1
|
Damian L, Langlois V, Jardin F, Kerleau JM, Grall M, Levesque H, Benhamou Y, Sauvetre G. Predictors of progression to chronicity in newly diagnosed primary immune thrombocytopenia: a retrospective multicenter French study. Expert Rev Hematol 2025:1-7. [PMID: 40259850 DOI: 10.1080/17474086.2025.2495669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND The long-term outcome of primary immune thrombocytopenia (ITP) is unpredictable. Chronic ITP is common in adults, requiring second-line treatments with increased morbidity and mortality. Our study aimed to identify predictive factors of chronicity at the time of diagnosis in primary adult ITP. RESEARCH DESIGN AND METHODS This retrospective multicenter study included adult patients newly diagnosed with primary ITP. Patients with a normal platelet count and no ongoing medication twelve months after disease onset were categorized in the complete remission ITP group, otherwise in the chronic ITP group. RESULTS 219 patients were included, 110 in the complete remission ITP group and 109 in the chronic ITP group. In multivariate analysis, predictive factors of progression to chronicity included the absence of an infectious event preceding ITP onset (p = 0.048), the absence of bleeding manifestations (p = 0.002) and a platelet count >10 x 109/L at disease onset (p = 0.02). A poor response to initial corticosteroid treatment was also associated with chronicity, including corticosteroid dependence (p<0.001) and corticosteroid resistance (p = 0.001). CONCLUSIONS In this retrospective French cohort, predictors of chronicity in newly diagnosed primary adult ITP included the absence of preceding infectious event, platelet >10 x 109/L and absence of bleeding manifestations at onset.
Collapse
Affiliation(s)
- Louise Damian
- Department of Internal Medicine and Infectious Diseases, Le Havre Hospital, Le Havre, France
| | - Vincent Langlois
- Department of Internal Medicine and Infectious Diseases, Le Havre Hospital, Le Havre, France
| | - Fabrice Jardin
- Department of Hematology, Centre Henri Becquerel, Rouen Cedex, France
| | | | - Maximilien Grall
- Department of Internal Medicine, Rouen University Hospital Charles Nicolle, Cedex, France
| | - Hervé Levesque
- Department of Internal Medicine, Rouen University Hospital Charles Nicolle, Cedex, France
| | - Ygal Benhamou
- Department of Internal Medicine, Rouen University Hospital Charles Nicolle, Cedex, France
| | - Gaëtan Sauvetre
- Department of Internal Medicine, Rouen University Hospital Charles Nicolle, Cedex, France
| |
Collapse
|
2
|
Galipeau Y, Cooper C, Langlois MA. Autoantibodies in COVID-19: implications for disease severity and clinical outcomes. Front Immunol 2025; 15:1509289. [PMID: 39835117 PMCID: PMC11743527 DOI: 10.3389/fimmu.2024.1509289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Few pathogens have historically been subjected to as intense scientific and clinical scrutiny as SARS-CoV-2. The genetic, immunological, and environmental factors influencing disease severity and post-infection clinical outcomes, known as correlates of immunity, remain largely undefined. Clinical outcomes of SARS-CoV-2 infection vary widely, ranging from asymptomatic cases to those with life-threatening COVID-19 symptoms. While most infected individuals return to their former health and fitness within a few weeks, some develop debilitating chronic symptoms, referred to as long-COVID. Autoimmune responses have been proposed as one of the factors influencing long-COVID and the severity of SARS-CoV-2 infection. The association between viral infections and autoimmune pathologies is not new. Viruses such as Epstein-Barr virus and cytomegalovirus, among others, have been shown to induce the production of autoantibodies and the onset of autoimmune conditions. Given the extensive literature on SARS-CoV-2, here we review current evidence on SARS-CoV-2-induced autoimmune pathologies, with a focus on autoantibodies. We closely examine mechanisms driving autoantibody production, particularly their connection with disease severity and long-COVID.
Collapse
Affiliation(s)
- Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Curtis Cooper
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Shibata S, Kitada K, Nakai K, Uemura R, Kurihara Y, Tahara M, Hamuro A, Nakano A, Misugi T, Tachibana D. The Establishment of a Novel Murine Model of Immune Thrombocytopenia in Pregnancy and the Impacts of Thrombopoietin Receptor Agonist on Platelet Production. Cureus 2024; 16:e71385. [PMID: 39539867 PMCID: PMC11560347 DOI: 10.7759/cureus.71385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Objective Immune thrombocytopenia (ITP) is frequently associated with pregnancy. However, treatment options for ITP in pregnancy are limited, and there are few animal models available for the establishment of treatments. Here, we aimed to establish a novel murine pregnant model of ITP and to investigate the impacts of thrombopoietin receptor agonist (TPO-RA) on platelet production and reproductive outcomes. Methods Anti-glycoprotein Ib-alpha (GPIbα) antibody, which binds to megakaryocytes and platelets, was subcutaneously administered to pregnant mice in order to develop an ITP model (ITP group). TPO-RA was given in doses of 1 µg/kg, 10 µg/kg, and 100 µg/kg (low-dose group, mid-dose group, and high-dose group, respectively) for the treatment of ITP in pregnancy. Results The ITP group showed a significant reduction of platelet counts of less than 15% of healthy pregnant mice (control group) and also showed a significant increase in miscarriage rate (control group, 3.8%; ITP group, 44.4%; p < 0.05). Striking increases in platelet counts were observed in every TPO-RA group without any negative effects on fetal growth and placental pathology. No abnormality was noted in the external examination of fetal mice. Interestingly, a significant recovery of miscarriage rate was observed in the mid-dose group (23.5%) compared with the ITP group (p < 0.05). Conclusion A novel ITP model in pregnant mice was induced by injection of an anti-GPIbα antibody, and sufficient effects of TPO-RA on platelet production were observed in the present study. Furthermore, the positive impacts of TPO-RA on reproductive outcomes were revealed in the ITP model.
Collapse
Affiliation(s)
- Satoshi Shibata
- Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka, JPN
| | - Kohei Kitada
- Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka, JPN
| | - Kensaku Nakai
- Obstetrics and Gynecology, Izumiotsu Municipal Hospital, Izumiotsu, JPN
- Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka, JPN
| | - Ryo Uemura
- Obstetrics and Gynecology, Osaka City General Hospital, Osaka, JPN
| | - Yasushi Kurihara
- Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka, JPN
| | - Mie Tahara
- Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka, JPN
| | - Akihiro Hamuro
- Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka, JPN
| | - Akemi Nakano
- Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka, JPN
| | - Takuya Misugi
- Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka, JPN
| | - Daisuke Tachibana
- Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka, JPN
| |
Collapse
|
4
|
Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol 2024; 20:672-689. [PMID: 38961307 DOI: 10.1038/s41581-024-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Immunoglobulin glycosylation is a pivotal mechanism that drives the diversification of antibody functions. The composition of the IgG glycome is influenced by environmental factors, genetic traits and inflammatory contexts. Differential IgG glycosylation has been shown to intricately modulate IgG effector functions and has a role in the initiation and progression of various diseases. Analysis of IgG glycosylation is therefore a promising tool for predicting disease severity. Several autoimmune and alloimmune disorders, including critical and potentially life-threatening conditions such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and antibody-mediated kidney graft rejection, are driven by immunoglobulin. In certain IgG-driven kidney diseases, including primary membranous nephropathy, IgA nephropathy and lupus nephritis, particular glycome characteristics can enhance in situ complement activation and the recruitment of innate immune cells, resulting in more severe kidney damage. Hypofucosylation, hypogalactosylation and hyposialylation are the most common IgG glycosylation traits identified in these diseases. Modulating IgG glycosylation could therefore be a promising therapeutic strategy for regulating the immune mechanisms that underlie IgG-driven kidney diseases and potentially reduce the burden of immunosuppressive drugs in affected patients.
Collapse
Affiliation(s)
- Anaïs Beyze
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| | - Christian Larroque
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Schäfer AK, Dierks S, Schnelle M, Korsten P, Hakroush S, Tampe B. Case Report: High-dose immunoglobulins prior to plasma exchange in severe pulmonary renal syndrome. Front Immunol 2023; 14:1210321. [PMID: 37359542 PMCID: PMC10288105 DOI: 10.3389/fimmu.2023.1210321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Plasma exchange rapidly depletes pathogenic anti-neutrophil cytoplasmic autoantibodies (ANCAs) and is considered for induction therapy in severe ANCA-associated vasculitis. The aim of plasma exchange is to remove putative disease mediators from the circulation, such as toxic macromolecules and pathogenic ANCAs. To our knowledge, we here provide the first report of applying high-dose IVIGs prior to plasma exchange and assessment of ANCA autoantibody elimination in a patient with severe pulmonary renal syndrome due to ANCA-associated vasculitis. After high-dose application of intravenous immunoglobulins (IVIGs) prior to plasma exchange treatment, efficacy of myeloperoxidase (MPO)-ANCA autoantibody elimination was substantially increased, associated with rapid clearance of MPO-ANCA autoantibodies. High-dose IVIGs resulted in marked reduction of MPO-ANCA autoantibody levels and did not directly affect autoantibody clearance by plasma exchange itself, as also confirmed by comparable MPO-ANCAs in the exchange fluid relative to serum levels. Moreover, measurements of serum creatinine and albuminuria confirmed that high-dose IVIGs were well tolerated and did not exacerbate kidney injury.
