after administration, outer layer rapidly releases the anti-inflammatory drug dexamethasone, which inhibits macrophage polarization to pro-inflammatory phenotype in scar tissue. Subsequently, inner layer degrades sustainedly, releasing antimicrotubular agent colchicine, which suppresses the overproliferation of myofibroblasts with extremely narrow therapeutic window, and inhibits the overexpression of collagen, as well as promotes the regular arrangement of collagen. Only applied once, DC-MNs directly delivered drugs to the scar tissue. Compared to traditional treatment regimen, DC-MNs significantly suppressed HS at lower dosage and frequency by differential dual-release design. Therefore, this study put forward the idea of integrated DC-MNs accompany the development of HS, providing a non-invasive, self-applicable, more efficient and secure strategy for treatment of HS.
Collapse
Affiliation(s)
- Yihua Xu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Bian
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yunting Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yukang Zhang
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dechang Li
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xiaolu Ma
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ruxuan Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Weitong Hu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jingyi Hu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuxian Ye
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hangjuan Lin
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315010, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315010, China; Jinhua Institute of Zhejiang University, Jinhua, 321000, China; Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Peng M, Heng Z, Ma D, Hou B, Yang K, Liu Q, Gu Z, Liu W, Chen S. Iontophoresis-Integrated Smart Microneedle Delivery Platform for Efficient Transdermal Delivery and On-Demand Insulin Release. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70378-70391. [PMID: 39668130 DOI: 10.1021/acsami.4c18381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Transdermal insulin delivery in a painless, convenient, and on-demand way remains a long-standing challenge. A variety of smart microneedles (MNs) fabricated by glucose-responsive phenylboronic acid hydrogels have been previously developed to provide painless and autonomous insulin release in response to a glucose level change. However, like the majority of MNs, their transdermal delivery efficiency was still relatively low compared to that with subcutaneous injection. Herein, we report an iontophoresis (ITP)-integrated smart MNs delivery platform with enhanced transdermal delivery efficiency and delivery depth. Carbon nanotubes (CNTs) were induced in the boronate-containing hydrogel to develop a semi-interpenetrating network hydrogel with enhanced stiffness and conductivity. Remarkably, ITP not only facilitated efficient and deeper transdermal delivery of insulin via electroosmosis and electrophoresis but also well-maintained glucose responsiveness. This ITP-combined smart MNs delivery platform, which could provide on-demand insulin delivery in a painless, convenient, and safe way, is promising to achieve persistent glycemic control. Furthermore, transdermal delivery of payloads with a wide size range was achieved by this delivery platform and thus shed light on the development of an efficient transdermal delivery platform with deep skin penetration in a minimally invasive way.
Collapse
Affiliation(s)
- Mingwei Peng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Ziwen Heng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Dewei Ma
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Bo Hou
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Keke Yang
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Qinglong Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
24
|
Liu M, Jiang J, Wang Y, Liu H, Lu Y, Wang X. Smart drug delivery and responsive microneedles for wound healing. Mater Today Bio 2024; 29:101321. [PMID: 39554838 PMCID: PMC11567927 DOI: 10.1016/j.mtbio.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Wound healing is an ongoing concern for the medical community. The limitations of traditional dressings are being addressed by materials and manufacturing technology. Microneedles (MNs) are a novel type of drug delivery system that has been widely used in cancer therapy, dermatological treatment, and insulin and vaccine delivery. MNs locally penetrate necrotic tissue, eschar, biofilm and epidermis into deep tissues, avoiding the possibility of drug dilution and degradation and greatly improving administration efficiency with less pain. MNs represent a new direction for wound treatment and transdermal delivery. In this study, we summarise the skin wound healing process and the mechanical stimulation of MNs in the context of the wound healing process. We also introduce the structural design and manufacture of MNs. Subsequently, MNs are categorised according to the loaded drugs, where the design of the MNs according to the traumatic biological/biochemical microenvironment (pH, glucose, and bacteria) and the physical microenvironment (temperature, light, and ultrasound) is emphasised. Finally, the advantages of MNs are compared with traditional drug delivery systems and their prospects are discussed.
Collapse
Affiliation(s)
- Meixuan Liu
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jing Jiang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yiran Wang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Huan Liu
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yiping Lu
- Senior once Class 5, Shanghai Pinghe School, Shanghai, 200000, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
25
|
Han J, Choi Y, Kang S. Synergistic Strategies of Biomolecular Transport Technologies in Transdermal Healthcare Systems. Adv Healthc Mater 2024; 13:e2401753. [PMID: 39087395 PMCID: PMC11616266 DOI: 10.1002/adhm.202401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Transdermal healthcare systems have gained significant attention for their painless and convenient drug administration, as well as their ability to detect biomarkers promptly. However, the skin barrier limits the candidates of biomolecules that can be transported, and reliance on simple diffusion poses a bottleneck for personalized diagnosis and treatment. Consequently, recent advancements in transdermal transport technologies have evolved toward active methods based on external energy sources. Multiple combinations of these technologies have also shown promise for increasing therapeutic effectiveness and diagnostic accuracy as delivery efficiency is maximized. Furthermore, wearable healthcare platforms are being developed in diverse aspects for patient convenience, safety, and on-demand treatment. Herein, a comprehensive overview of active transdermal delivery technologies is provided, highlighting the combination-based diagnostics, therapeutics, and theragnostics, along with the latest trends in platform advancements. This offers insights into the potential applications of next-generation wearable transdermal medical devices for personalized autonomous healthcare.
