1
|
McGowan TJ, Lewerenz N, Maino E, Thürkauf M, Jörin L, Rüegg MA. AAV capsids target muscle-resident cells with different efficiencies-A comparative study between AAV8, AAVMYO, and AAVMYO2. Mol Ther Methods Clin Dev 2025; 33:101451. [PMID: 40225019 PMCID: PMC11987650 DOI: 10.1016/j.omtm.2025.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Adeno-associated viruses (AAVs) of different serotypes are commonly used in gene therapies and gene interrogation studies to deliver transgenes to skeletal muscle in humans and mice. While efficient muscle fiber transduction is possible, little is known of their capacity to transduce muscle-residing mononuclear cells. Here, we addressed this question for AAV8 and the two myotropic AAVs, AAVMYO and AAVMYO2, by engineering them to express the tdTomato gene. AAVs were then injected intramuscularly or intravenously at two different doses into adult mice followed by flow-cytometry-based isolation of endothelial cells, immune cells, muscle stem cells, and fibro-adipogenic progenitor cells from the tibialis anterior muscle. Overall, we noted varying rates of tdTomato expression across all cell types. Transduction efficiency fluctuated in AAV serotype-dependent, titer-dependent, administration-dependent, and cell-dependent manners. By visualizing AAV DNA in vivo, we confirmed that AAV8, AAVMYO, and AAVMYO2 deliver transgenes to muscle-residing mononuclear cells. We show that mononuclear cells are also successfully transduced in the dy W /dy W mouse model of LAMA2-related muscular dystrophy. Altogether, we demonstrate that muscle-residing mononuclear cells are transduced by AAVs and provide an insightful guidance for researchers aiming to target muscle-resident mononuclear cells in their studies.
Collapse
Affiliation(s)
- Timothy J. McGowan
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Nicolas Lewerenz
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Eleonora Maino
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Marco Thürkauf
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Lena Jörin
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Cojocaru AI, Kefi K, Masson JD, Tiret L, Relaix F, Taglietti V. Forskolin treatment enhances muscle regeneration and shows therapeutic potential with limitations in Duchenne muscular dystrophy. Skelet Muscle 2025; 15:12. [PMID: 40329365 DOI: 10.1186/s13395-025-00381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/20/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Duchenne Muscular Dystrophy (DMD) is a progressive neuromuscular disorder characterized by impaired muscle repair. Forskolin (FSK), an adenylyl cyclase activator, has shown potential in enhancing muscle regeneration and limiting muscle stem cell senescence. This study aimed to evaluate the effects of FSK on muscle repair, fibrosis, inflammation, and long-term muscle function in DMD using a preclinical rat model. METHODS BaCl2-induced muscle injury was performed on 6-month-old DMD (R-DMDdel52) and wild-type (WT) rats. FSK was supplied via short-term and long-term administration. Muscle tissues were harvested 14 days post-injury for histological analysis, including hematoxylin and eosin and Sirius red staining. Immunofluorescence was used to assess fibroadipogenic progenitors (FAPs), regeneration, muscle stem cells, and macrophage phenotypes. Moreover, we performed a study by chronically administering FSK to DMD rats from 1 to 7 months of age, either intraperitoneally (IP) or subcutaneously (SC). Functional assessments included grip strength test, in vivo muscle force measurements, plethysmography and electrocardiograms. Post-sacrifice, Tibialis anterior, diaphragm and heart tissues were histologically analyzed, to evaluate muscle architecture, fibrosis, and histopathological indices. RESULTS FSK treatment significantly improved muscle histology and reduced fibrosis in both uninjured and injured DMD muscles by decreasing the number of FAPs. Long-term FSK treatment in the acute injury model enhanced muscle regeneration, increased MuSC proliferation, and reduced senescence. FSK also modulated inflammation by reducing pro-inflammatory macrophages and promoting a shift to a restorative phenotype. However, despite these histological improvements, FSK treatment from 1 to 7 months resulted in limited functional benefits and worsened ventricular histology in the heart. CONCLUSIONS FSK shows promising results in improving muscle regeneration and reducing fibrosis in DMD, but concerns remain regarding its limited chronic functional benefits and potential adverse effects on cardiac tissue. Our results highlight the need for optimized adenylyl cyclase activators for therapeutic use in DMD patients.
Collapse
Affiliation(s)
| | - Kaouthar Kefi
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France
| | | | - Laurent Tiret
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France
- École Nationale Vétérinaire d'Alfort, U955 IMRB, F-94700, Maisons-Alfort, France
| | - Frederic Relaix
- Univ Paris-Est Créteil, INSERM, U955 IMRB, F-94010, Créteil, France.
- École Nationale Vétérinaire d'Alfort, U955 IMRB, F-94700, Maisons-Alfort, France.
- EFS, U955 IMRB, F-94010, Créteil, France.
- AP-HP, Hopital Mondor, Service d' histologie, 94010, Creteil, France.
| | | |
Collapse
|
3
|
Yue F, Gu L, Qiu J, Oprescu SN, Beckett LM, Ellis JM, Donkin SS, Kuang S. Mitochondrial fatty acid oxidation regulates adult muscle stem cell function through modulating metabolic flux and protein acetylation. EMBO J 2025; 44:2566-2595. [PMID: 40065099 PMCID: PMC12048568 DOI: 10.1038/s44318-025-00397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 05/04/2025] Open
Abstract
During homeostasis and regeneration, satellite cells, the resident stem cells of skeletal muscle, have distinct metabolic requirements for fate transitions between quiescence, proliferation and differentiation. However, the contribution of distinct energy sources to satellite cell metabolism and function remains largely unexplored. Here, we uncover a role of mitochondrial fatty acid oxidation (FAO) in satellite cell integrity and function. Single-cell RNA sequencing revealed progressive enrichment of mitochondrial FAO and downstream pathways during activation, proliferation and myogenic commitment of satellite cells. Deletion of Carnitine palmitoyltransferase 2 (Cpt2), the rate-limiting enzyme in FAO, hampered muscle stem cell expansion and differentiation upon acute muscle injury, markedly delaying regeneration. Cpt2 deficiency reduces acetyl-CoA levels in satellite cells, impeding the metabolic flux and acetylation of selective proteins including Pax7, the central transcriptional regulator of satellite cells. Notably, acetate supplementation restored cellular metabolic flux and partially rescued the regenerative defects of Cpt2-null satellite cells. These findings highlight an essential role of fatty acid oxidation in controlling satellite cell function and suggest an integration of lipid metabolism and protein acetylation in adult stem cells.
Collapse
Affiliation(s)
- Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Lijie Gu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Stephanie N Oprescu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Linda M Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jessica M Ellis
- East Carolina Diabetes and Obesity Institute and Department of Physiology, East Carolina University, Greenville, NC, 27858, USA
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
4
|
Zhang M, Lin Z, Chen M, Guo D, Yang Q, He Q, Mao B, Liang B, Chen L, Cai M, Huang H, Xu L. Incidental finding of a DMD exons 48-55 deletion during prenatal diagnosis. Front Pediatr 2025; 13:1541468. [PMID: 40313677 PMCID: PMC12043877 DOI: 10.3389/fped.2025.1541468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/20/2025] [Indexed: 05/03/2025] Open
Abstract
Background DMD genetic variants cause a spectrum of phenotypes, from severe progressive proximal muscle weakness and degeneration leading to wheelchair dependence and death from cardiac and/or respiratory failure to very mild muscular phenotypes; very rarely, cases are completely asymptomatic. Few cases have been reported in males carrying DMD deletions who are asymptomatic. Methods Family clinical information was collected from the patients. A single nucleotide polymorphism array (SNP-array) was used to detect abnormalities in prenatal diagnosis, and multiplex ligation-dependent probe amplification (MLPA) and long-read sequencing (LRS) were used to confirm the detected variant. Results We incidentally identified DMD exons 48-55 deletion using SNP-array in prenatal diagnosis; the variant was confirmed using MLPA and LRS, and the fragment size and precise locations of breakpoints were determined. The variant was precisely located at genomic position chrX:31640088-31945085, spanning from intron 47 to intron 56 in DMD. Serum biochemical indicators were normal in the male with the deletion. Conclusion Our study is the first to report a DMD exons 48-55 deletion in prenatal diagnosis. The phenotypes of DMD variants are diverse, and this study suggests that prediction of clinical severity based solely on molecular findings should be interpreted with caution.
Collapse
Affiliation(s)
- Min Zhang
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zhaodong Lin
- Department of Clinical Laboratory, Fuzhou First General Hospital, Fuzhou, Fujian, China
| | - Meihuan Chen
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Danhua Guo
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Qiaomei Yang
- Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Qianqian He
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Bin Mao
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Bin Liang
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Lingji Chen
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Meiying Cai
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Hailong Huang
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Górecki DC, Kalinski P, Pomeroy J. Is dystrophin immunogenicity a barrier to advancing gene therapy for Duchenne muscular dystrophy? Gene Ther 2025:10.1038/s41434-025-00531-y. [PMID: 40181163 DOI: 10.1038/s41434-025-00531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that leads to severe disability and premature death in young men. As DMD is caused by the absence of dystrophin, therapeutic development has focused on strategies to restore dystrophin expression. These include readthrough of premature stop codons, exon skipping to restore the reading frame, and gene therapy. The first two methods are mutation-specific, benefiting only subsets of patients, whereas gene therapy could treat all individuals with DMD. Immunogenicity of dystrophin may challenge these efforts. The immune system can recognize dystrophin as a neo-antigen, just as it can recognize newly arising antigens present on mutated cells. An in-depth evaluation of anti-dystrophin immune response as a factor affecting the treatment effectiveness is needed. Key questions include the underlying mechanisms of immunity induction by antigenic epitopes of the re-expressed dystrophin, the impact of such responses on the therapeutic efficacy, and the role of patient-specific risk factors, such as preimmunization due to revertant fibres, chronic muscle inflammation, pre-existing T lymphocytes reactive to dystrophin, which avoided deletion in dystrophic thymus, or antigen cross-reactivity. Patients' immune status assessment before treatment may help mitigating anti-dystrophin responses. Exploring potential therapeutic strategies to enhance treatment outcomes is also essential: Since DMD can be diagnosed at birth, early dystrophin re-expression could prevent damage and also potentially induce neonatal tolerance. In older patients, carefully managed immunosuppression and tolerogenic protocols could pave the way for more successful dystrophin replacement therapies.
Collapse
Affiliation(s)
- Dariusz C Górecki
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael Bld, White Swan Road, Portsmouth, PO1 2DT, UK.
