1
|
Ayerra L, Aymerich MS. Complementary roles of glial cells in generating region-specific neuroinflammatory responses and phagocytosis in Parkinson's disease. Neural Regen Res 2025; 20:2917-2918. [PMID: 39610102 PMCID: PMC11826462 DOI: 10.4103/nrr.nrr-d-24-00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 11/30/2024] Open
Affiliation(s)
- Leyre Ayerra
- Universidad de Navarra, Facultad de Ciencias, Departamento de Bioquímica y Genética, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, Spain
| | - Maria S. Aymerich
- Universidad de Navarra, Facultad de Ciencias, Departamento de Bioquímica y Genética, Pamplona, Spain
- CIMA-Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
2
|
Wang H, Xia H, Bai J, Wang Z, Wang Y, Lin J, Cheng C, Chen W, Zhang J, Zhang Q, Liu Q. H4K12 lactylation-regulated NLRP3 is involved in cigarette smoke-accelerated Alzheimer-like pathology through mTOR-regulated autophagy and activation of microglia. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137310. [PMID: 39862777 DOI: 10.1016/j.jhazmat.2025.137310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Cigarette smoke (CS), an indoor environmental pollution, is an environmental risk factor for diverse neurological disorders. However, the neurotoxicological effects and mechanisms of CS on Alzheimer's disease (AD) progression remain unclear. We found that CS accelerated the progression of AD, including increasing β-amyloid (Aβ) plaque deposition and exacerbating cognitive decline. Mechanistically, CS exposure increased the levels of NOD-like receptor protein 3 (NLRP3), which impaired autophagic flux in microglia by activating the mammalian target of rapamycin (mTOR) signal. Metabolomics analysis revealed an upregulation of lactate levels and an increase in global protein lysine lactylation in the brain tissue of CS-exposed AD-transgenic mice. Immunoprecipitation-Mass Spectrometry and chromatin immunoprecipitation assays demonstrated that CS elevates H4K12 lactylation (H4K12la) levels, which accumulate at the promoter region of NLRP3, leading to the activation of its transcription. Via inhibiting lactate or NLRP3 activation, oxamate and MCC950 alleviates these CS-induced effects. Therefore, our data suggest that the CS-induced increase in lactate levels triggers NLRP3 transcriptional activation through H4K12la, which subsequently leads to mTOR-mediated autophagy dysfunction in microglia, promoting microglial activation and resulting in Aβ plaque accumulation in AD-transgenic mice. This provides a new mechanism and potential therapeutic target for AD associated with environmental factors.
Collapse
Affiliation(s)
- Hailan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Haibo Xia
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jun Bai
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Zhongyue Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yue Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jiaheng Lin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Cheng Cheng
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Weiyong Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Qingbi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
3
|
Koizumi T, Herckenrath EM, Taguchi K, Mizuta I, Mizuno T, Tanaka M. CCL2/CCR2 signaling-mediated microglial migration leads to cerebral small vessel dysfunction in chronic hypertension model rats. Exp Neurol 2025; 387:115192. [PMID: 39999919 DOI: 10.1016/j.expneurol.2025.115192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Microglia are cerebral immune cells that maintain brain homeostasis; those that are juxtaposed to vessels are sometimes called vessel-associated microglia (VAM). Recent studies have indicated a role for VAM in maintaining blood-brain barrier integrity in different stages of diseases such as ischemic stroke and systemic inflammatory disease. Hypertension is a major cause of cerebral small vessel disease (CSVD) in humans. Recently, several reports reported that microglial activation in hypertensive animal models and our previous report indicated the increase in VAM from the early stage of chronic hypertension. However, the precise involvement of VAM in hypertensive CSVD remains unclear. In the present study, we used a deoxycorticosterone-acetate-salt chronic hypertensive rat model to demonstrate that signaling via CC motif chemokine ligand 2 (CCL2) and its receptor CC chemokine receptor type 2 (CCR2) is crucial for the increase in VAM. This signaling was associated with microglial migration toward vessels at the early disease stage. Moreover, the inhibition of this signaling resulted in reduced VAM numbers and the preservation of astrocytic endfeet in the late disease stage. Overall, CCL2/CCR2 signaling may be a trigger for microglial migration, leading to the development of CSVD, during chronic hypertension. This signaling is therefore a potential target for future preventive treatments.
Collapse
Affiliation(s)
- Takashi Koizumi
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Eline M Herckenrath
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Katsutoshi Taguchi
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
4
|
Shi J, Xie J, Li Z, He X, Wei P, Sander JW, Zhao G. The Role of Neuroinflammation and Network Anomalies in Drug-Resistant Epilepsy. Neurosci Bull 2025; 41:881-905. [PMID: 39992353 PMCID: PMC12014895 DOI: 10.1007/s12264-025-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/30/2024] [Indexed: 02/25/2025] Open
Abstract
Epilepsy affects over 50 million people worldwide. Drug-resistant epilepsy (DRE) accounts for up to a third of these cases, and neuro-inflammation is thought to play a role in such cases. Despite being a long-debated issue in the field of DRE, the mechanisms underlying neuroinflammation have yet to be fully elucidated. The pro-inflammatory microenvironment within the brain tissue of people with DRE has been probed using single-cell multimodal transcriptomics. Evidence suggests that inflammatory cells and pro-inflammatory cytokines in the nervous system can lead to extensive biochemical changes, such as connexin hemichannel excitability and disruption of neurotransmitter homeostasis. The presence of inflammation may give rise to neuronal network abnormalities that suppress endogenous antiepileptic systems. We focus on the role of neuroinflammation and brain network anomalies in DRE from multiple perspectives to identify critical points for clinical application. We hope to provide an insightful overview to advance the quest for better DRE treatments.
Collapse
Affiliation(s)
- Jianwei Shi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Jing Xie
- Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Zesheng Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- China International Neuroscience Institute, Beijing, 100053, China
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, 230022, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
- Chalfont Centre for Epilepsy, Chalfont St Peter, Buckinghamshire, SL9 0RJ, UK.
- Neurology Department, West China Hospital of Sichuan University, Chengdu, 61004, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- China International Neuroscience Institute, Beijing, 100053, China.
| |
Collapse
|
5
|
Gunasegaran B, Krishnamurthy S, Chow SS, Villanueva MD, Guller A, Ahn SB, Heng B. Comparative Analysis of HMC3 and C20 Microglial Cell Lines Reveals Differential Myeloid Characteristics and Responses to Immune Stimuli. Immunology 2025; 175:84-102. [PMID: 39961658 PMCID: PMC11982601 DOI: 10.1111/imm.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 04/11/2025] Open
Abstract
Microglia are the primary resident immune cells of the central nervous system (CNS) that respond to injury and infections. Being critical to CNS homeostasis, microglia also have been shown to contribute to neurodegenerative diseases and brain cancer. Hence, microglia are regarded as a potential therapeutic target in CNS diseases, resulting in an increased demand for reliable in vitro models. Two human microglia cell lines (HMC3 and C20) are being used in multiple in vitro studies, however, the knowledge of their biological and immunological characteristics remains limited. Our aim was to identify and compare the biological changes in these immortalised immune cells under normal physiological and immunologically challenged conditions. Using high-resolution quantitative mass spectrometry, we have examined in-depth proteomic profiles of non-stimulated and LPS or IFN-γ challenged HMC3 and C20 cells. Our findings reveal that HMC3 cells responded to both treatments through upregulation of immune, metabolic, and antiviral pathways, while C20 cells showed a response associated with mitochondrial and immune activities. Additionally, the secretome analysis demonstrated that both cell lines release IL-6 in response to LPS, while IFN-γ treatment resulted in altered kynurenine pathway activity, highlighting distinct immune and metabolic adaptations.
Collapse
Affiliation(s)
- Bavani Gunasegaran
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Shivani Krishnamurthy
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Sharron S. Chow
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Millijoy D. Villanueva
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Computational Neurosurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Anna Guller
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Computational Neurosurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
6
|
Liu H, Yang K, Wang S, Ge J. Advancements in research on the thrombo-inflammation mechanisms mediated by factor XII in ischemic stroke. J Thromb Thrombolysis 2025:10.1007/s11239-025-03101-6. [PMID: 40281266 DOI: 10.1007/s11239-025-03101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2025] [Indexed: 04/29/2025]
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability, with thrombo-inflammation constituting a core pathophysiological mechanism. This process is closely linked to coagulation cascade activation, endothelial injury, immune cell infiltration, and neuronal damage. Coagulation factor XII (FXII), a key mediator of the contact activation pathway, has emerged as a promising therapeutic target due to its dual role in pathological thrombosis and immune regulation, without compromising physiological hemostasis. However, the clinical translation of FXII-targeted therapies is hindered by paradoxical observations. Recent studies highlight that FXII's functional complexity stems from its structural and spatial heterogeneity: full-length FXII derived from the liver and short FXII mRNA isoforms expressed in neurons mediate distinct biological effects. While FXII contributes to neuroinflammation and vascular injury via endothelial-platelet-neutrophil interactions, neuron-derived FXII exhibits neuroprotective effects through HGF-mediated signaling pathways. Additionally, circulating FXIIa promotes vascular remodeling by enhancing endothelial growth factor (VEGF) release. This review summarizes the multifaceted regulatory mechanisms of FXII in IS, focusing on its structure, distribution, preclinical-clinical paradox, and current therapeutic strategies. Special emphasis is placed on its domain-specific functions and the neuroprotective effects of FXII.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
- School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
- Hunan Academy of Chinese Medicine, No. 142 Yuehua Roud, Changsha, Hunan, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China.
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300, Xueshi Road, Changsha, Hunan, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China.
- Hunan Academy of Chinese Medicine, No. 142 Yuehua Roud, Changsha, Hunan, China.