Collapse
Affiliation(s)
- Jieun Han
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Yi‐Jeong Choi
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seung‐Kyun Kang
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Interdisciplinary Program of BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Research Institute of Advanced Materials (RIAM)Seoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Nano Systems Institute SOFT FoundrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
26
|
Chakraborty C, Bhattacharya M, Lee SS. Current Status of Microneedle Array Technology for Therapeutic Delivery: From Bench to Clinic. Mol Biotechnol 2024; 66:3415-3437. [PMID: 37987985 DOI: 10.1007/s12033-023-00961-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, microneedle (MN) patches have emerged as an alternative technology for transdermal delivery of various drugs, therapeutics proteins, and vaccines. Therefore, there is an urgent need to understand the status of MN-based therapeutics. The article aims to illustrate the current status of microneedle array technology for therapeutic delivery through a comprehensive review. However, the PubMed search was performed to understand the MN's therapeutics delivery status. At the same time, the search shows the number no of publications on MN is increasing (63). The search was performed with the keywords "Coated microneedle," "Hollow microneedle," "Dissolvable microneedle," and "Hydrogel microneedle," which also shows increasing trend. Similarly, the article highlighted the application of different microneedle arrays for treating different diseases. The article also illustrated the current status of different phases of MN-based therapeutics clinical trials. It discusses the delivery of different therapeutic molecules, such as drug molecule delivery, using microneedle array technology. The approach mainly discusses the delivery of different therapeutic molecules. The leading pharmaceutical companies that produce the microneedle array for therapeutic purposes have also been discussed. Finally, we discussed the limitations and future prospects of this technology.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| |
Collapse
|
27
|
Ratanabanangkoon K. Effective production of snake antivenom by targeting epidermal dendritic cells via the 'low dose, low volume, multi-site' immunization. Toxicon 2024; 251:108156. [PMID: 39490816 DOI: 10.1016/j.toxicon.2024.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Snakebite envenomation (SBE) is a serious neglected tropical disease that affects about 3 million people every year and causes over 100,000 deaths annually, mostly in developing countries. WHO has pledged to cut in half the morbidity and mortality due to SBE by 2030. Animal plasma-derived antivenoms, produced mostly in horses and sheep, are the main treatment modality. However, for over a century, equine plasma antivenom production has faced many problems. These include: low neutralizing potency, failure of horses to develop a satisfactory immune response, and a long immunization period. These problems have led to antivenom shortages and higher costs resulting in otherwise avoidable morbidity and mortality in snake bite victims. Attempts have been made to improve the antivenom production process. For example, a number of adjuvants designed to improve the immune response have been tested. In 1997, an immunization protocol involving the use of multi-site, low-volume and venom doses was developed and is currently used in antivenom production. This protocol constituted a significant innovation that has resulted in highly potent antivenoms within much shortened immunization periods, with all the immunized horses responding and with much less venom immunogen used. It has resulted in an ample antivenom supply for use in Thailand and neighboring countries and has led to no reported deaths from snakebite in Thailand in the past few years. The effectiveness of this immunization protocol was the result of a strategy based on targeting dendritic cells which play a pivotal role in the immune response process. This communication summarizes the basis and results of this immunization strategy.
Collapse
Affiliation(s)
- Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
28
|
Dervisevic M, Harberts J, Sánchez-Salcedo R, Voelcker NH. 3D Polymeric Lattice Microstructure-Based Microneedle Array for Transdermal Electrochemical Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412999. [PMID: 39394738 DOI: 10.1002/adma.202412999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Microneedles (MNs) or microneedle arrays (MNAs) are critical components of minimally invasive devices comprised of a single or a series of micro-scale projections. MNs can bypass the outermost layer of the skin and painlessly access microcirculation of the epidermis and dermis layers, attracting great interest in the development of personalized healthcare monitoring and diagnostic devices. However, MN technology has not yet reached its full potential since current micro- and nanofabrication methods do not address the need of fabricating MNs with complex surfaces to facilitate the development of clinically adequate devices. This work presents a new approach that combines 3D printing technology based on two-photon polymerization with soft lithography for cost-effective and time-saving fabrication of complex MNAs. Specifically, this method relies on printing complex 3D objects efficiently replicated into polymeric substrates via soft lithography, resulting in a free-standing polymeric lattice (PL) membrane that can be transferred onto gold-coated MNs and used for electrochemical biosensing. This platform shows excellent electrochemical performance in detecting metabolite (glucose) and protein (insulin) biomarkers with a dynamic linear range sufficient for detecting biomarkers in healthy individuals and patients. The approach holds great potential for fabricating next-generationMNs, including their transfer into clinically adequate devices.
Collapse
Affiliation(s)
- Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
| | - Jann Harberts
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
| | - Raquel Sánchez-Salcedo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
29
|
Su T, Tang Z, Hu J, Zhu Y, Shen T. Innovative freeze-drying technique in the fabrication of dissolving microneedle patch: Enhancing transdermal drug delivery efficiency. Drug Deliv Transl Res 2024; 14:3112-3127. [PMID: 38431532 DOI: 10.1007/s13346-024-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Microneedle patch (MNP) has become a hot research topic in the field of transdermal drug delivery due to its ability to overcome the stratum corneum barrier. Among the various types of microneedles, dissolving microneedles represent one of the most promising transdermal delivery methods. However, the most used method for preparing dissolving microneedles, namely microfabrication, suffers from issues such as long drying time, susceptibility to humidity, and large batch-to-batch variability, which limit the development of dissolving microneedles. In this study, we report for the first time a method for preparing dissolving microneedles using freeze-drying technology. We screened substrates suitable for freeze-dried microneedle patch (FD-MNP) and used coating technology to enhance the mechanical strength of FD-MNP, allowing them to meet the requirements for skin penetration. We successfully prepared FD-MNP using hyaluronic acid as the substrate and insulin as the model drug. Scanning electron microscopy revealed that the microneedles had a porous structure. After coating, the mechanical strength of the microneedles was 0.61 N/Needle, and skin penetration rate was 97%, with a penetration depth of 215 μm. The tips of the FD-MNP dissolved completely within approximately 60 s after skin penetration, which is much faster than conventional MNP (180 s). In vitro transdermal experiments showed that the FD-MNP shortened the lag time for transdermal delivery of rhodamine 123 and insulin compared to conventional MNP, indicating a faster transdermal delivery rate. Pharmacological experiments showed that the FD-MNP lowered mouse blood glucose levels more effectively than conventional MNP, with a relative pharmacological availability of 96.59 ± 2.84%, higher than that of conventional MNP (84.34 ± 3.87%), P = 0.0095. After storage under 40℃ for two months, the insulin content within the FD-MNP remained high at 95.27 ± 4.46%, which was much higher than that of conventional MNP (58.73 ± 3.71%), P < 0.0001. In conclusion, freeze-drying technology is a highly valuable method for preparing dissolving microneedles with potential applications in transdermal drug delivery.