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Joanna Pomeroy
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael Bld, White Swan Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
6
|
Kowala A, Boot J, Meng J, Mein CA, Pourquié O, Connelly JT, Morgan JE, Lin YY. Engineered human myogenic cells in hydrogels generate innervated vascularized myofibers within dystrophic mouse muscle on long-term engraftment. Cell Rep Med 2025; 6:102019. [PMID: 40056909 PMCID: PMC11970389 DOI: 10.1016/j.xcrm.2025.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 02/17/2025] [Indexed: 03/21/2025]
Abstract
Transplantation of human myogenic progenitor cells (MPCs) is a promising therapeutic strategy for treating muscle-wasting diseases, e.g., Duchenne muscular dystrophy (DMD). To increase engraftment efficiency of donor stem cells, modulation of host muscles is required, significantly limiting their clinical translation. Here, we develop a clinically relevant transplantation strategy synergizing hydrogel-mediated delivery and engineered human MPCs generated from CRISPR-corrected DMD patient-derived pluripotent stem cells. We demonstrate that donor-derived human myofibers produce full-length dystrophin at 4 weeks and 5-6 months (long-term) after transplantation in the unmodulated muscles of the dystrophin-deficient mouse model of DMD. Remarkably, human myofibers are innervated by mouse motor neurons forming neuromuscular junctions and supported by vascularization after long-term engraftment in dystrophic mice. PAX7+ cells of human origin populate the satellite cell niche. There was no evidence of tumorigenesis in mice engrafted with hydrogel-encapsulated human MPCs. Our results provide a proof of concept in developing hydrogel-based cell therapy for muscle-wasting diseases.
Collapse
Affiliation(s)
- Anna Kowala
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, UK; Centre for Predictive in vitro Models, Queen Mary University of London, Mile End Road, London E1 4NS, UK; UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - James Boot
- Barts and the London Genome Centre, Faculty of Medicine and Dentistry, Blizard Institute, London, UK
| | - Jinhong Meng
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Charles A Mein
- Barts and the London Genome Centre, Faculty of Medicine and Dentistry, Blizard Institute, London, UK
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School and Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, USA
| | - John T Connelly
- Centre for Predictive in vitro Models, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Jennifer E Morgan
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Yung-Yao Lin
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK; Stem Cell Laboratory, National Bowel Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 2 Newark Street, London E1 2AT, UK; Centre for Predictive in vitro Models, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
7
|
Karuppasamy M, English KG, Conner JR, Rorrer SN, Lopez MA, Crossman DK, Paul JR, Monreal-Gutierrez MA, Gamble KL, Esser KA, Widrick JJ, Kunkel LM, Alexander MS. Conditional Dystrophin ablation in the skeletal muscle and brain causes profound effects on muscle function, neurobehavior, and extracellular matrix pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635777. [PMID: 39975305 PMCID: PMC11838426 DOI: 10.1101/2025.01.30.635777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Duchenne muscular dystrophy (DMD) patients suffer from skeletal and cardiopulmonary weakness, and interestingly up to one third are diagnosed on the autism spectrum. Dystrophin is an essential protein for regulating the transmission of intracellular force to the extracellular matrix within the skeletal muscle, but also plays key roles in neurobehavior and cognitive function. The mouse dystrophin gene (also abbreviated Dmd) is X-linked and has several isoforms with tissue-specific expression, including the large Dp427m muscle transcript found in heart and skeletal muscle, and the Dp427c transcript that encodes the brain-specific dystrophin cerebellar protein. Understanding the functional requirements and pathways that are affected by dystrophin loss will impact dystrophin replacement gene therapy and exon-skipping correction strategies. We generated conditional Dystrophin knockout mice by targeting exon 52 of the mouse Dystrophin (Dmd flox52) locus. We generated dystrophin constitutive and inducible myofiber knockout (Dmd mKO) mice to evaluate the tissue-specific function of the large skeletal muscle dystrophin isoform. Constitutive embryonic deletion of the Dystrophin gene exclusively in skeletal myofibers resulted in a severe skeletal muscle myopathy, dystrophic histopathology, and functional deficits compared to the mdx mouse. Transcriptomic analysis of skeletal myofibers of the Dmd mKO mice revealed the dysregulation of key extracellular matrix and cytokine signaling pathways. Separately, we generated Purkinje neuron cerebellar dystrophin knockout (Dmd:Pcp2 KO) mice that displayed neurobehavioral deficits in social approach, social memory, and spatial navigation and working memory. These studies reveal the essential requirement for dystrophin expression in both the skeletal muscle and brain for normal physiological and neurobehavioral function.
Collapse
Affiliation(s)
- Muthukumar Karuppasamy
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Katherine G. English
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - James R. Conner
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Shelby N. Rorrer
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - Michael A. Lopez
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
| | - David K. Crossman
- Department of Genetics at the University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jodi R. Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Karen L. Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Karyn A. Esser
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeffrey J. Widrick
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Louis M. Kunkel
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- The Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- The Manton Center for Orphan Disease Research at Boston Children’s Hospital, Boston, MA 02115, USA
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294
- UAB Center for Exercise Medicine at the University of Alabama at Birmingham, Birmingham, AL, 35294
- UAB Civitan International Research Center (CIRC), at the University of Alabama at Birmingham, Birmingham, AL 35233
- UAB Center for Neurodegeneration and Experimental Therapeutics (CNET), Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Esper ME, Brun CE, Lin AYT, Feige P, Catenacci MJ, Sincennes MC, Ritso M, Rudnicki MA. Intrinsic Muscle Stem Cell Dysfunction Contributes to Impaired Regeneration in the mdx Mouse. J Cachexia Sarcopenia Muscle 2025; 16:e13682. [PMID: 39723578 DOI: 10.1002/jcsm.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression. METHODS Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays. We examined the architectural and functional changes in mdx skeletal muscle from 13 and 52 weeks of age and following acute cardiotoxin (CTX) injury. We also studied MuSC dynamics and function under homeostatic conditions, during regeneration post-acute injury, and following engraftment using a combination of histological and transcriptomic analyses. RESULTS Dystrophin-deficient skeletal muscle undergoes progressive changes with age and delayed regeneration in response to acute injury. Muscle hypertrophy, deposition of collagen and an increase in small myofibres occur with age in the tibialis anterior (TA) and diaphragm muscles in mdx mice. Dystrophic mdx mouse TA muscles become hypertrophic with age, whereas diaphragm atrophy is evident in 1-year-old mdx mice. Maximum tetanic force is comparable between genotypes in the TA, but maximum specific force is reduced by up to 38% between 13 and 52 weeks in the mdx mouse. Following acute injury, myofibre hyperplasia and hypotrophy and delayed recovery of maximum tetanic force occur in the mdx TA. We also find defective MuSC polarity and reduced numbers of myocytes in mdx muscle following acute injury. We observed a 50% and 30% decrease in PAX7+ and MYOG+ cells, respectively, at 5 days post CTX injury (5 dpi) in the mdx TA. A similar decrease in mdx progenitor cell proportion is observed by single cell RNA sequencing of myogenic cells at 5 dpi. The global expression of commitment-related genes is also reduced at 5 dpi. We find a 46% reduction in polarized PARD3 in mdx MuSCs. Finally, mdx MuSCs exhibit elevated PAX7+ cell engraftment with significantly fewer donor-derived myonuclei in regenerated myofibres. CONCLUSIONS Our study provides evidence that dystrophin deficiency in MuSCs and myofibres together contributes to progression of DMD. Ongoing muscle damage stimulates MuSC activation; however, aberrant intrinsic MuSC polarity and stem cell commitment deficits due to the loss of dystrophin impair muscle regeneration. Our study provides in vivo validation that dystrophin-deficient MuSCs undergo fewer asymmetric cell divisions, instead favouring symmetric expansion.
Collapse
Affiliation(s)
- Marie E Esper
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Caroline E Brun
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Institut NeuroMyoGène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University Claude Bernard Lyon 1, Lyon, France
| | - Alexander Y T Lin
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Peter Feige
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marie J Catenacci
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marie-Claude Sincennes
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Centre Armand-Frappier santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Unité de recherche mixte INRS-UQAC en santé durable, Laval, Canada
| | - Morten Ritso
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
9
|
Millozzi F, Milán-Rois P, Sett A, Delli Carpini G, De Bardi M, Gisbert-Garzarán M, Sandonà M, Rodríguez-Díaz C, Martínez-Mingo M, Pardo I, Esposito F, Viscomi MT, Bouché M, Parolini O, Saccone V, Toulmé JJ, Somoza Á, Palacios D. Aptamer-conjugated gold nanoparticles enable oligonucleotide delivery into muscle stem cells to promote regeneration of dystrophic muscles. Nat Commun 2025; 16:577. [PMID: 39794309 PMCID: PMC11724063 DOI: 10.1038/s41467-024-55223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/03/2024] [Indexed: 01/13/2025] Open
Abstract
Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy. We show here that this platform is biocompatible, non-toxic, and non-immunogenic, and it can be easily adapted for the release of a wide range of therapeutic oligonucleotides into diseased muscles.
Collapse
Affiliation(s)
- Francesco Millozzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | | | - Arghya Sett
- Bordeaux University, Inserm U1212, CNRS UMR5320, Bordeaux, France
- ERIN Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Giovanni Delli Carpini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Martina Sandonà
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | | | | - Federica Esposito
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
- Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico, Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marina Bouché
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico, Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Valentina Saccone
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico, Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Jean-Jacques Toulmé
- Bordeaux University, Inserm U1212, CNRS UMR5320, Bordeaux, France.
- Novaptech, Gradignan, France.
| | - Álvaro Somoza
- IMDEA Nanociencia, Madrid, Spain.
- Unidad Asociada de Nanobiomedicina, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Daniela Palacios
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
- Institute for Systems Analysis and Computer Science "Antonio Ruberti" (IASI), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
10
|
Aartsma-Rus A. Histone deacetylase inhibition with givinostat: a multi-targeted mode of action with the potential to halt the pathological cascade of Duchenne muscular dystrophy. Front Cell Dev Biol 2025; 12:1514898. [PMID: 39834392 PMCID: PMC11743666 DOI: 10.3389/fcell.2024.1514898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Muscle repair and regeneration are complex processes. In Duchenne muscular dystrophy (DMD), these processes are disrupted by the loss of functional dystrophin, a key part of the transmembrane dystrophin-associated glycoprotein complex that stabilizes myofibers, indirectly leading to progressive muscle wasting, subsequent loss of ambulation, respiratory and cardiac insufficiency, and premature death. As part of the DMD pathology, histone deacetylase (HDAC) activity is constitutively increased, leading to epigenetic changes and inhibition of muscle regeneration factors, chronic inflammation, fibrosis, and adipogenesis. HDAC inhibition has consequently been investigated as a therapeutic approach for muscular dystrophies that, significantly, works independently from specific genetic mutations, making it potentially suitable for all patients with DMD. This review discusses how HDAC inhibition addresses DMD pathophysiology in a multi-targeted mode of action and summarizes the recent evidence on the rationale for HDAC inhibition with givinostat, which is now approved by the United States Food and Drug Administration for the treatment of DMD in patients aged 6 years and older.
