1
|
Hartley C, Van T, Karnsakul W. Direct-Acting Antiviral Agents in Prevention of Maternal-Fetal Transmission of Hepatitis C Virus in Pregnancy. Pathogens 2024; 13:508. [PMID: 38921805 PMCID: PMC11206561 DOI: 10.3390/pathogens13060508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Prior to the Food and Drug Administration approval of ledipaspavir/sofosbuvir (Harvoni®) in 2014, the treatment of hepatitis C was interferon plus or minus ribavirin. This treatment had low cure rates for hepatitis C virus and was teratogenic and therefore avoided in pregnant patients. Vertical transmission is the most common transmission of hepatitis C in pediatric patients, whereas medical equipment that was not properly cleaned and sterilized, blood products which were not checked (historically), sharing and reusing syringes and needles, and dialysis are the most common forms of hepatitis C transmission in adults. The treatment of pregnant women with direct-acting antivirals is important because the treatment of pediatric patients cannot begin until three years of age and does not always occur prior to the symptom development of hepatitis C. This review article will include glecaprevir/pibrentasvir (Mayvret®), sofosbuvir/velpatasvir (Epclusa®), and sofosbuvir/velpatasvir plus voxilaprevir (Vosevi®). We aim to review the teratogenic risk of direct-acting antivirals as well as currently published clinical trials and ongoing research on direct-acting antiviral hepatitis C treatment in pregnancy in this publication.
Collapse
Affiliation(s)
- Christopher Hartley
- The Department of Pharmacy, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Trung Van
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Wikrom Karnsakul
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Zhang H, Quadeer AA, McKay MR. Direct-acting antiviral resistance of Hepatitis C virus is promoted by epistasis. Nat Commun 2023; 14:7457. [PMID: 37978179 PMCID: PMC10656532 DOI: 10.1038/s41467-023-42550-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
Direct-acting antiviral agents (DAAs) provide efficacious therapeutic treatments for chronic Hepatitis C virus (HCV) infection. However, emergence of drug resistance mutations (DRMs) can greatly affect treatment outcomes and impede virological cure. While multiple DRMs have been observed for all currently used DAAs, the evolutionary determinants of such mutations are not currently well understood. Here, by considering DAAs targeting the nonstructural 3 (NS3) protein of HCV, we present results suggesting that epistasis plays an important role in the evolution of DRMs. Employing a sequence-based fitness landscape model whose predictions correlate highly with experimental data, we identify specific DRMs that are associated with strong epistatic interactions, and these are found to be enriched in multiple NS3-specific DAAs. Evolutionary modelling further supports that the identified DRMs involve compensatory mutational interactions that facilitate relatively easy escape from drug-induced selection pressures. Our results indicate that accounting for epistasis is important for designing future HCV NS3-targeting DAAs.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| | - Matthew R McKay
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC, Australia.
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Shata MTM, Hetta HF, Sharma Y, Sherman KE. Viral hepatitis in pregnancy. J Viral Hepat 2022; 29:844-861. [PMID: 35748741 PMCID: PMC9541692 DOI: 10.1111/jvh.13725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/17/2021] [Accepted: 06/13/2022] [Indexed: 12/09/2022]
Abstract
Viral hepatitis is caused by a heterogenous group of viral agents representing a wide range of phylogenetic groups. Many viruses can involve the liver and cause liver injury but only a subset are delineated as 'hepatitis viruses' based upon their primary site of replication and tropism for hepatocytes which make up the bulk of the liver cell population. Since their discovery, beginning with the agent that caused serum hepatitis in the 1960s, the alphabetic designations have been utilized. To date, we have five hepatitis viruses, A through E, though it is postulated that others may exist. This chapter will focus on those viruses. Note that hepatitis D is included as a subset of hepatitis B, as it cannot exist without concurrent hepatitis B infection. Pregnancy has the potential to affect all aspects of these viral agents due to the unique immunologic and physiologic changes that occur during and after the gestational period. In this review, we will discuss the most common viral hepatitis and their effects during pregnancy.
Collapse
Affiliation(s)
- Mohamed Tarek M. Shata
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Helal F. Hetta
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA,Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Yeshika Sharma
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Kenneth E. Sherman
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
4
|
Abstract
Hepatitis B and hepatitis C are a global burden and underscore the impact of preventable acute and chronic diseases on personal as well as population level health. Caring for pediatric patients with hepatitis B and C requires a deep understanding of the pathophysiology of viral processes. Insight into the epidemiology, transmission, and surveillance of these infections is critical to prevention and therapy. Extensive research in recent years has created a growing number of treatments, changing the landscape of the medical field's approach to the viral hepatitis pandemic.
Collapse
|
5
|
Mutational escape from cellular immunity in viral hepatitis: variations on a theme. Curr Opin Virol 2021; 50:110-118. [PMID: 34454351 DOI: 10.1016/j.coviro.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Approx. 320 million individuals worldwide are chronically infected with hepatitis viruses, contributing to viral hepatitis being one of the 10 leading causes of death. Cellular adaptive immunity, namely CD4+ and CD8+ T cells, plays an important role in viral clearance and control. Two main mechanisms, however, may lead to failure of the virus-specific T-cell response: T-cell exhaustion and mutational viral escape. Viral escape has been studied in detail in hepatitis C virus (HCV) infection, where it is thought to affect approx. 50% of virus-specific CD8+ T-cell responses in persistent infection, to influence natural infection outcome and to contribute to failure of preventive vaccination strategies. In hepatitis B virus (HBV) as well as HBV/hepatitis D virus (HDV) co-infection, the impact of viral escape has been studied in detail only recently.
Collapse
|
6
|
Abstract
Infectious hepatitis in pregnancy is clinically significant in both the acute and chronic phases. Here, we review the perinatal implications of chronic hepatitis B and C and acute hepatitis A and E. Familiarity with screening, transmission, diagnosis, and management of infectious hepatitis is of ongoing importance during obstetric care, as these diseases are endemic in much of the world. Pregnancy and interpregnancy care provide opportunities to prevent infection and transmission of hepatitis.
Collapse
|
7
|
Alqahtani SA, Colombo MG. Treating paediatric hepatitis C in the era of direct-acting antiviral agents. Liver Int 2021; 41:1189-1200. [PMID: 33533543 DOI: 10.1111/liv.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/09/2021] [Accepted: 01/28/2021] [Indexed: 02/13/2023]
Abstract
The prevalence and burden of hepatitis C virus (HCV) in children are poorly understood mainly as a result of the fact that studies in this population have largely been done in high-risk groups and in highly endemic regions. Epidemiological studies estimate the viraemic prevalence in the paediatric population aged 0-18 years at 0.13%, corresponding to 3.26 million children with HCV in 2018. While vertical transmission occurs in up to 5% of neonates born to infected mothers, with preference for those with high viral load and co-infection with the human immunodeficiency virus, injection drug use is the prevalent modality of HCV infection among adolescents. Notwithstanding the fact that HCV usually has an indolent course in children and adolescents, hepatitis C may progress to significant liver disease in a fraction of patients. The finding of severe disease or cirrhosis in a minority of paediatric patients with HCV underscores the importance of early diagnosis and treatment in order to prevent long-term morbidity. Universal screening of HCV in pregnant women is key to identify infants exposed to such a risk and link them to care. Recently, direct-acting antiviral drugs proved to be as safe and effective in young HCV patients as in adults, and these agents are now approved for treatment of paediatric patients as young as 3 years. This review provides a contemporary overview of the HCV disease burden in children, with a particular focus on its treatment in the era of direct-acting antiviral agents.