Collapse
Affiliation(s)
- Tong Su
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Zequn Tang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Jiayi Hu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Yuyu Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Teng Shen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China.
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
30
|
Yang M, Pan H, Chen T, Chen X, Ning R, Ye Q, Chen A, Li J, Li S, Zhao N, Wu Y, Fu X, Meek KM, Chen L, Wang X, Chen Z, Zhou X, Huang J. Customized Corneal Cross-Linking with Microneedle-Mediated Riboflavin Delivery for Keratoconus Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408136. [PMID: 39246198 DOI: 10.1002/adma.202408136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/18/2024] [Indexed: 09/10/2024]
Abstract
In this study, a novel customized corneal cross-linking (CXL) treatment is explored that utilizes microneedles (MNs) for targeted riboflavin (RF) administration prior to the CXL procedure. Unlike the conventional "one-size-fits-all" approach, this protocol offers an option for more precise and efficacious treatment. To simulate a customized corneal crosslinking technique, four distinct microneedle (MN) molds designs, including circular, semi-circular, annular and butterfly shaped, are crafted for loading an optimized RF-hyaluronic acid solution and for the subsequent fabrication of MN arrays with varying morphologies. These MNs can gently puncture the corneal epithelium while preserving the integrity of the underlying stromal layer. Following the application of these microneedles, RF solution is replenished to enhance the RF content within the stroma through the punctures created by the MNs, resulting in exceptional customized corneal cross-linking effects that are comparable to the conventional epi-off CXL protocol. Additionally, it flattened the corneal curvature within the treated zone and facilitated rapid postoperative recovery of corneal tissue. These findings suggest that the integration of customized microneedle RF delivery with corneal crosslinking technology represents a potential novel treatment modality, holding promise for the tailored treatment of corneal pathologies, and offering a more precise and efficient alternative to traditional methods.
Collapse
Affiliation(s)
- Mei Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Hongxian Pan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Tingting Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Rui Ning
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Qianfang Ye
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Aodong Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiawei Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Siheng Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Nan Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Yue Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Xueyu Fu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Keith M Meek
- School of Optometry and Vision Sciences, Cardiff Institute for Tissue Engineering and Repair School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Lingxin Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Xiaoying Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Fudan University, Shanghai, 200030, China
| |
Collapse
|
31
|
Zhou S, Chino Y, Kasama T, Miyake R, Mitsuzawa S, Luan Y, Ahmad NB, Hibino H, Takai M. Biocompatible Core-Shell Microneedle Sensor Filled with Zwitterionic Polymer Hydrogel for Rapid Continuous Transdermal Monitoring. ACS NANO 2024; 18:26541-26559. [PMID: 39297515 PMCID: PMC11447902 DOI: 10.1021/acsnano.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 10/02/2024]
Abstract
Microneedle (MN)-based electrochemical biosensors hold promising potential for noninvasive continuous monitoring of interstitial fluid biomarkers. However, challenges, such as instability and biofouling, exist. This study proposes a design employing hollow MN to encapsulate a zwitterionic polymer hydrogel sensing layer with excellent biocompatibility and antifouling properties to address these issues. MN shell isolates the internal microporous sensing layer from subcutaneous friction, and the hydrogel filling leverages the MNs' three-dimensional structures, enabling high-dense loading of biorecognition elements. The hollow MNs are successfully fabricated from high-molecular-weight polylactic acid via drawing lithography, exhibiting sufficient strength for effective epidermis penetration. Additionally, a high-performance gold nanoconductive layer is successfully deposited inside the MN hollow channel, establishing a stable electrical connection between the polymer MN and the hydrogel sensing layer. To support the design, numerical simulations of position-based diffusive analyte solutes reveal fast-responsive electrochemical signals attributed to the high diffusion coefficient of the hydrogel and the concentrated structure of the hollow channel encapsulation. Experimental results and numerical simulations underscore the advantages of this design, showcasing rapid response, high sensitivity, long-term stability, and excellent antifouling properties. Fabricated MN sensors exhibited biosafety, feasibility, and effectiveness, with accurate and rapid in vivo glucose monitoring ability. This study emphasizes the significance of rational design, structural utilization, and micro-nanofabrication to unlock the untapped potential of MN biosensors.
Collapse
Affiliation(s)
- Shicheng Zhou
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yutaro Chino
- Sanyo
Chemical Industries, Ltd., Kyoto 605-0995, Japan
| | - Toshihiro Kasama
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society,
Nagoya University, Nagoya 236-0027, Japan
| | - Ryo Miyake
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | | | - Yinan Luan
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Norzahirah Binti Ahmad
- Division
of Glocal Pharmacology, Department of Pharmacology, Graduate School
of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Hibino
- Division
of Glocal Pharmacology, Department of Pharmacology, Graduate School
of Medicine, Osaka University, Osaka 565-0871, Japan
- AMED-CREST,
AMED, Osaka 565-0871, Japan
| | - Madoka Takai
- Department
of Bioengineering, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
32
|
Nguyen TD, Nguyen TH, Vo VT, Nguyen TQ. Panoramic review on polymeric microneedle arrays for clinical applications. Biomed Microdevices 2024; 26:41. [PMID: 39312013 DOI: 10.1007/s10544-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 11/01/2024]
Abstract
Transdermal drug delivery (TDD) has significantly advanced medical practice in recent years due to its ability to prevent the degradation of substances in the gastrointestinal tract and avoid hepatic metabolism. Among different available approaches, microneedle arrays (MNAs) technology represents a fascinating delivery tool for enhancing TDD by penetrating the stratum corneum painless and minimally invasive for delivering antibacterial, antifungal, and antiviral medications. Polymeric MNAs are extensively utilized among many available materials due to their biodegradability, biocompatibility, and low toxicity. Therefore, this review provides a comprehensive discussion of polymeric MNAs, starting with understanding stratum corneum and developing MNA technology. Furthermore, the engineering concepts, fundamental considerations, challenges, and future perspectives of polymeric MNAs in clinical applications are properly outlined, offering a comprehensive and unique overview of polymeric MNAs and their potential for a broad spectrum of clinical applications.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Van Toi Vo
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam.