Collapse
Affiliation(s)
- A. Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
11
|
Liu Y, Li S, Robertson R, Granet JA, Aubry I, Filippelli RL, Tremblay ML, Chang NC. PTPN1/2 inhibition promotes muscle stem cell differentiation in Duchenne muscular dystrophy. Life Sci Alliance 2025; 8:e202402831. [PMID: 39477543 PMCID: PMC11527974 DOI: 10.26508/lsa.202402831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal disease caused by mutations in the DMD gene that encodes dystrophin. Dystrophin deficiency also impacts muscle stem cells (MuSCs), resulting in impaired asymmetric stem cell division and myogenic commitment. Using MuSCs from DMD patients and the DMD mouse model mdx, we found that PTPN1 phosphatase expression is up-regulated and STAT3 phosphorylation is concomitantly down-regulated in DMD MuSCs. To restore STAT3-mediated myogenic signaling, we examined the effect of K884, a novel PTPN1/2 inhibitor, on DMD MuSCs. Treatment with K884 enhanced STAT3 phosphorylation and promoted myogenic differentiation of DMD patient-derived MuSCs. In MuSCs from mdx mice, K884 treatment increased the number of asymmetric cell divisions, correlating with enhanced myogenic differentiation. Interestingly, the pro-myogenic effect of K884 is specific to human and murine DMD MuSCs and is absent from control MuSCs. Moreover, PTPN1/2 loss-of-function experiments indicate that the pro-myogenic impact of K884 is mediated mainly through PTPN1. We propose that PTPN1/2 inhibition may serve as a therapeutic strategy to restore the myogenic function of MuSCs in DMD.
Collapse
MESH Headings
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Animals
- Cell Differentiation/drug effects
- Humans
- Mice
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Mice, Inbred mdx
- STAT3 Transcription Factor/metabolism
- Stem Cells/metabolism
- Stem Cells/cytology
- Muscle Development/genetics
- Muscle Development/drug effects
- Disease Models, Animal
- Phosphorylation
- Signal Transduction/drug effects
- Muscle, Skeletal/metabolism
Collapse
Affiliation(s)
- Yiyang Liu
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| | - Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Jules A Granet
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Isabelle Aubry
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Michel L Tremblay
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| |
Collapse
|
12
|
Zhang L, Fu C, Zhou M, Miao W, Sun W, Xu J, Cao S, Zhu S. Deletion of RBM20 exon 9 impairs skeletal muscle growth and satellite cell function in pigs. Biochem Biophys Res Commun 2025; 742:151076. [PMID: 39632296 DOI: 10.1016/j.bbrc.2024.151076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Maintaining healthy skeletal tissue is essential for overall well-being and quality of life. Skeletal muscle plays a key role in this process, yet models for studying its detailed function are limited. While RNA-binding motif protein 20 (RBM20) is primarily associated with dilated cardiomyopathy (DCM), its role in skeletal muscle remains largely unexplored. This study investigates RBM20 function in skeletal muscle using an RBM20 exon 9 deletion pig model (RBM20E9D). The deletion of exon 9 resulted in loosely arranged muscle fibers, large inter-fiber gaps, and irregular organization, leading to impaired muscle growth and development. Analysis of skeletal muscle satellite cells revealed significantly reduced proliferation, diminished myotube formation in vitro, and disrupted sarcomere structure due to exon 9 deletion. Given the critical role of satellite cell proliferation and differentiation in muscle repair, RBM20E9D pigs offer a novel model for studying the mechanisms underlying skeletal muscle injury, repair, and growth.
Collapse
Affiliation(s)
- Li Zhang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Changyao Fu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Mo Zhou
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Wei Miao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Weixiang Sun
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Jialong Xu
- Medical School, Nanjing University, Nanjing 210093, China
| | - Shinuo Cao
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China.
| | - Shanyuan Zhu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China.
| |
Collapse
|
13
|
Dalle Carbonare L, Braggio M, Minoia A, Cominacini M, Romanelli MG, Pessoa J, Tiso N, Valenti MT. Modeling Musculoskeletal Disorders in Zebrafish: Advancements in Muscle and Bone Research. Cells 2024; 14:28. [PMID: 39791729 PMCID: PMC11719663 DOI: 10.3390/cells14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Zebrafish (Danio rerio) have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy. These models have provided significant insights into the molecular pathways involved in these diseases, helping to identify the key genetic and biochemical factors that contribute to their progression. These findings have also advanced our understanding of disease mechanisms and facilitated the development of potential therapeutic strategies for musculoskeletal disorders.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Michele Braggio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - Arianna Minoia
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Mattia Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - João Pessoa
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Natascia Tiso
- Department of Biology, University of Padua, 35131 Padua, Italy;
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| |
Collapse
|
14
|
Massenet J, Weiss-Gayet M, Bandukwala H, Bouchereau W, Gobert S, Magnan M, Hubas A, Nusbaum P, Desguerre I, Gitiaux C, Dilworth FJ, Chazaud B. Epigenetic control of myogenic identity of human muscle stem cells in Duchenne muscular dystrophy. iScience 2024; 27:111350. [PMID: 39650736 PMCID: PMC11625291 DOI: 10.1016/j.isci.2024.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
In Duchenne muscular dystrophy (DMD), muscle stem cells' (MuSCs) regenerative capacities are overwhelmed leading to fibrosis. Whether MuSCs have intrinsic defects or are disrupted by their environment is unclear. We investigated cell behavior and gene expression of MuSCs from DMD or healthy human muscles. Proliferation, differentiation, and fusion were unaltered in DMD-MuSCs, but with time, they lost their myogenic identity twice as fast as healthy MuSCs. The rapid drift toward a fibroblast-like cell identity was observed at the clonal level, and resulted from altered expression of epigenetic enzymes. Re-expression of CBX3, SMC3, H2AFV, and H3F3B prevented the MuSC identity drift. Among epigenetic changes, a closing of chromatin at the transcription factor MEF2B locus caused downregulation of its expression and loss of the myogenic fate. Re-expression of MEF2B in DMD-MuSCs restored their myogenic fate. MEF2B is key in the maintenance of myogenic identity in human MuSCs, which is altered in DMD.
Collapse
Affiliation(s)
- Jimmy Massenet
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michèle Weiss-Gayet
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Hina Bandukwala
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Wilhelm Bouchereau
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Stéphanie Gobert
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Mélanie Magnan
- Institut Cochin, Université Paris-Cité, Inserm U1016, CNRS UMR8104, Paris, France
| | - Arnaud Hubas
- Hôpital Cochin – Port-Royal, Centre de Ressources Biologiques, Paris, France
| | - Patrick Nusbaum
- Hôpital Cochin – Port-Royal, Centre de Ressources Biologiques, Paris, France
| | - Isabelle Desguerre
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, AP-HP, Hôpital Necker Enfants Malades, Université Paris-Cité, Paris, France
- Université Paris Cité, IHU Imagine, 75015 Paris, France
| | - Cyril Gitiaux
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, AP-HP, Hôpital Necker Enfants Malades, Université Paris-Cité, Paris, France
- Service d’explorations Fonctionnelles, Unité de Neurophysiologie Clinique, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - F. Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cell and Regenerative Biology, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| |
Collapse
|
15
|
Joshi AS, Castillo MB, Tomaz da Silva M, Vuong AT, Gunaratne PH, Darabi R, Liu Y, Kumar A. Single-nucleus transcriptomic analysis reveals the regulatory circuitry of myofiber XBP1 during regenerative myogenesis. iScience 2024; 27:111372. [PMID: 39650729 PMCID: PMC11625362 DOI: 10.1016/j.isci.2024.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024] Open
Abstract
Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) is activated in skeletal muscle under multiple conditions. However, the role of the UPR in the regulation of muscle regeneration remains less understood. We demonstrate that gene expression of various markers of the UPR is induced in both myogenic and non-myogenic cells in regenerating muscle. Genetic ablation of X-box binding protein 1 (XBP1), a downstream target of the Inositol requiring enzyme 1α (IRE1α) arm of the UPR, in myofibers attenuates muscle regeneration in adult mice. Single nucleus RNA sequencing (snRNA-seq) analysis showed that deletion of XBP1 in myofibers perturbs proteolytic systems and mitochondrial function in myogenic cells. Trajectory analysis of snRNA-seq dataset showed that XBP1 regulates the abundance of satellite cells and the formation of new myofibers in regenerating muscle. In addition, ablation of XBP1 disrupts the composition of non-myogenic cells in injured muscle microenvironment. Collectively, our study suggests that myofiber XBP1 regulates muscle regeneration through both cell-autonomous and -non-autonomous mechanisms.
Collapse
Affiliation(s)
- Aniket S. Joshi
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Micah B. Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Meiricris Tomaz da Silva
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Anh Tuan Vuong
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Radbod Darabi
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Yu Liu
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Ashok Kumar
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX 77204, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| |
Collapse
|
16
|
Gurriaran-Rodriguez U, Kodippili K, Datzkiw D, Javandoost E, Xiao F, Rejas MT, Rudnicki MA. Wnt7a is required for regeneration of dystrophic skeletal muscle. Skelet Muscle 2024; 14:34. [PMID: 39702274 DOI: 10.1186/s13395-024-00367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Intramuscular injection of Wnt7a has been shown to accelerate and augment skeletal muscle regeneration and to ameliorate dystrophic progression in mdx muscle, a model for Duchenne muscular dystrophy (DMD). Here, we assessed muscle regeneration and function in wild type (WT) and mdx mice where Wnt7a was deleted in muscle using a conditional Wnt7a floxed allele and a Myf5-Cre driver. We found that both WT and mdx mice lacking Wnt7a in muscle, exhibited marked deficiencies in muscle regeneration at 21 d following cardiotoxin (CTX) induced injury. Unlike WT, deletion of Wnt7a in mdx resulted in decreased force generation prior to CTX injury. However, both WT and mdx muscle lacking Wnt7a displayed decreased force generation following CTX injection. Notably the regeneration deficit in mdx mice was rescued by a single tail vein injection of extracellular vesicles containing Wnt7a (Wnt7a-EVs). Therefore, we conclude that the regenerative capacity of muscle in mdx mice is highly dependant on the upregulation of endogenous Wnt7a following injury, and that systemic delivery of Wnt7a-EVs represents a therapeutic strategy for treating DMD.