| |
Collapse
|
7
|
Sharma V, Verma R, Singh TG. Targeting hypoxia-related pathobiology in Alzheimer's disease: strategies for prevention and treatment. Mol Biol Rep 2025; 52:416. [PMID: 40266407 DOI: 10.1007/s11033-025-10520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
INTRODUCTION Alzheimer's Disease (AD) is a neurodegenerative condition characterised by cognitive decline and memory impairment. Recent research highlights the important role of hypoxia, a state of insufficient oxygen availability, in exacerbating AD pathogenesis. MATERIALS AND METHODS Through the use of a number of different search engines like Scopus, PubMed, Bentham, and Elsevier databases, a literature review was carried out for investigating the role of hypoxia mediated pathobiology in AD. Only peerreviewed articles published in reputable journals in English language were included. Conversely, non-peer-reviewed articles, conference abstracts, and editorials were excluded, along with studies lacking experimental or clinical relevance or those unavailable in full text. CONCLUSION Hypoxia exacerbates core pathological features such as oxidative stress, neuroinflammation, mitochondrial dysfunction, amyloid-beta (Aβ) dysregulation, and hyperphosphorylation of tau protein. These interlinked mechanisms establish a self-perpetuating cycle of neuronal damage, accelerating disease progression. Addressing hypoxia as a modifiable risk factor offers potential for both prevention and treatment of AD. Exploring hypoxia and the HIF signalling pathway may help counteract the neuropathological and symptomatic effects of neurodegeneration.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Reet Verma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
8
|
Hisaoka-Nakashima K, Tokuda S, Goto T, Yoshii N, Nakamura Y, Ago Y, Morioka N. Hippocampal microglial activation induces cognitive impairment and allodynia through neuronal plasticity changes in male mice with neuropathic pain. Behav Brain Res 2025; 488:115590. [PMID: 40254263 DOI: 10.1016/j.bbr.2025.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
Clinical evidence indicates that cognitive impairment is a common comorbidity of chronic pain, including neuropathic pain, but the mechanism underlying this comorbidity remains unclear. Neuroinflammation plays a critical role in the development of both neuropathic pain and cognitive impairment. A previous study showed that minocycline, an inhibitor of microglia, ameliorated allodynia and cognitive impairment in partial sciatic nerve ligation (PSNL) mice. Therefore, the current study examined a potential role of brain microglia in allodynia and cognitive impairment in male mice with neuropathic pain due to PSNL. Immunohistochemistry of the microglial markers ionized calcium-binding adapter molecule 1 (Iba1), transmembrane protein 119 (TMEM119), and purinergic receptor P2Y12 (P2RY12) was performed to examine microglial status. Two weeks after PSNL, significant microglial activation was observed in the hippocampus and amygdala, but not in the perirhinal cortex. Inhibition of brain-region-specific microglia with a local microinjection of clodronate liposomes was examined to elucidate the involvement of these microglia in PSNL-induced allodynia and cognitive impairment. Local clodronate liposome microinjection to the hippocampus, but not the amygdala, ameliorated allodynia and cognitive impairment. Other changes in the hippocampus of PSNL mice, e.g., decreased hippocampal dendrite length and intersections number, were prevented by microinjection of clodronate liposomes. The current findings suggest hippocampal microglia are related to cognitive impairment and allodynia through neuronal plasticity changes observed in PSNL mice. Blocking hippocampal microglia-mediated neuroinflammation may be a novel approach for reducing comorbidities such as cognitive impairment associated with neuropathic pain.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Shintarou Tokuda
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Tatsuki Goto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nanako Yoshii
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
9
|
Wu Z, Wang Y, Chen WW, Sun H, Chen X, Li X, Wang Z, Liang W, Wang SY, Luan X, Li Y, Huang S, Liang Y, Zhang J, Chen ZF, Wang G, Gao Y, Liu Y, Wang J, Liu Z, Shi P, Liu C, Lv L, Hou A, Wu C, Yao C, Hong Z, Dai J, Lu Z, Pan F, Chen X, Kettenmann H, Amit I, Speakman JR, Chen Y, Ginhoux F, Cui R, Huang T, Li H. Peripheral nervous system microglia-like cells regulate neuronal soma size throughout evolution. Cell 2025; 188:2159-2174.e15. [PMID: 40199320 DOI: 10.1016/j.cell.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/18/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025]
Abstract
Microglia, essential in the central nervous system (CNS), were historically considered absent from the peripheral nervous system (PNS). Here, we show a PNS-resident macrophage population that shares transcriptomic and epigenetic profiles as well as an ontogenetic trajectory with CNS microglia. This population (termed PNS microglia-like cells) enwraps the neuronal soma inside the satellite glial cell envelope, preferentially associates with larger neurons during PNS development, and is required for neuronal functions by regulating soma enlargement and axon growth. A phylogenetic survey of 24 vertebrates revealed an early origin of PNS microglia-like cells, whose presence is correlated with neuronal soma size (and body size) rather than evolutionary distance. Consistent with their requirement for soma enlargement, PNS microglia-like cells are maintained in vertebrates with large peripheral neuronal soma but absent when neurons evolve to have smaller soma. Our study thus reveals a PNS counterpart of CNS microglia that regulates neuronal soma size during both evolution and ontogeny.
Collapse
Affiliation(s)
- Zhisheng Wu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Immunology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; School of Chemistry and Chemical Engineering, Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yiheng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei-Wei Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hua Sun
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; School of Life Sciences, Henan University, Henan, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Xiaobo Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zeshuai Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weizheng Liang
- Hebei Provincial Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shuang-Yin Wang
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Xuemei Luan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yijiang Li
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Shangjin Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuteng Liang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaqi Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhou-Feng Chen
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, and Shenzhen Medical Academy of Research and Translation, Shenzhen, China
| | - Guanlin Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China; Shanghai Qi Zhi Institute, Shanghai, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution, and Southwest Research Centre of Porcine Molecular Breeding and Translational Medicine in China, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yanan Liu
- State Key Laboratory of Genetic Resources and Evolution, and Southwest Research Centre of Porcine Molecular Breeding and Translational Medicine in China, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jun Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Peng Shi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Cirong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Longbao Lv
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Anli Hou
- Shenzhen Guangming District People's Hospital, Shenzhen, China
| | - Chenglin Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Yao
- The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, China
| | - Zexuan Hong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ji Dai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhonghua Lu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | | | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yun Chen
- Department of Immunology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; School of Chemistry and Chemical Engineering, Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| | - Florent Ginhoux
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Rongfeng Cui
- School of Ecology & State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Tianwen Huang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hanjie Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen University of Advanced Technology, Shenzhen, China.
| |
Collapse
|
10
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
11
|
Zhu Z, Jin L, Wang Q, Shi H, Cheng K, Mao Z. Inhalable Ce Nanozyme-Backpacked Phage Aims at Ischemic Cerebral Injury by M1-Microglia Hitchhiking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419903. [PMID: 40231579 DOI: 10.1002/adma.202419903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/03/2025] [Indexed: 04/16/2025]
Abstract
There is a desperate need for precise nanomedications to treat ischemic cerebral injury. Yet, the drawbacks of poor delivery efficiency and off-target toxicity in pathologic parenchyma for traditional antioxidants against ischemic stroke result in inadequate brain accumulation. M13 bacteriophages are highly phagocytosed by M1-polarized microglia and can be carried toward the neuroinflammatory sites. Here, a bio-active, inhalable, Ce0.9Zr0.1O2-backpacked-M13 phage (abbreviated as CZM) is developed and demonstrates how M13 bacteriophages are taken up by different phenotypes' microglia. With the M1 microglia's proliferating and migrating, CZM can be extensively and specifically delivered to the site of the ischemic core and penumbra, where the surviving nerve cells need to be shielded from secondary oxidative stress and inflammatory cascade initiated by reactive oxygen species (ROS). With non-invasive administration, CZM effectively alleviates oxidative damage and apoptosis of neurons by eliminating ROS generated by hyperactive M1-polarized microglia. Here, a secure and effective strategy for the targeted therapy of neuroinflammatory maladies is offered by this research.
Collapse
Affiliation(s)
- Zhixin Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Haifei Shi
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 31000, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| |
Collapse
|
12
|
Wang C, He T, Qin J, Jiao J, Ji F. The roles of immune factors in neurodevelopment. Front Cell Neurosci 2025; 19:1451889. [PMID: 40276707 PMCID: PMC12018394 DOI: 10.3389/fncel.2025.1451889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The development of the nervous system is a highly complex process orchestrated by a multitude of factors, including various immune elements. These immune components play a dual role, not only regulating the immune response but also actively influencing brain development under both physiological and pathological conditions. The brain's immune barrier includes microglia in the brain parenchyma, which act as resident macrophages, astrocytes that support neuronal function and contribute to the inflammatory response, as well as circulating immune cells that reside at the brain's borders, including the choroid plexus, meninges, and perivascular spaces. Cytokines-soluble signaling molecules released by immune cells-play a crucial role in mediating communication between immune cells and the developing nervous system. Cytokines regulate processes such as neurogenesis, synaptic pruning, and inflammation, helping to shape the neural environment. Dysregulation of these immune cells, astrocytes, or cytokine signaling can lead to alterations in neurodevelopment, potentially contributing to neurodevelopmental abnormalities. This article reviews the central role of microglia, astrocytes, cytokines, and other immune factors in neurodevelopment, and explores how neuroinflammation can lead to the onset of neurodevelopmental disorders, shedding new light on their pathogenesis.
Collapse
Affiliation(s)
- Chong Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tingting He
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Qin
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Fen Ji
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
13
|
Kärkkäinen V, Saari T, Hannonen S, Rusanen M, Lehtola JM, Uusitalo H, Leinonen V, Thiede B, Kaarniranta K, Koivisto AM, Utheim TP. Altered tear fluid protein expression in persons with mild Alzheimer's disease in proteins involved in oxidative stress, protein synthesis, and energy metabolism. J Alzheimers Dis 2025:13872877251326868. [PMID: 40183343 DOI: 10.1177/13872877251326868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BackgroundTear fluid (TF) is a protein-rich solution that reflects pathophysiological changes in Alzheimer's disease (AD).ObjectiveIn this study, we examined whether TF proteins were differently expressed in persons with mild AD dementia compared to cognitively healthy controls (CO).MethodsWe analyzed data from 53 study participants including 34 CO (mean age, 71 years; Mini-Mental State Examination [MMSE] score, 28.9 ± 1.4), and 19 patients with AD (Clinical Dementia Rating, 0.5-1; mean age, 72 years; MMSE score, 23.8 ± 2.8). All participants underwent cognitive testing, as well as neurological and ophthalmological examinations. TF was collected using Schirmer strips, and TF protein content was evaluated using mass spectrometry-based proteomics and label-free quantification.ResultsWe found that 16 proteins exhibited significantly upregulated expression in the AD group compared to the CO group (p ≤ 0.05). These proteins were NP1L4, BBOX1, CYTC, RNAS4, PCD, RNT2, AL1A3, SYSC, TPIS, CLH1, PGAM1, EIF3L, 5NTC, HNRNPA2B1, PYGL, and ERO1α. No proteins were significantly downregulated in the AD group compared to the CO group.ConclusionsOur results support the hypothesis that TF is a potential source of biomarkers for AD. Part of those proteins with altered expression have previously linked to increased oxidative stress, changed protein synthesis, and disturbed regulation of energy metabolism related to AD or neurodegenerative disease. The present results indicate the value of continued investigation of TF proteins in AD.
Collapse
Affiliation(s)
- Virve Kärkkäinen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
- NeuroCenter, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Toni Saari
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanna Hannonen
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
- Neurology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Minna Rusanen
- Ceriatric Center, Wellbeing Services Country of North Karelia, Joensuu, Finland
| | - Juha-Matti Lehtola
- Neurology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Hannu Uusitalo
- Eye and Vision Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ville Leinonen
- NeuroCenter, Neurosurgery, Kuopio University Hospital, Kuopio, Finland
- Neurosurgery, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, School of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Anne M Koivisto
- NeuroCenter, Neurology, Kuopio University Hospital, Kuopio, Finland
- Department of Geriatrics, Helsinki University Hospital and Department of Neurosciences, University of Helsinki, Helsinki, Finland
| | - Tor P Utheim
- Department of Ophthalmology, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Zhang S, Zhu H, Li G, Zhu M. Cathepsin B promotes optic nerve axonal regeneration. Neuroreport 2025; 36:279-289. [PMID: 40177832 PMCID: PMC11949221 DOI: 10.1097/wnr.0000000000002148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 04/05/2025]
Abstract
This study explored the role of cathepsin B (CTSB) in optic nerve regeneration. Sprague-Dawley rats were utilized for optic nerve crush and long-range crush injury model. Gene and protein expression changes were analyzed via reverse transcription quantitative polymerase chain reaction and western blot. Primary cortical neurons and BV2 cells were cultured to assess CTSB's effects on neuronal outgrowth and microglial activity. Local CTSB administration degraded chondroitin sulfate proteoglycans (CSPGs), promoting axonal growth in-vivo. In-vitro, CTSB neutralized CSPG-mediated inhibition of neuronal growth. Quantitative proteomics revealed elevated microglial marker proteins in the regenerative environment. Activation of signal transducer and activator of transcription 3 (STAT3) and signal transducer and activator of transcription 6 (STAT6) pathways in BV2 cells increased CTSB secretion. These findings suggest that postinjury regenerative microenvironment reconstruction is associated with upregulated CTSB, which degrades CSPGs to facilitate axonal growth. Microglia-derived CTSB, regulated by STAT3/STAT6 signaling, may play a key role in this process. Modulating CTSB expression could thus be a therapeutic strategy to enhance optic nerve regeneration by modifying the injury microenvironment.