Collapse
Affiliation(s)
- Saleh A Alqahtani
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA.,Liver Transplant Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | |
Collapse
|
8
|
Hartlage AS, Dravid P, Walker CM, Kapoor A. Adenovirus-vectored T cell vaccine for hepacivirus shows reduced effectiveness against a CD8 T cell escape variant in rats. PLoS Pathog 2021; 17:e1009391. [PMID: 33735321 PMCID: PMC8009437 DOI: 10.1371/journal.ppat.1009391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/30/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
There is an urgent need for a vaccine to prevent chronic infection by hepatitis C virus (HCV) and its many genetic variants. The first human vaccine trial, using recombinant viral vectors that stimulate pan-genotypic T cell responses against HCV non-structural proteins, failed to demonstrate efficacy despite significant preclinical promise. Understanding the factors that govern HCV T cell vaccine success is necessary for design of improved immunization strategies. Using a rat model of chronic rodent hepacivirus (RHV) infection, we assessed the impact of antigenic variation and immune escape upon success of a conceptually analogous RHV T cell vaccine. Naïve Lewis rats were vaccinated with a recombinant human adenovirus expressing RHV non-structural proteins (NS)3-5B and later challenged with a viral variant containing immune escape mutations within major histocompatibility complex (MHC) class I-restricted epitopes (escape virus). Whereas 7 of 11 (64%) rats cleared infection caused by wild-type RHV, only 3 of 12 (25%) were protected against heterologous challenge with escape virus. Uncontrolled replication of escape virus was associated with durable CD8 T cell responses targeting escaped epitopes alone. In contrast, clearance of escape virus correlated with CD4 T cell helper immunity and maintenance of CD8 T cell responses against intact viral epitopes. Interestingly, clearance of wild-type RHV infection after vaccination conferred enhanced protection against secondary challenge with escape virus. These results demonstrate that the efficacy of an RHV T cell vaccine is reduced when challenge virus contains escape mutations within MHC class I-restricted epitopes and that failure to sustain CD8 T cell responses against intact epitopes likely underlies immune failure in this setting. Further investigation of the immune responses that yield protection against diverse RHV challenges in this model may facilitate design of broadly effective HCV vaccines. The hepatitis C virus is one of the leading causes of chronic liver disease and cancer worldwide. A vaccine is not yet available and the first phase II clinical trial in humans using a T cell-based immunization strategy recently failed to prevent chronic infection in high risk individuals for unclear reasons. In this study we evaluated how immune escape mutations at major histocompatibility complex (MHC) class I-restricted viral epitopes influence the effectiveness of an adenoviral-vectored T cell vaccine in a rat model of chronic HCV-related rodent hepacivirus infection, currently the only animal model available for evaluation of HCV vaccine strategies. We show that vaccine efficacy is markedly diminished when challenge virus contains naturally-acquired escape mutations at dominant MHC class I-restricted viral epitopes that render a subset of vaccine-generated CD8 T cell responses ineffective. We also identify CD4 T cell help as a critical correlate of vaccine success against heterologous virus challenge. Our results have important implications for human vaccination programs that aim to induce broad protective immunity against heterogeneous HCV strains.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Christopher M. Walker
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
9
|
Smith S, Honegger JR, Walker C. T-Cell Immunity against the Hepatitis C Virus: A Persistent Research Priority in an Era of Highly Effective Therapy. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036954. [PMID: 32205413 PMCID: PMC7778213 DOI: 10.1101/cshperspect.a036954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Approximately 70% of acute hepatitis C virus (HCV) infections become chronic, indicating that the virus is exceptionally well adapted to persist in humans with otherwise normal immune function. Robust, lifelong replication of this small RNA virus does not require a generalized failure of immunity. HCV effectively subverts innate and adaptive host defenses while leaving immunity against other viruses intact. Here, the role of CD4+ and CD8+ T-cell responses in control of HCV infection and their failure to prevent virus persistence in most individuals are reviewed. Two issues of practical importance remain priorities in an era of highly effective antiviral therapy for chronic hepatitis C. First, the characteristics of successful T-cell responses that promote resolution of HCV infection are considered, as they will underpin development of vaccines that prevent HCV persistence. Second, defects in T-cell immunity that facilitate HCV persistence and whether they are reversed after antiviral cure to provide protection from reinfection are also addressed.
Collapse
Affiliation(s)
- Stephanie Smith
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Jonathan R. Honegger
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| | - Christopher Walker
- The Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, Ohio 43205, USA,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43004, USA
| |
Collapse
|
10
|
Chudnovets A, Liu J, Narasimhan H, Liu Y, Burd I. Role of Inflammation in Virus Pathogenesis during Pregnancy. J Virol 2020; 95:e01381-19. [PMID: 33115865 PMCID: PMC7944452 DOI: 10.1128/jvi.01381-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viral infections during pregnancy lead to a spectrum of maternal and fetal outcomes, ranging from asymptomatic disease to more critical conditions presenting with severe maternal morbidity, stillbirth, preterm birth, intrauterine growth restriction, and fetal congenital anomalies, either apparent at birth or later in life. In this article, we review the pathogenesis of several viral infections that are particularly relevant in the context of pregnancy and intrauterine inflammation. Understanding the diverse mechanisms employed by viral pathogens as well as the repertoire of immune responses induced in the mother may help to establish novel therapeutic options to attenuate changes in the maternal-fetal interface and prevent adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Anna Chudnovets
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harish Narasimhan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yang Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Lutckii A, Strunz B, Zhirkov A, Filipovich O, Rukoiatkina E, Gusev D, Lobzin Y, Fischler B, Aleman S, Sällberg M, Björkström NK. Evidence for B cell maturation but not trained immunity in uninfected infants exposed to hepatitis C virus. Gut 2020; 69:2203-2213. [PMID: 32341018 DOI: 10.1136/gutjnl-2019-320269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Vertical transmission of hepatitis C virus (HCV) is rare compared with other chronic viral infections, despite that newborns have an immature, and possibly more susceptible, immune system. It further remains unclear to what extent prenatal and perinatal exposure to HCV affects immune system development in neonates. DESIGN To address this, we studied B cells, innate immune cells and soluble factors in a cohort of 62 children that were either unexposed, exposed uninfected or infected with HCV. Forty of these infants were followed longitudinally from birth up until 18 months of age. RESULTS As expected, evidence for B cell maturation was observed with increased age in children, whereas few age-related changes were noticed among innate immune cells. HCV-infected children had a high frequency of HCV-specific IgG-secreting B cells. Such a response was also detected in some exposed but uninfected children but not in uninfected controls. Consistent with this, both HCV-exposed uninfected and HCV-infected infants had evidence of early B cell immune maturation with an increased proportion of IgA-positive plasma cells and upregulated CD40 expression. In contrast, actual HCV viraemia, but not mere exposure, led to alterations within myeloid immune cell populations, natural killer (NK) cells and a distinct soluble factor profile with increased levels of inflammatory cytokines and chemokines. CONCLUSION Our data reveal that exposure to, and infection with, HCV causes disparate effects on adaptive B cells and innate immune cell such as myeloid cells and NK cells in infants.
Collapse
Affiliation(s)
- Anton Lutckii
- Department of Laboratory Medicine, Karolinska institutet, Stockholm, Sweden.,Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russian Federation
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anton Zhirkov
- Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russian Federation
| | - Olga Filipovich
- North-Western State Medical University named after I.I.Mechnikov, Saint Petersburg, Russian Federation
| | - Elena Rukoiatkina
- Maternity Hospital No 16, Saint Petersburg, Russian Federation.,Department of Pediatrics, Gynecology and Female Reproductology, Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russian Federation
| | - Denis Gusev
- Center for Prevention and Control of AIDS and Infectious Diseases, Saint Petersburg, Russian Federation
| | - Yuriy Lobzin
- Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russian Federation
| | - Björn Fischler
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Matti Sällberg
- Department of Laboratory Medicine, Karolinska institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Binder B, Thimme R. CD4+ T cell responses in human viral infection: lessons from hepatitis C. J Clin Invest 2020; 130:595-597. [PMID: 31904589 DOI: 10.1172/jci133222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver disease as a result of chronic hepatitis C virus (HCV) infection is a global problem. While some HCV infections resolve spontaneously, viral persistence associates with compromised T cell immunity. In this issue of the JCI, Chen et al. and Coss et al. explored virus-specific CD4+ T cell response during HCV infection. Both studies evaluated the HCV-specific T cells of patients with different courses of infection. Chen et al. revealed that initial CD4+ T cell responses are similar during early infection and that T cell failure resulted from loss of the virus-specific T cells themselves. Coss et al. showed that HCV-specific CD4+ T cells temporarily recovered in some women following childbirth. These studies contribute to our understanding of CD4+ T cell functionality during different natural courses of infection, with the notable implication that restoring CD4+ T cell immunity might contribute to controlling HCV infection.
Collapse
Affiliation(s)
- Benedikt Binder
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany.,IMM-PACT Clinician Scientist Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
14
|
Ferrari C, Barili V, Varchetta S, Mondelli MU. Immune Mechanisms of Viral Clearance and Disease Pathogenesis During Viral Hepatitis. THE LIVER 2020:821-850. [DOI: 10.1002/9781119436812.ch63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Coss SL, Torres-Cornejo A, Prasad MR, Moore-Clingenpeel M, Grakoui A, Lauer GM, Walker CM, Honegger JR. CD4+ T cell restoration and control of hepatitis C virus replication after childbirth. J Clin Invest 2020; 130:748-753. [PMID: 31904583 PMCID: PMC6994162 DOI: 10.1172/jci123623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/24/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is characterized by persistent high-level viremia and defective cellular immunity, including a lack of functional HCV-specific CD4+ T cells. We previously described an exceptional period of viral control that occurs in some chronically infected women after childbirth. Here, we investigated whether reduced HCV replication after pregnancy is associated with recovery of CD4+ T cell immunity. Class II tetramer analysis revealed significantly greater frequencies of circulating HCV-specific CD4+ T cells at 3 months postpartum in women with concurrent declines in viremia compared with those with stable viremia. These HCV-specific CD4+ T cells had an effector-memory phenotype. Inhibitory coreceptor expression on these cells corresponded to the degree of viral control. Circulating CD4+ T cells produced IL-2 and IFN-γ after HCV antigen stimulation, demonstrating Th1 functionality. These data provide direct evidence that the profound loss of HCV-specific CD4+ T cell help that results in chronic infection is reversible following pregnancy, and this recovery of CD4+ T cells is associated with at least transient control of persistent viral replication.