Collapse
MESH Headings
- Animals
- Regeneration
- Mice, Inbred mdx
- Wnt Proteins/metabolism
- Wnt Proteins/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/drug effects
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Male
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Animal/pathology
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- CIC bioGUNE, Bizkaia Technology Park, Derio, 48160, Spain
| | - Kasun Kodippili
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David Datzkiw
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ehsan Javandoost
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Fan Xiao
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Maria Teresa Rejas
- Electron Microscopy Facility, Centro de Biología Molecular, Severo Ochoa. CSIC, Madrid, Spain
| | - Michael A Rudnicki
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Rieger L, Molina T, Fabre P, Greffard K, Pellerito O, Dort J, Bilodeau JF, Dumont NA. Transcriptomic and lipidomic profiling reveals distinct bioactive lipid signatures in slow and fast muscles and highlights the role of resolvin-D2 in fiber type determination during myogenesis. FASEB J 2024; 38:e70250. [PMID: 39698915 DOI: 10.1096/fj.202401747r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Skeletal muscles are predominantly composed of long, multinucleated muscle fibers, classified according to their metabolic and contractile phenotype. The determination of fiber types is influenced by various factors (e.g., innervation, hormones, physical demand). Our laboratory and others showed that resolvins, lipid mediators derived from omega-3 fatty acids, promote muscle regeneration and function after an injury or in models of muscular dystrophies; however, the effect of resolvins on the determination of muscle phenotype remains unknown. Here, we investigated the impact of lipid mediators on muscle phenotype during myogenesis. Transcriptomics analysis of single-nuclei RNAseq data sets revealed that the enzymes responsible for bioactive lipids biosynthesis are differentially expressed in slow fibers versus fast fibers. Lipidomics analysis of slow-twitch muscle (soleus) versus fast-twitch muscle (tibialis anterior) showed that the levels of lipids derived from arachidonic acid are similar between muscle groups, but lipids derived from alpha-linolenic acid, linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid are enriched in slow-twitch muscle. Screening for different lipids in vitro showed that resolvin-D2 enhances the formation of myotubes expressing the slow myosin heavy chain isoform. In vivo, the administration of resolvin-D2 enhances muscle strength, increases myofiber size, and affects fiber typing in injured muscles but not in uninjured muscles. Resolvin-D2 promoted the transition toward the dominant fiber types in regenerating muscle (i.e., type I in the slow-twitch soleus and type IIB in the fast-twitch tibialis anterior muscle), suggesting its participation in fiber typing in conjunction with other factors. Overall, these findings identified new roles of bioactive lipids in the regulation of fiber typing, which could have therapeutic applicability in muscle injuries or dystrophies.
Collapse
Affiliation(s)
- Lupann Rieger
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Karine Greffard
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Quebec, Canada
| | | | - Junio Dort
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-François Bilodeau
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
18
|
Caputo L, Stamenkovic C, Tierney MT, Falzarano MS, Bassel-Duby R, Ferlini A, Olson EN, Puri PL, Sacco A. Modulation of the JAK2-STAT3 pathway promotes expansion and maturation of human iPSCs-derived myogenic progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.624203. [PMID: 39713478 PMCID: PMC11661153 DOI: 10.1101/2024.12.09.624203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Generation of in vitro induced pluripotent cells (hiPSCs)-derived skeletal muscle progenitor cells (SMPCs) holds great promise for regenerative medicine for skeletal muscle wasting diseases, as for example Duchenne Muscular Dystrophy (DMD). Multiple approaches, involving ectopic expression of key regulatory myogenic genes or small molecules cocktails, have been described by different groups to obtain SMPC towards cell-transplantation in vivo as a therapeutic approach to skeletal muscle diseases. However, hiPSCs-derived SMPC generated using transgene-free protocols are usually obtained in a low amount and resemble a more embryonal/fetal stage of differentiation. Here we demonstrate that modulation of the JAK2/STAT3 signaling pathway during an in vitro skeletal muscle differentiation protocol, increases the yield of PAX7+ and CD54+ SMPCs and drive them to a postnatal maturation stage, in both human ES and patient-derived iPSCs. Importantly, upon removal of the inhibition from the cultures, the obtained SMPCs are able to differentiate into multinucleated myotubes in vitro. These findings reveal that modulation of the JAK2/STAT3 signaling pathway is a potential therapeutic avenue to generate SMPCs in vitro with increase potential for cell-therapy approaches.
Collapse
Affiliation(s)
- Luca Caputo
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| | - Cedomir Stamenkovic
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew T. Tierney
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | - Eric N. Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Bonato A, Raparelli G, Caruso M. Molecular pathways involved in the control of contractile and metabolic properties of skeletal muscle fibers as potential therapeutic targets for Duchenne muscular dystrophy. Front Physiol 2024; 15:1496870. [PMID: 39717824 PMCID: PMC11663947 DOI: 10.3389/fphys.2024.1496870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models. Therefore, remodeling skeletal muscle toward a slower, more oxidative phenotype may represent a relevant therapeutic approach to protect dystrophic muscles from deterioration and improve the effectiveness of gene and cell-based therapies. The resistance of slow, oxidative myofibers to DMD pathology is attributed, in part, to their higher expression of Utrophin; there are, however, other characteristics of slow, oxidative fibers that might contribute to their enhanced resistance to injury, including reduced contractile speed, resistance to fatigue, increased capillary density, higher mitochondrial activity, decreased cellular energy requirements. This review focuses on signaling pathways and regulatory factors whose genetic or pharmacologic modulation has been shown to ameliorate the dystrophic pathology in preclinical models of DMD while promoting skeletal muscle fiber transition towards a slower more oxidative phenotype.
Collapse
Affiliation(s)
| | | | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Monterotondo (RM), Italy
| |
Collapse
|
20
|
Bolkent S. Cellular and molecular mechanisms of asymmetric stem cell division in tissue homeostasis. Genes Cells 2024; 29:1099-1110. [PMID: 39379096 PMCID: PMC11609605 DOI: 10.1111/gtc.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
The asymmetric cell division determines cell diversity and distinct sibling cell fates by mechanisms linked to mitosis. Many adult stem cells divide asymmetrically to balance self-renewal and differentiation. The process of asymmetric cell division involves an axis of polarity and, second, the localization of cell fate determinants at the cell poles. Asymmetric division of stem cells is achieved by intrinsic and extrinsic fate determinants such as signaling molecules, epigenetics factors, molecules regulating gene expression, and polarized organelles. At least some stem cells perform asymmetric and symmetric cell divisions during development. Asymmetric division ensures that the number of stem cells remains constant throughout life. The asymmetric division of stem cells plays an important role in biological events such as embryogenesis, tissue regeneration and carcinogenesis. This review summarizes recent advances in the regulation of asymmetric stem cell division in model organisms.
Collapse
Affiliation(s)
- Sema Bolkent
- Cerrahpaşa Faculty of Medicine, Department of Medical BiologyIstanbul University‐CerrahpaşaCerrahpaşaIstanbulTurkey
| |
Collapse
|
21
|
Fang P, Han J, An D, Bu Y, Ji G, Liu M, Deng J, Guo M, Han X, Wu H, Ma S, Song X. Research hotspots and trends for Duchenne muscular dystrophy: a machine learning bibliometric analysis from 2004 to 2023. Front Immunol 2024; 15:1429609. [PMID: 39669562 PMCID: PMC11634759 DOI: 10.3389/fimmu.2024.1429609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Aims The aim of this study was to conduct a bibliometric analysis of the relevant literature on Duchenne muscular dystrophy (DMD) to ascertain its current status, identify key areas of research and demonstrate the evolution of the field. Methods The analysis sourced documents from the Science Citation Index Expanded in the Web of Science core collection, utilizing CiteSpace software and an online bibliometric platform to analyze collaborative networks among authors, institutions and countries, and to map out the research landscape through journal and reference evaluations. Keyword analyses, including clustering and emergent term identification, were conducted, alongside the development of knowledge maps. Results The study included 9,277 documents, indicating a rising publication trend in the field. The Institut National de la Santé et de la Recherche Médicale emerged as the top publishing institution, with Francesco Muntoni as the most prolific author. The United States dominated in publication output, showcasing significant leadership. The keyword analysis highlighted 786 key emergent terms, primarily focusing on the mechanisms, diagnostics and treatment approaches in DMD. Conclusion The field of DMD research is experiencing robust growth, drawing keen interest globally. A thorough analysis of current research and trends is essential for advancing knowledge and therapeutic strategies in this domain.
Collapse
Affiliation(s)
- Pingping Fang
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Handan Central Hospital, Handan, Hebei, China
| | - Jingzhe Han
- Department of Neurology, Hengshui People’s Hospital, Hengshui, Hebei, China
| | - Di An
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yi Bu
- Department of Neurology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingjuan Liu
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinliang Deng
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xu Han
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaojuan Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
22
|
Ren S, Fu X, Guo W, Bai R, Li S, Zhang T, Liu J, Wang Z, Zhao H, Suo S, Zhang W, Jia M, Ji W, Hu P, Chen Y. Profound cellular defects attribute to muscular pathogenesis in the rhesus monkey model of Duchenne muscular dystrophy. Cell 2024; 187:6669-6686.e16. [PMID: 39305903 DOI: 10.1016/j.cell.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 11/17/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by mutations in the DMD gene. Muscle fibers rely on the coordination of multiple cell types for repair and regenerative capacity. To elucidate the cellular and molecular changes in these cell types under pathologic conditions, we generated a rhesus monkey model for DMD that displays progressive muscle deterioration and impaired motor function, mirroring human conditions. By leveraging these DMD monkeys, we analyzed freshly isolated muscle tissues using single-cell RNA sequencing (scRNA-seq). Our analysis revealed changes in immune cell landscape, a reversion of lineage progressing directions in fibrotic fibro-adipogenic progenitors (FAPs), and TGF-β resistance in FAPs and muscle stem cells (MuSCs). Furthermore, MuSCs displayed cell-intrinsic defects, leading to differentiation deficiencies. Our study provides important insights into the pathogenesis of DMD, offering a valuable model and dataset for further exploration of the underlying mechanisms, and serves as a suitable platform for developing and evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Shuaiwei Ren
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Xin Fu
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Wenting Guo
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Raoxian Bai
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Sheng Li
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Ting Zhang
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China; Southwest United Graduate School, 650092 Kunming, China
| | - Jie Liu
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Hui Zhao
- Guangzhou Laboratory, 510005 Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, 510005 Guangzhou, China
| | | | - Weikang Zhang
- Guangzhou Laboratory, 510005 Guangzhou, China; College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Minzhi Jia
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031 Shanghai, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China.
| | - Ping Hu
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Guangzhou Laboratory, 510005 Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, 510005 Guangzhou, China; The Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China.
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China; Southwest United Graduate School, 650092 Kunming, China.
| |
Collapse
|
23
|
Chu Y, Yuan X, Tao Y, Yang B, Luo J. Autophagy in Muscle Regeneration: Mechanisms, Targets, and Therapeutic Perspective. Int J Mol Sci 2024; 25:11901. [PMID: 39595972 PMCID: PMC11593790 DOI: 10.3390/ijms252211901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy maintains the stability of eukaryotic cells by degrading unwanted components and recycling nutrients and plays a pivotal role in muscle regeneration by regulating the quiescence, activation, and differentiation of satellite cells. Effective muscle regeneration is vital for maintaining muscle health and homeostasis. However, under certain disease conditions, such as aging, muscle regeneration can fail due to dysfunctional satellite cells. Dysregulated autophagy may limit satellite cell self-renewal, hinder differentiation, and increase susceptibility to apoptosis, thereby impeding muscle regeneration. This review explores the critical role of autophagy in muscle regeneration, emphasizing its interplay with apoptosis and recent advances in autophagy research related to diseases characterized by impaired muscle regeneration. Additionally, we discuss new approaches involving autophagy regulation to promote macrophage polarization, enhancing muscle regeneration. We suggest that utilizing cell therapy and biomaterials to modulate autophagy could be a promising strategy for supporting muscle regeneration. We hope that this review will provide new insights into the treatment of muscle diseases and promote muscle regeneration.