Collapse
Affiliation(s)
- Ann-Kathrin Schäfer
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Sascha Dierks
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Moritz Schnelle
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Korsten
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Park JS, Choi HJ, Jung KM, Lee KY, Shim JH, Park KJ, Kim YM, Han JY. Production of recombinant human IgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activity using genome-edited chickens. Commun Biol 2023; 6:589. [PMID: 37264071 DOI: 10.1038/s42003-023-04937-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Intravenous immunoglobulin (IVIG) is a plasma-derived polyclonal IgG used for treatment of autoimmune diseases. Studies show that α-2,6 sialylation of the Fc improves anti-inflammatory activity. Also, afucosylation of the Fc efficiently blocks FcγRIIIA by increasing monovalent affinity to this receptor, which can be beneficial for treatment of refractory immune thrombocytopenia (ITP). Here, we generated genome-edited chickens that synthesize human IgG1 Fc in the liver and secrete α-2,6 sialylated and low-fucosylated human IgG1 Fc (rhIgG1 Fc) into serum and egg yolk. Also, rhIgG1 Fc has higher affinity for FcγRIIIA than commercial IVIG. Thus, rhIgG1 Fc efficiently inhibits immune complex-mediated FcγRIIIA crosslinking and subsequent ADCC response. Furthermore, rhIgG1 Fc exerts anti-inflammatory activity in a passive ITP model, demonstrating chicken liver derived rhIgG1 Fc successfully recapitulated efficacy of IVIG. These results show that genome-edited chickens can be used as a production platform for rhIgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activities.
Collapse
Affiliation(s)
- Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Avinnogen Co., Ltd, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyeon Shim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Avinnogen Co., Ltd, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Bayry J, Ahmed EA, Toscano-Rivero D, Vonniessen N, Genest G, Cohen CG, Dembele M, Kaveri SV, Mazer BD. Intravenous Immunoglobulin: Mechanism of Action in Autoimmune and Inflammatory Conditions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1688-1697. [PMID: 37062358 DOI: 10.1016/j.jaip.2023.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Intravenous immunoglobulin (IVIG) is the mainstay of therapy for humoral immune deficiencies and numerous inflammatory disorders. Although the use of IVIG may be supplanted by several targeted therapies to cytokines, the ability of polyclonal normal IgG to act as an effector molecule as well as a regulatory molecule is a clear example of the polyfunctionality of IVIG. This article will address the mechanism of action of IVIG in a number of important conditions that are otherwise resistant to treatment. In this commentary, we will highlight mechanistic studies that shed light on the action of IVIG. This will be approached by identifying effects that are both common and disease-specific, targeting actions that have been demonstrated on cells and processes that represent both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, India.
| | - Eisha A Ahmed
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Diana Toscano-Rivero
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Nicholas Vonniessen
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Genevieve Genest
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Casey G Cohen
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Marieme Dembele
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Bruce D Mazer
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Seeling M, Pöhnl M, Kara S, Horstmann N, Riemer C, Wöhner M, Liang C, Brückner C, Eiring P, Werner A, Biburger M, Altmann L, Schneider M, Amon L, Lehmann CHK, Lee S, Kunz M, Dudziak D, Schett G, Bäuerle T, Lux A, Tuckermann J, Vögtle T, Nieswandt B, Sauer M, Böckmann RA, Nimmerjahn F. Immunoglobulin G-dependent inhibition of inflammatory bone remodeling requires pattern recognition receptor Dectin-1. Immunity 2023; 56:1046-1063.e7. [PMID: 36948194 DOI: 10.1016/j.immuni.2023.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Immunoglobulin G (IgG) antibodies are major drivers of inflammation during infectious and autoimmune diseases. In pooled serum IgG (IVIg), however, antibodies have a potent immunomodulatory and anti-inflammatory activity, but how this is mediated is unclear. We studied IgG-dependent initiation of resolution of inflammation in cytokine- and autoantibody-driven models of rheumatoid arthritis and found IVIg sialylation inhibited joint inflammation, whereas inhibition of osteoclastogenesis was sialic acid independent. Instead, IVIg-dependent inhibition of osteoclastogenesis was abrogated in mice lacking receptors Dectin-1 or FcγRIIb. Atomistic molecular dynamics simulations and super-resolution microscopy revealed that Dectin-1 promoted FcγRIIb membrane conformations that allowed productive IgG binding and enhanced interactions with mouse and human IgG subclasses. IVIg reprogrammed monocytes via FcγRIIb-dependent signaling that required Dectin-1. Our data identify a pathogen-independent function of Dectin-1 as a co-inhibitory checkpoint for IgG-dependent inhibition of mouse and human osteoclastogenesis. These findings may have implications for therapeutic targeting of autoantibody and cytokine-driven inflammation.
Collapse
Affiliation(s)
- Michaela Seeling
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthias Pöhnl
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sibel Kara
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nathalie Horstmann
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Carolina Riemer
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Miriam Wöhner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Chunguang Liang
- Division of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christin Brückner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Anja Werner
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Markus Biburger
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Leon Altmann
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin Schneider
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Meik Kunz
- Division of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anja Lux
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Bernhardt Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
10
|
Feng W, Zhang Y, Sun P, Xiao M. Acquired immunity and Alzheimer's disease. J Biomed Res 2023; 37:15-29. [PMID: 36165328 PMCID: PMC9898041 DOI: 10.7555/jbr.36.20220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune system dominated by microglia in the progression of AD has been extensively investigated. However, little is known about the peripheral immune system in AD pathogenesis. Recently, with the discovery of the meningeal lymphatic vessels and glymphatic system, the roles of the acquired immunity in the maintenance of central homeostasis and neurodegenerative diseases have attracted an increasing attention. The T cells not only regulate the function of neurons, astrocytes, microglia, oligodendrocytes and brain microvascular endothelial cells, but also participate in the clearance of β-amyloid (Aβ) plaques. Apart from producing antibodies to bind Aβ peptides, the B cells affect Aβ-related cascades via a variety of antibody-independent mechanisms. This review systemically summarizes the recent progress in understanding pathophysiological roles of the T cells and B cells in AD.
Collapse
Affiliation(s)
- Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China,Weixi Feng, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869338; E-mail:
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Peng Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
11
|
Zhao Y, Cui S, Wang Y, Xu R. The Extensive Regulation of MicroRNA in Immune Thrombocytopenia. Clin Appl Thromb Hemost 2022; 28:10760296221093595. [PMID: 35536600 PMCID: PMC9096216 DOI: 10.1177/10760296221093595] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MicroRNA (miRNA) is a small, single-stranded, non-coding RNA molecule that plays
a variety of key roles in different biological processes through
post-transcriptional regulation of gene expression. MiRNA has been proved to be
a variety of cellular processes involved in development, differentiation, signal
transduction, and is an important regulator of immune and autoimmune diseases.
Therefore, it may act as potent modulators of the immune system and play an
important role in the development of several autoimmune diseases. Immune
thrombocytopenia (ITP) is an autoimmune systemic disease characterized by a low
platelet count. Several studies suggest that like other autoimmune disorders,
miRNAs are deeply involved in the pathogenesis of ITP, interacting with the
function of innate and adaptive immune responses. In this review, we discuss
emerging knowledge about the function of miRNAs in ITP and describe miRNAs in
terms of their role in the immune system and autoimmune response. These findings
suggest that miRNA may be a useful therapeutic target for ITP by regulating the
immune system. In the future, we need to have a more comprehensive understanding
of miRNAs and how they regulate the immune system of patients with ITP.
Collapse
Affiliation(s)
- Yuerong Zhao
- 74738Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Institute of Hematology, 74738Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Institute of Hematology, 74738Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Bone marrow remodelling supports hematopoiesis in response to immune thrombocytopenia progression. Blood Adv 2021; 5:4877-4889. [PMID: 34428275 PMCID: PMC9153055 DOI: 10.1182/bloodadvances.2020003887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/10/2021] [Indexed: 11/20/2022] Open
Abstract
Sustained ITP activates and increases the number of functional LT-HSCs. The remodeled ITP bone marrow enhances hematopoiesis.
Immune thrombocytopenia (ITP) is an acquired autoimmune condition characterized by both reduced platelet production and the destruction of functionally normal platelets by sustained attack from the immune system. However, the effect of prolonged ITP on the more immature hematopoietic progenitors remains an open area of investigation. By using a murine in vivo model of extended ITP, we revealed that ITP progression drives considerable progenitor expansion and bone marrow (BM) remodeling. Single-cell assays using Lin–Sca1+c-Kit+CD48–CD150+ long-term hematopoietic stem cells (LT-HSCs) revealed elevated LT-HSC activation and proliferation in vitro. However, the increased activation did not come at the expense of LT-HSC functionality as measured by in vivo serial transplantations. ITP progression was associated with considerable BM vasodilation and angiogenesis, as well as a twofold increase in the local production of CXCL12, a cytokine essential for LT-HSC function and BM homing expressed at high levels by LepR+ BM stromal cells. This was associated with a 1.5-fold increase in LepR+ BM stromal cells and a 5.5-fold improvement in progenitor homing to the BM. The increase in stromal cells was transient and reverted back to baseline after platelet count returned to normal, but the vasculature changes in the BM persisted. Together, our data demonstrate that LT-HSCs expand in response to ITP and that LT-HSC functionality during sustained hematopoietic stress is maintained through an adapting BM microenvironment.
Collapse
|
13
|
Jin W, Wu Y, Chen N, Wang Q, Wang Y, Li Y, Li S, Han X, Yang E, Tong F, Wu J, Yuan X, Kang C. Early administration of MPC-n(IVIg) selectively accumulates in ischemic areas to protect inflammation-induced brain damage from ischemic stroke. Theranostics 2021; 11:8197-8217. [PMID: 34373737 PMCID: PMC8344004 DOI: 10.7150/thno.58947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is an acute and severe neurological disease, which leads to disability and death. Immunomodulatory therapies exert multiple remarkable protective effects during ischemic stroke. However, patients suffering from ischemic stroke do not benefit from immunomodulatory therapies due to the presence of the blood-brain barrier (BBB) and their off-target effects. Methods: We presented a delivery strategy to optimize immunomodulatory therapies by facilitating BBB penetration and selectively delivering intravenous immunoglobulin (IVIg) to ischemic regions using 2-methacryloyloxyethyl phosphorylcholine (MPC)-nanocapsules, MPC-n(IVIg), synthesized using MPC monomers and ethylene glycol dimethyl acrylate (EGDMA) crosslinker via in situ polymerization. In vitro and in vivo experiments verify the effect and safety of MPC-n(IVIg). Results: MPC-n(IVIg) efficiently crosses the BBB and IVIg selectively accumulates in ischemic areas in a high-affinity choline transporter 1 (ChT1)-overexpression dependent manner via endothelial cells in ischemic areas. Moreover, earlier administration of MPC-n(IVIg) more efficiently deliver IVIg to ischemic areas. Furthermore, the early administration of low-dosage MPC-n(IVIg) decreases neurological deficits and mortality by suppressing stroke-induced inflammation in the middle cerebral artery occlusion model. Conclusion: Our findings indicate a promising strategy to efficiently deliver the therapeutics to the ischemic target brain tissue and lower the effective dose of therapeutic drugs for treating ischemic strokes.