Collapse
Affiliation(s)
- Samantha L. Coss
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Almudena Torres-Cornejo
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mona R. Prasad
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | - Georg M. Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher M. Walker
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Jonathan R. Honegger
- The Ohio State University College of Medicine, Columbus, Ohio, USA
- Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| |
Collapse
|
16
|
Ifeorah IM, Bakarey AS, Akubo AO, Onyemelukwe FN. Detection of Hepatitis C virus and the risk of transmission among pregnant and nursing mothers from rural and urban communities in Kogi State, Nigeria. J Immunoassay Immunochem 2020; 41:231-244. [PMID: 31959043 DOI: 10.1080/15321819.2020.1713154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatitis C virus (HCV) is associated with liver complicated diseases resulting in end-stage hepatocellular carcinoma. Although vertical transmission from mother to child serves as one of the routes of HCV acquisition in children, yet HCV infection in pregnant women and children is still underappreciated in sub-Saharan Africa. Therefore, this study investigated the burden of HCV, associated risk factors, and viremia among antenatal and postnatal clinic attendees in the rural and urban communities of Kogi State, Nigeria. Atotal of 176 blood samples were collected from 78 (44.32%) consenting breastfeeding (nursing) mothers and 98 (55.8%) pregnant mothers (age ranged 18-47 years) (SD = +12.1; Median = 26.3) and tested for anti-HCV by ELISA technique. All anti-HCV-positive samples were retested by Taq one-step RT-PCR technique for viral RNA (viremia) detection. The bio-socio-demographic variables of the participants were correlated with the test results, using an IBM SPSS version 21 and MEOP 2010. Ameasure of goodness was considered significant at P< 0.05 using a95% confidence interval. This study found an overall rate of 4.6% for HCV and 2.2% (4/176) viremia indicating both active and passive infections. HCV rate was higher among the civil servants (2.3%; CI = -0.25-2.91; P= 0.241) and peaked among the age group 31-35 years (2.3%; CI = 0.183-2.182; P= 0.293). Various risk factors identified included, relatively high HCV rates during first trimester (1.7%; CI = -2.2-3.61; P= .047), ear/nose piercing (4.6%; CI = -46.83-54.82; P= 0.157), seropositivity among the married (3.9%; CI = -3.36-7.3567; P= 0.238) and urban dwellers (2.8%; CI = -8.71-16.71; P= 0.157). None of the bio-socio-demographic variables except the stage of pregnancy as arisk factor (P= 0.041) evaluated significantly influenced either HCV rate or viremia. This study showed arelatively high rate of HCV among the participants and also revealed that risk factors-based testing is not effective in ELISA testing alone for pregnant and nursing mothers in the community. Therefore, all HCV seropositive pregnant women and breastfeeding mothers including their babies should be tested using the PCR technique to determine vertical transmission and RNA reevaluated after delivery to assess spontaneous clearance.
Collapse
Affiliation(s)
- I M Ifeorah
- Department of Medical Laboratory Sciences, College of Medicine, University of Nigeria, Enugu, Nigeria
| | - A S Bakarey
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - A O Akubo
- Department of Medical Laboratory Sciences, College of Medicine, University of Nigeria, Enugu, Nigeria
| | - F N Onyemelukwe
- Department of Medical Laboratory Sciences, College of Medicine, University of Nigeria, Enugu, Nigeria
| |
Collapse
|
17
|
Orekondy N, Cafardi J, Kushner T, Reau N. HCV in Women and Pregnancy. Hepatology 2019; 70:1836-1840. [PMID: 31135999 DOI: 10.1002/hep.30791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | - John Cafardi
- Department of Infectious Disease, Christ Hospital, Cincinnati, OH
| | - Tatyana Kushner
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nancy Reau
- Section of Hepatology, Rush University Medical Center, Chicago, IL
| |
Collapse
|
18
|
Kushner T, Chappell CA, Kim AY. Testing for Hepatitis C in Pregnancy: the Time has Come for Routine Rather than Risk-based. ACTA ACUST UNITED AC 2019; 18:206-215. [PMID: 31890461 DOI: 10.1007/s11901-019-00468-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose of review The purpose of this review is to discuss the reasons for HCV testing during pregnancy and to review what is known about antiviral treatment during pregnancy. Recent findings Hepatitis C virus affects over 3 million persons in the United States and is one of the leading infectious causes of death. While HCV is most commonly transmitted via parenteral exposures, thus affecting people who inject drugs, it is also transmitted from mother-to-child. Due to an expanding opioid crisis, an increasing number of women of childbearing age are now infected, resulting in transmission to infants. Risk-based screening has never been proven effective and thus universal screening of pregnant women for HCV infection has been recommended. Summary Obstetricians may play a key role in the U.S. by implementing universal testing for HCV in pregnant women, thereby enhancing the health of mothers and identifying children at risk.
Collapse
Affiliation(s)
- Tatyana Kushner
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1123, New York, NY, 10029
| | - Catherine A Chappell
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, PA 15206
| | - Arthur Y Kim
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street Cox 6, Boston, MA 02114
| |
Collapse
|
19
|
Hepatitis C Virus Genetic Variability, Human Immune Response, and Genome Polymorphisms: Which Is the Interplay? Cells 2019; 8:cells8040305. [PMID: 30987134 PMCID: PMC6523096 DOI: 10.3390/cells8040305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is the main cause of chronic hepatitis, affecting an estimated 150 million people worldwide. Initial exposure to HCV is most often followed by chronic hepatitis, with only a minority of individuals spontaneously clearing the virus. The induction of sustained and broadly directed HCV-specific CD4+ and CD8+ T cell responses, together with neutralizing antibodies (nAb), and specific genetic polymorphism have been associated with spontaneous resolution of the infection. However, due to its high variability, HCV is able to overwhelm the host immune response through the rapid acquisition of mutations in the epitopes targeted by T cells and neutralizing antibodies. In this context, immune-mediated pressure represents the main force in driving HCV evolution. This review summarizes the data on HCV diversity and the current state of knowledge about the contributions of antibodies, T cells, and host genetic polymorphism in driving HCV evolution in vivo.
Collapse
|
20
|
Hart GR, Ferguson AL. Computational design of hepatitis C virus immunogens from host-pathogen dynamics over empirical viral fitness landscapes. Phys Biol 2018; 16:016004. [PMID: 30484433 DOI: 10.1088/1478-3975/aaeec0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) afflicts 170 million people and kills 700 000 annually. Vaccination offers the most realistic and cost effective hope of controlling this epidemic, but despite 25 years of research, no vaccine is available. A major obstacle is HCV's extreme genetic variability and rapid mutational escape from immune pressure. Coupling maximum entropy inference with population dynamics simulations, we have employed a computational approach to translate HCV sequence databases into empirical landscapes of viral fitness and simulate the intrahost evolution of the viral quasispecies over these landscapes. We explicitly model the coupled host-pathogen dynamics by combining agent-based models of viral mutation with stochastically-integrated coupled ordinary differential equations for the host immune response. We validate our model in predicting the mutational evolution of the HCV RNA-dependent RNA polymerase (protein NS5B) within seven individuals for whom longitudinal sequencing data is available. We then use our approach to perform exhaustive in silico evaluation of putative immunogen candidates to rationally design tailored vaccines to simultaneously cripple viral fitness and block mutational escape within two selected individuals. By systematically identifying a small number of promising vaccine candidates, our empirical fitness landscapes and host-pathogen dynamics simulator can guide and accelerate experimental vaccine design efforts.
Collapse
Affiliation(s)
- Gregory R Hart
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, United States of America. Present address: Department of Therapeutic Radiology, Yale University, 202 LLCI, 15 York Street, New Haven, CT 96510, United States of America
| | | |
Collapse
|
21
|
Dustin LB. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr Drug Targets 2018; 18:826-843. [PMID: 26302811 DOI: 10.2174/1389450116666150825110532] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) remains a public health problem of global importance, even in the era of potent directly-acting antiviral drugs. In this chapter, I discuss immune responses to acute and chronic HCV infection. The outcome of HCV infection is influenced by viral strategies that limit or delay the initiation of innate antiviral responses. This delay may enable HCV to establish widespread infection long before the host mounts effective T and B cell responses. HCV's genetic agility, resulting from its high rate of replication and its error prone replication mechanism, enables it to evade immune recognition. Adaptive immune responses fail to keep up with changing viral epitopes. Neutralizing antibody epitopes may be hidden by decoy structures, glycans, and lipoproteins. T cell responses fail due to changing epitope sequences and due to exhaustion, a phenomenon that may have evolved to limit immune-mediated pathology. Despite these difficulties, innate and adaptive immune mechanisms do impact HCV replication. Immune-mediated clearance of infection is possible, occurring in 20-50% of people who contract the disease. New developments raise hopes for effective immunological interventions to prevent or treat HCV infection.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
22
|
Vertical Transmission of Hepatitis C Virus: Variable Transmission Bottleneck and Evidence of Midgestation In Utero Infection. J Virol 2017; 91:JVI.01372-17. [PMID: 28931691 DOI: 10.1128/jvi.01372-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) can be transmitted from mother to child during pregnancy and childbirth. However, the timing and precise biological mechanisms that are involved in this process are incompletely understood, as are the determinants that influence transmission of particular HCV variants. Here we report results of a longitudinal assessment of HCV quasispecies diversity and composition in 5 cases of vertical HCV transmission, including 3 women coinfected with human immunodeficiency virus type 1 (HIV-1). The population structure of HCV variant spectra based on E2 envelope gene sequences (nucleotide positions 1491 to 1787), including hypervariable regions 1 and 2, was characterized using next-generation sequencing and median-joining network analysis. Compatible with a loose transmission bottleneck, larger numbers of shared HCV variants were observed in the presence of maternal coinfection. Coalescent Bayesian Markov chain Monte Carlo simulations revealed median times of transmission between 24.9 weeks and 36.1 weeks of gestation, with some confidence intervals ranging into the 1st trimester, considerably earlier than previously thought. Using recombinant autologous HCV pseudoparticles, differences were uncovered in HCV-specific antibody responses between coinfected mothers and mothers infected with HCV alone, in whom generalized absence of neutralization was observed. Finally, shifts in HCV quasispecies composition were seen in children around 1 year of age, compatible with the disappearance of passively transferred maternal immunoglobulins and/or the development of HCV-specific humoral immunity. Taken together, these results provide insights into the timing, dynamics, and biologic mechanisms involved in vertical HCV transmission and inform preventative strategies.IMPORTANCE Although it is well established that hepatitis C virus (HCV) can be transmitted from mother to child, the manner and the moment at which transmission operates have been the subject of conjecture. By carrying out a detailed examination of viral sequences, we showed that transmission could take place comparatively early in pregnancy. In addition, we showed that when the mother also carried human immunodeficiency virus type 1 (HIV-1), many more HCV variants were shared between her and her child, suggesting that the mechanism and/or the route of transmission of HCV differed in the presence of coinfection with HIV-1. These results could explain why cesarean section is ineffective in preventing vertical HCV transmission and guide the development of interventions to avert pediatric HCV infection.