Collapse
Affiliation(s)
- Si Zhang
- Department of Ophthalmology, The First People’s Hospital of Foshan
| | - Hui Zhu
- Department of Ophthalmology, The Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Guopei Li
- Department of Ophthalmology, The First People’s Hospital of Foshan
| | - Min Zhu
- Department of Ophthalmology, The First People’s Hospital of Foshan
| |
Collapse
|
15
|
Tian A, Bhattacharya A, Muffat J, Li Y. Expanding the neuroimmune research toolkit with in vivo brain organoid technologies. Dis Model Mech 2025; 18:dmm052200. [PMID: 40231345 PMCID: PMC12032547 DOI: 10.1242/dmm.052200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Human pluripotent stem cell-derived microglia-like cells (MLCs) and brain organoid systems have revolutionized the study of neuroimmune interactions, providing new opportunities to model human-specific brain development and disease. Over the past decade, advances in protocol design have improved the fidelity, reproducibility and scalability of MLC and brain organoid generation. Co-culturing of MLCs and brain organoids have enabled direct investigations of human microglial interactions in vitro, although opportunities remain to improve microglial maturation and long-term survival. To address these limitations, innovative xenotransplantation approaches have introduced MLCs, organoids or neuroimmune organoids into the rodent brain, providing a vascularized environment that supports prolonged development and potential behavioral readouts. These expanding in vitro and in vivo toolkits offer complementary strategies to study neuroimmune interactions in health and disease. In this Perspective, we discuss the strengths, limitations and synergies of these models, highlighting important considerations for their future applications.
Collapse
Affiliation(s)
- Ai Tian
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Afrin Bhattacharya
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yun Li
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
16
|
Li S, Zhou X, Duan Q, Niu S, Li P, Feng Y, Zhang Y, Xu X, Gong SP, Cao H. Autophagy and Its Association with Macrophages in Clonal Hematopoiesis Leading to Atherosclerosis. Int J Mol Sci 2025; 26:3252. [PMID: 40244103 PMCID: PMC11989900 DOI: 10.3390/ijms26073252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by lipid accumulation and immune cell infiltration, is linked to plaque formation and cardiovascular events. While traditionally associated with lipid metabolism and endothelial dysfunction, recent research highlights the roles of autophagy and clonal hematopoiesis (CH) in its pathogenesis. Autophagy, a cellular process crucial for degrading damaged components, regulates macrophage homeostasis and inflammation, both of which are pivotal in atherosclerosis. In macrophages, autophagy influences lipid metabolism, cytokine regulation, and oxidative stress, helping to prevent plaque instability. Defective autophagy exacerbates inflammation, impairs cholesterol efflux, and accelerates disease progression. Additionally, autophagic processes in endothelial cells and smooth muscle cells further contribute to atherosclerotic pathology. Recent studies also emphasize the interplay between autophagy and CH, wherein somatic mutations in genes like TET2, JAK2, and DNMT3A drive immune cell expansion and enhance inflammatory responses in atherosclerotic plaques. These mutations modify macrophage function, intensifying the inflammatory environment and accelerating atherosclerosis. Chaperone-mediated autophagy (CMA), a selective form of autophagy, also plays a critical role in regulating macrophage inflammation by degrading pro-inflammatory cytokines and oxidized low-density lipoprotein (ox-LDL). Impaired CMA activity leads to the accumulation of these substrates, activating the NLRP3 inflammasome and worsening inflammation. Preclinical studies suggest that pharmacologically activating CMA may mitigate atherosclerosis progression. In animal models, reduced CMA activity accelerates plaque instability and increases inflammation. This review highlights the importance of autophagic regulation in macrophages, focusing on its role in inflammation, plaque formation, and the contributions of CH. Building upon current advances, we propose a hypothesis in which autophagy, programmed cell death, and clonal hematopoiesis form a critical intrinsic axis that modulates the fundamental functions of macrophages, playing a complex role in the development of atherosclerosis. Understanding these mechanisms offers potential therapeutic strategies targeting autophagy and inflammation to reduce the burden of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Shuanhu Li
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Engineering Research Center of Brain Health Industry of Chinese Medicine, Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, University Government Committee of Shaanxi Province, Xianyang 712046, China;
| | - Xin Zhou
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China; (Q.D.); or (X.X.)
| | - Shukun Niu
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Pengquan Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Yihan Feng
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Ye Zhang
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China; (Q.D.); or (X.X.)
| | - Shou-Ping Gong
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| | - Huiling Cao
- Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Engineering Research Center of Brain Health Industry of Chinese Medicine, Pharmacology of Chinese Medicine, Shaanxi University of Chinese Medicine, University Government Committee of Shaanxi Province, Xianyang 712046, China;
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi’an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi’an Medical University, Xi’an 710021, China; (S.N.); (P.L.); (Y.F.); (Y.Z.); (S.-P.G.)
| |
Collapse
|
17
|
Yao Y, Wang Z, Huang X, Wei T, Liu N, Zou L, Niu Y, Hu Y, Fang Q, Wang X, Qiao D, Li C, Chen M, Guan S, Xue Y, Wu T, Zhang T, Tang M. Adverse Outcome Pathway-Based Strategies to Mitigate Ag 2Se Quantum Dot-Induced Neurotoxicity. ACS NANO 2025; 19:11029-11048. [PMID: 40063898 DOI: 10.1021/acsnano.4c16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Silver selenide quantum dots (Ag2Se QDs) show great advantages in tumor imaging due to their excellent optical performance and good biocompatibility. However, the ultrasmall particle size of Ag2Se QDs allows them to cross the blood-brain barrier, thus potentially affecting the central nervous system. Therefore, risk assessment and response strategies for Ag2Se QDs are important. The adverse outcome pathway (AOP) framework makes it possible to develop risk management strategies based on toxicity mechanisms. In this study, using the AOP framework, we constructed causal mechanism relationship diagrams at different biological levels of Ag2Se QD neurotoxicity. In this framework, excess mitochondrial reactive oxygen species (mtROS) triggered Nod-like receptor protein 3 (NLRP3) inflammasome activation in microglia was molecular initiation event (MIE). Proinflammatory mediator secretion and microglia activation were key events (KEs) at the cellular level. Neuroinflammation and neuronal damage were KEs at the organ/tissue level. Altered hippocampal physiology was the adverse outcome (AO) at the individual level. Based on the established AOP framework, further studies confirmed that mtROS-activated nuclear-factor-E2-related factor 2 (Nrf2)/PTEN-induced kinase 1 (PINK1)- mitophagy contributed to weaken the MIE. Molecular docking-assisted molecular biology experiments demonstrated that quercetin (Qu) enhanced this process. This article emphasizes the importance of the AOP in the risk management of nanomaterials. Furthermore, this paper guides the use of natural small-molecule drugs as a strategy to mitigate nanomaterial-induced neurotoxicity.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- School of Public Health, Wannan medical college, Wuhu 241002, People's Republic of China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- Department of Sport, Huainan Normal University, Huainan 232038, People's Republic of China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, People's Republic of China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yuanyuan Hu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Qing Fang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- Taizhou Center for Disease Control and Prevention, Taizhou 318000, People's Republic of China
| | - Dong Qiao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- Gusu District Center for Disease Control and Prevention, Soochow 215000, People's Republic of China
| | - Congcong Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
- Yancheng Kindergarten Teachers College, Yancheng 224005, People's Republic of China
| | - Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
18
|
Fu S, Wang Z, Huang P, Li G, Niu J, Li Z, Zu G, Zhou P, Wang L, Leong DT, Ding X. Programmable production of bioactive extracellular vesicles in vivo to treat myocardial infarction. Nat Commun 2025; 16:2924. [PMID: 40133312 PMCID: PMC11937507 DOI: 10.1038/s41467-025-58260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Current myocardial infarction (MI) treatment strategies remain challenged in suboptimal pharmacokinetics and potential adverse effects. Here we present a bioelectronic interface capable of producing on-demand abundant bioactive extracellular vesicles (EVs) near the MI area for in-situ localized treatment. The technology, termed electroactive patch for wirelessly and controllable EV generation (ePOWER), leverages wireless bioelectronic patch to stimulate embedded electrosensitive macrophages, actively modulating the biosynthesis of EVs and enabling EV production with high programmability to be delivered directly to the MI area. ~2400% more bioactive EVs were produced per cell under our ePOWER system. When surgically implanted, we demonstrate the therapeutic potential of in-situ EV production system to alleviate MI symptoms and improve cardiac function. This programmable ePOWER technology enables in-situ production of therapeutically rich EVs, thus reducing the need for exogenous cell expansion platforms and dedicated delivery, holding promise as a therapeutic all-in-one platform to treat various diseases.
Collapse
Affiliation(s)
- Siyuan Fu
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiyu Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Peihong Huang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Guanjun Li
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jian Niu
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiyang Li
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Pengcheng Zhou
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lianhui Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Xianguang Ding
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
19
|
Gong J, Li J, Li J, He A, Ren B, Zhao M, Li K, Zhang Y, He M, Liu Y, Wang Z. Impact of Microglia-Derived Extracellular Vesicles on Resident Central Nervous System Cell Populations After Acute Brain Injury Under Various External Stimuli Conditions. Mol Neurobiol 2025:10.1007/s12035-025-04858-w. [PMID: 40126599 DOI: 10.1007/s12035-025-04858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Acute brain injuries (ABI) caused by various emergencies can lead to structural and functional damage to brain tissue. Common causes include traumatic brain injury, cerebral hemorrhage, ischemic stroke, and heat stroke. Globally, ABI represent a significant portion of neurosurgical cases. Previous studies have emphasized the significant therapeutic potential of stem cell-derived extracellular vesicles (EVs). Recent research indicates that EVs extracted from resident cells in the central nervous system (CNS) also show therapeutic potential following brain injury. Microglia, as innate immune cells of the CNS, respond to changes in the internal environment by altering their phenotype and secreting EVs that impact various CNS cells, including neurons, astrocytes, oligodendrocytes, endothelial cells, neural stem cells (NSCs), and microglia themselves. Notably, under different external stimuli, microglia can either promote neuronal survival, angiogenesis, and myelin regeneration while reducing glial scarring and inflammation, or they can exert opposite effects. This review summarizes and evaluates the current research findings on how microglia-derived EVs influence various CNS cells after ABI under different external stimuli. It analyzes the interaction mechanisms between EVs and resident CNS cells and discusses potential future research directions and clinical applications.
Collapse
Affiliation(s)
- Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Anqi He
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingcheng Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Kexin Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Yuchi Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Mengyao He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China.