Collapse
Affiliation(s)
- Weili Jin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ye Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Yansheng Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xing Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Eryan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Fei Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Jialing Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China. Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| |
Collapse
|
14
|
New insights into IVIg mechanisms and alternatives in autoimmune and inflammatory diseases. Curr Opin Hematol 2021; 27:392-398. [PMID: 32868670 DOI: 10.1097/moh.0000000000000609] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Intravenous immunoglobulin (IVIg) is an effective treatment for an increasing number of autoimmune and inflammatory conditions. However, IVIg continues to be limited by problems of potential shortages and cost. A number of mechanisms have been described for IVIg, which have been captured in newly emergent IVIg mimetic and IVIg alternative therapies. This review discusses the recent developments in IVIg mimetics and alternatives. RECENT FINDINGS Newly emergent IVIg mimetics and alternatives capture major proposed mechanisms of IVIg, including FcγR blockade, FcRn inhibition, complement inhibition, immune complex mimetics and sialylated IgG. Many of these emergent therapies have promising preclinical and clinical trial results. SUMMARY Significant research has been undertaken into the mechanism of IVIg in the treatment of autoimmune and inflammatory disease. Understanding the major IVIg mechanisms has allowed for rational development of IVIg mimetics and alternatives for several IVIg-treatable diseases.
Collapse
|
15
|
Sharma D, Tsibizova VI. Current perspective and scope of fetal therapy: part 2. J Matern Fetal Neonatal Med 2020; 35:3812-3830. [PMID: 33135520 DOI: 10.1080/14767058.2020.1839881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fetal therapy has been defined as any therapeutic intervention either invasive or noninvasive for correcting or treating any fetal malformation or condition. Invasive fetal therapy have its own set of maternal and fetal complications and invasive approach is not feasible in many of fetal conditions that are candidate for fetal therapy. Many such fetal conditions have been treated successfully by medical or noninvasive management. In medical fetal therapy, mothers are treated with medications which are transferred to fetus through placenta and exert positive effect on the fetus, thus avoiding complications that are seen secondary to invasive fetal therapy. The fetal conditions that have been managed with medical therapy includes fetal and neonatal alloimmune thrombocytopenia, neural tube defect, congenital adrenal hyperplasia, perinatal infections, respiratory distress syndrome, inborn error of metabolism, and congenital cystic adenomatoid malformation. This review will cover the medical or noninvasive aspect of fetal therapy and will highlight the progress made in the management of these fetal conditions.
Collapse
Affiliation(s)
- Deepak Sharma
- Department of Neonatology, National Institute of Medical Science, Jaipur, India
| | - Valentina I Tsibizova
- Almazov National Medical Research Centre, Health Ministry of Russian Federation, Saint Petersburg, Russia
| |
Collapse
|
16
|
Gillespie ER, Ruitenberg MJ. Neuroinflammation after SCI: Current Insights and Therapeutic Potential of Intravenous Immunoglobulin. J Neurotrauma 2020; 39:320-332. [PMID: 32689880 DOI: 10.1089/neu.2019.6952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic spinal cord injury (SCI) elicits a complex cascade of cellular and molecular inflammatory events. Although certain aspects of the inflammatory response are essential to wound healing and repair, post-SCI inflammation is, on balance, thought to be detrimental to recovery by causing "bystander damage" and the spread of pathology into spared but vulnerable regions of the spinal cord. Much of the research to date has therefore focused on understanding the inflammatory drivers of secondary tissue loss after SCI, to define therapeutic targets and positively modulate this response. Numerous experimental studies have demonstrated that modulation of the inflammatory response to SCI can indeed lead to significant neuroprotection and improved recovery. However, it is now also recognized that broadscale immunosuppression is not necessarily beneficial and may even carry the risk of contributing to the development of serious adverse events. Immune modulation rather than suppression is therefore now considered a more promising approach to target harmful post-traumatic inflammation following a major neurotraumatic event such as SCI. One promising immunomodulatory agent is intravenous immunoglobulin (IVIG), a plasma product that contains mostly immunoglobulin G (IgG) from thousands of healthy donors. IVIG is currently already widely used to treat a range of autoimmune diseases, but recent studies have found that it also holds great promise for treating acute neurological conditions, including SCI. This review provides an overview of the inflammatory response to SCI, immunomodulatory approaches that are currently in clinical trials, proposed mechanisms of action for IVIG therapy, and the putative relevance of these in the context of neurotraumatic events.
Collapse
Affiliation(s)
- Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Trauma, Critical Care, and Recovery, Brisbane Diamantina Health Partners, Brisbane, Australia
| |
Collapse
|
17
|
Cellular immune dysregulation in the pathogenesis of immune thrombocytopenia. Blood Coagul Fibrinolysis 2020; 31:113-120. [PMID: 31977328 DOI: 10.1097/mbc.0000000000000891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
: Immune thrombocytopenia (ITP) is an acquired autoimmune hemorrhagic disease characterized by immune-mediated increased platelet destruction and decreased platelet production, resulting from immune intolerance to autoantigen. The pathogenesis of ITP remains unclear, although dysfunction of T and B lymphocytes has been shown to be involved in the pathogenesis of ITP. More recently, it is found that dendritic cells, natural killer, and myeloid-derived suppressor cells also play an important role in ITP. Elucidating its pathogenesis is expected to provide novel channels for the targeted therapy of ITP. This article will review the role of different immune cells in ITP.
Collapse
|
18
|
Lewis BJ, Branch DR. Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Fc Receptor-Targeting Biologics. Pharmacology 2020; 105:618-629. [DOI: 10.1159/000508239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation, swelling, and pain in the joints and involves systemic complications. Mouse models of RA have been extensively used to model the pathogenesis of RA and to develop effective therapies. Although many components of the immune system have been studied in these models, the role of crystallizable fragment (Fc) gamma receptors (FcγRs) in RA has been sorely neglected. The aim of this review was to introduce the different mouse models of RA and to describe the different drug development strategies that have been tested in these models to target FcγR function, with the focus being on drugs that have been made from the Fc of immunoglobulin G (IgG). <b><i>Summary:</i></b> Evidence suggests that FcγRs play a major role in immune complex-induced inflammation in autoimmune diseases, such as RA. However, there is limited knowledge on the importance of FcγRs in the human disease even though there has been extensive work in mouse models of RA. Numerous mouse models of RA are available, with each model depicting certain aspects of the disease. Induced models of RA have nonspecific immune activation with cartilage-directed autoimmunity, whereas spontaneous models of RA develop without immunization, which results in a more chronic form of arthritis. These models have been used to test FcγR-targeting monoclonal antibodies, intravenous immunoglobulin (IVIg), subcutaneously administered IVIg, and recombinant Fcs for their ability to interact with and modify FcγR function. Recombinant Fcs avidly bind FcγRs and exhibit enhanced therapeutic efficacy in mouse models of RA. <b><i>Key Message:</i></b> The therapeutic utility of targeting FcγRs with recombinant Fcs is great and should be explored in human clinical trials for autoimmune diseases, such as RA.
Collapse
|
19
|
Asare Y, Koehncke J, Selle J, Simsekyilmaz S, Jankowski J, Shagdarsuren G, Gessner JE, Bernhagen J, Shagdarsuren E. Differential Role for Activating FcγRIII in Neointima Formation After Arterial Injury and Diet-Induced Chronic Atherosclerosis in Apolipoprotein E-Deficient Mice. Front Physiol 2020; 11:673. [PMID: 32625118 PMCID: PMC7313534 DOI: 10.3389/fphys.2020.00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Atherogenesis and arterial remodeling following mechanical injury are driven by inflammation and mononuclear cell infiltration. The binding of immune complexes (ICs) to immunoglobulin (Ig)-Fc gamma receptors (FcγRs) on most innate and adaptive immune cells induces a variety of inflammatory responses that promote atherogenesis. Here, we studied the role of FcγRIII in neointima formation after arterial injury in atherosclerosis-prone mice and compared the outcome and mechanism to that of FcγRIII in diet-induced “chronic” atherosclerosis. FcγrIII–/–/Apoe–/– and control Apoe–/– mice were subjected to wire-induced endothelial denudation of the carotid artery while on high-fat diet (HFD). FcγrIII deficiency mitigated neointimal plaque formation and lesional macrophage accumulation, and enhanced neointimal vascular smooth muscle cell (VSMC) numbers. This went along with a reduced expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1/CCL2), and vascular cell adhesion molecule-1 (VCAM-1) in the neointimal lesions. Interestingly, in a chronic model of diet-induced atherosclerosis, we unraveled a dichotomic role of FcγRIII in an early versus advanced stage of the disease. While FcγrIII deficiency conferred atheroprotection in the early stage, it promoted atherosclerosis in advanced stages. To this end, FcγrIII deficiency attenuated pro-inflammatory responses in early atherosclerosis but promoted these events in advanced stages. Analysis of the mechanism(s) underlying the athero-promoting effect of FcγrIII deficiency in late-stage atherosclerosis revealed increased serum levels of anti-oxidized-LDL immunoglobulins IgG2c and IgG2b. This was paralleled by enhanced lesional accumulation of IgGs without affecting levels of complement-activated products C5a or C5ar1, FcγRII, and FcγRIV. Moreover, FcγrIII-deficient macrophages expressed more FcγrII, Tnf-α, and Il-1β mRNA when exposed to IgG1 or oxLDL-IgG1 ICs in vitro, and peripheral CD4+ and CD8+ T-cell levels were altered. Collectively, our data suggest that deficiency of activating FcγRIII limits neointima formation after arterial injury in atherosclerosis-prone mice as well as early stage chronic atherosclerosis, but augments late-stage atherosclerosis suggesting a dual role of FcγRIII in atherogenic inflammation.