Collapse
|
23
|
Hashem M, Jhaveri R, Saleh DA, Sharaf SA, El-Mougy F, Abdelsalam L, Shardell MD, El-Ghazaly H, El-Kamary SS. Spontaneous Viral Load Decline and Subsequent Clearance of Chronic Hepatitis C Virus in Postpartum Women Correlates With Favorable Interleukin-28B Gene Allele. Clin Infect Dis 2017; 65:999-1005. [PMID: 28903504 PMCID: PMC6248538 DOI: 10.1093/cid/cix445] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Postpartum hepatitis C viral (HCV) load decline followed by spontaneous clearance has been previously described. Herein we identify predictors for viral decline in a cohort of HCV-infected postpartum women. METHODS Pregnant women at Cairo University were screened for anti-HCV antibodies and HCV RNA, and viremic women were tested for quantitative HCV RNA at 3, 6, 9, and 12 months postpartum. Spontaneous clearance was defined as undetectable viremia twice at least 6-months apart. Associations between viral load and demographic, obstetrical, HCV risk factors, and interleukin-28B gene (IL28B) polymorphism (rs12979860) were assessed. RESULTS Of 2514 women, 97 (3.9%) had anti-HCV antibodies, 54 (2.1%) were viremic and of those, 52 (2.1%) agreed to IL28B testing. From pregnancy until 12 months postpartum, IL28B-CC allele women had a significant viral decline (P = .009). After adjusting, the IL28B-CC allele had a near significant difference compared to the CT allele (odds ratio [OR], 0.75; 95% confidence interval [CI], 0.75,1.00; P = .05), but not the TT allele (OR, 0.91; 95% CI, 0.61,1.38; P = .64). All 14/52 (26.9%) women who subsequently cleared were among the 15 with undetectable viremia at 12 months, making that time point a strong predictor of subsequent clearance (sensitivity = 100%, specificity = 97.4%, positive predictive value = 93.3%, negative predictive value = 100%). CONCLUSIONS IL28B-CC genotype and 12-month postpartum undetectable viremia were the best predictors for viral decline and subsequent clearance. These 2 predictors should influence clinical decision making.
Collapse
Affiliation(s)
- Mohamed Hashem
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Ravi Jhaveri
- Division of Infectious Diseases, Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine; Departments of
| | | | - Sahar A Sharaf
- Chemical Pathology, Faculty of Medicine, Cairo University, Egypt
| | - Fatma El-Mougy
- Chemical Pathology, Faculty of Medicine, Cairo University, Egypt
| | - Lobna Abdelsalam
- Chemical Pathology, Faculty of Medicine, Cairo University, Egypt
| | - Michelle D Shardell
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland; and
| | - Hesham El-Ghazaly
- Department of Obstetrics and Gynecology Faculty of Medicine, Cairo University, Egypt
| | - Samer S El-Kamary
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
24
|
Lythgoe KA, Gardner A, Pybus OG, Grove J. Short-Sighted Virus Evolution and a Germline Hypothesis for Chronic Viral Infections. Trends Microbiol 2017; 25:336-348. [PMID: 28377208 PMCID: PMC5405858 DOI: 10.1016/j.tim.2017.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022]
Abstract
With extremely short generation times and high mutability, many viruses can rapidly evolve and adapt to changing environments. This ability is generally beneficial to viruses as it allows them to evade host immune responses, evolve new behaviours, and exploit ecological niches. However, natural selection typically generates adaptation in response to the immediate selection pressures that a virus experiences in its current host. Consequently, we argue that some viruses, particularly those characterised by long durations of infection and ongoing replication, may be susceptible to short-sighted evolution, whereby a virus' adaptation to its current host will be detrimental to its onward transmission within the host population. Here we outline the concept of short-sighted viral evolution and provide examples of how it may negatively impact viral transmission among hosts. We also propose that viruses that are vulnerable to short-sighted evolution may exhibit strategies that minimise its effects. We speculate on the various mechanisms by which this may be achieved, including viral life history strategies that result in low rates of within-host evolution, or the establishment of a 'germline' lineage of viruses that avoids short-sighted evolution. These concepts provide a new perspective on the way in which some viruses have been able to establish and maintain global pandemics.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Joe Grove
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, WC1E 6BT, UK
| |
Collapse
|
25
|
Fukuhara T, Yamamoto S, Ono C, Nakamura S, Motooka D, Mori H, Kurihara T, Sato A, Tamura T, Motomura T, Okamoto T, Imamura M, Ikegami T, Yoshizumi T, Soejima Y, Maehara Y, Chayama K, Matsuura Y. Quasispecies of Hepatitis C Virus Participate in Cell-Specific Infectivity. Sci Rep 2017; 7:45228. [PMID: 28327559 PMCID: PMC5361118 DOI: 10.1038/srep45228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/21/2017] [Indexed: 02/08/2023] Open
Abstract
It is well documented that a variety of viral quasispecies are found in the patients with chronic infection of hepatitis C virus (HCV). However, the significance of quasispecies in the specific infectivity to individual cell types remains unknown. In the present study, we analyzed the role of quasispecies of the genotype 2a clone, JFH1 (HCVcc), in specific infectivity to the hepatic cell lines, Huh7.5.1 and Hep3B. HCV RNA was electroporated into Huh7.5.1 cells and Hep3B/miR-122 cells expressing miR-122 at a high level. Then, we adapted the viruses to Huh7 and Hep3B/miR-122 cells by serial passages and termed the resulting viruses HCVcc/Huh7 and HCVcc/Hep3B, respectively. Interestingly, a higher viral load was obtained in the homologous combination of HCVcc/Huh7 in Huh7.5.1 cells or HCVcc/Hep3B in Hep3B/miR-122 cells compared with the heterologous combination. By using a reverse genetics system and deep sequence analysis, we identified several adaptive mutations involved in the high affinity for each cell line, suggesting that quasispecies of HCV participate in cell-specific infectivity.
Collapse
Affiliation(s)
- Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Satomi Yamamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Mori
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kurihara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Asuka Sato
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takashi Motomura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical &Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Soejima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical &Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
26
|
Zhang YH, Xing Z, Liu C, Wang S, Huang T, Cai YD, Kong X. Identification of the core regulators of the HLA I-peptide binding process. Sci Rep 2017; 7:42768. [PMID: 28211542 PMCID: PMC5314381 DOI: 10.1038/srep42768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
During the display of peptide/human leukocyte antigen (HLA) -I complex for further immune recognition, the cleaved and transported antigenic peptides have to bind to HLA-I protein and the binding affinity between peptide epitopes and HLA proteins directly influences the immune recognition ability in human beings. Key factors affecting the binding affinity during the generation, selection and presentation processes of HLA-I complex have not yet been fully discovered. In this study, a new method describing the HLA class I-peptide interactions was proposed. Three hundred and forty features of HLA I proteins and peptide sequences were utilized for analysis by four candidate algorithms, screening the optimal classifier. Features derived from the optimal classifier were further selected and systematically analyzed, revealing the core regulators. The results validated the hypothesis that features of HLA I proteins and related peptides simultaneously affect the binding process, though with discrepant redundancy. Besides, the high relative ratio (16/20) of the amino acid composition features suggests the unique role of sequence signatures for the binding processes. Integrating biological, evolutionary and chemical features of both HLA I molecules and peptides, this study may provide a new perspective of the underlying mechanisms of HLA I-mediated immune reactions.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Zhihao Xing
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Chenglin Liu
- School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, People's Republic of China
| | - ShaoPeng Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| |
Collapse
|
27
|
Tracking HCV protease population diversity during transmission and susceptibility of founder populations to antiviral therapy. Antiviral Res 2017; 139:129-137. [PMID: 28062191 DOI: 10.1016/j.antiviral.2017.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/02/2017] [Indexed: 12/16/2022]
Abstract
Due to the highly restricted species-tropism of Hepatitis C virus (HCV) a limited number of animal models exist for pre-clinical evaluation of vaccines and antiviral compounds. The human-liver chimeric mouse model allows heterologous challenge with clinically relevant strains derived from patients. However, to date, the transmission and longitudinal evolution of founder viral populations in this model have not been characterized in-depth using state-of-the-art sequencing technologies. Focusing on NS3 protease encoding region of the viral genome, mutant spectra in a donor inoculum and individual recipient mice were determined via Illumina sequencing and compared, to determine the effects of transmission on founder viral population complexity. In all transmissions, a genetic bottleneck was observed, although diverse viral populations were transmitted in each case. A low frequency cloud of mutations (<1%) was detectable in the donor inoculum and recipient mice, with single nucleotide variants (SNVs) > 1% restricted to a subset of nucleotides. The population of SNVs >1% was reduced upon transmission while the low frequency SNV cloud remained stable. Fixation of multiple identical synonymous substitutions was apparent in independent transmissions, and no evidence for reversion of T-cell epitopes was observed. In addition, susceptibility of founder populations to antiviral therapy was assessed. Animals were treated with protease inhibitor (PI) monotherapy to track resistance associated substitution (RAS) emergence. Longitudinal analyses revealed a decline in population diversity under therapy, with no detectable RAS >1% prior to therapy commencement. Despite inoculation from a common source and identical therapeutic regimens, unique RAS emergence profiles were identified in different hosts prior to and during therapeutic failure, with complex mutational signatures at protease residues 155, 156 and 168 detected. Together these analyses track viral population complexity at high-resolution in the human-liver chimeric mouse model post-transmission and under therapeutic intervention, revealing novel insights into the evolutionary processes which shape viral protease population composition at various critical stages of the viral life-cycle.