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam.
| |
Collapse
|
33
|
Ma Y, Dong J, Li M, Du X, Yan Z, Tian W. An antimicrobial microneedle patch promotes functional healing of infected wounds through controlled release of adipose tissue-derived apoptotic vesicles. J Nanobiotechnology 2024; 22:579. [PMID: 39304913 DOI: 10.1186/s12951-024-02845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024] Open
Abstract
The high incidence and mortality rates associated with acute and chronic wound infections impose a significant burden on global healthcare systems. In terms of the management of wound infection, the reconstruction and regeneration of skin appendages are essential for the recovery of mechanical strength and physiological function in the regenerated skin tissue. Novel therapeutic approaches are a requisite for enhancing the healing of infected wounds and promoting the regeneration of skin appendages. Herein, a novel antimicrobial microneedle patch has been fabricated for the transdermal controlled delivery of adipose tissue-derived apoptotic vesicles (ApoEVs-AT@MNP) for the treatment of infected wounds, which is expected to achieve high-quality scarless healing of the wound skin while inhibiting the bacteria in the infected wound. The microneedle patch (MNP) system possesses adequate mechanical strength to penetrate the skin, allowing the tips to remain inside tissue for continuous active release of biomolecules, and subsequently degrades safely within the host body. In vivo transplantation demonstrates that ApoEVs-AT@MNP not only inhibits bacterial proliferation in infected wounds but also significantly promotes effective and rapid scarless wound healing. Particularly noteworthy is the ability of ApoEVs-AT@MNP to promote the rapid formation of mature, evenly arranged hair follicles in infected wounds, observed as early as 8 days following implantation, which is essential for the restoration of skin function. This rapid development of skin appendages has not been reported this early in previous studies. Therefore, ApoEVs-AT@MNP has emerged as an excellent, painless, non-invasive, and highly promising treatment for infected wounds.
Collapse
Affiliation(s)
- Yue Ma
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China.
| | - Jia Dong
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China
| | - Maojiao Li
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinya Du
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China
| | - Zhengbin Yan
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China.
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Liu W, Hou B, Ma D, Peng M, Mao H, Liu W, Gu Z, Chen S. Virus mimicking liposomes incorporated microneedles delivery platform for efficient skin penetration and enhanced cellular uptake. J Drug Deliv Sci Technol 2024; 99:105953. [DOI: 10.1016/j.jddst.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
35
|
Shi Z, Gao Z, Zhuang X, Si X, Huang Z, Di Y, Ma S, Guo Z, Li C, Jin N, Huang L, Tian M, Song W, Chen X. Dynamic Covalent Hydrogel as a Single-Dose Vaccine Adjuvant for Sustained Antigen Release and Significantly Elevated Humoral Immunity. Adv Healthc Mater 2024; 13:e2400886. [PMID: 38824421 DOI: 10.1002/adhm.202400886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Vaccine is the most important way for fighting against infection diseases. However, multiple injections and unsatisfied immune responses are the main obstacles for current vaccine application. Herein, a dynamic covalent hydrogel (DCH) is used as a single-dose vaccine adjuvant for eliciting robust and sustained humoral immunity. By adjusting the mass ratio of the DCH gel, 10-30 d constant release of the loaded recombinant protein antigens is successfully realized, and it is proved that sustained release of antigens can significantly improve the vaccine efficacy. When loading SARS-CoV-2 RBD (Wuhan and Omicron BA.1 strains) antigens into this DCH gel, an over 32 000 times and 8000 times improvement is observed in antigen-specific antibody titers compared to conventional Aluminum adjuvanted vaccines. The universality of this DCH gel adjuvant is confirmed in a Nipah G antigen test as well as a H1N1 influenza virus antigen test, with much improved protection of C57BL/6 mice against H1N1 virus infection than conventional Aluminum adjuvanted vaccines. This sustainably released, single-dose DCH gel adjuvant provides a new promising option for designing next-generation infection vaccines.
Collapse
MESH Headings
- Animals
- Hydrogels/chemistry
- Mice, Inbred C57BL
- Mice
- Immunity, Humoral/drug effects
- Influenza A Virus, H1N1 Subtype/immunology
- SARS-CoV-2/immunology
- Antigens, Viral/immunology
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Vaccine/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/administration & dosage
- Female
- Humans
- Influenza Vaccines/immunology
- Influenza Vaccines/chemistry
- Influenza Vaccines/administration & dosage
Collapse
Affiliation(s)
- Zhiyuan Shi
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zihan Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Zichao Huang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yaxin Di
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, 27599, USA
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Wantong Song
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
36
|
Wu X, Pan Y, Li X, Shao Y, Peng B, Zhang C, Zhang C, Yao S, Ping J, Ying Y. Rapid and In-Field Sensing of Hydrogen Peroxide in Plant by Hydrogel Microneedle Patch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402024. [PMID: 38766989 DOI: 10.1002/smll.202402024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Indexed: 05/22/2024]
Abstract
The rapidly changing climate is exacerbating the environmental stress that negatively impacts crop health and yield. Timely sensing of plant response to stress is beneficial to timely adjust planting conditions, promoting the healthy growth of plants, and improving plant productivity. Hydrogen peroxide (H2O2) is an important molecule of signal transduction in plants. However, the common methods for detecting H2O2 in plants are associated with certain drawbacks, such as long extraction time, cumbersome steps, dependence on large instruments, and difficulty in realizing in-field sensing. Therefore, it is urgent to establish more efficient detection methods to realize the rapid detection of H2O2 content in plants. In this research, poly (methyl vinyl ether-alt-maleic acid) (PMVE/MA) hydrogel microneedle (MN) patch for rapid extraction of leaf sap are prepared, and the extraction mechanism of PEG-crosslinked PMVE/MA hydrogel MN patch is studied. A method of rapid detection of H2O2 content in plants based on MN patch with optical detection technology is constructed. The hydrogel MN patch can be used for timely H2O2 analysis. This application enables new opportunities in plant engineering, and can be extended to the safety and health monitoring of other plants and animals.