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China.
| |
Collapse
|
20
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial NOX2 as a therapeutic target in traumatic brain injury: Mechanisms, consequences, and potential for neuroprotection. Ageing Res Rev 2025; 108:102735. [PMID: 40122395 DOI: 10.1016/j.arr.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability worldwide, with secondary injury mechanisms, including neuroinflammation and oxidative stress, driving much of its chronic pathology. While NADPH oxidase 2 (NOX2)-mediated reactive oxygen species (ROS) production is a recognized factor in TBI, the specific role of microglial NOX2 in perpetuating oxidative and inflammatory damage remains underexplored. Addressing this gap is critical, as current therapeutic approaches primarily target acute symptoms and fail to interrupt the persistent neuroinflammation that contributes to progressive neurodegeneration. Besides NOX, other ROS-generating enzymes, such as CYP1B1, COX2, and XO, also play crucial roles in triggering oxidative stress and neuroinflammatory conditions in TBI. However, this review highlights the pathophysiological role of microglial NOX2 in TBI, focusing on its activation following injury and its impact on ROS generation, neuroinflammatory signaling, and neuronal loss. These insights reveal NOX2 as a critical driver of secondary injury, linked to worsened outcomes, particularly in aged individuals where NOX2 activation is more pronounced. In addition, this review evaluates emerging therapeutic approaches targeting NOX2, such as GSK2795039 and other selective NOX2 inhibitors, which show potential in reducing ROS levels, limiting neuroinflammation, and preserving neurological functions. By highlighting the specific role of NOX2 in microglial ROS production and secondary neurodegeneration, this study advocates for NOX2 inhibition as a promising strategy to improve TBI outcomes by addressing the unmet need for therapies targeting long-term inflammation and neuroprotection. Our review highlights the potential of NOX2-targeted interventions to disrupt the cycle of oxidative stress and inflammation, ultimately offering a pathway to mitigate the chronic impact of TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
21
|
Gui S, Zeng F, Wu Z, Nonaka S, Sano T, Ni J, Nakanishi H, Moriyama M, Kanematsu T. Lipopolysaccharides from Porphyromonas gingivalis indirectly induce neuronal GSK3β-dependent synaptic defects and cause cognitive decline in a low-amyloid-β-concentration environment in Alzheimer's disease. J Alzheimers Dis 2025:13872877251326879. [PMID: 40111934 DOI: 10.1177/13872877251326879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BackgroundLipopolysaccharides from Porphyromonas gingivalis (P.gLPS) are involved in the pathology of Alzheimer's disease (AD). However, the effect of P.gLPS on synaptic defects remains unclear.ObjectiveIn this study, we tested our hypothesis that P.gLPS induces synaptic defects in a low-amyloid-beta (Aβ)-concentration environment.MethodsMG6 microglia or N2a neurons was treated with P.gLPS (0.1 μg/mL), soluble Aβ42 (0.1 μM) or AL (combined P.gLPS and soluble Aβ42 at 0.1 μM).ResultsIn cultured MG6 microglia, increased the mRNA expression of TNF-α, IL-1β and IL-6 and the TNF-α release in parallel with increased NF-κB activation. In cultured N2a neurons, treatment with Aβ42, P.gLPS, and AL did not affect the mRNA expression of synapsin1 (SYN1) or post-synaptic density protein-95 (PSD-95). However, the treatment with conditioned medium from AL-exposed MG6 microglia (AL-MCM) significantly reduced the mRNA and protein expression of SYN1, PSD-95, and nuclear translocation of repressor element-1 silencing transcription factor (REST) but significantly increased the mRNA expression of TNF receptor type I (at 48 h) and glycogen synthase kinase (GSK)3β (at 24 h). TWS119 pretreatment (5 μM), a GSK3β specific inhibitor, significantly reversed the AL-MCM-induced reduction in the mRNA expression of SYN1 and PSD-95 and nuclear translocation of REST in cultured N2a neurons. In APPNL-F/NL-F mice, the immunofluorescence intensity of SYN1 and PSD-95 in cortical neurons was positively correlated with the index of the memory test but negatively correlated with that of TNF-α-positive microglia.ConclusionsThese observations demonstrate that P.gLPS induces neuronal GSK3β-dependent synaptic defects in a low-Aβ concentration environment via microglial activation.
Collapse
Affiliation(s)
- Shuge Gui
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fan Zeng
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Saori Nonaka
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Tomomi Sano
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Kanematsu
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Belančić A, Janković T, Gkrinia EMM, Kristić I, Rajič Bumber J, Rački V, Pilipović K, Vitezić D, Mršić-Pelčić J. Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications. Neurol Int 2025; 17:41. [PMID: 40137462 PMCID: PMC11944370 DOI: 10.3390/neurolint17030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the SMN1 gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells-astrocytes, microglia, oligodendrocytes, and Schwann cells-in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | | | - Iva Kristić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jelena Rajič Bumber
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Dinko Vitezić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| |
Collapse
|
23
|
Guo X, Wei R, Yin X, Yang G. Crosstalk between neuroinflammation and ferroptosis: Implications for Parkinson's disease progression. Front Pharmacol 2025; 16:1528538. [PMID: 40183096 PMCID: PMC11966490 DOI: 10.3389/fphar.2025.1528538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and the aggregation of α-synuclein. Neuroinflammation is triggered by the activation of microglia and astrocytes, which release pro-inflammatory factors that exacerbate neuronal damage. This inflammatory state also disrupts iron homeostasis, leading to the occurrence of ferroptosis. Ferroptosis is characterized by lipid peroxidation of cell membranes and iron overload. Abnormal accumulation of iron in the brain increases oxidative stress and lipid peroxidation, further aggravating neuroinflammation and damage to dopaminergic neurons. Natural products have garnered attention for their antioxidant, anti-inflammatory, and neuroprotective properties, with many plant extracts showing promising therapeutic potential in PD research. This study further investigates the potential therapeutic roles of various natural products in regulating neuroinflammation and ferroptosis. The results suggest that natural products have significant therapeutic potential in modulating the interaction between neuroinflammation and ferroptosis, making them potential treatments for PD. Future research should further validate the safety and efficacy of these natural compounds in clinical applications to develop novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Xiangyu Guo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ran Wei
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, China
| | - Xunzhe Yin
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Ge Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
24
|
Hushmandi K, Reiter RJ, Farahani N, Cho WC, Alimohammadi M, Khoshnazar SM. Pyroptosis; igniting neuropsychiatric disorders from mild depression to aging-related neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111325. [PMID: 40081561 DOI: 10.1016/j.pnpbp.2025.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Neuropsychiatric disorders significantly impact global health and socioeconomic well-being, highlighting the urgent need for effective treatments. Chronic inflammation, often driven by the innate immune system, is a key feature of many neuropsychiatric conditions. NOD-like receptors (NLRs), which are intracellular sensors, detect danger signals and trigger inflammation. Among these, NLR protein (NLRP) inflammasomes play a crucial role by releasing pro-inflammatory cytokines and inducing a particular cell death process known as pyroptosis. Pyroptosis is defined as a proinflammatory form of programmed cell death executed by cysteine-aspartic proteases, also known as caspases. Currently, the role of pyroptotic flux has emerged as a critical factor in innate immunity and the pathogenesis of multiple diseases. Emerging evidence suggests that the induction of pyroptosis, primarily due to NLRP inflammasome activation, is involved in the pathophysiology of various neuropsychiatric disorders, including depression, stress-related issues, schizophrenia, autism spectrum disorders, and neurodegenerative diseases. Within this framework, the current review explores the complex relationship between pyroptosis and neuropsychiatric diseases, aiming to identify potential therapeutic targets for these challenging conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Zhang W, Zhang X, Wang K, Liu Z, Zhang L, Liu S, He K, Wang H, Wang J, Wang Y, Wang Y, Yang Y, Wu H. Single-nucleus transcriptome profiling provides insights into the pathophysiology of adhesive arachnoiditis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167655. [PMID: 39755217 DOI: 10.1016/j.bbadis.2024.167655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Adhesive arachnoiditis (AA) is a rare form of chronic degenerative pathology associated with persistent inflammation in the arachnoid matter of the spinal cord. Despite the existing knowledge, the detailed pathological mechanisms underlying AA are not fully understood. This study aimed to elucidate through comprehensive single nuclei RNA sequencing (snRNA-seq) to delineate the transcriptomic landscape of AA. From six arachnoid membrane samples, a total of 52,886 cells met the quality control standards for analysis. The main cell populations identified with specific gene markers were as follows: fibroblasts, glial cells, microglial cells, endothelial cells, mural cells, plasma cells, and T cells. Downstream analysis of fibroblasts, glial cells, and microglial cells was performed. Notably, fibroblast subsets 1 and 3 demonstrated a strong association with AA. Among them, subcluster 3 demonstrated elevated expression of genes COL1A1, COL3A1, and FN1, indicative of enhanced Wnt/β-catenin and extracellular matrix (ECM) synthesis pathways. Subcluster 3 was predicted to progressively transform into subcluster 1. In subcluster 1, there was a significant upregulation of genes such as BMP and ALPL, signaling enhanced activation of calcification-related pathways. This was highly relevant to end-stage arachnoid ossification formation. After being activated, microglial cells transformed into inflammatory disease-associated microglial cells and continued to express high levels of chemokines CCL2, CCL4, IL-1β, and other inflammatory factors NAMPT, INPP5D and NLRP3. This might be the main reason why AA recurrence is frequently observed in patients. These insights enhance our understanding of the pathological progression of AA and may contribute to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Weikang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiangyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lei Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shaocheng Liu
- Beijing Mentougou District Hospital, Beijing 102300, China
| | - Kun He
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - He Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Junyi Wang
- Beijing Science and Technology Innovation Group, Beijing 100101, China
| | - Yaobin Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yutian Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuhua Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
26
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2025; 480:1343-1357. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
27
|
Sun K, Li H, Dong Y, Cao L, Li D, Li J, Zhang M, Yan D, Yang B. The Use of Identified Hypoxia-related Genes to Generate Models for Predicting the Prognosis of Cerebral Ischemia‒reperfusion Injury and Developing Treatment Strategies. Mol Neurobiol 2025; 62:3098-3124. [PMID: 39230867 PMCID: PMC11790705 DOI: 10.1007/s12035-024-04433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Cerebral ischemia‒reperfusion injury (CIRI) is a type of secondary brain damage caused by reperfusion after ischemic stroke due to vascular obstruction. In this study, a CIRI diagnostic model was established by identifying hypoxia-related differentially expressed genes (HRDEGs) in patients with CIRI. The ischemia‒reperfusion injury (IRI)-related datasets were downloaded from the Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ), and hypoxia-related genes in the Gene Cards database were identified. After the datasets were combined, hypoxia-related differentially expressed genes (HRDEGs) expressed in CIRI patients were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the HRDEGs were performed using online tools. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed with the combined gene dataset. CIRI diagnostic models based on HRDEGs were constructed via least absolute shrinkage and selection operator (LASSO) regression analysis and a support vector machine (SVM) algorithm. The efficacy of the 9 identified hub genes for CIRI diagnosis was evaluated via mRNA‒microRNA (miRNA) interaction, mRNA-RNA-binding protein (RBP) network interaction, immune cell infiltration, and receiver operating characteristic (ROC) curve analyses. We then performed logistic regression analysis and constructed logistic regression models based on the expression of the 9 HRDEGs. We next established a nomogram and calibrated the prediction data. Finally, the clinical utility of the constructed logistic regression model was evaluated via decision curve analysis (DCA). This study revealed 9 critical genes with high diagnostic value, offering new insights into the diagnosis and selection of therapeutic targets for patients with CIRI. : Not applicable.