Collapse
Affiliation(s)
- Yun Chu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Xinrun Yuan
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Jinlong Luo
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
24
|
Zhang W, Bai L, Xu W, Liu J, Chen Y, Lin W, Lu H, Wang B, Luo B, Peng G, Zhang K, Shen C. Sirt6 Mono-ADP-Ribosylates YY1 to Promote Dystrophin Expression for Neuromuscular Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406390. [PMID: 39387251 PMCID: PMC11600243 DOI: 10.1002/advs.202406390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The degeneration of the neuromuscular junction (NMJ) and the decline in motor function are common features of aging, but the underlying mechanisms have remained largely unclear. This study reveals that Sirt6 is reduced in aged mouse muscles. Ablation of Sirt6 in skeletal muscle causes a reduction of Dystrophin levels, resulting in premature NMJ degeneration, compromised neuromuscular transmission, and a deterioration in motor performance. Mechanistic studies show that Sirt6 negatively regulates the stability of the Dystrophin repressor YY1 (Yin Yang 1). Specifically, Sirt6 mono-ADP-ribosylates YY1, causing its disassociation from the Dystrophin promoter and allowing YY1 to bind to the SMURF2 E3 ligase, leading to its degradation. Importantly, supplementation with nicotinamide mononucleotide (NMN) enhances the mono-ADP-ribosylation of YY1 and effectively delays NMJ degeneration and the decline in motor function in elderly mice. These findings provide valuable insights into the intricate mechanisms underlying NMJ degeneration during aging. Targeting Sirt6 could be a potential therapeutic approach to mitigate the detrimental effects on NMJ degeneration and improve motor function in the elderly population.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Lei Bai
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Wentao Xu
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jun Liu
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Yi Chen
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Weiqiang Lin
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicine and International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwuChina
| | - Huasong Lu
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Binwei Wang
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Benyan Luo
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Guoping Peng
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Kejing Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseMOE Joint International Research Laboratory of Pancreatic DiseasesFirst Affiliated HospitalHangzhou310006China
| | - Chengyong Shen
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang UniversityNanhu Brain‐Computer Interface InstituteHangzhouChina
| |
Collapse
|
25
|
Gui C, Meyer G. Transcriptional evidence for transient regulation of muscle regeneration by brown adipose transplant in the rotator cuff. J Orthop Res 2024; 42:2414-2425. [PMID: 38967130 DOI: 10.1002/jor.25933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Chronic rotator cuff (RC) injuries can lead to a degenerative microenvironment that favors chronic inflammation, fibrosis, and fatty infiltration. Recovery of muscle structure and function will ultimately require a complex network of muscle resident cells, including satellite cells, fibro-adipogenic progenitors (FAPs), and immune cells. Recent work suggests that signaling from adipose tissue and progenitors could modulate regeneration and recovery of function, particularly promyogenic signaling from brown or beige adipose (BAT). In this study, we sought to identify cellular targets of BAT signaling during muscle regeneration using a RC BAT transplantation mouse model. Cardiotoxin injured supraspinatus muscle had improved mass at 7 days postsurgery (dps) when transplanted with exogeneous BAT. Transcriptional analysis revealed transplanted BAT modulates FAP signaling early in regeneration likely via crosstalk with immune cells. However, this conferred no long-term benefit as muscle mass and function were not improved at 28 dps. To eliminate the confounding effects of endogenous BAT, we transplanted BAT in the "BAT-free" uncoupling protein-1 diphtheria toxin fragment A (UCP1-DTA) mouse and here found improved muscle contractile function, but not mass at 28 dps. Interestingly, the transplanted BAT increased fatty infiltration in all experimental groups, implying modulation of FAP adipogenesis during regeneration. Thus, we conclude that transplanted BAT modulates FAP signaling early in regeneration, but does not grant long-term benefits.
Collapse
Affiliation(s)
- Chang Gui
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gretchen Meyer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Neurology and Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
26
|
Barrett P, Louie KW, Dupont JB, Mack DL, Maves L. Uncovering the Embryonic Origins of Duchenne Muscular Dystrophy. WIREs Mech Dis 2024; 16:e1653. [PMID: 39444092 PMCID: PMC11563919 DOI: 10.1002/wsbm.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe degenerative muscle disease caused by mutations in the DMD gene, which encodes dystrophin. Despite its initial description in the late 19th century by French neurologist Guillaume Duchenne de Boulogne, and identification of causal DMD genetic mutations in the 1980s, therapeutics remain challenging. The current standard of care is corticosteroid treatment, which delays the progression of muscle dysfunction but is associated with significant adverse effects. Emerging therapeutic approaches, including AAV-mediated gene transfer, CRISPR gene editing, and small molecule interventions, are under development but face considerable obstacles. Although DMD is viewed as a progressive muscle disease, muscle damage and abnormal molecular signatures are already evident during fetal myogenesis. This early onset of pathology suggests that the limited success of current therapies may partly be due to their administration after aberrant embryonic myogenesis has occurred in the absence of dystrophin. Consequently, identifying optimal therapeutic strategies and intervention windows for DMD may depend on a better understanding of the earliest DMD disease mechanisms. As newer techniques are applied, the field is gaining increasingly detailed insights into the early muscle developmental abnormalities in DMD. A comprehensive understanding of the initial events in DMD pathogenesis and progression will facilitate the generation and testing of effective therapeutic interventions.
Collapse
Affiliation(s)
- Philip Barrett
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Ke'ale W Louie
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - David L Mack
- Departments of Rehabilitation Medicine, Bioengineering and Neurobiology & Biophysics, Institute for Stem Cell and Regenerative Medicine, University of Washington Medicine, Seattle, Washington, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Saugues A, Kneppers A, Mounier R. [Muscle stem cells and metabolism in Duchenne muscular dystrophy, focus on AMPK]. Med Sci (Paris) 2024; 40 Hors série n° 1:60-63. [PMID: 39555881 DOI: 10.1051/medsci/2024133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Through their myogenic activity, adult muscle stem cells (MuSCs) are crucial for the regeneration of striated skeletal muscle. Once activated, they proliferate, differentiate and then fuse to repair or form new muscle fibers (myofibers). Their progression through myogenesis requires a complex regulation involving multiple players such as metabolism, in particular via AMPK. This protein kinase regulates the self-renewal and myonuclear accretion of MuSCs after acute skeletal muscle injury or skeletal muscle contraction. However, in a context of dystrophy such as Duchenne muscular dystrophy (DMD), the regenerative capacity of MuSCs is reduced, presumably due to an increase of the proliferation that is detrimental to differentiation. We are interested here in the potential of metabolism to regulate the myogenic activity of MuSCs in DMD via AMPK.
Collapse
Affiliation(s)
- Audrey Saugues
- Institut NeuroMyoGène, PGNM, CNRS UMR5261/Inserm U1315/ Université Claude Bernard Lyon 1, France
| | - Anita Kneppers
- Institut NeuroMyoGène, PGNM, CNRS UMR5261/Inserm U1315/ Université Claude Bernard Lyon 1, France
| | - Rémi Mounier
- Institut NeuroMyoGène, PGNM, CNRS UMR5261/Inserm U1315/ Université Claude Bernard Lyon 1, France
| |
Collapse
|
28
|
Wei Y, Jiang Y, Lu Y, Hu Q. Histone modifications in Duchenne muscular dystrophy: pathogenesis insights and therapeutic implications. J Med Genet 2024; 61:1003-1010. [PMID: 39327039 DOI: 10.1136/jmg-2024-110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a commonly encountered genetic ailment marked by loss-of-function mutations in the Dystrophin gene, ultimately resulting in progressive debilitation of skeletal muscle. The investigation into the pathogenesis of DMD has increasingly converged on the role of histone modifications within the broader context of epigenetic regulation. These modifications, including histone acetylation, methylation and phosphorylation, are catalysed by specific enzymes and play a critical role in gene expression. This article provides an overview of the histone modifications occurring in DMD and analyses the research progress and potential of different types of histone modifications in DMD due to changes in cellular signalling for muscle regeneration, to provide new insights into diagnostic and therapeutic options for DMD.
Collapse
Affiliation(s)
- Yanning Wei
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Key Laboratory of Biological Molecular Medicine Research of Education, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yufei Lu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Longevity and Aging-related Diseases, Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
29
|
Palmieri L, Ferrand M, Vu Hong A, Richard I, Albini S. In Silico Structural Prediction for the Generation of Novel Performant Midi-Dystrophins Based on Intein-Mediated Dual AAV Approach. Int J Mol Sci 2024; 25:10444. [PMID: 39408775 PMCID: PMC11476470 DOI: 10.3390/ijms251910444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a pediatric disorder characterized by progressive muscle degeneration and premature death, and has no current cure. The current, most promising therapeutic avenue is based on gene replacement mediated by adeno-associated viruses (AAVs) using a shortened, but still functional, version of dystrophin, known as micro-dystrophin (µDys), to fit AAV capacity. The limited improvements observed in clinical trials suggest a sub-optimal performance of µDys in the human context that could be due to the lack of key domains in the protein. Therefore, expressing larger dystrophin proteins may be necessary for a more complete correction of the disease phenotype. In this study, we developed three novel midi-dystrophin constructs using a dual-AAV approach, leveraging split-intein-based protein trans-splicing. The midi-dystrophins include additional domains compared to µDys, such as the central cytoskeleton-binding domain, nNOS and Par1b interacting domains, and a complete C-terminal region. Given the limited capacity of each AAV vector, we strategically partially reduced hinge regions while ensuring that the structural stability of the protein remains intact. We predicted the interactions between the two halves of the split midi-Dys proteins thanks to the deep learning algorithm AphaFold3. We observed strong associations between the N- and C-termini in midi-Dys 1 and 2, while a weaker interaction in midi-Dys 3 was revealed. Our subsequent experiments confirmed the efficient protein trans-splicing both in vitro and in vivo in DBA2/mdx mice of the midi-Dys 1 and 2 and not in midi-Dys 3 as expected from the structural prediction. Additionally, we demonstrated that midi-Dys 1 and 2 exhibit significant therapeutic efficacy in DBA2/mdx mice, highlighting their potential as therapeutic agents for DMD. Overall, these findings highlight the potential of deep learning-based structural modeling for the generation of intein-based dystrophin versions and pose the basis for further investigation of these new midi-dystrophins versions for clinical studies.