Collapse
Affiliation(s)
- Xinyue Wu
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuxiang Pan
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Xunjia Li
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bo Peng
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Chao Zhang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Chi Zhang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shiyun Yao
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, P. R. China
| |
Collapse
|
37
|
Wen Y, Deng S, Wang T, Gao M, Nan W, Tang F, Xue Q, Ju Y, Dai J, Wei Y, Xue F. Novel strategy for Poxviridae prevention: Thermostable combined subunit vaccine patch with intense immune response. Antiviral Res 2024; 228:105943. [PMID: 38909959 DOI: 10.1016/j.antiviral.2024.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Poxviruses gained international attention due to the sharp rise in monkeypox cases in recent years, highlighting the urgent need for the development of a secure and reliable vaccine. This study involved the development of an innovative combined subunit vaccine (CSV) targeting poxviruses, with lumpy skin disease virus (LSDV) serving as the model virus. To this end, the potential sites for poxvirus vaccines were fully evaluated to develop and purify four recombinant proteins. These proteins were then successfully delivered to the dermis in a mouse model by utilizing dissolvable microneedle patches (DMPs). This approach simplified the vaccination procedure and significantly mitigated the associated risk. CSV-loaded DMPs contained four recombinant proteins and a novel adjuvant, CpG, which allowed DMPs to elicit the same intensity of humoral and cellular immunity as subcutaneous injection. Following immunization with SC and DMP, the mice exhibited notable levels of neutralizing antibodies, albeit at a low concentration. It is noteworthy that the CSV loaded into DMPs remained stable for at least 4 months at room temperature, effectively addressing the storage and transportation challenges. Based on the study findings, CSV-loaded DMPs are expected to be utilized worldwide as an innovative technique for poxvirus inoculation, especially in underdeveloped regions. This novel strategy is crucial for the development of future poxvirus vaccines.
Collapse
MESH Headings
- Animals
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Mice
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Poxviridae Infections/prevention & control
- Poxviridae Infections/immunology
- Female
- Poxviridae/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Mice, Inbred BALB C
- Lumpy skin disease virus/immunology
- Vaccination
- Immunity, Cellular
- Immunity, Humoral
- Recombinant Proteins/immunology
- Recombinant Proteins/administration & dosage
- Adjuvants, Vaccine/administration & dosage
- Adjuvants, Immunologic/administration & dosage
Collapse
Affiliation(s)
- Yuan Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China
| | - Shuyue Deng
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianmin Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China
| | - Mengtian Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China
| | - Wenlong Nan
- Laboratory of Diagnostics Development, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, 266032, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, 830099, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, 572025, China.
| |
Collapse
|
38
|
Ramadon D, Karn PR, Anjani QK, Kim MH, Cho DY, Hwang H, Kim DH, Kim DH, Kim G, Lee K, Eum JH, Im JY, Aileen V, Hamda OT, Donnelly RF. Development of ropivacaine hydrochloride-loaded dissolving microneedles as a local anesthetic agent: A proof-of-concept. Int J Pharm 2024; 660:124347. [PMID: 38885777 DOI: 10.1016/j.ijpharm.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Ropivacaine hydrochloride (RPL) is a local anesthetic agent that has been widely used for the treatment of pain during or after surgery. However, this drug is only available in parenteral dosage form and may contribute to the infiltration of RPL into the plasma, causing some undesirable side effects. Intradermal delivery of RPL using dissolving microneedles may become a promising strategy to deliver such drugs into the skin. This research aimed to develop RPL-loaded dissolving microneedles (DMN-RPLs) as a proof of the concept of intradermal delivery of a local anesthetic. The DMN-RPLs were fabricated using either centrifugation or air-pressurized chamber methods. Several polymers, such as poly(vinyl pyrrolidone) (PVP), poly(vinyl alcohol) (PVA), and sodium hyaluronate (SH), were utilized for manufacturing the DMN-RPLs. The prepared DMN-RPLs were assessed for their thermal properties, chemical bonds, mechanical strength, insertion ability, skin-dissolution study, and drug content. Furthermore, in-skin deposition and dermatokinetic studies were also performed. The results showed that F9 (30 % w/w PVP-4 % w/w SH) and F10 (30 % w/w PVP-5 % w/w PVA) containing 5 % w/w of RPL were the most promising formulations, as shown by their needle height reduction (<10 %) and insertion depth (∼400 μm). Both formulations were also able to deliver more than 60 % of the RPL contained in the DMNs into the epidermis, dermis, and receiver compartment. This study, for the first time, has provided a proof concept to deliver RPL as a local anesthetic using DMNs and the intradermal route, aiming to minimize pain and discomfort during administration and improve the patient's experience.
Collapse
Affiliation(s)
- Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
| | - Pankaj Ranjan Karn
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Qonita Kurnia Anjani
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Min-Hwan Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Youl Cho
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Hana Hwang
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Da Hye Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Dong Hwan Kim
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Gwanyoung Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungmin Lee
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd., Yongin-si 17028, Republic of Korea
| | - Jae Hong Eum
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ji Yeon Im
- Daewoong Therapeutics INC., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Vania Aileen
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Okto Tri Hamda
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Ryan F Donnelly
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
39
|
Zhang W, Qin X, Li G, Zhou X, Li H, Wu D, Song Y, Zhao K, Wang K, Feng X, Tan L, Wang B, Sun X, Wen Z, Yang C. Self-powered triboelectric-responsive microneedles with controllable release of optogenetically engineered extracellular vesicles for intervertebral disc degeneration repair. Nat Commun 2024; 15:5736. [PMID: 38982049 PMCID: PMC11233569 DOI: 10.1038/s41467-024-50045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Excessive exercise is an etiological factor of intervertebral disc degeneration (IVDD). Engineered extracellular vesicles (EVs) exhibit excellent therapeutic potential for disease-modifying treatments. Herein, we fabricate an exercise self-powered triboelectric-responsive microneedle (MN) assay with the sustainable release of optogenetically engineered EVs for IVDD repair. Mechanically, exercise promotes cytosolic DNA sensing-mediated inflammatory activation in senescent nucleus pulposus (NP) cells (the master cell population for IVD homeostasis maintenance), which accelerates IVDD. TREX1 serves as a crucial nuclease, and disassembly of TRAM1-TREX1 complex disrupts the subcellular localization of TREX1, triggering TREX1-dependent genomic DNA damage during NP cell senescence. Optogenetically engineered EVs deliver TRAM1 protein into senescent NP cells, which effectively reconstructs the elimination function of TREX1. Triboelectric nanogenerator (TENG) harvests mechanical energy and triggers the controllable release of engineered EVs. Notably, an optogenetically engineered EV-based targeting treatment strategy is used for the treatment of IVDD, showing promising clinical potential for the treatment of degeneration-associated disorders.