Collapse
Affiliation(s)
- Kaiwen Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hongwei Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yang Dong
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lei Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongpeng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jinghong Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Manxia Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongming Yan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
28
|
Zhang X, Peng L, Kuang S, Wang T, Wu W, Zuo S, Chen C, Ye J, Zheng G, Guo Y, He Y. Lactate accumulation from HIF-1α-mediated PMN-MDSC glycolysis restricts brain injury after acute hypoxia in neonates. J Neuroinflammation 2025; 22:59. [PMID: 40025545 PMCID: PMC11871681 DOI: 10.1186/s12974-025-03385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025] Open
Abstract
Fetal intrauterine distress (FD) during delivery can cause fetal intrauterine hypoxia, posing significant risks to the fetus, mother, and newborns. While studies highlight the role of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in neonatal diseases and tumor hypoxia, their specific involvement in newborns experiencing fetal distress during delivery (FDNB) is not well understood. Here, we found elevated PMN-MDSC activation, increased glycolysis, enhanced lactate production, and upregulated HIF-1α expression in the blood of FDNB neonates compared to healthy newborns (NNB). Importantly, PMN-MDSC levels were inversely correlated with neuron-specific enolase (NSE), a marker for neurological injury. In neonatal mice subjected to acute hypoxia, a 48-h exposure led to a shift from exacerbation to amelioration of brain damage when compared with a 24-h period. This change was associated with a reduction in microglial activation, a decrease in the expression of inflammatory factors within the microglia, alongside increased peripheral PMN-MDSC activation. Depleting PMN-MDSCs led to heightened microglial activation and aggravated brain injury. Mechanistically, enhanced activation of PMN-MDSCs promotes HIF-1α accumulation while enhancing glycolysis and lactate release, thereby mitigating neonatal brain injury. Notably, lactate supplementation in hypoxic mice rescued brain damage caused by insufficient PMN-MDSC activation due to HIF-1α deficiency. Our study clarifies the role of lactate in peripheral PMN-MDSCs after acute hypoxia and its effects on microglial activation and subsequent brain injury.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Immunology, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Laiqin Peng
- Department of Gynecology and Obstetrics, Huizhou Central People's Hospital, Huizhou, China
| | - Shuyi Kuang
- Department of Immunology, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianci Wang
- Department of Immunology, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weibin Wu
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaowen Zuo
- Department of Immunology, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chunling Chen
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences,, Guangzhou, China
| | - Jiaxiu Ye
- Department of Gynecology and Obstetrics, Huizhou Central People's Hospital, Huizhou, China
| | - Guilang Zheng
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences,, Guangzhou, China.
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences,, Guangzhou, China.
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Department of Immunology, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
29
|
Sun Y, Zhang Y, Chen Y, Peng H, Cheng T, Sun X, Liu J, Xu C. MeCP2 Modulates Depression-Like Behaviors Comorbid to Chronic Pain by Regulating Adult Hippocampal Neurogenesis. CNS Neurosci Ther 2025; 31:e70311. [PMID: 40193046 PMCID: PMC11974449 DOI: 10.1111/cns.70311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 04/10/2025] Open
Abstract
AIMS Although previous studies have revealed the association between chronic pain-induced depression and defective adult hippocampal neurogenesis (AHN), the underlying molecular mechanism remains elusive. This study aims to examine the association between AHN and depression-like behaviors, and to reveal the underlying mechanisms. METHODS The chronic neuropathic pain model was established using mice with the spared nerve injury (SNI) surgery. The depression-like behaviors were evaluated by using the sucrose preference test (SPT), the tail suspension test (TST), the forced swimming test (FST), and the open field test (OFT). The expression of Methyl-CpG-binding protein 2 (MeCP2) was modulated by injecting the adeno-associated virus (AAV) with the DIO system into the ventral DG of the Nes-CreERT2 mice. The miRNAs in hippocampal neural stem cells (NSCs) of mice with chronic pain were analyzed via miRNA sequencing. RESULTS We found that MeCP2, an epigenetic factor that plays a key role in the development of neurons, was significantly down-regulated in NSCs in the dentate gyrus (DG) of the hippocampus in adult mice with chronic pain and comorbid depression, suggesting a role of MeCP2 in the regulation of depression-like behavior induced by chronic neuropathic pain. MeCP2 expression levels in hippocampal NSCs were closely related to AHN and chronic pain comorbid depression, and miR-199b-3p specifically targeted and inhibited MeCP2 expression by directly interacting with its 3'-UTR sequence. Furthermore, we demonstrated that the increased level of miR-199b-3p in NSCs after the occurrence of chronic pain was responsible for AHN inhibition and comorbid depression. CONCLUSION Chronic neuropathic pain may result in an increased level of miR-199b-3p in hippocampal NSCs, which in turn targeted the Mecp2 gene and inhibited its transcription. Inhibited MeCP2 expression in NSCs contributes to AHN inhibition and depression-like behaviors.
Collapse
Affiliation(s)
- Yanting Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Ying Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Yexiang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Huisheng Peng
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Tiantian Cheng
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Xiujian Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Jing‐Gen Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Chi Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
| |
Collapse
|
30
|
Reid AN, Jayadev S, Prater KE. Microglial Responses to Alzheimer's Disease Pathology: Insights From "Omics" Studies. Glia 2025; 73:519-538. [PMID: 39760224 PMCID: PMC11801359 DOI: 10.1002/glia.24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
Human genetics studies lent firm evidence that microglia are key to Alzheimer's disease (AD) pathogenesis over a decade ago following the identification of AD-associated genes that are expressed in a microglia-specific manner. However, while alterations in microglial morphology and gene expression are observed in human postmortem brain tissue, the mechanisms by which microglia drive and contribute to AD pathology remain ill-defined. Numerous mouse models have been developed to facilitate the disambiguation of the biological mechanisms underlying AD, incorporating amyloidosis, phosphorylated tau, or both. Over time, the use of multiple technologies including bulk tissue and single cell transcriptomics, epigenomics, spatial transcriptomics, proteomics, lipidomics, and metabolomics have shed light on the heterogeneity of microglial phenotypes and molecular patterns altered in AD mouse models. Each of these 'omics technologies provide unique information and biological insight. Here, we review the literature on the approaches and findings of these methods and provide a synthesis of the knowledge generated by applying these technologies to mouse models of AD.
Collapse
Affiliation(s)
- Aquene N. Reid
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| | - Katherine E. Prater
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
31
|
Doyle AE, Bearden CE, Gur RE, Ledbetter DH, Martin CL, McCoy TH, Pasaniuc B, Perlis RH, Smoller JW, Davis LK. Advancing Mental Health Research Through Strategic Integration of Transdiagnostic Dimensions and Genomics. Biol Psychiatry 2025; 97:450-460. [PMID: 39424167 DOI: 10.1016/j.biopsych.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Genome-wide studies are yielding a growing catalog of common and rare variants that confer risk for psychopathology. However, despite representing unprecedented progress, emerging data also indicate that the full promise of psychiatric genetics-including understanding pathophysiology and improving personalized care-will not be fully realized by targeting traditional dichotomous diagnostic categories. The current article provides reflections on themes that emerged from a 2021 National Institute of Mental Health-sponsored conference convened to address strategies for the evolving field of psychiatric genetics. As anticipated by the National Institute of Mental Health's Research Domain Criteria framework, multilevel investigations of dimensional and transdiagnostic phenotypes, particularly when integrated with biobanks and big data, will be critical to advancing knowledge. The path forward will also require more diverse representation in source studies. Additionally, progress will be catalyzed by a range of converging approaches, including capitalizing on computational methods, pursuing biological insights, working within a developmental framework, and engaging health care systems and patient communities.
Collapse
Affiliation(s)
- Alysa E Doyle
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences & Psychology, University of California at Los Angeles, Los Angeles, California
| | - Raquel E Gur
- Departments of Psychiatry, Neurology and Radiology, Perelman School of Medicine, University of Pennsylvania, and the Lifespan Brain Institute of Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania
| | - David H Ledbetter
- Departments of Pediatrics and Psychiatry, University of Florida College of Medicine, Jacksonville, Florida
| | - Christa L Martin
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, Pennsylvania
| | - Thomas H McCoy
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bogdan Pasaniuc
- Departments of Computational Medicine, Pathology and Laboratory Medicine, and Human Genetics, University of California at Los Angeles, Los Angeles, California
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
32
|
Jo MG, Hong J, Kim J, Kim SH, Lee B, Choi HN, Lee SE, Kim YJ, Park H, Park DH, Roh GS, Kim CS, Yun SP. Physiological change of striatum and ventral midbrain's glia cell in response to different exercise modalities. Behav Brain Res 2025; 479:115342. [PMID: 39571940 DOI: 10.1016/j.bbr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Exercise not only regulates neurotransmitters and synapse formation but also enhances the function of multiple brain regions, beyond cortical activation. Prolonged aerobic or resistance exercise modality has been widely applied to reveal the beneficial effects on the brain, but few studies have investigated the direct effects of different exercise modalities and variations in exercise intensity on the neuroinflammatory response in the brain and overall health. Therefore, in this study, we investigated changes in brain cells and the immune environment of the brain according to exercise modalities. This study was conducted to confirm whether different exercise modalities affect the location and function of dopaminergic neurons, which are responsible for regulating voluntary movement, before utilizing animal models of disease. The results showed that high-intensity interval exercise (HIE) increased the activity of A2-reactive astrocytes in the striatum (STR), which is directly involved in movement control, resulting in neuroprotective effects. Both HIE and combined exercises (CE) increased the expression of dopamine transporter (DAT) in the STR without damaging dopamine neurons in the ventral midbrain (VM). This means that exercise training can help improve and maintain exercise capacity. In conclusion, specific exercise modalities or intensity of exercise may contribute to preventing neurodegenerative diseases such as Parkinson's disease or enhancing therapeutic effects when combined with medication for patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Gi Jo
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jiyeon Kim
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Republic of Korea
| | - Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Ha Nyeoung Choi
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - So Eun Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Young Jin Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Heejung Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea; Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Gu Seob Roh
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Anatomy, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chang Sun Kim
- Department of Physical Education, Dongduk Women's University, Seoul 02748, Republic of Korea.