Collapse
Affiliation(s)
- Yaw Asare
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Janine Koehncke
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Jaco Selle
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany.,Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Sakine Simsekyilmaz
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany.,Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Gansuvd Shagdarsuren
- Department of Nephrology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Johannes E Gessner
- Molecular Immunology Research Unit, Clinical Department of Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| | - Erdenechimeg Shagdarsuren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany.,Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
20
|
Das M, Karnam A, Stephen-Victor E, Gilardin L, Bhatt B, Kumar Sharma V, Rambabu N, Patil V, Lecerf M, Käsermann F, Bruneval P, Narayanaswamy Balaji K, Benveniste O, Kaveri SV, Bayry J. Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy. Cell Death Dis 2020; 11:50. [PMID: 31974400 PMCID: PMC6978335 DOI: 10.1038/s41419-020-2249-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Autophagy plays an important role in the regulation of autoimmune and autoinflammatory responses of the immune cells. Defective autophagy process is associated with various autoimmune and inflammatory diseases. Moreover, in many of these diseases, the therapeutic use of normal immunoglobulin G or intravenous immunoglobulin (IVIG), a pooled normal IgG preparation, is well documented. Therefore, we explored if IVIG immunotherapy exerts therapeutic benefits via induction of autophagy in the immune cells. Here we show that IVIG induces autophagy in peripheral blood mononuclear cells (PBMCs). Further dissection of this process revealed that IVIG-induced autophagy is restricted to inflammatory cells like monocytes, dendritic cells, and M1 macrophages but not in cells associated with Th2 immune response like M2 macrophages. IVIG induces autophagy by activating AMP-dependent protein kinase, beclin-1, class III phosphoinositide 3-kinase and p38 mitogen-activated protein kinase and by inhibiting mammalian target of rapamycin. Mechanistically, IVIG-induced autophagy is F(ab')2-dependent but sialylation independent, and requires endocytosis of IgG by innate cells. Inhibition of autophagy compromised the ability of IVIG to suppress the inflammatory cytokines in innate immune cells. Moreover, IVIG therapy in inflammatory myopathies such as dermatomyositis, antisynthetase syndrome and immune-mediated necrotizing myopathy induced autophagy in PBMCs and reduced inflammatory cytokines in the circulation, thus validating the translational importance of these results. Our data provide insight on how circulating normal immunoglobulins maintain immune homeostasis and explain in part the mechanism by which IVIG therapy benefits patients with autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Laurent Gilardin
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France.,Département de Médecine Interne et Immunologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Varun Kumar Sharma
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Naresh Rambabu
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Veerupaxagouda Patil
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Maxime Lecerf
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, 3014, Bern, Switzerland
| | - Patrick Bruneval
- Service d'anatomie pathologique, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | | | - Olivier Benveniste
- Département de Médecine Interne et Immunologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,Institut National de la Santé et de la Recherche Médicale Unité 974, Sorbonne Université, 75013, Paris, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
| |
Collapse
|
21
|
Wabnitz H, Khan R, Lazarus AH. The use of IVIg in fetal and neonatal alloimmune thrombocytopenia- Principles and mechanisms. Transfus Apher Sci 2019; 59:102710. [PMID: 31926738 DOI: 10.1016/j.transci.2019.102710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a rare neonatal disorder that is caused by alloimmunization against platelet antigens during pregnancy. Although rare, affecting only 1 in 1000 live births, it can cause intracranial hemorrhage and other bleeding complications that can lead to miscarriage, stillbirth and life-long neurological complications. One of the gold-standard therapies for at risk pregnancies is the administration of IVIg. Although IVIg has been used in a variety of different disorders for over 40 years, its exact mechanism of action is still unknown. In FNAIT, the majority of its therapeutic effect is thought the be mediated through the neonatal Fc receptor, however other mechanisms cannot be excluded. Due to safety, supply and other concerns that are associated with IVIg use, alternative therapies that could replace IVIg are additionally being investigated. This includes the possibility of a prophylaxis regimen for FNAIT, similarly to what has been successfully used in hemolytic disease of the fetus and newborn for over 50 years.
Collapse
Affiliation(s)
- Hanna Wabnitz
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada; Keenan Research Centre, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Toronto Platelet Immunobiology Group (TPIG), Toronto, ON, M5B 1T8, Canada
| | - Ramsha Khan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada; Keenan Research Centre, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Toronto Platelet Immunobiology Group (TPIG), Toronto, ON, M5B 1T8, Canada; Canadian Blood Services, Centre for Innovation, Ottawa, ON, K1G 4J5, Canada
| | - Alan H Lazarus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada; Keenan Research Centre, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Toronto Platelet Immunobiology Group (TPIG), Toronto, ON, M5B 1T8, Canada; Canadian Blood Services, Centre for Innovation, Ottawa, ON, K1G 4J5, Canada; Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
22
|
Lewis BJB, Ville J, Blacquiere M, Cen S, Spirig R, Zuercher AW, Käsermann F, Branch DR. Using the K/BxN mouse model of endogenous, chronic, rheumatoid arthritis for the evaluation of potential immunoglobulin-based therapeutic agents, including IVIg and Fc-μTP-L309C, a recombinant IgG1 Fc hexamer. BMC Immunol 2019; 20:44. [PMID: 31801459 PMCID: PMC6894239 DOI: 10.1186/s12865-019-0328-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/21/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND High-dose intravenous immunoglobulin (IVIg), and more recently, subcutaneously-delivered Ig (SCIg), are used to treat a variety of autoimmune diseases; however, there are challenges associated with product production, availability, access and efficacy. These challenges have provided incentives to develop a human recombinant Fc as a more potent alternative to IVIg and SCIg for the treatment of autoimmune diseases. Recently, a recombinant human IgG1 Fc hexamer (Fc-μTP-L309C) was shown to be more efficacious than IVIg in a variety of autoimmune mouse models. We have now examined its efficacy compared to IVIg and SCIg in the K/BxN mouse model of endogenous, chronic rheumatoid arthritis (RA). RESULT Using the serum-transfer K/BxN model and the endogenous autoimmune model, amelioration of the arthritis was achieved. Effective treatment required high and frequent doses of IVIg, SCIg and Fc-μTP-L309C. However, Fc-μTP-L309C was efficacious at 10-fold lower doses that IVIg/SCIg. Also, arthritis could be prevented when Fc-μTP-L309C was given prior to onset of the arthritis in both the endogenous model and in the serum transfer model. CONCLUSIONS Our results show that Fc-μTP-L309C is a powerful treatment for the prevention and amelioration of severe, chronic arthritis in a true autoimmune mouse model of RA. Thus, the K/BxN endogenous arthritis model should be useful for testing potential therapeutics for RA. Our findings provide rationale for further examination of the treatment efficacy of immunoglobulin-based therapeutics in rheumatoid arthritis.
Collapse
Affiliation(s)
- Bonnie J B Lewis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 67 College St., Toronto, Ontario, M5G 2M1, Canada.,Centre for Innovation, Canadian Blood Services, 67 College St., Toronto, Ontario, M5G 2M1, Canada
| | - Jade Ville
- Centre for Innovation, Canadian Blood Services, 67 College St., Toronto, Ontario, M5G 2M1, Canada.,School for Biology-Biochemistry-Biotechnology, Catholic University of Lyon, 10 place des Archives, 69288, Lyon Cedex 02, France
| | - Megan Blacquiere
- Centre for Innovation, Canadian Blood Services, 67 College St., Toronto, Ontario, M5G 2M1, Canada
| | - Selena Cen
- Centre for Innovation, Canadian Blood Services, 67 College St., Toronto, Ontario, M5G 2M1, Canada
| | - Rolf Spirig
- CSL Behring, Research, CSL Biologics Research Center, Wankdorfstrasse 10, 3010, Bern, Switzerland
| | - Adrian W Zuercher
- CSL Behring, Research, CSL Biologics Research Center, Wankdorfstrasse 10, 3010, Bern, Switzerland
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, Wankdorfstrasse 10, 3010, Bern, Switzerland
| | - Donald R Branch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 67 College St., Toronto, Ontario, M5G 2M1, Canada. .,Centre for Innovation, Canadian Blood Services, 67 College St., Toronto, Ontario, M5G 2M1, Canada. .,Department of Medicine, University of Toronto, 67 College St., Toronto, Ontario, M5G 2M1, Canada.
| |
Collapse
|
23
|
Hori A, Fujimura T, Murakami M, Park J, Kawamoto S. Intravenous immunoglobulin (IVIg) acts directly on conventional T cells to suppress T cell receptor signaling. Biochem Biophys Res Commun 2019; 522:792-798. [PMID: 31787231 DOI: 10.1016/j.bbrc.2019.11.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Intravenous immunoglobulin (IVIg) therapy is widely used to treat autoimmune and infectious disorders. Despite the clinical efficacy of IVIg therapy, its precise immunosuppressive mechanisms remain unclear. Here, we provide evidence that IVIg acts directly on T cells to suppress their activation upon T cell receptor (TCR) ligation. IVIg suppressed the proliferation of murine splenocytes upon stimulation with anti-CD3 antibody and T cell-tropic mitogens. These immunosuppressive effects of IVIg were still intact against purified T cells, and the depletion of naturally-occurring regulatory T cells (nTreg) had no effect on T cell regulatory activity. Instead, we found that IVIg negatively regulated TCR signaling; IVIg co-stimulation impaired IκB degradation, nuclear translocation of the nuclear factor of activated T cells (NFAT), and the activation of mitogen-activated protein kinase (MAPK, Erk1/2). These results suggest an additional new immunosuppressive role of IVIg, which acts directly on conventional T cells to suppress the TCR signaling pathway.