Collapse
Affiliation(s)
- Weifeng Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Qin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Gaocai Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Di Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Tan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Jiang X, Jin Y, Zeng Y, Shi P, Li W. Self-Implantable Core-Shell Microneedle Patch for Long-Acting Treatment of Keratitis via Programmed Drug Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310461. [PMID: 38396201 DOI: 10.1002/smll.202310461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/20/2024] [Indexed: 02/25/2024]
Abstract
Bacteria-induced keratitis is a major cause of corneal blindness in both developed and developing countries. Instillation of antibiotic eyedrops is the most common management of bacterial keratitis but usually suffers from low bioavailability (i.e., <5%) and frequent administration, due to the existence of corneal epithelial barrier that prevents large and hydrophilic drug molecules from entering the cornea, and the tear film on corneal surface that rapidly washes drug away from the cornea. Here, a self-implantable core-shell microneedle (MN) patch with programmed drug release property to facilitate bacterial keratitis treatment is reported. The pH-responsive antimicrobial nanoparticles (NPs), Ag@ZIF-8, which are capable of producing antibacterial metal ions in the infected cornea and generating oxidative stress in bacteria, are loaded in the dissolvable core, while the anti-angiogenic drug, rapamycin (Rapa), is encapsulated in the biodegradable shell, thereby enabling rapid release of Ag@ZIF-8 NPs and sustained release of Rapa after corneal insertion. Owing to the programmed release feature, one single administration of the core-shell MN patch in a rat model of bacterial keratitis, can achieve satisfactory antimicrobial activity and superior anti-angiogenic and anti-inflammation effects as compared to daily topical eyedrops, indicating a great potential for the infectious keratitis therapy in clinics.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yinli Jin
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yongnian Zeng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Peng Shi
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Wei Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
41
|
Wang L, Wang Y, Wu X, Wang P, Luo X, Lv S. Advances in microneedles for transdermal diagnostics and sensing applications. Mikrochim Acta 2024; 191:406. [PMID: 38898359 DOI: 10.1007/s00604-024-06458-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Microneedles, the miniaturized needles, which can pierce the skin with minimal invasiveness open up new possibilities for constructing personalized Point-of-Care (POC) diagnostic platforms. Recent advances in microneedle-based POC diagnostic systems, especially their successful implementation with wearable technologies, enable biochemical detection and physiological recordings in a user-friendly manner. This review presents an overview of the current advances in microneedle-based sensor devices, with emphasis on the biological basis of transdermal sensing, fabrication, and application of different types of microneedles, and a summary of microneedle devices based on various sensing strategies. It concludes with the challenges and future prospects of this swiftly growing field. The aim is to present a critical and thorough analysis of the state-of-the-art development of transdermal diagnostics and sensing devices based on microneedles, and to bridge the gap between microneedle technology and pragmatic applications.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingli Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Peipei Wang
- Department of Rehabilitation Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Shaoping Lv
- Department of Rehabilitation Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China.
| |
Collapse
|
42
|
Limcharoen B, Wanichwecharungruang S, Kröger M, Sansureerungsikul T, Schleusener J, Lena Klein A, Banlunara W, Meinke MC, Darvin ME. Dissolvable microneedles in the skin: Determination the impact of barrier disruption and dry skin on dissolution. Eur J Pharm Biopharm 2024; 199:114303. [PMID: 38657740 DOI: 10.1016/j.ejpb.2024.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Dissolvable microneedles (DMNs), fabricated from biocompatible materials that dissolve in both water and skin have gained popularity in dermatology. However, limited research exists on their application in compromised skin conditions. This study compares the hyaluronic acid-based DMNs penetration, formation of microchannels, dissolution, and diffusion kinetics in intact, barrier-disrupted (tape stripped), and dry (acetone-treated) porcine ear skin ex vivo. After DMNs application, comprehensive investigations including dermoscopy, stereomicroscope, skin hydration, transepidermal water loss (TEWL), optical coherence tomography (OCT), reflectance confocal laser scanning microscopy (RCLSM), confocal Raman micro-spectroscopy (CRM), two-photon tomography combined with fluorescence lifetime imaging (TPT-FLIM), histology, and scanning electron microscopy (SEM) were conducted. The 400 µm long DMNs successfully penetrated the skin to depths of ≈200 µm for dry skin and ≈200-290 µm for barrier-disrupted skin. Although DMNs fully inserted into all skin conditions, their dissolution rates were high in barrier-disrupted and low in dry skin, as observed through stereomicroscopy and TPT-FLIM. The dissolved polymer exhibited a more significant expansion in barrier-disrupted skin compared to intact skin, with the smallest increase observed in dry skin. Elevated TEWL and reduced skin hydration levels were evident in barrier-disrupted and dry skins compared to intact skin. OCT and RCLSM revealed noticeable skin indentation and pronounced microchannel areas, particularly in barrier-disrupted and dry skin. Additional confirmation of DMN effects on the skin and substance dissolution was obtained through histology, SEM, and CRM techniques. This study highlights the impact of skin condition on DMN effectiveness, emphasizing the importance of considering dissolvability and dissolution rates of needle materials, primarily composed of hyaluronic acid, for optimizing DMN-based drug delivery.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Marius Kröger
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Titiporn Sansureerungsikul
- Mineed Technology, 928 Block 28, Building D, Chulalongkorn 7 Alley, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Johannes Schleusener
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Anna Lena Klein
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| | - Maxim E Darvin
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| |
Collapse
|
43
|
Feng M, Li Y, Sun Y, Liu T, Yunusov KE, Jiang G. Integration of metformin-loaded MIL-100(Fe) into hydrogel microneedles for prolonged regulation of blood glucose levels. Biomed Phys Eng Express 2024; 10:045004. [PMID: 38670077 DOI: 10.1088/2057-1976/ad43f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
The transdermal drug delivery based on microneedles (MNs) provides a suitable and painless self-administration for diabetic patients. In this work, the hydrogel-forming MNs were firstly fabricated using poly(vinyl alcohol) (PVA) and chitosan (CS) as matrix. A hypoglycemic drug, metformin (Met), had been loaded into MIL-100(Fe). Then, both of free Met and Met-loaded MIL-100(Fe) were integrated into hydrogel-forming MNs for regulation of blood glucose levels (BGLs) on diabetic rats. After penetrated into the skin, the free Met could be firstly released from MNs. Due to the absorption of interstitial fluid and subsequent release of loaded Met from MIL-100(Fe), leading to a sustainable and long-term drug release behaviors. A notable hypoglycemic effect and low risk of hypoglycemia could be obtained on diabetic rat modelsin vivo. The as-fabricated hydrogel-forming MNs expected to become a new type of transdermal drug delivery platform for transdermal delivery of high-dose drugs to form a long-term hypoglycemic effect.