Collapse
Affiliation(s)
- Laura Palmieri
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| | - Maxime Ferrand
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| | - Ai Vu Hong
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| | - Isabelle Richard
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
- Atamyo Therapeutics, 1, Bis Rue de l’Internationale, 91000 Evry, France
| | - Sonia Albini
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| |
Collapse
|
30
|
Hernandez-Torres F, Matias-Valiente L, Alzas-Gomez V, Aranega AE. Macrophages in the Context of Muscle Regeneration and Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10393. [PMID: 39408722 PMCID: PMC11477283 DOI: 10.3390/ijms251910393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages are essential to muscle regeneration, as they regulate inflammation, carry out phagocytosis, and facilitate tissue repair. These cells exhibit phenotypic switching from pro-inflammatory (M1) to anti-inflammatory (M2) states during muscle repair, influencing myoblast proliferation, differentiation, and myofiber formation. In Duchenne Muscular Dystrophy (DMD), asynchronous muscle injuries disrupt the normal temporal stages of regeneration, leading to fibrosis and failed regeneration. Altered macrophage activity is associated with DMD progression and physiopathology. Gaining insight into the intricate relationship between macrophages and muscle cells is crucial for creating effective therapies aimed at treating this muscle disorder. This review explores the dynamic functions of macrophages in muscle regeneration and their implications in DMD.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
| | - Lidia Matias-Valiente
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Virginia Alzas-Gomez
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Amelia Eva Aranega
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| |
Collapse
|
31
|
Price FD, Matyas MN, Gehrke AR, Chen W, Wolin EA, Holton KM, Gibbs RM, Lee A, Singu PS, Sakakeeny JS, Poteracki JM, Goune K, Pfeiffer IT, Boswell SA, Sorger PK, Srivastava M, Pfaff KL, Gussoni E, Buchanan SM, Rubin LL. Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration. Nat Biotechnol 2024:10.1038/s41587-024-02344-7. [PMID: 39261590 DOI: 10.1038/s41587-024-02344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.
Collapse
Affiliation(s)
- Feodor D Price
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Mark N Matyas
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrew R Gehrke
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - William Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Erica A Wolin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca M Gibbs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Alice Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pooja S Singu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jeffrey S Sakakeeny
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - James M Poteracki
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kelsey Goune
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Isabella T Pfeiffer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sarah A Boswell
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kathleen Lindahl Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics and the Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
32
|
Rumney RMH, Pomeroy J, Górecki DC. Investigating the Involvement of C-X-C Motif Chemokine 5 and P2X7 Purinoceptor in Ectopic Calcification in Mouse Models of Duchenne Muscular Dystrophy. J Cell Biochem 2024; 125:e30617. [PMID: 38924558 DOI: 10.1002/jcb.30617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Ectopic calcification of myofibers is an early pathogenic feature in patients and animal models of Duchenne muscular dystrophy (DMD). In previous studies using the Dmdmdx-βgeo mouse model, we found that the dystrophin-null phenotype exacerbates this abnormality and that mineralised myofibers are surrounded by macrophages. Furthermore, the P2X7 purinoceptor, functioning in immune cells offers protection against dystrophic calcification. In the present study, by exploring transcriptomic data from Dmdmdx mice, we hypothesised these effects to be mediated by C-X-C motif chemokine 5 (CXCL5) downstream of P2X7 activation. We found that CXCL5 is upregulated in the quadriceps muscles of Dmdmdx-βgeo mice compared to wild-type controls. In contrast, at the cell level, dystrophic (SC5) skeletal muscle cells secreted less CXCL5 chemokine than wild-type (IMO) controls. Although release from IMO cells was increased by P2X7 activation, this could not explain the elevated CXCL5 levels observed in dystrophic muscle tissue. Instead, we found that CXCL5 is released by dystrophin-null macrophages in response to P2X7 activation, suggesting that macrophages are the source of CXCL5 in dystrophic muscles. The effects of CXCL5 upon mineralisation were investigated using the Alizarin Red assay to quantify calcium deposition in vitro. In basal (low phosphate) media, CXCL5 increased calcification in IMO but not SC5 myoblasts. However, in cultures treated in high phosphate media, to mimic dysregulated phosphate metabolism occurring in DMD, CXCL5 decreased calcification in both IMO and SC5 cells. These data indicate that CXCL5 is part of a homoeostatic mechanism regulating intracellular calcium, that CXCL5 can be released by macrophages in response to the extracellular ATP damage-associated signal, and that CXCL5 can be part of a damage response to protect against ectopic calcification. This mechanism is affected by DMD gene mutations.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Mice
- Chemokine CXCL5/metabolism
- Chemokine CXCL5/genetics
- Disease Models, Animal
- Receptors, Purinergic P2X7/metabolism
- Receptors, Purinergic P2X7/genetics
- Calcinosis/metabolism
- Calcinosis/pathology
- Calcinosis/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mice, Inbred mdx
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Knockout
Collapse
Affiliation(s)
- Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Joanna Pomeroy
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
33
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
34
|
Niba ETE, Awano H, Nishimura N, Koide H, Matsuo M, Shinohara M. Differential metabolic secretion between muscular dystrophy mouse-derived spindle cell sarcomas and rhabdomyosarcomas drives tumor type development. Am J Physiol Cell Physiol 2024; 327:C34-C47. [PMID: 38646787 DOI: 10.1152/ajpcell.00523.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
The dystrophin gene (Dmd) is recognized for its significance in Duchenne muscular dystrophy (DMD), a lethal and progressive skeletal muscle disease. Some patients with DMD and model mice with muscular dystrophy (mdx) spontaneously develop various types of tumors, among which rhabdomyosarcoma (RMS) is the most prominent. By contrast, spindle cell sarcoma (SCS) has rarely been reported in patients or mdx mice. In this study, we aimed to use metabolomics to better understand the rarity of SCS development in mdx mice. Gas chromatography-mass spectrometry was used to compare the metabolic profiles of spontaneously developed SCS and RMS tumors from mdx mice, and metabolite supplementation assays and silencing experiments were used to assess the effects of metabolic differences in SCS tumor-derived cells. The levels of 75 metabolites exhibited differences between RMS and SCS, 25 of which were significantly altered. Further characterization revealed downregulation of nonessential amino acids, including alanine, in SCS tumors. Alanine supplementation enhanced the growth, epithelial mesenchymal transition, and invasion of SCS cells. Reduction of intracellular alanine via knockdown of the alanine transporter Slc1a5 reduced the growth of SCS cells. Lower metabolite secretion and reduced proliferation of SCS tumors may explain the lower detection rate of SCS in mdx mice. Targeting of alanine depletion pathways may have potential as a novel treatment strategy.NEW & NOTEWORTHY To the best of our knowledge, SCS has rarely been identified in patients with DMD or mdx mice. We observed that RMS and SCS tumors that spontaneously developed from mdx mice with the same Dmd genetic background exhibited differences in metabolic secretion. We proposed that, in addition to dystrophin deficiency, the levels of secreted metabolites may play a role in the determination of tumor-type development in a Dmd-deficient background.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, Yonago, Japan
| | - Noriyuki Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Koide
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masafumi Matsuo
- Graduate School of Science, Technology and Innovation , Kobe University, Kobe, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
35
|
Loyer N, Hogg EKJ, Shaw HG, Pasztor A, Murray DH, Findlay GM, Januschke J. A CDK1 phosphorylation site on Drosophila PAR-3 regulates neuroblast polarisation and sensory organ formation. eLife 2024; 13:e97902. [PMID: 38869055 PMCID: PMC11216751 DOI: 10.7554/elife.97902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.
Collapse
Affiliation(s)
- Nicolas Loyer
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Elizabeth KJ Hogg
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hayley G Shaw
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Anna Pasztor
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - David H Murray
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Greg M Findlay
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jens Januschke
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
36
|
Peysson A, Zariohi N, Gendrel M, Chambert-Loir A, Frébault N, Cheynet E, Andrini O, Boulin T. Wnt-Ror-Dvl signalling and the dystrophin complex organize planar-polarized membrane compartments in C. elegans muscles. Nat Commun 2024; 15:4935. [PMID: 38858388 PMCID: PMC11164867 DOI: 10.1038/s41467-024-49154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.
Collapse
Affiliation(s)
- Alice Peysson
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noura Zariohi
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Marie Gendrel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Amandine Chambert-Loir
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noémie Frébault
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Elise Cheynet
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Olga Andrini
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Thomas Boulin
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France.
| |
Collapse
|
37
|
Gulati N, Davoudi S, Xu B, Rjaibi ST, Jacques E, Pham J, Fard A, McGuigan AP, Gilbert PM. Mini-MEndR: a miniaturized 96-well predictive assay to evaluate muscle stem cell-mediated repair. BMC METHODS 2024; 1:5. [PMID: 38872952 PMCID: PMC11173370 DOI: 10.1186/s44330-024-00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Background Functional evaluation of molecules that are predicted to promote stem cell mediated endogenous repair often requires in vivo transplant studies that are low throughput and hinder the rate of discovery. To offer greater throughput for functional validation studies, we miniaturized, simplified and expanded the functionality of a previously developed muscle endogenous repair (MEndR) in vitro assay that was shown to capture significant events of in vivo muscle endogenous repair. Methods The mini-MEndR assay consists of miniaturized cellulose scaffolds designed to fit in 96-well plates, the pores of which are infiltrated with human myoblasts encapsulated in a fibrin-based hydrogel to form engineered skeletal muscle tissues. Pre-adsorbing thrombin to the cellulose scaffolds facilitates in situ tissue polymerization, a critical modification that enables new users to rapidly acquire assay expertise. Following the generation of the 3D myotube template, muscle stem cells (MuSCs), enriched from digested mouse skeletal muscle tissue using an improved magnetic-activated cell sorting protocol, are engrafted within the engineered template. Murine MuSCs are fluorescently labeled, enabling co-evaluation of human and mouse Pax7+ cell responses to drug treatments. A regenerative milieu is introduced by injuring the muscle tissue with a myotoxin to initiate endogenous repair "in a dish". Phenotypic data is collected at endpoints with a high-content imaging system and is analyzed using ImageJ-based image analysis pipelines. Results The miniaturized format and modified manufacturing protocol cuts reagent costs in half and hands-on seeding time ~ threefold, while the image analysis pipelines save 40 h of labour. By evaluating multiple commercially available human primary myoblast lines in 2D and 3D culture, we establish quality assurance metrics for cell line selection that standardizes myotube template quality. In vivo outcomes (enhanced muscle production and Pax7+ cell expansion) to a known modulator of MuSC mediated repair (p38/β MAPK inhibition) are recapitulated in the miniaturized culture assay, but only in the presence of stem cells and the regenerative milieu. Discussion The miniaturized predictive assay offers a simple, scaled platform to co-investigate human and mouse skeletal muscle endogenous repair molecular modulators, and thus is a promising strategy to accelerate the muscle endogenous repair discovery pipeline. Supplementary Information The online version contains supplementary material available at 10.1186/s44330-024-00005-4.