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.
| |
Collapse
|
33
|
Salarian M, Liu S, Tsai HM, Leslie SN, Hayes T, Lo ST, Szardenings AK, Zhang W, Chen G, Sandiego C, Wells L, Nair DG, Kolb HC, Xia CA. Evaluation of [ 18F]JNJ-CSF1R-1 as a Positron Emission Tomography Ligand Targeting Colony-Stimulating Factor 1 Receptor. Mol Imaging Biol 2025:10.1007/s11307-025-01991-9. [PMID: 40009327 DOI: 10.1007/s11307-025-01991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Colony-stimulating factor 1 receptor (CSF1R) signaling plays a pivotal role in neuroinflammation, driving microglia proliferation and activation. CSF1R is considered a hallmark of inflammation in many neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our study aims to evaluate the potential value of 5-cyano-N-(4-(4-(2-([18F]fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([18F]JNJ-CSF1R-1) as a positron emission tomography (PET) ligand targeting CSF1R in preclinical models of neuroinflammation. PROCEDURES A cell-based MSD assay was used to measure the IC50 of 5-cyano-N-(4-(4-(2-(fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide (JNJ-CSF1R-1). JNJ-CSF1R-1 was radiolabeled with fluorine-18. PET imaging was used to evaluate brain uptake, and target engagement of [18F]JNJ-CSF1R-1 in two neuroinflammation mouse models, including systemic lipopolysaccharide (LPS) and AppSAA knock in (KI). CSF1R protein levels in brain tissue were determined by western blot and ELISA assays. [18F]JNJ-CSF1R-1 brain uptake was also measured in a non-human primate (NHP) PET study. RESULTS JNJ-CSF1R-1 is a 12 nM (IC50) inhibitor of CSF1R. [18F]JNJ-CSF1R-1 demonstrated significantly higher brain uptake in both LPS and AD mouse models as measured by the area under the time activity curves (AUC) compared to control animals. In the AppSAA KI model, CSF1R levels increased near amyloid plaques as detected by IHC. [18F]JNJ-CSF1R-1 PET imaging signal showed a good correlation with CSF1R expression levels measured by western blot and ELISA. In an NHP study, [18F]JNJ-CSF1R-1 readily entered the brain and demonstrated reversible kinetics. CONCLUSION [18F]JNJ-CSF1R-1 is a potent and promising CSF1R PET tracer with translational potential for measuring microglia-based neuroinflammatory processes and for tracking the impact of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Mani Salarian
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Shuanglong Liu
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Hsiu-Ming Tsai
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Shannon N Leslie
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Thomas Hayes
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Su-Tang Lo
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- RayzeBio a Bristol Myers Squibb's Company, San Diego, CA, USA
| | | | - Wei Zhang
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- RemeGen Biosciences, Inc, San Francisco, CA, USA
| | - Gang Chen
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- US Rad Bio LLC, San Diego, CA, USA
| | | | | | - Dileep G Nair
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Institute of Molecular Pathobiochemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Hartmuth C Kolb
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- Enigma Biomedical Group, Knoxville, TN, USA
| | - Chunfang A Xia
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| |
Collapse
|
34
|
Sun C, Kang X, Jia X, Wang Y, Zhao L, Sun X, Abula A, Liu L. Age-Related Differences in Lipopolysaccharide-Induced Delirium-like Behavior Implicate the Distinct Microglial Composition in the Hippocampus. Int J Mol Sci 2025; 26:2055. [PMID: 40076677 PMCID: PMC11900323 DOI: 10.3390/ijms26052055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
As the global population ages, the mechanisms underlying age-related susceptibility to delirium have attracted attention. Given the central role of microglia in the pathogenesis of inflammation-related delirium, we investigated the temporal dynamics of neurobehavioral changes and microglial responses, following lipopolysaccharide (LPS, 200 μg/kg) administration in young and old male C57BL/6 mice. Although a similar illness trajectory across 48 h post-treatment (HPT) was observed in both age groups, old-LPS mice exhibited worsened delirium-like behavior. At 48 HPT, in old but not young mice, significantly decreased hippocampal neuronal activity coincided with microglial overactivation. Widespread hippocampal microglial activation was present at 3 HPT but subsided by 12 HPT in young but not old mice, indicating a generally retarded but prolonged microglial response to LPS challenge in old mice. However, for both age groups, at 3 HPT, p16INK4a-negative microglia (with low abundance in the aged brain) exhibited comparable morphological activation, which was not observed for p16INK4a-positive microglia (highly abundant in the aged brain). These results suggest that age-related susceptibility to LPS-induced delirium-like behavior accompanied by different patterns of microglial response might implicate microglial composition shifts and that optimizing microglial composition represents a promising approach to reduce vulnerability to inflammatory challenge.
Collapse
Affiliation(s)
- Congli Sun
- Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Xiaomin Kang
- School of Life Science and Technology, Southeast University, Nanjing 210009, China; (X.K.); (X.J.)
| | - Xirui Jia
- School of Life Science and Technology, Southeast University, Nanjing 210009, China; (X.K.); (X.J.)
| | - Yuwei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (Y.W.); (L.Z.); (X.S.); (A.A.)
| | - Lijia Zhao
- School of Medicine, Southeast University, Nanjing 210009, China; (Y.W.); (L.Z.); (X.S.); (A.A.)
| | - Xinyu Sun
- School of Medicine, Southeast University, Nanjing 210009, China; (Y.W.); (L.Z.); (X.S.); (A.A.)
| | - Anaerguli Abula
- School of Medicine, Southeast University, Nanjing 210009, China; (Y.W.); (L.Z.); (X.S.); (A.A.)
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
35
|
Gong Y, Li H, Cui H, Gong Y. Microglial Mechanisms and Therapeutic Potential in Brain Injury Post-Intracerebral Hemorrhage. J Inflamm Res 2025; 18:2955-2973. [PMID: 40026311 PMCID: PMC11872102 DOI: 10.2147/jir.s498809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a particularly common public health problem with a high mortality and disability rate and no effective treatments to enhance clinical prognosis. The increased aging population, improved vascular prevention, and augmented use of antithrombotic agents have collectively contributed to the rise in ICH incidence over the past few decades. The exploration and understanding of mechanisms and intervention strategies has great practical significance for expanding treatments and improving prognosis of ICH. Microglia, as resident macrophages of central nervous system, are responsible for the first immune defense post-ICH. After ICH, M1 microglia is firstly activated by primary injury and thrombin; subsequently, reactive microglia can further amplify the immune response and exert secondary injury (eg, oxidative stress, neuronal damage, and brain edema). The pro-inflammatory phenotype transmits to M2 microglia within 7 days post-ICH, which plays a key role in erythrophagocytosis and limiting the inflammatory secondary injury. Microglial M2 polarization has significant implications for improving prognosis, this process can be mediated through crosstalk with other cells, metabolic changes, and microbiota interaction. Clarifying the effect, timing, and potential downstream effects of multiple mechanisms that synergistically trigger anti-inflammatory responses may be necessary for clinical translation. Analyses of such intricate interaction between microglia cells and brain injury/repair mechanisms will contribute to our understanding of the critical microglial responses to microenvironment and facilitating the discovery of appropriate intervention strategies. Here, we present a comprehensive overview of the latest evidences on microglial dynamics following ICH, their role in driving primary/secondary injury mechanisms as well as neurorepair/plasticity, and possible treatment strategies targeting microglia.
Collapse
Affiliation(s)
- Yuhua Gong
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, People’s Republic of China
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Hui Li
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, People’s Republic of China
| | - Huanglin Cui
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, People’s Republic of China
| | - Yuping Gong
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
36
|
Yang HB, Lu DC, Shu M, Li J, Ma Z. The roles and therapeutic potential of exosomal non-coding RNAs in microglia-mediated intercellular communication. Int Immunopharmacol 2025; 148:114049. [PMID: 39823800 DOI: 10.1016/j.intimp.2025.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Exosomes, which are small extracellular vesicles (sEVs), serve as versatile regulators of intercellular communication in the progression of various diseases, including neurological disorders. Among the diverse array of cargo they carry, non-coding RNAs (ncRNAs) play key regulatory roles in various pathophysiological processes. Exosomal ncRNAs derived from distinct cells modulate their reciprocal crosstalk locally or remotely, thereby mediating neurological diseases. Nevertheless, the emerging role of exosomal ncRNAsin microglia-mediated phenotypes remains largely unexplored. This review aims to summarise the biological functions of exosomal ncRNAs and the molecular mechanisms that underlie their impact on microglia-mediated intercellular communication, modulating neuroinflammation and synaptic functions within the landscape of neurological disorders. Furthermore, this review comprehensively described the potential applications of exosomal ncRNAs as diagnostic and prognostic biomarkers, as well as innovative therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Hu-Bo Yang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Min Shu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
37
|
Khan R, Turner A, Berk M, Walder K, Rossell S, Guerin AA, Kim JH. Genes, Cognition, and Their Interplay in Methamphetamine Use Disorder. Biomolecules 2025; 15:306. [PMID: 40001609 PMCID: PMC11852989 DOI: 10.3390/biom15020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Methamphetamine use disorder is a pressing global health issue, often accompanied by significant cognitive deficits that impair daily functioning and quality of life and complicate treatment. Emerging evidence highlights the potential role of genetic factors in methamphetamine use disorder, particularly in association with cognitive function. This review examines the key genetic and cognitive dimensions and their interplay in methamphetamine use disorder. There is converging evidence from several studies that genetic polymorphisms in BDNF, FAAH, SLC18A1, and SLC18A2 are associated with protection against or susceptibility to the disorder. In addition, people with methamphetamine use disorder consistently displayed impairments in cognitive flexibility and inhibitory control compared with people without the disorder. These cognitive domains were associated with reactivity to methamphetamine cues that were positively correlated with total years of methamphetamine use history. Emerging research also suggests that inhibitory control is negatively correlated with lower blood FAAH mRNA levels, while cognitive flexibility positively correlates with higher blood SLC18A2 mRNA levels, highlighting how genetic and cognitive dimensions interact in methamphetamine use disorder. We also include some future directions, emphasizing potential personalized therapeutic strategies that integrate genetic and cognitive insights. By drawing attention to the interplay between genes and cognition, we hope to advance our understanding of methamphetamine use disorder and inform the development of targeted interventions.
Collapse
Affiliation(s)
- Ramisha Khan
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Alyna Turner
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Michael Berk
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Ken Walder
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| | - Alexandre A. Guerin
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia;
- Orygen, Melbourne, VIC 3052, Australia
| | - Jee Hyun Kim
- IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (R.K.); (A.T.); (M.B.); (K.W.)
| |
Collapse
|
38
|
Li XJ, Wu S, Liu ZH, Liu AA, Peng HS, Wang YJ, Chen YX, Liu JG, Xu C. CXCR2 modulates chronic pain comorbid depression in mice by regulating adult neurogenesis in the ventral dentate gyrus. Acta Pharmacol Sin 2025:10.1038/s41401-025-01496-9. [PMID: 39972170 DOI: 10.1038/s41401-025-01496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
Research shows that chronic pain may induce depression-like behaviors through impairing adult hippocampal neurogenesis (AHN) in the ventral dentate gyrus (DG), whereas restoration of AHN may effectively alleviate depression. The C-X-C motif chemokine receptor 2 (CXCR2) is a chemokine receptor involved in various neural activities of the hippocampus including AHN. In this study we investigated the role of CXCR2 of neural stem cells (NSCs) in the ventral DG in regulating both AHN and depression-like behaviors of mice with chronic neuropathic pain. Chronic neuropathic pain was induced in mice by the spared nerve injury (SNI) surgery; mechanical allodynia and depression-like behaviors were monitored, then mouse DG was collected for analysis. We observed that chronic neuropathic pain significantly decreased the number of immature neurons in the ventral DG by inhibiting the neuronal differentiation of NSCs; specific overexpression of CXCR2 in NSCs by injecting the adeno-associated virus (AAV) into the DG restored adult neurogenesis accompanied by alleviated depression-like behaviors in SNI mice. In contrast, the knockdown of CXCR2 in hippocampal NSCs of naive mice was sufficient to inhibit adult neurogenesis, inducing depression-like behaviors. Moreover, we found that the Wnt3a/β-catenin pathway was downregulated in the ventral DG of SNI mice, which was restored after CXCR2 overexpression or infusing a CXCR2 agonist CXCL1 into the ventral DG. We conclude that CXCR2 expressed in hippocampal NSCs is crucial for regulating adult neurogenesis and chronic pain-induced depression-like behavior, thus representing a new target for the treatment of chronic pain comorbid depression.