Collapse
|
28
|
Price AA, Tedesco D, Prasad MR, Workowski KA, Walker CM, Suthar MS, Honegger JR, Grakoui A. Prolonged activation of innate antiviral gene signature after childbirth is determined by IFNL3 genotype. Proc Natl Acad Sci U S A 2016; 113:10678-83. [PMID: 27601663 PMCID: PMC5035891 DOI: 10.1073/pnas.1602319113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maternal innate and adaptive immune responses are modulated during pregnancy to concurrently defend against infection and tolerate the semiallogeneic fetus. The restoration of these systems after childbirth is poorly understood. We reasoned that enhanced innate immune activation may extend beyond gestation while adaptive immunity recovers. To test this hypothesis, the transcriptional profiles of total peripheral blood mononuclear cells following delivery in healthy women were compared with those of nonpregnant control subjects. Interestingly, interferon-stimulated genes (ISGs) encoding proteins such as IFIT1, IFIT2, and IFIT3, as well as signaling proteins such as STAT1, STAT2, and MAVS, were enriched postpartum. Antiviral genes were primarily expressed in CD14(+) cells and could be stratified according to genetic variation at the interferon-λ3 gene (IFNL3, also named IL28B) SNP rs12979860. Antiviral gene expression was sustained beyond 6 mo following delivery in mothers with a CT or TT genotype, but resembled baseline nonpregnant control levels following delivery in mothers with a CC genotype. CT and TT IFNL3 genotypes have been associated with persistent elevated ISG expression in individuals chronically infected with hepatitis C virus. Together, these data suggest that postpartum, the normalization of the physiological rheostat controlling IFN signaling depends on IFNL3 genotype.
Collapse
Affiliation(s)
- Aryn A Price
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30329; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Dana Tedesco
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30329; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Mona R Prasad
- Department of Obstetrics and Gynecology, The Ohio State University School of Medicine, Columbus, OH 43205
| | | | - Christopher M Walker
- The Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205; Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, 43205
| | - Mehul S Suthar
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30329; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
| | - Jonathan R Honegger
- The Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205; Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, 43205;
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30329; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329
| |
Collapse
|
29
|
Influence of IFNL3 and HLA-DPB1 genotype on postpartum control of hepatitis C virus replication and T-cell recovery. Proc Natl Acad Sci U S A 2016; 113:10684-9. [PMID: 27601657 DOI: 10.1073/pnas.1602337113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is characterized by exhaustion of virus-specific T-cells and stable viremia. Pregnancy is an exception. Viremia gradually climbs during gestation but sometimes declines sharply in the months following delivery. Here, we demonstrated that postpartum HCV control was associated with enhanced virus-specific T-cell immunity. Women with viral load declines of at least 1 log10 between the third trimester and 3-mo postpartum exhibited HCV-specific T-cell responses of greater breadth (P = 0.0052) and magnitude (P = 0.026) at 3-mo postpartum than women who failed to control viremia. Moreover, viral dynamics were consistent in women after consecutive pregnancies, suggesting genetic underpinnings. We therefore searched for genetic associations with human leukocyte antigen (HLA) alleles and IFN-λ3 gene (IFNL3) polymorphisms that influence HCV infection outcome. Postpartum viral control was associated with the IFNL3 rs12979860 genotype CC (P = 0.045 at 6 mo) that predicts a positive response to IFN-based therapy. Suppression of virus replication after pregnancy was also strongly influenced by the HLA class II DPB1 locus. HLA-DPB1 alleles are classified by high and low patterns of expression. Carriage of at least one high-expression HLA-DPB1 allele predicted resurgent virus-specific T-cell immunity and viral control at 3-mo postpartum (P = 0.0002). When considered together in multivariable analysis, IFNL3 and HLA-DPB1 independently affected viral control at 3- and 6-mo postpartum. Together, these findings support a model where spontaneous control of HCV such as sometimes follows pregnancy is governed by genetic polymorphisms that affect type III IFN signaling and virus-specific cellular immune responses.
Collapse
|
30
|
Indolfi G, Mangone G, Bartolini E, Moriondo M, Azzari C, Resti M. Hepatitis C viraemia after apparent spontaneous clearance in a vertically infected child. Lancet 2016; 387:1967-8. [PMID: 27203660 DOI: 10.1016/s0140-6736(16)00085-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Giuseppe Indolfi
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence, Italy.
| | - Giusi Mangone
- Immunology Unit and Laboratory, Meyer Children's University Hospital of Florence, Italy
| | - Elisa Bartolini
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence, Italy
| | - Maria Moriondo
- Immunology Unit and Laboratory, Meyer Children's University Hospital of Florence, Italy; Department of Health Sciences, University of Florence, Florence, Italy
| | - Chiara Azzari
- Immunology Unit and Laboratory, Meyer Children's University Hospital of Florence, Italy; Department of Health Sciences, University of Florence, Florence, Italy
| | - Massimo Resti
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence, Italy
| |
Collapse
|
31
|
Robinson MW, Hughes J, Wilkie GS, Swann R, Barclay ST, Mills PR, Patel AH, Thomson EC, McLauchlan J. Tracking TCRβ Sequence Clonotype Expansions during Antiviral Therapy Using High-Throughput Sequencing of the Hypervariable Region. Front Immunol 2016; 7:131. [PMID: 27092143 PMCID: PMC4820669 DOI: 10.3389/fimmu.2016.00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023] Open
Abstract
To maintain a persistent infection viruses such as hepatitis C virus (HCV) employ a range of mechanisms that subvert protective T cell responses. The suppression of antigen-specific T cell responses by HCV hinders efforts to profile T cell responses during chronic infection and antiviral therapy. Conventional methods of detecting antigen-specific T cells utilize either antigen stimulation (e.g., ELISpot, proliferation assays, cytokine production) or antigen-loaded tetramer staining. This limits the ability to profile T cell responses during chronic infection due to suppressed effector function and the requirement for prior knowledge of antigenic viral peptide sequences. Recently, high-throughput sequencing (HTS) technologies have been developed for the analysis of T cell repertoires. In the present study, we have assessed the feasibility of HTS of the TCRβ complementarity determining region (CDR)3 to track T cell expansions in an antigen-independent manner. Using sequential blood samples from HCV-infected individuals undergoing antiviral therapy, we were able to measure the population frequencies of >35,000 TCRβ sequence clonotypes in each individual over the course of 12 weeks. TRBV/TRBJ gene segment usage varied markedly between individuals but remained relatively constant within individuals across the course of therapy. Despite this stable TRBV/TRBJ gene segment usage, a number of TCRβ sequence clonotypes showed dramatic changes in read frequency. These changes could not be linked to therapy outcomes in the present study; however, the TCRβ CDR3 sequences with the largest fold changes did include sequences with identical TRBV/TRBJ gene segment usage and high junction region homology to previously published CDR3 sequences from HCV-specific T cells targeting the HLA-B*0801-restricted 1395HSKKKCDEL1403 and HLA-A*0101-restricted 1435ATDALMTGY1443 epitopes. The pipeline developed in this proof of concept study provides a platform for the design of future experiments to accurately address the question of whether T cell responses contribute to SVR upon antiviral therapy. This pipeline represents a novel technique to analyze T cell dynamics in situations where conventional antigen-dependent methods are limited due to suppression of T cell functions and highly diverse antigenic sequences.