Collapse
Affiliation(s)
- Ayane Hori
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan; Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Fujimura
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan; Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Mai Murakami
- Faculty of Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Jungyeon Park
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Seiji Kawamoto
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan; Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
24
|
Xu J, Yu S, Wang X, Qian Y, Wu W, Zhang S, Zheng B, Wei G, Gao S, Cao Z, Fu W, Xiao Z, Lu W. High Affinity of Chlorin e6 to Immunoglobulin G for Intraoperative Fluorescence Image-Guided Cancer Photodynamic and Checkpoint Blockade Therapy. ACS NANO 2019; 13:10242-10260. [PMID: 31397999 DOI: 10.1021/acsnano.9b03466] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cancer photodynamic therapy (PDT) represents an attractive local treatment in combination with immunotherapy. Successful cancer PDT relies on image guidance to ensure the treatment accuracy. However, existing nanotechnology for co-delivery of photosensitizers and image contrast agents slows the clearance of PDT agents from the body and causes a disparity between the release profiles of the imaging and PDT agents. We have found that the photosensitizer Chlorin e6 (Ce6) is inherently bound to immunoglobulin G (IgG) in a nanomolarity range of affinity. Ce6 and IgG self-assemble to form the nanocomplexes termed Chloringlobulin (Chlorin e6 + immunoglobulin G). Chloringlobulin enhances the Ce6 concentration in the tumor without changing its elimination half-life in blood. Utilizing the immune checkpoint inhibitor antiprogrammed death ligand 1 (PD-L1) (αPD-L1) to prepare αPD-L1 Chloringlobulin, we have demonstrated a combination of Ce6-based red-light fluorescence image-guided surgery, stereotactic PDT, and PD-L1 blockade therapy of mice bearing orthotopic glioma. In mice bearing an orthotopic colon cancer model, we have prepared another Chloringlobulin that allows intraoperative fluorescence image-guided PDT in combination with PD-L1 and cytotoxic T lymphocyte antigen 4 (CTLA-4) dual checkpoint blockade therapy. The Chloringlobulin technology shows great potential for clinical translation of combinatorial intraoperative fluorescence image-guided PDT and checkpoint blockade therapy.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Sheng Yu
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Xiaodong Wang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy , The University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Yuyi Qian
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Weishu Wu
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Sihang Zhang
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Binbin Zheng
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Guoguang Wei
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Shuai Gao
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Zhonglian Cao
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Wei Fu
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, & Clinical and Fundamental Research Center, Institute of Molecular Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Wei Lu
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| |
Collapse
|
25
|
Witkowski M, Witkowska M, Robak T. Autoimmune thrombocytopenia: Current treatment options in adults with a focus on novel drugs. Eur J Haematol 2019; 103:531-541. [DOI: 10.1111/ejh.13319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Affiliation(s)
| | - Magdalena Witkowska
- Copernicus Memorial Hospital Lodz Poland
- Department of Experimental Hematology Medical University of Lodz Lodz Poland
| | - Tadeusz Robak
- Copernicus Memorial Hospital Lodz Poland
- Department of Hematology Medical University of Lodz Lodz Poland
| |
Collapse
|
26
|
Xu P, Jiang Y, Zuo H, Liu X, Xia T, Zhou R, Chen B, Ouyang J. Vincristine-loaded platelets coated with anti-CD41 mAbs: a new macrophage targeting proposal for the treatment of immune thrombocytopenia. Biomater Sci 2019; 7:4568-4577. [PMID: 31414106 DOI: 10.1039/c9bm01026b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder in which platelet-reactive autoantibodies accelerate the destruction of platelets. Macrophages play an important role in ITP through Fc receptor (FcR)-mediated antigen presenting and platelet clearance. In this study, a novel drug delivery system of vincristine-loaded platelets coated with anti-CD41 mAbs (CD41-VCR-PLT, CD41-VLP) was successfully established. The therapeutic effects and safety of CD41-VLP in vitro and in vivo were evaluated, and the possible mechanism was also explored. The results showed that PLT-CD41 could load VCR with high drug loading (DL) and encapsulation efficiency (EE), which were up to 41.16 ± 1.92% and 60.73 ± 2.79%, respectively, where platelets had no obvious morphological or functional changes. CD41-VLP could facilitate vincristine accumulation in macrophages, where the intracellular VCR concentration was 30.72 ± 3.11% at 72 h, which was significantly increased compared with the other groups (P < 0.01), thus inhibiting macrophage cell viability and inducing apoptosis. The cell viability inhibition rate and total apoptosis rate were 73.06 ± 5.26% and 69.70 ± 4.26%, respectively, both much higher than those of the other groups (P < 0.05). In the ITP mouse model, CD41-VLP increased the platelet count in peripheral blood, which was 720 ± 197.98 × 109 L-1, and significantly improved the platelet count compared with that in the VCR group (P < 0.05); moreover, it reduced the systemic toxicity and peripheral neurotoxicity of vincristine. The possible mechanism was that CD41-VLP could precisely target M1 macrophages in spleen and liver tissues through FcγR, thus reducing the platelet destruction caused by M1 macrophages. Therefore, CD41-VLP provides a new targeted therapy for ITP treatment.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
| | - Ying Jiang
- Department of Emergency, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Huaqin Zuo
- Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
| | - Xu Liu
- Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
| | - Tian Xia
- Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
| | - Rongfu Zhou
- Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
| | - Bing Chen
- Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
| | - Jian Ouyang
- Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
| |
Collapse
|
27
|
Amber KT, Maglie R, Solimani F, Eming R, Hertl M. Targeted Therapies for Autoimmune Bullous Diseases: Current Status. Drugs 2019; 78:1527-1548. [PMID: 30238396 DOI: 10.1007/s40265-018-0976-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autoimmune bullous skin disorders are rare but meaningful chronic inflammatory diseases, many of which had a poor or devastating prognosis prior to the advent of immunosuppressive drugs such as systemic corticosteroids, which down-regulate the immune pathogenesis in these disorders. Glucocorticoids and adjuvant immunosuppressive drugs have been of major benefit for the fast control of most of these disorders, but their long-term use is limited by major side effects such as blood cytopenia, osteoporosis, diabetes mellitus, hypertension, and gastrointestinal ulcers. In recent years, major efforts were made to identify key elements in the pathogenesis of autoimmune bullous disorders, leading to the identification of their autoantigens, which are mainly located in desmosomes (pemphigus) and the basement membrane zone (pemphigoids). In the majority of cases, immunoglobulin G, and to a lesser extent, immunoglobulin A autoantibodies directed against distinct cutaneous adhesion molecules are directly responsible for the loss of cell-cell and cell-basement membrane adhesion, which is clinically related to the formation of blisters and/or erosions of the skin and mucous membranes. We describe and discuss novel therapeutic strategies that directly interfere with the production and regulation of pathogenic autoantibodies (rituximab), their catabolism (intravenous immunoglobulins), and their presence in the circulation and extravascular tissues such as the skin (immunoadsorption), leading to a significant amelioration of disease. Moreover, we show that these novel therapies have pleiotropic effects on various proinflammatory cells and cytokines. Recent studies in bullous pemphigoid suggest that targeting of immunoglobulin E autoantibodies (omalizumab) may be also beneficial. In summary, the introduction of targeted therapies in pemphigus and pemphigoid holds major promise because of the high efficacy and fewer side effects compared with conventional global immunosuppressive therapy.
Collapse
Affiliation(s)
- Kyle T Amber
- Department of Dermatology, University of Illinois at Chicago, 808 Wood St. Room 377, Chicago, IL, 60612, USA.
| | - Roberto Maglie
- Department of Dermatology, Philipps University, Baldingerstr., 35043, Marburg, Germany.,Department of Surgery and Translational Medicine, Section of Dermatology, University of Florence, Florence, Italy
| | - Farzan Solimani
- Department of Dermatology, Philipps University, Baldingerstr., 35043, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology, Philipps University, Baldingerstr., 35043, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology, Philipps University, Baldingerstr., 35043, Marburg, Germany.
| |
Collapse
|
28
|
Lewis BJB, Leontyev D, Neschadim A, Blacquiere M, Branch DR. GM-CSF and IL-4 are not involved in IVIG-mediated amelioration of ITP in mice: a role for IL-11 cannot be ruled out. Clin Exp Immunol 2019; 193:293-301. [PMID: 29704458 DOI: 10.1111/cei.13144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
Previously, we have reported that interleukin (IL)-4, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-11, but not IL-33, are up-regulated in two strains of mice with immune thrombocytopenia (ITP) that are responsive to intravenous immunoglobulin (IVIg) treatment. Previously, IL-4 was ruled out in the mechanism of IVIg; however, other publications have suggested this cytokine as a major player in the mechanism of IVIg action. Thus, we sought to further investigate a role for IL-4 and, in addition, GM-CSF and IL-11 in the mechanism of action of IVIg using a murine model of ITP. A passive platelet antibody model was used to generate ITP in IL-4 receptor knock-out (IL-4R-/- ), IL-11 receptor knock-out (IL-11Rα-/- ) and GM-CSF knock-out (Csf2-/- ) mice. We also used a neutralizing antibody to IL-11 and recombinant human IL-11 (rhIL-11) in addition to depleting basophils in vivo to study the effect of IVIg to ameliorate ITP. Our results showed that basophils, IL-4 and GM-CSF were unimportant in both ITP induction and its amelioration by IVIg. The role of IL-11 in these processes was less clear. Even though IL-11Rα-/- mice with ITP responded to IVIg similarly to wild-type (WT) mice, treatment of ITP WT mice with rhIL-11 instead of IVIg showed an increase in platelet numbers and WT mice administered anti-IL-11 showed a significant reduction in the ability of IVIg to ameliorate the ITP. Our findings indicate that neither IL-4, basophils or GM-CSF have roles in IVIg amelioration of ITP; however, a role for IL-11 requires further study.