Collapse
Affiliation(s)
- Xiao-Jie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China
- Department of Rehabilitation Health, Wuhan Hankou Hospital, Wuhan, 430000, China
| | - Shuo Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China
| | - Zi-Han Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - An-An Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui-Sheng Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China
| | - Yu-Jun Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Ye-Xiang Chen
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
| | - Jing-Gen Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chi Xu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
| |
Collapse
|
39
|
Jang JH, Song Y, Han SH, Choi BR, Lee YJ, Ha IH. Effects of Combined Shinbaro and Celecoxib in a Complete Freund's Adjuvant-Induced Inflammatory Pain Mouse Model. J Inflamm Res 2025; 18:2349-2362. [PMID: 39991659 PMCID: PMC11844300 DOI: 10.2147/jir.s500345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/07/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose Persistent inflammation resulting from injury, infection, or arthritis contributes to both peripheral and central sensitization. Various combinations of natural extracts have been explored to minimize the side effects associated with conventional medications. Shinbaro, which has traditionally been used in Eastern medicine to treat inflammatory conditions, was chosen due to its known anti-inflammatory properties. However, previous studies have not yet investigated the combined administration of celecoxib and Shinbaro for their anti-inflammatory and analgesic effects. In this study, we examined the anti-inflammatory and analgesic effects of combining celecoxib with Shinbaro in a complete Freund's adjuvant (CFA)-induced inflammatory pain model. Methods We randomly assigned 66 mice to 6 groups (n = 11 per group) and administered intraplantar injections of 100 μL CFA or saline into their right hind paw, followed by oral administration of Shinbaro (100 mg/kg), celecoxib (15 or 30 mg/kg), or both 30 minutes later. Behavioral assessments were conducted blindly at baseline and on days 1, 3, and 7 post-injection. The right hind paw and spinal cord were harvested 3 days post-injection to examine the molecular mechanisms, including macrophage infiltration in the right hind paw, as well as glial cell activation and inflammatory cytokine levels in the spinal cord. Statistical analysis was performed using Tukey's post-hoc test. Results The combination of Shinbaro (100 mg/kg) and celecoxib (15 mg/kg) synergistically reduced mechanical hyperalgesia and paw edema by preventing the conversion of monocytes to macrophages and inhibiting macrophage infiltration. Moreover, it decreased the expression of pro-inflammatory cytokines and mediators in the spinal cord by inhibiting spinal microglial activation. Conclusion The combination of Shinbaro and celecoxib demonstrates significant anti-inflammatory and analgesic effects, suggesting its potential for managing inflammatory pain with fewer side effects than conventional therapies.
Collapse
Affiliation(s)
- Jae-Hwan Jang
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 05854, Republic of Korea
| | - Yurim Song
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 05854, Republic of Korea
| | - Seok Hee Han
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 05854, Republic of Korea
| | - Bo Ram Choi
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 05854, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 05854, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 05854, Republic of Korea
| |
Collapse
|
40
|
Fixemer S, Miranda de la Maza M, Hammer GP, Jeannelle F, Schreiner S, Gérardy JJ, Boluda S, Mirault D, Mechawar N, Mittelbronn M, Bouvier DS. Microglia aggregates define distinct immune and neurodegenerative niches in Alzheimer's disease hippocampus. Acta Neuropathol 2025; 149:19. [PMID: 39954093 PMCID: PMC11829914 DOI: 10.1007/s00401-025-02857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
In Alzheimer's disease (AD), microglia form distinct cellular aggregates that play critical roles in disease progression, including Aβ plaque-associated microglia (PaM) and the newly identified coffin-like microglia (CoM). PaM are closely associated with amyloid-β (Aβ) plaques, while CoM are enriched in the pyramidal layer of the CA2/CA1 hippocampal subfields, where they frequently engulf neurons and associate with tau-positive tangles and phosphorylated α-synuclein. To elucidate the role of these microglial subtypes, we employed high-content neuropathology, integrating Deep Spatial Profiling (DSP), multiplex chromogenic immunohistochemistry and confocal microscopy, to comprehensively map and characterise their morphological and molecular signatures, as well as their neuropathological and astrocytic microenvironments, in AD and control post-mortem samples. PaM and PaM-associated astrocytes exhibited signatures related to complement system pathways, ErbB signalling, and metabolic and neurodegenerative processes. In contrast, CoM displayed markers associated with protein degradation and immune signalling pathways, including STING, TGF-β, and NF-κB. While no direct association between CD8 + T cells and either microglial type was observed, CD163 + perivascular macrophages were frequently incorporated into PaM. These findings provide novel insights into the heterogeneity of microglial responses, in particular their distinct interactions with astrocytes and infiltrating immune cells, and shed light on specific neurodegenerative hotspots and their implications for hippocampal deterioration in AD.
Collapse
Affiliation(s)
- Sonja Fixemer
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Mónica Miranda de la Maza
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Gaël Paul Hammer
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Félicia Jeannelle
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Sophie Schreiner
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Jean-Jacques Gérardy
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
| | - Susana Boluda
- Department of Neuropathology, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, Paris, France
- Institut du Cerveau, Paris Brain Institute, ICM, Inserm U1127, CNRS UMR7225, APHP, Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
| | - Dominique Mirault
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - David S Bouvier
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg.
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg.
- Laboratoire National de Santé (LNS), National Center of Pathology (NCP), 1, Rue Louis Rech, 3555, Dudelange, Luxembourg.
| |
Collapse
|
41
|
Balkhi S, Di Spirito A, Poggi A, Mortara L. Immune Modulation in Alzheimer's Disease: From Pathogenesis to Immunotherapy. Cells 2025; 14:264. [PMID: 39996737 PMCID: PMC11853524 DOI: 10.3390/cells14040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia, affecting a significant proportion of the elderly population. AD is characterized by cognitive decline and functional impairments due to pathological hallmarks like amyloid β-peptide (Aβ) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglial activation, chronic neuroinflammation, and disruptions in neuronal communication further exacerbate the disease. Emerging research suggests that immune modulation could play a key role in AD treatment given the significant involvement of neuroinflammatory processes. This review focuses on recent advancements in immunotherapy strategies aimed at modulating immune responses in AD, with a specific emphasis on microglial behavior, amyloid clearance, and tau pathology. By exploring these immunotherapeutic approaches, we aim to provide insights into their potential to alter disease progression and improve patient outcomes, contributing to the evolving landscape of AD treatment.
Collapse
Affiliation(s)
- Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| | - Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (A.D.S.); (L.M.)
| |
Collapse
|
42
|
Nayak U, Manikkath J, Arora D, Mudgal J. Impact of neuroinflammation on brain glutamate and dopamine signalling in schizophrenia: an update. Metab Brain Dis 2025; 40:119. [PMID: 39907868 PMCID: PMC11799129 DOI: 10.1007/s11011-025-01548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Schizophrenia is one of the most severe and chronic psychiatric disorders. Over the years, numerous treatment options have been introduced for schizophrenia. Although they are relatively successful in managing the positive symptoms of schizophrenia, most of the current treatments have a negligible effect on the negative and cognitive symptoms. Thus, none of them could prevent the relapse of psychotic episodes. Among the numerous hypotheses explaining the development and progression of schizophrenia, the cytokine hypothesis explains the role of inflammatory markers as a significant culprit in the development of schizophrenia. Elevated cytokines are reported in animal models and schizophrenic patients. The cytokine hypothesis is based on how increased inflammatory markers can cause changes in the dopaminergic, glutamate, and tryptophan metabolism pathways, like that observed in schizophrenic patients. Reasons, such as autoimmune disease, maternal immune activation, infection, etc., can pave the way for the development of schizophrenia and are associated with the negative, positive and cognitive symptoms of schizophrenia. Thus, there is a need to focus on the significance of anti-inflammatory drugs against these symptoms. The development of new treatment strategies in the management of schizophrenia can provide better therapeutic outcomes in terms of the severity of symptoms and treatment of drug-resistant schizophrenia. This review attempts to explain the association between elevated inflammatory markers and various neurotransmitters, and the possible use of medications like nonsteroidal anti-inflammatory drugs, monoclonal antibodies, statins, and estrogens as adjuvant therapy. Over the years, these hypotheses have been the basis for drug discovery for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Usha Nayak
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
43
|
da Silva LE, Martins DF, de Oliveira MP, Stenier MR, Fernandes BB, Willemann SDS, de Souza G, Vieira WF, Hewitson A, Cidral-Filho FJ, Rezin GT. Photobiomodulation of gut microbiota with low-level laser therapy: a light for treating neuroinflammation. Lasers Med Sci 2025; 40:64. [PMID: 39903307 DOI: 10.1007/s10103-025-04319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
The gut microbiota is known to interact with various organs in the body, including the central nervous system, through the gut-brain axis. Intestinal dysbiosis can lead to increased peripheral inflammation and, consequently, affect the brain, resulting in neuroinflammation. Photobiomodulation (PBM) has demonstrated positive regulatory effects on the imbalance of certain body functions, including pain, inflammation, immunity, wound healing, and gut microbiota dysbiosis. Therefore, PBM at the intestinal level could help improve intestinal dysbiosis and reestablish cerebral homeostasis. In this context, this study aimed to conduct a narrative review of the literature on the effects of PBM at the intestinal level on intestinal dysbiosis and neuroinflammation. Overall, the findings highlight that PBM modulates the gut microbiota, suggesting it could serve as a therapy for neurological conditions affecting the gut-brain axis. Future research should focus on further elucidating the molecular mechanisms underlying this therapy.
Collapse
Affiliation(s)
- Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (Neuroimet), Graduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil.
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (Neuroimet), Graduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Mariella Reinol Stenier
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (Neuroimet), Graduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Bruna Barros Fernandes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (Neuroimet), Graduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Stefanny da Silva Willemann
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (Neuroimet), Graduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Gabriela de Souza
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | - Willians Fernando Vieira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | | | - Francisco J Cidral-Filho
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
- Integrative Wellbeing Institute, Orlando, USA
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (Neuroimet), Graduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| |
Collapse
|
44
|
Wu Y, Korobeynyk VI, Zamboni M, Waern F, Cole JD, Mundt S, Greter M, Frisén J, Llorens-Bobadilla E, Jessberger S. Multimodal transcriptomics reveal neurogenic aging trajectories and age-related regional inflammation in the dentate gyrus. Nat Neurosci 2025; 28:415-430. [PMID: 39762661 PMCID: PMC11802457 DOI: 10.1038/s41593-024-01848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/07/2024] [Indexed: 02/08/2025]
Abstract
The mammalian dentate gyrus (DG) is involved in certain forms of learning and memory, and DG dysfunction has been implicated in age-related diseases. Although neurogenic potential is maintained throughout life in the DG as neural stem cells (NSCs) continue to generate new neurons, neurogenesis decreases with advancing age, with implications for age-related cognitive decline and disease. In this study, we used single-cell RNA sequencing to characterize transcriptomic signatures of neurogenic cells and their surrounding DG niche, identifying molecular changes associated with neurogenic aging from the activation of quiescent NSCs to the maturation of fate-committed progeny. By integrating spatial transcriptomics data, we identified the regional invasion of inflammatory cells into the hippocampus with age and show here that early-onset neuroinflammation decreases neurogenic activity. Our data reveal the lifelong molecular dynamics of NSCs and their surrounding neurogenic DG niche with age and provide a powerful resource to understand age-related molecular alterations in the aging hippocampus.