Collapse
Affiliation(s)
- Mark W Robinson
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Joseph Hughes
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| | - Gavin S Wilkie
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| | - Rachael Swann
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; Gartnavel General Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Stephen T Barclay
- Glasgow Royal Infirmary, NHS Greater Glasgow and Clyde , Glasgow , UK
| | - Peter R Mills
- Gartnavel General Hospital, NHS Greater Glasgow and Clyde , Glasgow , UK
| | - Arvind H Patel
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| | - Emma C Thomson
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| | - John McLauchlan
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow , Glasgow , UK
| |
Collapse
|
32
|
Abstract
The past decade has seen tremendous progress in understanding hepatitis C virus (HCV) biology and its related disease, hepatitis C. Major advances in characterizing viral replication have led to the development of direct-acting anti-viral therapies that have considerably improved patient treatment outcome and can even cure chronic infection. However, the high cost of these treatments, their low barrier to viral resistance, and their inability to prevent HCV-induced liver cancer, along with the absence of an effective HCV vaccine, all underscore the need for continued efforts to understand the biology of this virus. Moreover, beyond informing therapies, enhanced knowledge of HCV biology is itself extremely valuable for understanding the biology of related viruses, such as dengue virus, which is becoming a growing global health concern. Major advances have been realized over the last few years in HCV biology and pathogenesis, such as the discovery of the envelope glycoprotein E2 core structure, the generation of the first mouse model with inheritable susceptibility to HCV, and the characterization of virus-host interactions that regulate viral replication or innate immunity. Here, we review the recent findings that have significantly advanced our understanding of HCV and highlight the major challenges that remain.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| |
Collapse
|
33
|
Immune-surveillance through exhausted effector T-cells. Curr Opin Virol 2016; 16:49-54. [PMID: 26826950 DOI: 10.1016/j.coviro.2016.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022]
Abstract
Pathogens such as the human immunodeficiency virus (HIV), the hepatitis B and C virus (HBV, HCV) and certain strains of the rodent lymphocytic choriomeningitis virus (LCMV) establish a state of persisting viral replication. This occurs besides strong adoptive immune responses and the induction of large numbers of activated pathogen-specific T-cells. The failure of the immune system to clear these viruses is typically attributed to a loss of effector T-cell function-a phenomenon referred to as T-cell exhaustion. Though largely accepted, this loss of function concept is being more and more challenged by comprehensive clinical and experimental observations which highlight that T-cells in chronic infections are more functional than previously considered. Here, we highlight examples that demonstrate that such T-cells mediate a profound form of immune-surveillance. We also briefly discuss the opportunities and limitations of employing 'exhausted' T-cells for therapeutic purposes.
Collapse
|
34
|
Tovo PA, Calitri C, Scolfaro C, Gabiano C, Garazzino S. Vertically acquired hepatitis C virus infection: Correlates of transmission and disease progression. World J Gastroenterol 2016; 22:1382-1392. [PMID: 26819507 PMCID: PMC4721973 DOI: 10.3748/wjg.v22.i4.1382] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/18/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
The worldwide prevalence of hepatitis C virus (HCV) infection in children is 0.05%-0.4% in developed countries and 2%-5% in resource-limited settings, where inadequately tested blood products or un-sterile medical injections still remain important routes of infection. After the screening of blood donors, mother-to-child transmission (MTCT) of HCV has become the leading cause of pediatric infection, at a rate of 5%. Maternal HIV co-infection is a significant risk factor for MTCT and anti-HIV therapy during pregnancy seemingly can reduce the transmission rate of both viruses. Conversely, a high maternal viral load is an important, but not preventable risk factor, because at present no anti-HCV treatment can be administered to pregnant women to block viral replication. Caution is needed in adopting obstetric procedures, such as amniocentesis or internal fetal monitoring, that can favor fetal exposure to HCV contaminated maternal blood, though evidence is lacking on the real risk of single obstetric practices. Mode of delivery and type of feeding do not represent significant risk factors for MTCT. Therefore, there is no reason to offer elective caesarean section or discourage breast-feeding to HCV infected parturients. Information on the natural history of vertical HCV infection is limited. The primary infection is asymptomatic in infants. At least one quarter of infected children shows a spontaneous viral clearance (SVC) that usually occurs within 6 years of life. IL-28B polymorphims and genotype 3 infection have been associated with greater chances of SVC. In general, HCV progression is mild or moderate in children with chronic infection who grow regularly, though cases with marked liver fibrosis or hepatic failure have been described. Non-organ specific autoantibodies and cryoglobulins are frequently found in children with chronic infection, but autoimmune diseases or HCV associated extrahepatic manifestations are rare.
Collapse
|
35
|
Li H, Stoddard MB, Wang S, Giorgi EE, Blair LM, Learn GH, Hahn BH, Alter HJ, Busch MP, Fierer DS, Ribeiro RM, Perelson AS, Bhattacharya T, Shaw GM. Single-Genome Sequencing of Hepatitis C Virus in Donor-Recipient Pairs Distinguishes Modes and Models of Virus Transmission and Early Diversification. J Virol 2016; 90:152-66. [PMID: 26468546 PMCID: PMC4702571 DOI: 10.1128/jvi.02156-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/02/2015] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Despite the recent development of highly effective anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and development of an effective vaccine. A precise molecular identification of transmitted/founder (T/F) HCV genomes that lead to productive clinical infection could play a critical role in vaccine research, as it has for HIV-1. However, the replication schema of these two RNA viruses differ substantially, as do viral responses to innate and adaptive host defenses. These differences raise questions as to the certainty of T/F HCV genome inferences, particularly in cases where multiple closely related sequence lineages have been observed. To clarify these issues and distinguish between competing models of early HCV diversification, we examined seven cases of acute HCV infection in humans and chimpanzees, including three examples of virus transmission between linked donors and recipients. Using single-genome sequencing (SGS) of plasma vRNA, we found that inferred T/F sequences in recipients were identical to viral sequences in their respective donors. Early in infection, HCV genomes generally evolved according to a simple model of random evolution where the coalescent corresponded to the T/F sequence. Closely related sequence lineages could be explained by high multiplicity infection from a donor whose viral sequences had undergone a pretransmission bottleneck due to treatment, immune selection, or recent infection. These findings validate SGS, together with mathematical modeling and phylogenetic analysis, as a novel strategy to infer T/F HCV genome sequences. IMPORTANCE Despite the recent development of highly effective, interferon-sparing anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and the development of an effective vaccine, which could be facilitated by a precise molecular identification of transmitted/founder (T/F) viral genomes and their progeny. We used single-genome sequencing to show that inferred HCV T/F sequences in recipients were identical to viral sequences in their respective donors and that viral genomes generally evolved early in infection according to a simple model of random sequence evolution. Altogether, the findings validate T/F genome inferences and illustrate how T/F sequence identification can illuminate studies of HCV transmission, immunopathogenesis, drug resistance development, and vaccine protection, including sieving effects on breakthrough virus strains.
Collapse
Affiliation(s)
- Hui Li
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark B Stoddard
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elena E Giorgi
- T-Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Lily M Blair
- T-Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA Department of Biology, Stanford University, Stanford, California, USA
| | - Gerald H Learn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harvey J Alter
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael P Busch
- Blood Systems Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Daniel S Fierer
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruy M Ribeiro
- T-Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Tanmoy Bhattacharya
- T-Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA Santa Fe Institute, Santa Fe, New Mexico, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Wen J, Ohmer S, Honegger J. Hepatitis C Virus Infection in Pregnancy and Childhood. HEPATITIS C VIRUS II 2016:187-222. [DOI: 10.1007/978-4-431-56101-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Kumthip K, Maneekarn N. The role of HCV proteins on treatment outcomes. Virol J 2015; 12:217. [PMID: 26666318 PMCID: PMC4678629 DOI: 10.1186/s12985-015-0450-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
For many years, the standard of treatment for hepatitis C virus (HCV) infection was a combination of pegylated interferon alpha (Peg-IFN-α) and ribavirin for 24–48 weeks. This treatment regimen results in a sustained virologic response (SVR) rate in about 50 % of cases. The failure of IFN-α-based therapy to eliminate HCV is a result of multiple factors including a suboptimal treatment regimen, severity of HCV-related diseases, host factors and viral factors. In recent years, advances in HCV cell culture have contributed to a better understanding of the viral life cycle, which has led to the development of a number of direct-acting antiviral agents (DAAs) that target specific key components of viral replication, such as HCV NS3/4A, HCV NS5A, and HCV NS5B proteins. To date, several new drugs have been approved for the treatment of HCV infection. Application of DAAs with IFN-based or IFN-free regimens has increased the SVR rate up to >90 % and has allowed treatment duration to be shortened to 12–24 weeks. The impact of HCV proteins in response to IFN-based and IFN-free therapies has been described in many reports. This review summarizes and updates knowledge on molecular mechanisms of HCV proteins involved in anti-IFN activity as well as examining amino acid variations and mutations in several regions of HCV proteins associated with the response to IFN-based therapy and pattern of resistance associated amino acid variants (RAV) to antiviral agents.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
38
|
Abstract
UNLABELLED Hepatitis C virus (HCV) afflicts 170 million people worldwide, 2%-3% of the global population, and kills 350 000 each year. Prophylactic vaccination offers the most realistic and cost effective hope of controlling this epidemic in the developing world where expensive drug therapies are not available. Despite 20 years of research, the high mutability of the virus and lack of knowledge of what constitutes effective immune responses have impeded development of an effective vaccine. Coupling data mining of sequence databases with spin glass models from statistical physics, we have developed a computational approach to translate clinical sequence databases into empirical fitness landscapes quantifying the replicative capacity of the virus as a function of its amino acid sequence. These landscapes explicitly connect viral genotype to phenotypic fitness, and reveal vulnerable immunological targets within the viral proteome that can be exploited to rationally design vaccine immunogens. We have recovered the empirical fitness landscape for the HCV RNA-dependent RNA polymerase (protein NS5B) responsible for viral genome replication, and validated the predictions of our model by demonstrating excellent accord with experimental measurements and clinical observations. We have used our landscapes to perform exhaustive in silico screening of 16.8 million T-cell immunogen candidates to identify 86 optimal formulations. By reducing the search space of immunogen candidates by over five orders of magnitude, our approach can offer valuable savings in time, expense, and labor for experimental vaccine development and accelerate the search for a HCV vaccine. ABBREVIATIONS HCV-hepatitis C virus, HLA-human leukocyte antigen, CTL-cytotoxic T lymphocyte, NS5B-nonstructural protein 5B, MSA-multiple sequence alignment, PEG-IFN-pegylated interferon.