Collapse
Affiliation(s)
- Nitya Gulati
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
| | - Sadegh Davoudi
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Bin Xu
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Saifedine T. Rjaibi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Erik Jacques
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Justin Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
| | - Amir Fard
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S3E4 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
| | - Penney M. Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9 Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5 Canada
| |
Collapse
|
38
|
Collins BC, Shapiro JB, Scheib MM, Musci RV, Verma M, Kardon G. Three-dimensional imaging studies in mice identify cellular dynamics of skeletal muscle regeneration. Dev Cell 2024; 59:1457-1474.e5. [PMID: 38569550 PMCID: PMC11153043 DOI: 10.1016/j.devcel.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The function of many organs, including skeletal muscle, depends on their three-dimensional structure. Muscle regeneration therefore requires not only reestablishment of myofibers but also restoration of tissue architecture. Resident muscle stem cells (SCs) are essential for regeneration, but how SCs regenerate muscle architecture is largely unknown. We address this problem using genetic labeling of mouse SCs and whole-mount imaging to reconstruct, in three dimensions, muscle regeneration. Unexpectedly, we found that myofibers form via two distinct phases of fusion and the residual basement membrane of necrotic myofibers is critical for promoting fusion and orienting regenerated myofibers. Furthermore, the centralized myonuclei characteristic of regenerated myofibers are associated with myofibrillogenesis and endure months post injury. Finally, we elucidate two cellular mechanisms for the formation of branched myofibers, a pathology characteristic of diseased muscle. We provide a synthesis of the cellular events of regeneration and show that these differ from those used during development.
Collapse
Affiliation(s)
- Brittany C Collins
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jacob B Shapiro
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mya M Scheib
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Robert V Musci
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mayank Verma
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
39
|
Kuriki M, Korb A, Comai G, Tajbakhsh S. Interplay between Pitx2 and Pax7 temporally governs specification of extraocular muscle stem cells. PLoS Genet 2024; 20:e1010935. [PMID: 38875306 PMCID: PMC11178213 DOI: 10.1371/journal.pgen.1010935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/05/2024] [Indexed: 06/16/2024] Open
Abstract
Gene regulatory networks that act upstream of skeletal muscle fate determinants are distinct in different anatomical locations. Despite recent efforts, a clear understanding of the cascade of events underlying the emergence and maintenance of the stem cell pool in specific muscle groups remains unresolved and debated. Here, we invalidated Pitx2 with multiple Cre-driver mice prenatally, postnatally, and during lineage progression. We showed that this gene becomes progressively dispensable for specification and maintenance of the muscle stem (MuSC) cell pool in extraocular muscles (EOMs) despite being, together with Myf5, a major upstream regulator during early development. Moreover, constitutive inactivation of Pax7 postnatally led to a greater loss of MuSCs in the EOMs compared to the limb. Thus, we propose a relay between Pitx2, Myf5 and Pax7 for EOM stem cell maintenance. We demonstrate also that MuSCs in the EOMs adopt a quiescent state earlier that those in limb muscles and do not spontaneously proliferate in the adult, yet EOMs have a significantly higher content of Pax7+ MuSCs per area pre- and post-natally. Finally, while limb MuSCs proliferate in the mdx mouse model for Duchenne muscular dystrophy, significantly less MuSCs were present in the EOMs of the mdx mouse model compared to controls, and they were not proliferative. Overall, our study provides a comprehensive in vivo characterisation of MuSC heterogeneity along the body axis and brings further insights into the unusual sparing of EOMs during muscular dystrophy.
Collapse
Affiliation(s)
- Mao Kuriki
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, Institut Pasteur, Paris, France
| | - Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, Institut Pasteur, Paris, France
| | - Glenda Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, Institut Pasteur, Paris, France
| |
Collapse
|
40
|
Rodríguez C, Timóteo-Ferreira F, Minchiotti G, Brunelli S, Guardiola O. Cellular interactions and microenvironment dynamics in skeletal muscle regeneration and disease. Front Cell Dev Biol 2024; 12:1385399. [PMID: 38840849 PMCID: PMC11150574 DOI: 10.3389/fcell.2024.1385399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Skeletal muscle regeneration relies on the intricate interplay of various cell populations within the muscle niche-an environment crucial for regulating the behavior of muscle stem cells (MuSCs) and ensuring postnatal tissue maintenance and regeneration. This review delves into the dynamic interactions among key players of this process, including MuSCs, macrophages (MPs), fibro-adipogenic progenitors (FAPs), endothelial cells (ECs), and pericytes (PCs), each assuming pivotal roles in orchestrating homeostasis and regeneration. Dysfunctions in these interactions can lead not only to pathological conditions but also exacerbate muscular dystrophies. The exploration of cellular and molecular crosstalk among these populations in both physiological and dystrophic conditions provides insights into the multifaceted communication networks governing muscle regeneration. Furthermore, this review discusses emerging strategies to modulate the muscle-regenerating niche, presenting a comprehensive overview of current understanding and innovative approaches.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| |
Collapse
|
41
|
Desgeorges T, Galle E, Zhang J, von Meyenn F, De Bock K. Histone lactylation in macrophages is predictive for gene expression changes during ischemia induced-muscle regeneration. Mol Metab 2024; 83:101923. [PMID: 38521183 PMCID: PMC11002880 DOI: 10.1016/j.molmet.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
OBJECTIVES We have previously shown that lactate is an essential metabolite for macrophage polarisation during ischemia-induced muscle regeneration. Recent in vitro work has implicated histone lactylation, a direct derivative of lactate, in macrophage polarisation. Here, we explore the in vivo relevance of histone lactylation for macrophage polarisation after muscle injury. METHODS To evaluate macrophage dynamics during muscle regeneration, we subjected mice to ischemia-induced muscle damage by ligating the femoral artery. Muscle samples were harvested at 1, 2, 4, and 7 days post injury (dpi). CD45+CD11b+F4/80+CD64+ macrophages were isolated and processed for RNA sequencing, Western Blotting, and CUT&Tag-sequencing to investigate gene expression, histone lactylation levels, and histone lactylation genomic localisation and enrichment, respectively. RESULTS We show that, over time, macrophages in the injured muscle undergo extensive gene expression changes, which are similar in nature and in timing to those seen after other types of muscle-injuries. We find that the macrophage histone lactylome is modified between 2 and 4 dpi, which is a crucial window for macrophage polarisation. Absolute histone lactylation levels increase, and, although subtly, the genomic enrichment of H3K18la changes. Overall, we find that histone lactylation is important at both promoter and enhancer elements. Lastly, H3K18la genomic profile changes from 2 to 4 dpi were predictive for gene expression changes later in time, rather than being a reflection of prior gene expression changes. CONCLUSIONS Our results suggest that histone lactylation dynamics are functionally important for the function of macrophages during muscle regeneration.
Collapse
Affiliation(s)
- Thibaut Desgeorges
- Laboratory of Exercise and Health, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Eva Galle
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jing Zhang
- Laboratory of Exercise and Health, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Katrien De Bock
- Laboratory of Exercise and Health, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Alnassar N, Derry JMJ, Banna GL, Gorecki DC. Differential expression of DMD transcripts as a novel prognostic biomarker in histologically diverse mesotheliomas. Transl Lung Cancer Res 2024; 13:733-748. [PMID: 38736495 PMCID: PMC11082705 DOI: 10.21037/tlcr-24-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 05/14/2024]
Abstract
Background The identification of prognostic biomarkers is crucial for guiding treatment strategies in mesothelioma patients. The Duchenne muscular dystrophy (DMD) gene and its specific transcripts have been associated with patient survival in various tumours. In this study, we aimed to investigate the prognostic potential of DMD gene expression and its transcripts in mesothelioma patients. Methods We analysed The Cancer Genome Atlas (TCGA) mesothelioma RNAseq, mutation, and clinical data to assess the association between DMD gene expression and its transcripts (Dp427, Dp71 splice variants) and mesothelioma survival. We also evaluated the specific Dp71 transcript as a unique prognostic biomarker across mesothelioma subtypes. Additionally, we performed differential gene expression analysis between high and low DMD gene/transcript expression groups. Results The analysis included 57 epithelioid, 23 biphasic, two sarcomatoid, and five not otherwise specified (NOS) histological subtypes of mesothelioma samples. Univariate analysis revealed that high expression of the DMD gene and its Dp71 transcript was significantly associated with shorter survival in mesothelioma patients (P=0.003 and P<0.001, respectively). In a multivariate analysis, the association between Dp71 expression and survival remained significant [hazard ratio (HR) 2.29, 95% confidence interval (CI): 1.24-4.23, P=0.008] across all mesothelioma patients, and also among patients with mesotheliomas without deep CDKN2A deletions (HR 3.58, 95% CI: 1.31-9.80, P=0.01). Pathway analysis revealed enrichment of cell cycle (P=3.01×10-4) and homologous recombination (P=0.01) pathways in differentially expressed genes (DEGs) between high and low Dp71 groups. Furthermore, there were correlations between Dp71 transcript expression and tumour microenvironment (TME) cells, including a weak positive correlation with macrophages (R=0.32, P=0.002) specifically M2 macrophages (R=0.34, P=0.001). Conclusions Our findings indicate that the differential expression of specific DMD transcripts is associated with poor survival in mesothelioma patients. The specific Dp71 transcript can serve as a potential biomarker for predicting patient survival in diverse histological subtypes of mesothelioma. Further studies are needed to understand the role of specific dystrophin transcripts in cancer and TME cells, and their implications in the pathogenesis and progression of mesothelioma. Identifying patients at risk of poor survival based on DMD transcript expression can guide treatment strategies in mesothelioma, informing decisions regarding treatment intensity, follow-up schedules, eligibility for clinical trials, and ultimately, end-of-life care planning.
Collapse
Affiliation(s)
- Nancy Alnassar
- Molecular Medicine Group, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Giuseppe Luigi Banna
- Molecular Medicine Group, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Cosham, Portsmouth, UK
| | - Dariusz C. Gorecki
- Molecular Medicine Group, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
43
|
Kiperman T, Ma K. Circadian Clock in Muscle Disease Etiology and Therapeutic Potential for Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:4767. [PMID: 38731986 PMCID: PMC11083552 DOI: 10.3390/ijms25094767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Circadian clock and clock-controlled output pathways exert temporal control in diverse aspects of skeletal muscle physiology, including the maintenance of muscle mass, structure, function, and metabolism. They have emerged as significant players in understanding muscle disease etiology and potential therapeutic avenues, particularly in Duchenne muscular dystrophy (DMD). This review examines the intricate interplay between circadian rhythms and muscle physiology, highlighting how disruptions of circadian regulation may contribute to muscle pathophysiology and the specific mechanisms linking circadian clock dysregulation with DMD. Moreover, we discuss recent advancements in chronobiological research that have shed light on the circadian control of muscle function and its relevance to DMD. Understanding clock output pathways involved in muscle mass and function offers novel insights into the pathogenesis of DMD and unveils promising avenues for therapeutic interventions. We further explore potential chronotherapeutic strategies targeting the circadian clock to ameliorate muscle degeneration which may inform drug development efforts for muscular dystrophy.