Collapse
Affiliation(s)
- Yicheng Wu
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Vladyslav I Korobeynyk
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Felix Waern
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - John Darby Cole
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Thergarajan P, O'Brien TJ, Jones NC, Ali I. Ligand-receptor interactions: A key to understanding microglia and astrocyte roles in epilepsy. Epilepsy Behav 2025; 163:110219. [PMID: 39693861 DOI: 10.1016/j.yebeh.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy continues to pose significant social and economic challenges on a global scale. Existing therapeutic approaches predominantly revolve around neurocentric mechanisms, and fail to control seizures in approximately one-third of patients. This underscores the pressing need for novel and complementary treatment approaches to address this gap. An increasing body of literature points to a role for glial cells, including microglia and astrocytes, in the pathogenesis of epilepsy. Notably, microglial cells, which serve as pivotal inflammatory mediators within the epileptic brain, have received increasing attention over recent years. These immune cells react to epileptogenic insults, regulate neuronal processes, and play diverse roles during the process of epilepsy development. Additionally, astrocytes, another integral non-neuronal brain cells, have garnered increasing recognition for their dynamic contributions to the pathophysiology of epilepsy. Their complex interactions with neurons and other glial cells involve modulating synaptic activity and neuronal excitability, thereby influencing the aberrant networks formed during epileptogenesis. This review explores the alterations in microglial and astrocytic function and their mechanisms of communication following an epileptogenic insult, examining their contribution to epilepsy development. By comprehensively studying these mechanisms, potential avenues could emerge for refining therapeutic strategies and ameliorating the impact of this complex neurological disease.
Collapse
Affiliation(s)
- Peravina Thergarajan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Idrish Ali
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| |
Collapse
|
46
|
Yao B, Kong Y, Li J, Xu F, Deng Y, Chen Y, Chen Y, Chen J, Xu M, Zhu X, Chen L, Xie F, Zhang X, Wang C, Li C. Synthesis, preclinical evaluation and pilot clinical study of a P2Y 12 receptor targeting radiotracer [ 18F]QTFT for imaging brain disorders by visualizing anti-inflammatory microglia. Acta Pharm Sin B 2025; 15:1056-1069. [PMID: 40177553 PMCID: PMC11959935 DOI: 10.1016/j.apsb.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/08/2024] [Accepted: 01/05/2025] [Indexed: 04/05/2025] Open
Abstract
As the brain's resident immune cells, microglia perform crucial functions such as phagocytosis, neuronal network maintenance, and injury restoration by adopting various phenotypes. Dynamic imaging of these phenotypes is essential for accessing brain diseases and therapeutic responses. Although numerous probes are available for imaging pro-inflammatory microglia, no PET tracers have been developed specifically to visualize anti-inflammatory microglia. In this study, we present an 18F-labeled PET tracer (QTFT) that targets the P2Y12, a receptor highly expressed on anti-inflammatory microglia. [18F]QTFT exhibited high binding affinity to the P2Y12 (14.43 nmol/L) and superior blood-brain barrier permeability compared to other candidates. Micro-PET imaging in IL-4-induced neuroinflammation models showed higher [18F]QTFT uptake in lesions compared to the contralateral normal brain tissues. Importantly, this specific uptake could be blocked by QTFT or a P2Y12 antagonist. Furthermore, [18F]QTFT visualized brain lesions in mouse models of epilepsy, glioma, and aging by targeting the aberrantly expressed P2Y12 in anti-inflammatory microglia. In a pilot clinical study, [18F]QTFT successfully located epileptic foci, showing enhanced radioactive signals in a patient with epilepsy. Collectively, these studies suggest that [18F]QTFT could serve as a valuable diagnostic tool for imaging various brain disorders by targeting P2Y12 overexpressed in anti-inflammatory microglia.
Collapse
Affiliation(s)
- Bolin Yao
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
| | - Yanyan Kong
- PET Center, Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jianing Li
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
| | - Fulin Xu
- Department of Neurosurgery, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yan Deng
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
| | - Yuncan Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yixiu Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian Chen
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
| | - Minhua Xu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fang Xie
- PET Center, Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Cong Wang
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China
| | - Cong Li
- School of Pharmacy, MOE Key Laboratory of Smart Drug Delivery, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Zhongshan Hospital, Fudan University, Shanghai 201203, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China
| |
Collapse
|
47
|
Cai L, Fan Q, Pang R, Chen C, Zhang Y, Xie H, Huang J, Wang Y, Li P, Huang D, Jin X, Zhou Y, Li Y. Microglia programmed cell death in neurodegenerative diseases and CNS injury. Apoptosis 2025; 30:446-465. [PMID: 39656359 PMCID: PMC11799081 DOI: 10.1007/s10495-024-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 02/06/2025]
Abstract
Programmed cell death (PCD) has emerged as a critical regulatory mechanism in the initiation and progression of various pathological conditions. PCD in microglia, including necroptosis, pyroptosis, apoptosis, ferroptosis, and autophagy, occurs in a variety of central nervous system (CNS) diseases. Dysregulation of microglia can lead to excessive tissue damage or neuronal death in CNS injury. Various injury stimuli trigger aberrant activation of the PCD pathway of microglia, which then further leads to inflammatory cascades that exacerbates CNS pathology in a vicious cycle. Therefore, targeting PCD in microglia is considered an important avenue for the treatment of various neurodegenerative diseases and CNS injury. In this review, we summarize the major and recent findings focusing on the mechanisms of PCD in microglia modulating functions in neurodegenerative diseases and CNS injury and provide a systematic overview of the current inhibitors targeting various PCD pathways, which may provide important therapeutic targets that merit further investigation.
Collapse
Affiliation(s)
- Ling Cai
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyue Fan
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyi Xie
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Jin
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuxi Zhou
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Moradi F, Mokhtari T. Role of NLRP3 Inflammasome in Chronic Pain and Alzheimer's Disease-A Review. J Biochem Mol Toxicol 2025; 39:e70071. [PMID: 39853846 PMCID: PMC11798427 DOI: 10.1002/jbt.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 01/26/2025]
Abstract
The coexistence of Alzheimer's disease (AD) and chronic pain (CP) in the elderly population has been extensively documented, and a growing body of evidence supports the potential interconnections between these two conditions. This comprehensive review explores the mechanisms by which CP may contribute to the development and progression of AD, with a particular focus on neuroinflammatory pathways and the role of microglia, as well as the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The review proposes that prolonged pain processing in critical brain regions can dysregulate the activity of the NLRP3 inflammasome within microglia, leading to the overproduction of pro-inflammatory cytokines and excessive oxidative stress in these regions. This aberrant microglial response also results in localized neuroinflammation in brain areas crucial for cognitive function. Additionally, CP as a persistent physiological and psychological stressor may be associated with hypothalamic-pituitary-adrenal (HPA) axis dysfunction, systemic inflammation, disruption of the blood-brain barrier (BBB), and neuroinflammation. These pathophysiological changes can cause morphological and functional impairments in brain regions responsible for cognition, memory, and neurotransmitter production, potentially contributing to the development and progression of CP-associated AD. Resultant neuroinflammation can further promote amyloid-beta (Aβ) plaque deposition, a hallmark of AD pathology. Potential therapeutic interventions targeting these neuroinflammatory pathways, particularly through the regulation of microglial NLRP3 activation, hold promise for improving outcomes in individuals with comorbid CP and AD. However, further research is required to fully elucidate the complex interplay between these conditions and develop effective treatment strategies.
Collapse
Affiliation(s)
- Fatemeh Moradi
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 East Laurel Road, Stratford, NJ 08084, USA
| | - Tahmineh Mokhtari
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, People’s Republic of China
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, USA
| |
Collapse
|
49
|
Wu L, Zhao Y, Gong X, Liang Z, Yu J, Wang J, Zhang Y, Wang X, Shu X, Bao J. Intermittent Fasting Ameliorates β-Amyloid Deposition and Cognitive Impairment Accompanied by Decreased Lipid Droplet Aggregation Within Microglia in an Alzheimer's Disease Model. Mol Nutr Food Res 2025; 69:e202400660. [PMID: 39840463 DOI: 10.1002/mnfr.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Accepted: 11/26/2024] [Indexed: 01/23/2025]
Abstract
SCOPE Alzheimer's disease (AD) is the most prevalent form of dementia, lack of effective therapeutic interventions. In this study, we investigate the impact of intermittent fasting (IF), an alternative strategy of calorie restriction, on cognitive functions and AD-like pathology in a transgenic mouse model of AD. METHODS AND RESULTS APP/PS1 mice at 6 months were randomly allocated to two dietary groups: one receiving ad libitum (AL) feeding and the other undergoing IF for 1 month. Y maze, Barnes maze, western blotting, and immunofluorescence were employed. Behavioral assessments revealed that the APP/PS1-IF group demonstrated notable improvements in cognitive function compared to the AL group. Further analysis showed that microglia in the APP/PS1-IF mice exhibited enhanced phagocytic activity, characterized by prominent enlargement of soma and reduced complexity of their processes. Importantly, IF significantly decreased the accumulation of lipid droplets (LDs) within microglia. These microglia with less LDs may contribute to enhanced β-amyloid (Aβ) phagocytosis, thereby ameliorating Aβ deposition in the brains of APP/PS1-IF mice. CONCLUSION Our findings demonstrate that IF ameliorates amyloid deposition and cognitive deficits in the AD model mice, which is associated with the reduction of LDs within microglia, providing support for the use of the dietary intervention against AD pathology.
Collapse
Affiliation(s)
- Liangwei Wu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Yang Zhao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaokang Gong
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Zheng Liang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Jing Yu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jiaquan Wang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Yuheng Zhang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaochuan Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiji Shu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Jian Bao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
50
|
Garcia de Leon R, Hodges TE, Brown HK, Bodnar TS, Galea LAM. Inflammatory signalling during the perinatal period: Implications for short- and long-term disease risk. Psychoneuroendocrinology 2025; 172:107245. [PMID: 39561569 DOI: 10.1016/j.psyneuen.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
During pregnancy and the postpartum, there are dynamic fluctuations in steroid and peptide hormone levels as well as inflammatory signalling. These changes are required for a healthy pregnancy and can persist well beyond the postpartum. Many of the same hormone and inflammatory signalling changes observed during the perinatal period also play a role in symptoms related to autoimmune disorders, psychiatric disorders, and perhaps neurodegenerative disease later in life. In this review, we outline hormonal and immunological shifts linked to pregnancy and the postpartum and discuss the possible role of these shifts in increasing psychiatric, neurodegenerative disease risk and autoimmune symptoms during and following pregnancy. Furthermore, we discuss how key variables such as the number of births (parity) and sex of the fetus can influence inflammatory signalling, and possibly future disease risk, but are not often studied. We conclude by discussing the importance of studying female experiences such as pregnancy and parenting on physiology and disease.
Collapse
Affiliation(s)
- Romina Garcia de Leon
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | | | | | - Liisa A M Galea
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| |
Collapse
|