Collapse
Affiliation(s)
- Gregory R Hart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
39
|
Tarr AW, Khera T, Hueging K, Sheldon J, Steinmann E, Pietschmann T, Brown RJP. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design. Viruses 2015; 7:3995-4046. [PMID: 26193307 PMCID: PMC4517138 DOI: 10.3390/v7072809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
In the 26 years since the discovery of Hepatitis C virus (HCV) a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA) regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.
Collapse
Affiliation(s)
- Alexander W Tarr
- School of Life Sciences, Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Tanvi Khera
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Kathrin Hueging
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Julie Sheldon
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig 38124, Germany.
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| |
Collapse
|
40
|
Jhaveri R, Hashem M, El-Kamary SS, Saleh DA, Sharaf SA, El-Mougy F, Abdelsalam L, Ehab M, El-Ghazaly H. Hepatitis C Virus (HCV) Vertical Transmission in 12-Month-Old Infants Born to HCV-Infected Women and Assessment of Maternal Risk Factors. Open Forum Infect Dis 2015; 2:ofv089. [PMID: 26180831 PMCID: PMC4498289 DOI: 10.1093/ofid/ofv089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 01/14/2023] Open
Abstract
We summarize the results of HCV RNA testing of 12 month old infants born to HCV infected mothers in Cairo, Egypt. We used real-time PCR testing and demonstrated a transmission rate of 14.3%. Background. Hepatitis C virus (HCV) is an underappreciated cause of pediatric liver disease, most frequently acquired by vertical transmission (VT). Current guidelines that include the option of screening infants for HCV RNA at 1–2 months are based on data prior to current real-time polymerase chain reaction (PCR)-based testing. Previous studies have demonstrated VT rates of 4%–15% and an association with high maternal viral load. We evaluated HCV RNA in infants with HCV VT and assessed maternal risk factors in a prospective cohort in Cairo, Egypt. Methods. Pregnant women were screened for HCV from December 2012 to March 2014. For those with HCV viremia, their infants were tested at 12 months for HCV RNA using real-time PCR. Maternal risk factors assessed for HCV VT association included HCV RNA levels, mode of delivery, and maternal IL28B genotype. Results. Of 2514 women screened, a total of 54 women were viremic (2.1%) and delivered 56 infants. Of those, 51 infants of 49 women were tested at 12 months of age. Only 7 infants were viremic, with an HCV VT rate of 14.3% (7 of 49). Median HCV RNA in the infants was 2100 IU/mL. None of the maternal risk factors analyzed were associated with transmission. Conclusions. In Egypt where HCV is highly endemic, we observed an overall 12-month HCV VT rate of 14.3%. Further studies should focus on better identification of pregnant women more likely to vertically transmit HCV and earlier testing of infants to identify those likely to develop chronicity.
Collapse
Affiliation(s)
- Ravi Jhaveri
- Division of Infectious Diseases, Department of Pediatrics , University of North Carolina at Chapel Hill School of Medicine
| | - Mohamed Hashem
- Department of Epidemiology and Public Health , University of Maryland , School of Medicine , Baltimore
| | - Samer S El-Kamary
- Department of Epidemiology and Public Health , University of Maryland , School of Medicine , Baltimore
| | | | | | | | | | - Mohamed Ehab
- Obstetrics and Gynecology, Faculty of Medicine , Cairo University , Egypt
| | - Hesham El-Ghazaly
- Obstetrics and Gynecology, Faculty of Medicine , Cairo University , Egypt
| |
Collapse
|
41
|
Rossi LMG, Escobar-Gutierrez A, Rahal P. Advanced molecular surveillance of hepatitis C virus. Viruses 2015; 7:1153-88. [PMID: 25781918 PMCID: PMC4379565 DOI: 10.3390/v7031153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/05/2015] [Accepted: 02/20/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is an important public health problem worldwide. HCV exploits complex molecular mechanisms, which result in a high degree of intrahost genetic heterogeneity. This high degree of variability represents a challenge for the accurate establishment of genetic relatedness between cases and complicates the identification of sources of infection. Tracking HCV infections is crucial for the elucidation of routes of transmission in a variety of settings. Therefore, implementation of HCV advanced molecular surveillance (AMS) is essential for disease control. Accounting for virulence is also important for HCV AMS and both viral and host factors contribute to the disease outcome. Therefore, HCV AMS requires the incorporation of host factors as an integral component of the algorithms used to monitor disease occurrence. Importantly, implementation of comprehensive global databases and data mining are also needed for the proper study of the mechanisms responsible for HCV transmission. Here, we review molecular aspects associated with HCV transmission, as well as the most recent technological advances used for virus and host characterization. Additionally, the cornerstone discoveries that have defined the pathway for viral characterization are presented and the importance of implementing advanced HCV molecular surveillance is highlighted.
Collapse
Affiliation(s)
- Livia Maria Gonçalves Rossi
- Department of Biology, Institute of Bioscience, Language and Exact Science, Sao Paulo State University, Sao Jose do Rio Preto, SP 15054-000, Brazil.
| | | | - Paula Rahal
- Department of Biology, Institute of Bioscience, Language and Exact Science, Sao Paulo State University, Sao Jose do Rio Preto, SP 15054-000, Brazil.
| |
Collapse
|
42
|
Mutational escape of CD8+ T cell epitopes: implications for prevention and therapy of persistent hepatitis virus infections. Med Microbiol Immunol 2014; 204:29-38. [PMID: 25537849 PMCID: PMC4305108 DOI: 10.1007/s00430-014-0372-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/01/2014] [Indexed: 12/16/2022]
Abstract
Over the past two decades, much has been learned about how human viruses evade T cell immunity to establish persistent infection. The lessons are particularly relevant to two hepatotropic viruses, HBV and HCV, that are very significant global public health problems. Although HCV and HBV are very different, the natural history of persistent infections with these viruses in humans shares some common features including failure of T cell immunity. During recent years, large sequence studies of HCV have characterized intra-host evolution as well as sequence diversity between hosts in great detail. Combined with studies of CD8+ T cell phenotype and function, it is now apparent that the T cell response shapes viral evolution. In turn, HCV sequence diversity influences the quality of the CD8+ T cell response and thus infection outcome. Here, we review published studies of CD8+ T cell selection pressure and mutational escape of the virus. Potential consequences for therapeutic strategies to restore T cell immunity against persistent human viruses, most notably HBV, are discussed.
Collapse
|
43
|
Preciado MV, Valva P, Escobar-Gutierrez A, Rahal P, Ruiz-Tovar K, Yamasaki L, Vazquez-Chacon C, Martinez-Guarneros A, Carpio-Pedroza JC, Fonseca-Coronado S, Cruz-Rivera M. Hepatitis C virus molecular evolution: Transmission, disease progression and antiviral therapy. World J Gastroenterol 2014; 20:15992-16013. [PMID: 25473152 PMCID: PMC4239486 DOI: 10.3748/wjg.v20.i43.15992] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/22/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era.
Collapse
|
44
|
Heim MH, Thimme R. Innate and adaptive immune responses in HCV infections. J Hepatol 2014; 61:S14-25. [PMID: 25443342 DOI: 10.1016/j.jhep.2014.06.035] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus has been identified a quarter of a decade ago as a leading cause of chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Only a minority of patients can clear the virus spontaneously during acute infection. Elimination of HCV during acute infection correlates with a rapid induction of innate, especially interferon (IFN) induced genes, and a delayed induction of adaptive immune responses. However, the majority of patients is unable to clear the virus and develops viral persistence in face of an ongoing innate and adaptive immune response. The virus has developed several strategies to escape these immune responses. For example, to escape innate immunity, the HCV NS3/4A protease can efficiently cleave and inactivate two important signalling molecules in the sensory pathways that react to HCV pathogen-associated molecular patterns (PAMPs) to induce IFNs, i.e., the mitochondrial anti-viral signalling protein (MAVS) and the Toll-IL-1 receptor-domain-containing adaptor-inducing IFN-β (TRIF). Despite these escape mechanisms, IFN-stimulated genes (ISGs) are induced in a large proportion of patients with chronic infection. Of note, chronically HCV infected patients with constitutive IFN-stimulated gene (ISG) expression have a poor response to treatment with pegylated IFN-α (PegIFN-α) and ribavirin. The mechanisms that protect HCV from IFN-mediated innate immune reactions are not entirely understood, but might involve blockade of ISG protein translation at the ribosome, localization of viral replication to cell compartments that are not accessible to anti-viral IFN-stimulated effector systems, or direct antagonism of effector systems by viral proteins. Escape from adaptive immune responses can be achieved by emergence of viral escape mutations that avoid recognition by antibodies and T cells. In addition, chronic infection is characterized by the presence of functionally and phenotypically altered NK and T cell responses that are unable to clear the virus but most likely contribute to the ongoing liver disease. In this review, we will summarize current knowledge about the role of innate and adaptive immune responses in determining the outcome of HCV infection.