Collapse
Affiliation(s)
- B J B Lewis
- Department of Laboratory Medicine and Pathobiology, University of Toronto.,Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - D Leontyev
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - A Neschadim
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - M Blacquiere
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - D R Branch
- Department of Laboratory Medicine and Pathobiology, University of Toronto.,Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Karta MR, Cavagnero K, Miller M, Badrani J, Naji L, Doherty TA, Broide DH. Platelets attach to lung type 2 innate lymphoid cells (ILC2s) expressing P-selectin glycoprotein ligand 1 and influence ILC2 function. J Allergy Clin Immunol 2019; 144:1112-1115.e8. [PMID: 31201889 DOI: 10.1016/j.jaci.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Maya R Karta
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Kellen Cavagnero
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Jana Badrani
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Luay Naji
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Taylor A Doherty
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - David H Broide
- Department of Medicine, University of California San Diego, La Jolla, Calif.
| |
Collapse
|
30
|
Kozicky LK, Menzies SC, Hotte N, Madsen KL, Sly LM. Intravenous immunoglobulin (IVIg) or IVIg-treated macrophages reduce DSS-induced colitis by inducing macrophage IL-10 production. Eur J Immunol 2019; 49:1251-1268. [PMID: 31054259 DOI: 10.1002/eji.201848014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/24/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Abstract
Intravenous immunoglobulin (IVIg) is used to treat immune-mediated diseases but its mechanism of action is poorly understood. We have reported that co-treatment with IVIg and lipopolysaccharide activates macrophages to produce large amounts of anti-inflammatory IL-10 in vitro. Thus, we asked whether IVIg-treated macrophages or IVIg could reduce intestinal inflammation in mice during dextran sulfate sodium (DSS)-induced colitis by inducing macrophage IL-10 production in vivo. Adoptive transfer of IVIg-treated macrophages reduces intestinal inflammation in mice and collagen accumulation post-DSS. IVIg treatment also reduces DSS-induced intestinal inflammation and its activity is dependent on the Fc portion of the antibody. Ex vivo, IVIg induces IL-10 production and reduces IL-12/23p40 and IL-1β production in colon explant cultures. Co-staining tissues for mRNA, we demonstrate that macrophages are the source of IL-10 in IVIg-treated mice; and using IL-10-GFP reporter mice, we demonstrate that IVIg induces IL-10 production by intestinal macrophages. Finally, IVIg-mediated protection is lost in mice deficient in macrophage IL-10 production (LysMcre+/- IL-10fl/fl mice). Together, our data demonstrate a novel, in vivo mechanism of action for IVIg. IVIg-treated macrophages or IVIg could be used to treat people with intestinal inflammation and may be particularly useful for people with inflammatory bowel disease, who are refractory to therapy.
Collapse
Affiliation(s)
- Lisa K Kozicky
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Susan C Menzies
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi Hotte
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L Madsen
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | - Laura M Sly
- Department of Pediatrics, Division of Gastroenterology, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Ben Mkaddem S, Benhamou M, Monteiro RC. Understanding Fc Receptor Involvement in Inflammatory Diseases: From Mechanisms to New Therapeutic Tools. Front Immunol 2019; 10:811. [PMID: 31057544 PMCID: PMC6481281 DOI: 10.3389/fimmu.2019.00811] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Fc receptors (FcRs) belong to the ITAM-associated receptor family. FcRs control the humoral and innate immunity which are essential for appropriate responses to infections and prevention of chronic inflammation or auto-immune diseases. Following their crosslinking by immune complexes, FcRs play various roles such as modulation of the immune response by released cytokines or of phagocytosis. Here, we review FcR involvement in pathologies leading notably to altered intracellular signaling with functionally relevant consequences to the host, and targeting of Fc receptors as therapeutic approaches. Special emphasis will be given to some FcRs, such as the FcαRI, the FcγRIIA and the FcγRIIIA, which behave like the ancient god Janus depending on the ITAM motif to inhibit or activate immune responses depending on their targeting by monomeric/dimeric immunoglobulins or by immune complexes. This ITAM duality has been recently defined as inhibitory or activating ITAM (ITAMi or ITAMa) which are controlled by Src family kinases. Involvement of various ITAM-bearing FcRs observed during infectious or autoimmune diseases is associated with allelic variants, changes in ligand binding ability responsible for host defense perturbation. During auto-immune diseases such as rheumatoid arthritis, lupus or immune thrombocytopenia, the autoantibodies and immune complexes lead to inflammation through FcR aggregation. We will discuss the role of FcRs in autoimmune diseases, and focus on novel approaches to target FcRs for resolution of antibody-mediated autoimmunity. We will finally also discuss the down-regulation of FcR functionality as a therapeutic approach for autoimmune diseases.
Collapse
Affiliation(s)
- Sanae Ben Mkaddem
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.,CNRS ERL8252, Paris, France.,Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, Paris, France.,Inflamex Laboratory of Excellence, Paris, France
| | - Marc Benhamou
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.,CNRS ERL8252, Paris, France.,Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, Paris, France.,Inflamex Laboratory of Excellence, Paris, France
| | - Renato C Monteiro
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.,CNRS ERL8252, Paris, France.,Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, Paris, France.,Inflamex Laboratory of Excellence, Paris, France.,Service d'Immunologie, DHU Fire, Hôpital Bichat-Claude Bernard, Assistance Publique de Paris, Paris, France
| |
Collapse
|
32
|
Kim CH, Choi YS, Moon JY, Kim DY, Lee SY, Lee HJ, Yun HJ, Kim S, Jo DY, Song IC. Methylprednisolone versus intravenous immune globulin as an initial therapy in adult primary immune thrombocytopenia. Korean J Intern Med 2019; 34:383-389. [PMID: 29172399 PMCID: PMC6406098 DOI: 10.3904/kjim.2015.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/10/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND/AIMS Few studies have addressed whether there are differences in clinical efficacy between intravenous methylprednisolone (methyl-Pd) and intravenous immunoglobulin (IVIg) use. METHODS We retrospectively compared platelet responses and toxicities associated with these two treatments in adult patients with immune thrombocytopenia. Patients received intravenous methyl-Pd therapy followed by oral prednisolone (Pd) from 1993 to 2002 and IVIg together with oral Pd from 2003 to 2008. RESULTS Early response and maintenance of the response were assessed at 7 days and 6 months after treatment, respectively. Of the 87 patients enrolled, 77 (88.5%) were eligible for analysis. Early responses occurred in 30 of 39 patients (76.9%) receiving methyl-Pd versus 33 of 38 patients (86.6%) receiving IVIg (p = 0.187). The response was maintained in 28 patients (71.8%) in the methyl-Pd arm and in 23 patients (60.5%) in the IVIg arm (p = 0.187). The time to a complete response in the IVIg arm (6 days; range, 1 to 35) was shorter than that in the methyl-Pd arm (13.5 days; range, 2 to 29) (p = 0.002). Side effects were mild and tolerable in both arms. Five years after initiating treatment, 7 of 18 patients (38.9%) and five of 14 patients (35.7%) were still maintaining a response in the methyl-Pd and IVIg arms, respectively. CONCLUSION These results indicate that neither the early response rate nor the long-term outcome differed between the methyl-Pd and IVIg treatments. However, IVIg induced a complete response more rapidly than did methyl-Pd.
Collapse
Affiliation(s)
- Chul Hee Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yoon Seok Choi
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ji Young Moon
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Duck Yong Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - So Yeon Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hwan Jung Yun
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Samyong Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Deog Yeon Jo
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ik Chan Song
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
- Correspondence to Ik Chan Song, M.D. Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University, 282 Munhwa-ro, Junggu, Daejeon 35015, Korea Tel: +82-42-280-8381 Fax: +82-42-257-5753 E-mail:
| |
Collapse
|
33
|
Zhang X, Owens J, Olsen HS, So E, Burch E, McCroskey MC, Li X, Weber GL, Bennett D, Rybin D, Zhou H, Hao H, Mérigeon EY, Block DS, LaRosa G, Strome SE. A recombinant human IgG1 Fc multimer designed to mimic the active fraction of IVIG in autoimmunity. JCI Insight 2019; 4:121905. [PMID: 30674715 DOI: 10.1172/jci.insight.121905] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/11/2018] [Indexed: 12/30/2022] Open
Abstract
The antiinflammatory effects of i.v. Ig (IVIG) in the treatment of autoimmune disease are due, in part, to the Fc fragments of Ig aggregates. In order to capitalize on the known antiinflammatory and tolerogenic properties of Ig Fc aggregates, we created a recombinant human IgG1 Fc multimer, GL-2045. In vitro, GL-2045 demonstrated high-avidity binding to Fc receptors, blocked the binding of circulating immune complexes from patients with rheumatoid arthritis to human Fcγ receptors (FcγRs), and inhibited antibody-mediated phagocytosis at log order-lower concentrations than IVIG. In vivo, administration of GL-2045 conferred partial protection against antibody-mediated platelet loss in a murine immune thrombocytopenic purpura (ITP) model. GL-2045 also suppressed disease activity in a therapeutic model of murine collagen-induced arthritis (CIA), which was associated with reduced circulating levels of IL-6. Furthermore, GL-2045 administration to nonhuman primates (NHPs) transiently increased systemic levels of the antiinflammatory cytokines IL-10 and IL-1RA, reduced the proinflammatory cytokine IL-8, and decreased surface expression of CD14 and HLA-DR on monocytes. These findings demonstrate the immunomodulatory properties of GL-2045 and suggest that it has potential as a treatment for autoimmune and inflammatory diseases, as a recombinant alternative to IVIG.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jane Owens
- Pfizer Inc., Cambridge, Massachusetts, USA
| | | | - Edward So
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Erin Burch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | - Hua Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haiping Hao
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - Scott E Strome
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol 2019; 29:491-498. [PMID: 28666326 DOI: 10.1093/intimm/dxx039] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is a pooled preparation of normal IgG obtained from several thousand healthy donors. It is widely used in the immunotherapy of a large number of autoimmune and inflammatory diseases. The mechanisms of action of IVIG are complex and, as discussed in this review, experimental and clinical data provide an indicator that the therapeutic benefit of IVIG therapy is due to several mutually non-exclusive mechanisms affecting soluble mediators as well as cellular components of the immune system. These mechanisms depend on Fc and/or F(ab')2 fragments. A better understanding of the effector functions of IVIG should help in identification of biomarkers of responses to IVIG in autoimmune patients.