Collapse
Affiliation(s)
- Mingjia Feng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yan Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Tianqi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
44
|
He Y, He D, Fan L, Ren S, Wang L, Sun J. Application of hydrogel microneedles in the oral cavity. Biopolymers 2024; 115:e23573. [PMID: 38506560 DOI: 10.1002/bip.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Microneedles are a transdermal drug delivery system in which the needle punctures the epithelium to deliver the drug directly to deep tissues, thus avoiding the influence of the first-pass effect of the gastrointestinal tract and minimizing the likelihood of pain induction. Hydrogel microneedles are microneedles prepared from hydrogels that have good biocompatibility, controllable mechanical properties, and controllable drug release and can be modified to achieve environmental control of drug release in vivo. The large epithelial tissue in the oral cavity is an ideal site for drug delivery via microneedles. Hydrogel microneedles can overcome mucosal hindrances to delivering drugs to deep tissues; this prevents humidity and a highly dynamic environment in the oral cavity from influencing the efficacy of the drugs and enables them to obtain better therapeutic effects. This article analyzes the materials and advantages of common hydrogel microneedles and reviews the application of hydrogel microneedles in the oral cavity.
Collapse
Affiliation(s)
- Yiyao He
- Graduate School of Dalian Medical University, Dalian, China
| | - Dawei He
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Lin Fan
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Song Ren
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Lin Wang
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| | - Jiang Sun
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, Dalian, China
| |
Collapse
|
45
|
Zareein A, Mahmoudi M, Jadhav SS, Wilmore J, Wu Y. Biomaterial engineering strategies for B cell immunity modulations. Biomater Sci 2024; 12:1981-2006. [PMID: 38456305 PMCID: PMC11019864 DOI: 10.1039/d3bm01841e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
B cell immunity has a penetrating effect on human health and diseases. Therapeutics aiming to modulate B cell immunity have achieved remarkable success in combating infections, autoimmunity, and malignancies. However, current treatments still face significant limitations in generating effective long-lasting therapeutic B cell responses for many conditions. As the understanding of B cell biology has deepened in recent years, clearer regulation networks for B cell differentiation and antibody production have emerged, presenting opportunities to overcome current difficulties and realize the full therapeutic potential of B cell immunity. Biomaterial platforms have been developed to leverage these emerging concepts to augment therapeutic humoral immunity by facilitating immunogenic reagent trafficking, regulating T cell responses, and modulating the immune microenvironment. Moreover, biomaterial engineering tools have also advanced our understanding of B cell biology, further expediting the development of novel therapeutics. In this review, we will introduce the general concept of B cell immunobiology and highlight key biomaterial engineering strategies in the areas including B cell targeted antigen delivery, sustained B cell antigen delivery, antigen engineering, T cell help optimization, and B cell suppression. We will also discuss our perspective on future biomaterial engineering opportunities to leverage humoral immunity for therapeutics.
Collapse
Affiliation(s)
- Ali Zareein
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Mina Mahmoudi
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Shruti Sunil Jadhav
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
| | - Joel Wilmore
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
46
|
Zhong C, Zhang X, Sun Y, Shen Z, Mao Y, Liu T, Wang R, Nie L, Shavandi A, Yunusov KE, Jiang G. Rizatriptan benzoate-loaded dissolving microneedle patch for management of acute migraine therapy. J Biomater Appl 2024; 38:989-999. [PMID: 38427917 DOI: 10.1177/08853282241237323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
In this study, dissolving microneedles (MNs) using polyvinyl alcohol (PVA) and poly (1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VA)) as matrix materials were developed for transdermal delivery of rizatriptan benzoate (RB) for acute migraine treatment. In-vitro permeation studies were conducted to assess the feasibility of the as-fabricated dissolving MNs to release RB. Drug skin penetration were tested by Franz diffusion cells, showing an increase of the transdermal flux compared to passive diffusion due to the as-fabricated dissolving MNs having a sufficient mechanical strength to penetrate the skin and form microchannels. The pharmacological study in vivo showed that RB-loaded dissolving MNs significantly alleviated migraine-related response by up-regulating the level of 5-hydroxytryptamine (5-HT) and down-regulating the levels of calcitonin gene-related peptide (CGRP) and substance P (SP). In conclusion, the RB-loaded dissolving MNs have advantages of safety, convenience, and high efficacy over conventional administrations, laying a foundation for the transdermal drug delivery system treatment for acute migraine.
Collapse
Affiliation(s)
- Chao Zhong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, China
| | - Xiufeng Zhang
- Department of Anorectal Surgery, Hangzhou Third People's Hospital, Hangzhou, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhong Shen
- Department of Anorectal Surgery, Hangzhou Third People's Hospital, Hangzhou, China
| | - Yanan Mao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, China
| | - Tianqi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, China
| | - Rui Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Amin Shavandi
- École polytechnique de Bruxelles, 3BIO-BioMatter, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, China
| |
Collapse
|
47
|
Huang X, Yao C, Huang S, Zheng S, Liu Z, Liu J, Wang J, Chen HJ, Xie X. Technological Advances of Wearable Device for Continuous Monitoring of In Vivo Glucose. ACS Sens 2024; 9:1065-1088. [PMID: 38427378 DOI: 10.1021/acssensors.3c01947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Managing diabetes is a chronic challenge today, requiring monitoring and timely insulin injections to maintain stable blood glucose levels. Traditional clinical testing relies on fingertip or venous blood collection, which has facilitated the emergence of continuous glucose monitoring (CGM) technology to address data limitations. Continuous glucose monitoring technology is recognized for tracking long-term blood glucose fluctuations, and its development, particularly in wearable devices, has given rise to compact and portable continuous glucose monitoring devices, which facilitates the measurement of blood glucose and adjustment of medication. This review introduces the development of wearable CGM-based technologies, including noninvasive methods using body fluids and invasive methods using implantable electrodes. The advantages and disadvantages of these approaches are discussed as well as the use of microneedle arrays in minimally invasive CGM. Microneedle arrays allow for painless transdermal puncture and are expected to facilitate the development of wearable CGM devices. Finally, we discuss the challenges and opportunities and look forward to the biomedical applications and future directions of wearable CGM-based technologies in biological research.