Collapse
Affiliation(s)
- Markus H Heim
- Division of Gastroenterology and Hepatology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Robert Thimme
- Department of Medicine, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
45
|
Dustin LB, Cashman SB, Laidlaw SM. Immune control and failure in HCV infection--tipping the balance. J Leukoc Biol 2014; 96:535-48. [PMID: 25015956 DOI: 10.1189/jlb.4ri0214-126r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the development of potent antiviral drugs, HCV remains a global health problem; global eradication is a long way off. In this review, we discuss the immune response to HCV infection and particularly, the interplay between viral strategies that delay the onset of antiviral responses and host strategies that limit or even eradicate infected cells but also contribute to pathogenesis. Although HCV can disable some cellular virus-sensing machinery, IFN-stimulated antiviral genes are induced in the infected liver. Whereas epitope evolution contributes to escape from T cell-mediated immunity, chronic high antigen load may also blunt the T cell response by activating exhaustion or tolerance mechanisms. The evasive maneuvers of HCV limit sterilizing humoral immunity through rapid evolution of decoy epitopes, epitope masking, stimulation of interfering antibodies, lipid shielding, and cell-to-cell spread. Whereas the majority of HCV infections progress to chronic hepatitis with persistent viremia, at least 20% of patients spontaneously clear the infection. Most of these are protected from reinfection, suggesting that protective immunity to HCV exists and that a prophylactic vaccine may be an achievable goal. It is therefore important that we understand the correlates of protective immunity and mechanisms of viral persistence.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Siobhán B Cashman
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Stephen M Laidlaw
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| |
Collapse
|
46
|
Sung PS, Racanelli V, Shin EC. CD8(+) T-Cell Responses in Acute Hepatitis C Virus Infection. Front Immunol 2014; 5:266. [PMID: 24936203 PMCID: PMC4047488 DOI: 10.3389/fimmu.2014.00266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) infects approximately 170 million people worldwide and is a major cause of life-threatening liver diseases such as liver cirrhosis and hepatocellular carcinoma. Acute HCV infection often progresses to chronic persistent infection, although some patients recover spontaneously. The divergent outcomes of acute HCV infection are known to be determined by differences in virus-specific T-cell responses among patients. Of the two major T-cell subsets, CD8+ T-cells are known to be the key effector cells that control viral infections via cytolytic activity and cytokine secretion. Herein, we review various aspects of HCV-specific CD8+ T-cell responses in acute HCV infection. In particular, we focus on timing of CD8+ T-cell responses, relationship between CD8+ T-cell responses and outcomes of acute HCV infection, receptor expression on CD8+ T-cells, breadth of CD8+ T-cell responses, and viral mutations.
Collapse
Affiliation(s)
- Pil Soo Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon , South Korea
| | - Vito Racanelli
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School , Bari , Italy
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology , Daejeon , South Korea
| |
Collapse
|
47
|
Moffett A, Colucci F. Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest 2014; 124:1872-9. [PMID: 24789879 PMCID: PMC4001528 DOI: 10.1172/jci68107] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pregnancy presents an immunological conundrum because two genetically different individuals coexist. The maternal lymphocytes at the uterine maternal-fetal interface that can recognize mismatched placental cells are T cells and abundant distinctive uterine NK (uNK) cells. Multiple mechanisms exist that avoid damaging T cell responses to the fetus, whereas activation of uNK cells is probably physiological. Indeed, genetic epidemiological data suggest that the variability of NK cell receptors and their MHC ligands define pregnancy success; however, exactly how uNK cells function in normal and pathological pregnancy is still unclear, and any therapies aimed at suppressing NK cells must be viewed with caution. Allorecognition of fetal placental cells by uNK cells is emerging as the key maternal-fetal immune mechanism that regulates placentation.
Collapse
Affiliation(s)
- Ashley Moffett
- Department of Pathology and
Centre for Trophoblast Research, Physiology Building, University of Cambridge, Cambridge, United Kingdom.
Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge,United Kingdom
| | - Francesco Colucci
- Department of Pathology and
Centre for Trophoblast Research, Physiology Building, University of Cambridge, Cambridge, United Kingdom.
Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge,United Kingdom
| |
Collapse
|
48
|
Park SH, Rehermann B. Immune responses to HCV and other hepatitis viruses. Immunity 2014; 40:13-24. [PMID: 24439265 DOI: 10.1016/j.immuni.2013.12.010] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/30/2013] [Indexed: 02/08/2023]
Abstract
Five human hepatitis viruses cause most of the acute and chronic liver disease worldwide. Over the past 25 years, hepatitis C virus (HCV) in particular has received much interest because of its ability to persist in most immunocompetent adults and because of the lack of a protective vaccine. Here we examine innate and adaptive immune responses to HCV infection. Although HCV activates an innate immune response, it employs an elaborate set of mechanisms to evade interferon (IFN)-based antiviral immunity. By comparing innate and adaptive immune responses to HCV with those to hepatitis A and B viruses, we suggest that prolonged innate immune activation by HCV impairs the development of successful adaptive immune responses. Comparative immunology provides insights into the maintenance of immune protection. We conclude by discussing prospects for an HCV vaccine and future research needs for the hepatitis viruses.
Collapse
Affiliation(s)
- Su-Hyung Park
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Price AA, Grakoui A, Honegger JR. HCV adaptations to altered CD8 + T-cell immunity during pregnancy. Future Virol 2014; 9:333-336. [PMID: 25177354 DOI: 10.2217/fvl.14.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Aryn A Price
- Department of Microbiology & Immunology, Microbiology & Molecular Genetics Program, Emory University, Atlanta, GA, USA ; Emory Vaccine Center, Emory University, Atlanta, GA, USA ; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Arash Grakoui
- Emory Vaccine Center, Emory University, Atlanta, GA, USA ; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA ; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan R Honegger
- Center for Vaccines & Immunity, Nationwide Children's Hospital, Columbus, OH, USA ; Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| |
Collapse
|
50
|
Evolution of a cell culture-derived genotype 1a hepatitis C virus (H77S.2) during persistent infection with chronic hepatitis in a chimpanzee. J Virol 2014; 88:3678-94. [PMID: 24429362 DOI: 10.1128/jvi.03540-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Persistent infection is a key feature of hepatitis C virus (HCV). However, chimpanzee infections with cell culture-derived viruses (JFH1 or related chimeric viruses that replicate efficiently in cell culture) have been limited to acute-transient infections with no pathogenicity. Here, we report persistent infection with chronic hepatitis in a chimpanzee challenged with cell culture-derived genotype 1a virus (H77S.2) containing 6 cell culture-adaptive mutations. Following acute-transient infection with a chimeric H77/JFH1 virus (HJ3-5), intravenous (i.v.) challenge with 10(6) FFU H77S.2 virus resulted in immediate seroconversion and, following an unusual 4- to 6-week delay, persistent viremia accompanied by alanine aminotransferase (ALT) elevation, intrahepatic innate immune responses, and diffuse hepatopathy. This first persistent infection with cell culture-produced HCV provided a unique opportunity to assess evolution of cell culture-adapted virus in vivo. Synonymous and nonsynonymous nucleotide substitution rates were greatest during the first 8 weeks of infection. Of 6 cell culture-adaptive mutations in H77S.2, Q1067R (NS3) had reverted to Q1067 and S2204I (NS5A) was replaced by T2204 within 8 weeks of infection. By 62 weeks, 4 of 6 mutations had reverted to the wild-type sequence, and all reverted to the wild-type sequence by 194 weeks. The data suggest H77S.2 virus has greater potential for persistence and pathogenicity than JFH1 and demonstrate both the capacity of a nonfit virus to persist for weeks in the liver in the absence of detectable viremia as well as strong selective pressure against cell culture-adaptive mutations in vivo. IMPORTANCE This study shows that mutations promoting the production of infectious genotype 1a HCV in cell culture have the opposite effect and attenuate replication in the liver of the only fully permissive animal species other than humans. It provides the only example to date of persistent infection in a chimpanzee challenged with cell culture-produced virus and provides novel insight into the forces shaping molecular evolution of that virus during 5 years of persistent infection. It demonstrates that a poorly fit virus can replicate for weeks within the liver in the absence of detectable viremia, an observation that expands current concepts of HCV pathogenesis and that is relevant to relapses observed with direct-acting antiviral therapies.
Collapse
|