Collapse
Affiliation(s)
- Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Department of Pediatric Rheumatology, National Referral Centre of Auto-inflammatory Diseases, CHU de Bicêtre, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
35
|
Brückner C, Lehmann C, Dudziak D, Nimmerjahn F. Sweet SIGNs: IgG glycosylation leads the way in IVIG-mediated resolution of inflammation. Int Immunol 2019; 29:499-509. [PMID: 29300958 DOI: 10.1093/intimm/dxx053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
A hallmark of many chronic inflammatory and autoimmune diseases is that there is an impaired resolution of inflammation and return to the steady state. The infusion of high doses of pooled serum IgG preparations from thousands of donors [intravenous immunoglobulin (IVIG) therapy] has been shown to induce resolution of inflammation in a variety of chronic inflammatory and autoimmune diseases, suggesting that IgG molecules can instruct the immune system to stop inflammatory processes and initiate the return to the steady state. The aim of this review is to discuss how insights into the mechanism of IVIG activity may help to understand the molecular and cellular pathways underlying resolution of inflammation. We will put a special emphasis on pathways dependent on the IgG FC domain and IgG sialylation, as several recent studies have provided new insights into how this glycosylation-dependent pathway modulates innate and adaptive immune responses through different sets of C-type or I-type lectins.
Collapse
Affiliation(s)
- Christin Brückner
- Chair of Genetics, Department of Biology, Friedrich Alexander University Erlangen Nürnberg (FAU), Germany
| | - Christian Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Germany.,Medical Immunology Campus Erlangen, Germany
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Friedrich Alexander University Erlangen Nürnberg (FAU), Germany.,Medical Immunology Campus Erlangen, Germany
| |
Collapse
|
36
|
Martínez T, Garcia-Robledo JE, Plata I, Urbano MA, Posso-Osorio I, Rios-Serna LJ, Barrera MC, Tobón GJ. Mechanisms of action and historical facts on the use of intravenous immunoglobulins in systemic lupus erythematosus. Autoimmun Rev 2019; 18:279-286. [PMID: 30639648 DOI: 10.1016/j.autrev.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/29/2022]
Abstract
The current existing therapies for severe cases of systemic lupus erythematosus (SLE) patients are still limited. Intravenous immunoglobulin (IVIGs), which are purified from the plasma of thousands of healthy human donors, have been profiled as efficacious and life-saving options for SLE patients refractory to conventional therapy. The specific mechanism of action by which IVIGs generate immunomodulation in SLE is not currently understood. In this manuscript, we reviewed some of the hypothesis that have been postulated to explain the IVIG effects, including those on T and B cell intracellular signalling and activation, as well as the interferon signalling pathways involved in the detection of nucleic acids and the defective removal of immune complexes and debris.
Collapse
Affiliation(s)
- Tatiana Martínez
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | | | - Ilich Plata
- Medical School, Universidad Icesi, Cali, Colombia
| | | | - Ivan Posso-Osorio
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - Lady J Rios-Serna
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - María Claudia Barrera
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - Gabriel J Tobón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia; Laboratory of immunology, Fundación Valle del Lili, Cali, Colombia.
| |
Collapse
|
37
|
|
38
|
Pandruvada SN, Ebersole JL, Huja SS. Inhibition of osteoclastogenesis by opsonized Porphyromonas gingivalis. FASEB Bioadv 2018; 1:213-226. [PMID: 31355360 PMCID: PMC6660169 DOI: 10.1096/fba.2018-00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A crucial step in the pathogenesis of periodontal disease (PD) is activation of osteoclasts (OC) by numerous virulence factors produced by Porphyromonas gingivalis (Pg). To understand pathogenesis of PD and the role of specific adaptive immune responses, effects of antibodies on Pg‐induced OC differentiation and function were investigated. Human peripheral blood‐derived monocytes were differentiated to OC in the presence or absence of: (a) Pg; (b) antibodies to Pg; and (c) antibody‐opsonized Pg. Findings suggest significant induction of osteoclastogenesis by Pg when compared to control cultures, whereas opsonization decreased osteoclastogenesis by 45%. Immune receptor gene expression profile in the presence of opsonized Pg showed marked upregulation of TLR1 (three‐fold) and TLR2 (twofold) along with FcγRIIB (two‐fold) and FcγRIII receptors (five‐fold), but not TLR4 and FcRγ receptors. Interestingly, blocking FcγRIIB, but not FcγRIII receptor, reversed the inhibitory effects of opsonized Pg suggesting a critical role played by FcγRIIB in osteoclastogenesis. Furthermore, opsonized Pg transformed OC precursors to a “macrophage phenotype” suggesting a bone protective role of the immune complexes in modulating osteoclastogenesis, probably by competing as an agonist for pattern recognition receptors, and inducing selective activation of FcγRs with simultaneous suppression of FcRγ which regulates bone resorptive process. Further defining effective antibody isotypes, avidity, and antigenic specificity could improve targets for eliciting protective immunity.
Collapse
Affiliation(s)
- Subramanya N Pandruvada
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Current address: College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Current address: School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Sarandeep S Huja
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Current address: College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
39
|
Muyayalo KP, Li ZH, Mor G, Liao AH. Modulatory effect of intravenous immunoglobulin on Th17/Treg cell balance in women with unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2018; 80:e13018. [PMID: 29984444 DOI: 10.1111/aji.13018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a growing problem worldwide. In a majority of cases, the cause remains unknown but there is increasing evidence that immunologic factors play an important role. Intravenous immunoglobulin (IVIg) therapy has been proposed to have immune modulatory effects and therefore been applicable for the treatment of patients with RSA. Although its efficacy is still controversial, several recent studies suggest that IVIg treatment may improve pregnancy outcomes. CD4+ T cells and their related cytokines play an important role in maternal-fetal immune regulation, and an imbalance of Th17/Treg cell ratio has been proposed as a cause for RSA. We review the scientific evidence supporting a modulatory effect of IVIg on Th17/Treg cell balance and discuss the potential mechanisms how IVIg might enhance Treg cells function. We propose that correction of Th17/Treg cell dysregulation could be one of the mechanisms that can explain the positive therapeutic effects of IVIg therapy. Consequently, selecting patients with abnormal Th17/Treg cell ratios could increase the success of IVIg therapy.
Collapse
Affiliation(s)
- Kahinho P Muyayalo
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Hui Li
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Reproductive Immunology Unit, Department of Obstetrics Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, Connecticut
| | - Ai-Hua Liao
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Swinkels M, Rijkers M, Voorberg J, Vidarsson G, Leebeek FWG, Jansen AJG. Emerging Concepts in Immune Thrombocytopenia. Front Immunol 2018; 9:880. [PMID: 29760702 PMCID: PMC5937051 DOI: 10.3389/fimmu.2018.00880] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/09/2018] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease defined by low platelet counts which presents with an increased bleeding risk. Several genetic risk factors (e.g., polymorphisms in immunity-related genes) predispose to ITP. Autoantibodies and cytotoxic CD8+ T cells (Tc) mediate the anti-platelet response leading to thrombocytopenia. Both effector arms enhance platelet clearance through phagocytosis by splenic macrophages or dendritic cells and by induction of apoptosis. Meanwhile, platelet production is inhibited by CD8+ Tc targeting megakaryocytes in the bone marrow. CD4+ T helper cells are important for B cell differentiation into autoantibody secreting plasma cells. Regulatory Tc are essential to secure immune tolerance, and reduced levels have been implicated in the development of ITP. Both Fcγ-receptor-dependent and -independent pathways are involved in the etiology of ITP. In this review, we present a simplified model for the pathogenesis of ITP, in which exposure of platelet surface antigens and a loss of tolerance are required for development of chronic anti-platelet responses. We also suggest that infections may comprise an important trigger for the development of auto-immunity against platelets in ITP. Post-translational modification of autoantigens has been firmly implicated in the development of autoimmune disorders like rheumatoid arthritis and type 1 diabetes. Based on these findings, we propose that post-translational modifications of platelet antigens may also contribute to the pathogenesis of ITP.
Collapse
Affiliation(s)
- Maurice Swinkels
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Maaike Rijkers
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - A J Gerard Jansen
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands.,Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
41
|
Han AR, Lee SK. Immune modulation of i.v. immunoglobulin in women with reproductive failure. Reprod Med Biol 2018; 17:115-124. [PMID: 29692668 PMCID: PMC5902469 DOI: 10.1002/rmb2.12078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022] Open
Abstract
Background The mechanism of maternal immune tolerance of the semi‐allogenic fetus has been explored extensively. The immune reaction to defend from invasion by pathogenic microorganisms should be maintained during pregnancy. An imbalance between the immune tolerance to the fetus and immune activation to the pathogenic organisms is associated with poor pregnancy outcomes. This emphasizes that the immune mechanism of successful reproduction is not just immune suppression, but adequate immune modulation. Methods In this review, the action of i.v. immunoglobulin G (IVIg) on the immune system and its efficacy in reproductive failure (RF) was summarized. Also suggested is the indication of IVIg therapy for women with RF. Main findings (Results) Based on the mechanism of the immune regulation of IVIg and following confirmation of the immune modulation effects of it in various aberrant immune parameters in patients with RF, it is obvious that IVIg is effective in recurrent pregnancy losses and repeated implantation failures with immunologic disturbances. Conclusion The authors recommend IVIg therapy in patients with RF with aberrant cellular immunologic parameters, including a high natural killer cell proportion and its cytotoxicity or elevated T helper 1 to T helper 2 ratio, based on each clinic's cut‐off values. Further clinical studies about the safety of IVIg in the fetus and its efficacy in other immunologic abnormalities of RF are needed.