Collapse
Affiliation(s)
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| |
Collapse
|
44
|
Mouradian S, Cicciarello D, Lacoste N, Risson V, Berretta F, Le Grand F, Rose N, Simonet T, Schaeffer L, Scionti I. LSD1 controls a nuclear checkpoint in Wnt/β-Catenin signaling to regulate muscle stem cell self-renewal. Nucleic Acids Res 2024; 52:3667-3681. [PMID: 38321961 DOI: 10.1093/nar/gkae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The Wnt/β-Catenin pathway plays a key role in cell fate determination during development and in adult tissue regeneration by stem cells. These processes involve profound gene expression and epigenome remodeling and linking Wnt/β-Catenin signaling to chromatin modifications has been a challenge over the past decades. Functional studies of the lysine demethylase LSD1/KDM1A converge to indicate that this epigenetic regulator is a key regulator of cell fate, although the extracellular cues controlling LSD1 action remain largely unknown. Here we show that β-Catenin is a substrate of LSD1. Demethylation by LSD1 prevents β-Catenin degradation thereby maintaining its nuclear levels. Consistently, in absence of LSD1, β-Catenin transcriptional activity is reduced in both MuSCs and ESCs. Moreover, inactivation of LSD1 in mouse muscle stem cells and embryonic stem cells shows that LSD1 promotes mitotic spindle orientation via β-Catenin protein stabilization. Altogether, by inscribing LSD1 and β-Catenin in the same molecular cascade linking extracellular factors to gene expression, our results provide a mechanistic explanation to the similarity of action of canonical Wnt/β-Catenin signaling and LSD1 on stem cell fate.
Collapse
Affiliation(s)
- Sandrine Mouradian
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Delia Cicciarello
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Nicolas Lacoste
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Valérie Risson
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Francesca Berretta
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Fabien Le Grand
- Sorbonne Université, UPMC Université Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Nicolas Rose
- Sorbonne Université, UPMC Université Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Thomas Simonet
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, groupement Est, Bron, France
| | - Isabella Scionti
- Pathophysiology and Genetics of Neuron and Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR5261, INSERM U1315, Faculté de Médecine Rockefeller, France
| |
Collapse
|
45
|
Cerchiara AG, Imbrici P, Quarta R, Cristiano E, Boccanegra B, Caputo E, Wells DJ, Cappellari O, De Luca A. Ion channels as biomarkers of altered myogenesis in myofiber precursors of Duchenne muscular dystrophy. Ann N Y Acad Sci 2024; 1534:130-144. [PMID: 38517756 DOI: 10.1111/nyas.15124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 03/24/2024]
Abstract
Myogenesis is essential for skeletal muscle formation, growth, and regeneration and can be altered in Duchenne muscular dystrophy (DMD), an X-linked disorder due to the absence of the cytoskeletal protein dystrophin. Ion channels play a pivotal role in muscle differentiation and interact with the dystrophin complex. To investigate ion channel involvement in myogenesis in dystrophic settings, we performed electrophysiological characterization of two immortalized mouse cell lines, wild-type (WT) H2K-2B4 and the dystrophic (DYS) H2K-SF1, and measured gene expression of differentiation markers and ion channels. Inward and outward currents/density increased as differentiation progressed in both WT and DYS cells. However, day-11 DYS cells showed higher (27%) inward current density with an increased expression ratio of Scn5a/Scn4a and decreased (48%) barium-sensitive outward current compared to WT. Furthermore, day-11 DYS cells showed more positive resting membrane potential (+10 mV) and lower membrane capacitance (50%) compared to WT. DYS cells also had reduced Myog and Myf5 expression at days 6 and 11. Overall, ion channel profile and myogenesis appeared altered in DYS cells. These results are a first step in validating ion channels as potential drug targets to ameliorate muscle degeneration in DMD settings and as differentiation biomarkers in innovative platforms.
Collapse
Affiliation(s)
| | - Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Quarta
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Enrica Cristiano
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Brigida Boccanegra
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Erika Caputo
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Dominic J Wells
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Ornella Cappellari
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
46
|
Elasbali AM, Al-Soud WA, Anwar S, Alhassan HH, Adnan M, Hassan MI. A review on mechanistic insights into structure and function of dystrophin protein in pathophysiology and therapeutic targeting of Duchenne muscular dystrophy. Int J Biol Macromol 2024; 264:130544. [PMID: 38428778 DOI: 10.1016/j.ijbiomac.2024.130544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive genetic disorder characterized by progressive and severe muscle weakening and degeneration. Among the various forms of muscular dystrophy, it stands out as one of the most common and impactful, predominantly affecting boys. The condition arises due to mutations in the dystrophin gene, a key player in maintaining the structure and function of muscle fibers. The manuscript explores the structural features of dystrophin protein and their pivotal roles in DMD. We present an in-depth analysis of promising therapeutic approaches targeting dystrophin and their implications for the therapeutic management of DMD. Several therapies aiming to restore dystrophin protein or address secondary pathology have obtained regulatory approval, and many others are ongoing clinical development. Notably, recent advancements in genetic approaches have demonstrated the potential to restore partially functional dystrophin forms. The review also provides a comprehensive overview of the status of clinical trials for major therapeutic genetic approaches for DMD. In addition, we have summarized the ongoing therapeutic approaches and advanced mechanisms of action for dystrophin restoration and the challenges associated with DMD therapeutics.
Collapse
Affiliation(s)
- Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Science, College of Applied Sciences-Sakaka, Jouf University, Sakaka, Saudi Arabia; Molekylärbiologi, Klinisk Mikrobiologi och vårdhygien, Region Skåne, Sölvegatan 23B, 221 85 Lund, Sweden
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied Sciences-Sakaka, Jouf University, Sakaka, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
47
|
Helzer D, Kannan P, Reynolds JC, Gibbs DE, Crosbie RH. Role of microenvironment on muscle stem cell function in health, adaptation, and disease. Curr Top Dev Biol 2024; 158:179-201. [PMID: 38670705 DOI: 10.1016/bs.ctdb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The role of the cellular microenvironment has recently gained attention in the context of muscle health, adaption, and disease. Emerging evidence supports major roles for the extracellular matrix (ECM) in regeneration and the dynamic regulation of the satellite cell niche. Satellite cells normally reside in a quiescent state in healthy muscle, but upon muscle injury, they activate, proliferate, and fuse to the damaged fibers to restore muscle function and architecture. This chapter reviews the composition and mechanical properties of skeletal muscle ECM and the role of these factors in contributing to the satellite cell niche that impact muscle regeneration. In addition, the chapter details the effects of satellite cell-matrix interactions and provides evidence that there is bidirectional regulation affecting both the cellular and extracellular microenvironment within skeletal muscle. Lastly, emerging methods to investigate satellite cell-matrix interactions will be presented.
Collapse
Affiliation(s)
- Daniel Helzer
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Devin E Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
48
|
Mozzetta C, Sartorelli V, Steinkuhler C, Puri PL. HDAC inhibitors as pharmacological treatment for Duchenne muscular dystrophy: a discovery journey from bench to patients. Trends Mol Med 2024; 30:278-294. [PMID: 38408879 PMCID: PMC11095976 DOI: 10.1016/j.molmed.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Earlier evidence that targeting the balance between histone acetyltransferases (HATs) and deacetylases (HDACs), through exposure to HDAC inhibitors (HDACis), could enhance skeletal myogenesis, prompted interest in using HDACis to promote muscle regeneration. Further identification of constitutive HDAC activation in dystrophin-deficient muscles, caused by dysregulated nitric oxide (NO) signaling, provided the rationale for HDACi-based therapeutic interventions for Duchenne muscular dystrophy (DMD). In this review, we describe the molecular, preclinical, and clinical evidence supporting the efficacy of HDACis in countering disease progression by targeting pathogenic networks of gene expression in multiple muscle-resident cell types of patients with DMD. Given that givinostat is paving the way for HDACi-based interventions in DMD, next-generation HDACis with optimized therapeutic profiles and efficacy could be also explored for synergistic combinations with other therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Rome, Italy
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Pier Lorenzo Puri
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
49
|
Shalash R, Levi-Ferber M, Cohen C, Dori A, Brodie C, Henis-Korenblit S. Cross-species modeling of muscular dystrophy in Caenorhabditis elegans using patient-derived extracellular vesicles. Dis Model Mech 2024; 17:dmm050412. [PMID: 38501170 PMCID: PMC11007864 DOI: 10.1242/dmm.050412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Reliable disease models are critical for medicine advancement. Here, we established a versatile human disease model system using patient-derived extracellular vesicles (EVs), which transfer a pathology-inducing cargo from a patient to a recipient naïve model organism. As a proof of principle, we applied EVs from the serum of patients with muscular dystrophy to Caenorhabditis elegans and demonstrated their capability to induce a spectrum of muscle pathologies, including lifespan shortening and robust impairment of muscle organization and function. This demonstrates that patient-derived EVs can deliver disease-relevant pathologies between species and can be exploited for establishing novel and personalized models of human disease. Such models can potentially be used for disease diagnosis, prognosis, analyzing treatment responses, drug screening and identification of the disease-transmitting cargo of patient-derived EVs and their cellular targets. This system complements traditional genetic disease models and enables modeling of multifactorial diseases and of those not yet associated with specific genetic mutations.
Collapse
Affiliation(s)
- Rewayd Shalash
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mor Levi-Ferber
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Coral Cohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Amir Dori
- Department of Neurology, Sheba Medical Center, Ramat-Gan 52621, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Chaya Brodie
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sivan Henis-Korenblit
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
50
|
Robertson R, Li S, Filippelli RL, Chang NC. Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. Curr Top Dev Biol 2024; 158:83-121. [PMID: 38670717 DOI: 10.1016/bs.ctdb.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Muscle stem cells (MuSCs) are crucial to the repair and homeostasis of mature skeletal muscle. MuSC dysfunction and dysregulation of the myogenic program can contribute to the development of pathology ranging from cancers like rhabdomyosarcoma (RMS) or muscle degenerative diseases such as Duchenne muscular dystrophy (DMD). Both diseases exhibit dysregulation at nearly all steps of myogenesis. For instance, MuSC self-renewal processes are altered. In RMS, this leads to the creation of tumor propagating cells. In DMD, impaired asymmetric stem cell division creates a bias towards producing self-renewing stem cells instead of committing to differentiation. Hyperproliferation of these cells contribute to tumorigenesis in RMS and symmetric expansion of the self-renewing MuSC population in DMD. Both diseases also exhibit a repression of factors involved in terminal differentiation, halting RMS cells in the proliferative stage and thus driving tumor growth. Conversely, the MuSCs in DMD exhibit impaired differentiation and fuse prematurely, affecting myonuclei maturation and the integrity of the dystrophic muscle fiber. Finally, both disease states cause alterations to the MuSC niche. Various elements of the niche such as inflammatory and migratory signaling that impact MuSC behavior are dysregulated. Here we show how these seemingly distantly related diseases indeed have similarities in MuSC dysfunction, underlying the importance of considering MuSCs when studying the pathophysiology of muscle diseases.
Collapse
Affiliation(s)
- Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|