Collapse
Affiliation(s)
- Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shantao Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
48
|
Dawud H, Edelstein-Pardo N, Mulamukkil K, Amir RJ, Abu Ammar A. Hydrogel Microneedles with Programmed Mesophase Transitions for Controlled Drug Delivery. ACS APPLIED BIO MATERIALS 2024; 7:1682-1693. [PMID: 38335540 PMCID: PMC10951948 DOI: 10.1021/acsabm.3c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Microneedle-based drug delivery offers an attractive and minimally invasive administration route to deliver therapeutic agents through the skin by bypassing the stratum corneum, the main skin barrier. Recently, hydrogel-based microneedles have gained prominence for their exceptional ability to precisely control the release of their drug cargo. In this study, we investigated the feasibility of fabricating microneedles from triblock amphiphiles with linear poly(ethylene glycol) (PEG) as the hydrophilic middle block and two dendritic side-blocks with enzyme-cleavable hydrophobic end-groups. Due to the poor formation and brittleness of microneedles made from the neat amphiphile, we added a sodium alginate base layer and tested different polymeric excipients to enhance the mechanical strength of the microneedles. Following optimization, microneedles based on triblock amphiphiles were successfully fabricated and exhibited favorable insertion efficiency and low height reduction percentage when tested in Parafilm as a skin-simulant model. When tested against static forces ranging from 50 to 1000 g (4.9-98 mN/needle), the microneedles showed adequate mechanical strength with no fractures or broken segments. In buffer solution, the solid microneedles swelled into a hydrogel within about 30 s, followed by their rapid disintegration into small hydrogel particles. These hydrogel particles could undergo slow enzymatic degradation to soluble polymers. In vitro release study of dexamethasone (DEX), as a steroid model drug, showed first-order drug release, with 90% released within 6 days. Eventually, DEX-loaded MNs were subjected to an insertion test using chicken skin and showed full penetration. This study demonstrates the feasibility of programming hydrogel-forming microneedles to undergo several mesophase transitions and their potential application as a delivery system for self-administration, increased patient compliance, improved efficacy, and sustained drug release.
Collapse
Affiliation(s)
- Hala Dawud
- Department
of Pharmaceutical Engineering, Azrieli College
of Engineering Jerusalem, Jerusalem 9103501, Israel
| | - Nicole Edelstein-Pardo
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Keerthana Mulamukkil
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roey J. Amir
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
- ADAMA
Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Aiman Abu Ammar
- Department
of Pharmaceutical Engineering, Azrieli College
of Engineering Jerusalem, Jerusalem 9103501, Israel
| |
Collapse
|
49
|
Gaikwad SS, Zanje AL, Somwanshi JD. Advancements in transdermal drug delivery: A comprehensive review of physical penetration enhancement techniques. Int J Pharm 2024; 652:123856. [PMID: 38281692 DOI: 10.1016/j.ijpharm.2024.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Transdermal drug administration has grown in popularity in the pharmaceutical research community due to its potential to improve drug bioavailability, compliance among patients, and therapeutic effectiveness. To overcome the substantial barrier posed by the stratum corneum (SC) and promote drug absorption within the skin, various physical penetration augmentation approaches have been devised. This review article delves into popular physical penetration augmentation techniques, which include sonophoresis, iontophoresis, magnetophoresis, thermophoresis, needle-free injection, and microneedles (MNs) Sonophoresis is a technique that uses low-frequency ultrasonic waves to break the skin's barrier characteristics, therefore improving drug transport and distribution. In contrast, iontophoresis uses an applied electric current to push charged molecules of drugs inside the skin, effectively enhancing medication absorption. Magnetophoresis uses magnetic fields to drive drug carriers into the dermis, a technology that has shown promise in aiding targeted medication delivery. Thermophoresis is the regulated heating of the skin in order to improve drug absorption, particularly with thermally sensitive drug carriers. Needle-free injection technologies, such as jet injectors (JIs) and microprojection arrays, offer another option by producing temporary small pore sizes in the skin, facilitating painless and effective drug delivery. MNs are a painless, minimally invasive method, easy to self-administration, as well as high drug bioavailability. This study focuses on the underlying processes, current breakthroughs, and limitations connected with all of these approaches, with an emphasis on their applicability in diverse therapeutic areas. Finally, a thorough knowledge of these physical enhancement approaches and their incorporation into pharmaceutical research has the potential to revolutionize drug delivery, providing more efficient and secure treatment choices for a wide range of health-related diseases.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Abhijit L Zanje
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Jeevan D Somwanshi
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| |
Collapse
|
50
|
Vander Straeten A, Sarmadi M, Daristotle JL, Kanelli M, Tostanoski LH, Collins J, Pardeshi A, Han J, Varshney D, Eshaghi B, Garcia J, Forster TA, Li G, Menon N, Pyon SL, Zhang L, Jacob-Dolan C, Powers OC, Hall K, Alsaiari SK, Wolf M, Tibbitt MW, Farra R, Barouch DH, Langer R, Jaklenec A. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat Biotechnol 2024; 42:510-517. [PMID: 37095347 PMCID: PMC10593912 DOI: 10.1038/s41587-023-01774-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.
Collapse
Affiliation(s)
- Aurélien Vander Straeten
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Morteza Sarmadi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John L Daristotle
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maria Kanelli
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa H Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joe Collins
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Apurva Pardeshi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jooli Han
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dhruv Varshney
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Behnaz Eshaghi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johnny Garcia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy A Forster
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gary Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nandita Menon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sydney L Pyon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Linzixuan Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Olivia C Powers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Hall
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shahad K Alsaiari
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Morris Wolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|