Collapse
Affiliation(s)
- Ae R Han
- Department of Obstetrics and Gynecology Gangseo Mizmedi Hospital Seoul South Korea.,Department of Obstetrics and Gynecology Eulji University College of Medicine Daejeon South Korea
| | - Sung K Lee
- Department of Obstetrics and Gynecology Konyang University College of Medicine Daejeon South Korea
| |
Collapse
|
42
|
Villarreal ED, Hewgley WP, Lang WH, Morton CL, Mao S, Wu J, Sandoval JA. In-bag enzymatic splenic digestion: a novel alternative to manual morcellation? J Surg Res 2017; 218:209-216. [PMID: 28985851 DOI: 10.1016/j.jss.2017.05.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/05/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Contained in-bag spleen morcellation is a conventional extraction technique for safe spleen removal during laparoscopic splenectomy. Existing data for the use of in-bag enzymatic splenic digestion as an alternative to morcellation are lacking. This proof-of-concept study sought to evaluate the effectiveness of single and combinatorial enzyme digestion of murine spleens. MATERIALS AND METHODS Murine spleens were digested with collagenase alone or with combinations of commercially available enzymes (collagenase, elastase, hyaluronidase, neutral protease) to determine their degradation effect. The primary end point was the percentage of mass reduction at 15 and 30 min. RESULTS For collagenase alone (n = 15), the mean reduction in mass was 14 ± 10% (range: 2%-31%) at 15 min and 30 ± 25% (range: 7%-100%) at 30 min. Using combinatorial dissolution with collagenase, hyaluronidase, and elastase (n = 8), the mean reduction in mass was 27 ± 16% (range: 6%-42%) at 15 min and 48 ± 27% (range: 3%-100%) at 30 min. Injecting the enzyme solution into whole spleens (n = 9) yielded a mean reduction in mass of 22 ± 13% (range: 9%-42%) at 15 min and 55 ± 31% (range: 9%-100%) at 30 min; mean reduction was 9 ± 13% (range: 0%-39%) at 15 min and 23 ± 13% (range: 3%-53%) with no injection (n = 12). CONCLUSIONS We provide the first demonstration of successful enzymatic murine spleen digestion as an alternative method for in-bag spleen removal during laparoscopic splenectomy. However, the significant cost and quantities of commercial enzyme required for clinical application dampens the enthusiasm for this novel approach.
Collapse
Affiliation(s)
- Eric D Villarreal
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee; University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee
| | - William Preston Hewgley
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee; University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee
| | - Walter H Lang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Christopher L Morton
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shenghua Mao
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jianrong Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John A Sandoval
- Division of Pediatric Surgery, Baptist Children's Hospital, Memphis, Tennessee.
| |
Collapse
|
43
|
Affiliation(s)
- R. Kapur
- Division of Hematology and Transfusion Medicine; Lund University; Lund Sweden
| | - J. W. Semple
- Division of Hematology and Transfusion Medicine; Lund University; Lund Sweden
- Keenan Research Centre for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
- Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology; University of Toronto; Toronto ON Canada
| |
Collapse
|
44
|
Zufferey A, Kapur R, Semple JW. Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP). J Clin Med 2017; 6:jcm6020016. [PMID: 28208757 PMCID: PMC5332920 DOI: 10.3390/jcm6020016] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/04/2017] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is a complex autoimmune disease characterized by low platelet counts. The pathogenesis of ITP remains unclear although both antibody-mediated and/or T cell-mediated platelet destruction are key processes. In addition, impairment of T cells, cytokine imbalances, and the contribution of the bone marrow niche have now been recognized to be important. Treatment strategies are aimed at the restoration of platelet counts compatible with adequate hemostasis rather than achieving physiological platelet counts. The first line treatments focus on the inhibition of autoantibody production and platelet degradation, whereas second-line treatments include immunosuppressive drugs, such as Rituximab, and splenectomy. Finally, third-line treatments aim to stimulate platelet production by megakaryocytes. This review discusses the pathophysiology of ITP and how the different treatment modalities affect the pathogenic mechanisms.
Collapse
Affiliation(s)
- Anne Zufferey
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- The Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| | - Rick Kapur
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- The Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- Canadian Blood Services, Toronto, ON M5B 1W8, Canada.
| | - John W Semple
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- The Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- Canadian Blood Services, Toronto, ON M5B 1W8, Canada.
- Department of Pharmacology, Medicine, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5B 1W8, Canada.
- Division of Hematology and Transfusion Medicine, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
45
|
Biragyn A, Aliseychik M, Rogaev E. Potential importance of B cells in aging and aging-associated neurodegenerative diseases. Semin Immunopathol 2017; 39:283-294. [PMID: 28083646 DOI: 10.1007/s00281-016-0615-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer's disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.
Collapse
Affiliation(s)
- Arya Biragyn
- Immunoregulation section, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| | - Maria Aliseychik
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evgeny Rogaev
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Genomics and Human Genetics, Russian Academy of Sciences, Institute of General Genetics, Moscow, Russia.,Center for Brain Neurobiology and Neurogenetics, Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russia
| |
Collapse
|
46
|
Kapur R, Aslam R, Kim M, Guo L, Ni H, Segel GB, Semple JW. Thymic-derived tolerizing dendritic cells are upregulated in the spleen upon treatment with intravenous immunoglobulin in a murine model of immune thrombocytopenia. Platelets 2016; 28:521-524. [DOI: 10.1080/09537104.2016.1246718] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Rick Kapur
- The Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
| | - Rukhsana Aslam
- The Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Michael Kim
- The Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Li Guo
- The Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Heyu Ni
- The Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - George B. Segel
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - John W. Semple
- The Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Carmi Y, Prestwood TR, Spitzer MH, Linde IL, Chabon J, Reticker-Flynn NE, Bhattacharya N, Zhang H, Zhang X, Basto PA, Burt BM, Alonso MN, Engleman EG. Akt and SHP-1 are DC-intrinsic checkpoints for tumor immunity. JCI Insight 2016; 1:e89020. [PMID: 27812544 DOI: 10.1172/jci.insight.89020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BM-derived DC (BMDC) are powerful antigen-presenting cells. When loaded with immune complexes (IC), consisting of tumor antigens bound to antitumor antibody, BMDC induce powerful antitumor immunity in mice. However, attempts to employ this strategy clinically with either tumor-associated DC (TADC) or monocyte-derived DC (MoDC) have been disappointing. To investigate the basis for this phenomenon, we compared the response of BMDC, TADC, and MoDC to tumor IgG-IC. Our findings revealed, in both mice and humans, that upon exposure to IgG-IC, BMDC internalized the IC, increased costimulatory molecule expression, and stimulated autologous T cells. In contrast, TADC and, surprisingly, MoDC remained inert upon contact with IC due to dysfunctional signaling following engagement of Fcγ receptors. Such dysfunction is associated with elevated levels of the Src homology region 2 domain-containing phosphatase-1 (SHP-1) and phosphatases regulating Akt activation. Indeed, concomitant inhibition of both SHP-1 and phosphatases that regulate Akt activation conferred upon TADC and MoDC the capacity to take up and process IC and induce antitumor immunity in vivo. This work identifies the molecular checkpoints that govern activation of MoDC and TADC and their capacity to elicit T cell immunity.
Collapse
Affiliation(s)
- Yaron Carmi
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Pathology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Tyler R Prestwood
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Program in Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Ian L Linde
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jonathan Chabon
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Nupur Bhattacharya
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Hong Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Xiangyue Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Pamela A Basto
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Bryan M Burt
- Division of General Thoracic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Michael N Alonso
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
48
|
Abstract
Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| | - Friederike Jönsson
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| |
Collapse
|
49
|
Frigo G, Tramentozzi E, Orso G, Ceolotto G, Pagetta A, Stagni C, Menin C, Rosato A, Finotti P. Human IgGs induce synthesis and secretion of IgGs and neonatal Fc receptor in human umbilical vein endothelial cells. Immunobiology 2016; 221:1329-1342. [PMID: 27523744 DOI: 10.1016/j.imbio.2016.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/16/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022]
Abstract
Human IgGs are increasingly used in the therapy of many different immune and inflammatory diseases, however their mechanism of action still remains unclear in most diseases. To gain insight into the mechanism by which IgGs might also exert their effects on endothelial cells, we tested human IgGs on human umbilical vein endothelial cells (HUVECs). IgGs induced a time-dependent increase in the synthesis and secretion of IgGs, together with a marked angiogenic-like transformation of HUVECs that was maximal after a 20-h incubation. IgGs stimulated IG gene transcription without affecting the process of gene rearrangement, already present in control HUVECs. The mechanism involved the activation of transcription factors with the increased expression of HSP90, HSP70 and inactive MMP-9 responsible for the phenotypic differentiation associated with the most intense IgG synthesis and secretion. However, even a short incubation with IgGs followed by recovery of cells was sufficient to trigger and sustain in time the synthesis and secretion of new IgGs, independently of the angiogenic-like transformation visible only when cells were continuously exposed to IgGs. Under the stimulus of IgGs, specific secretory pathways were also activated in HUVECs together with the expression of FcRn, which was always associated with IgGs of new synthesis, forming complexes that were also secreted. Our results disclose a so far unknown and unexpected mechanism of IgGs on HUVECs that behave as Ig-producing immune cells. Results might have relevance for the effects that IgGs also exert in vivo in physiological conditions.
Collapse
Affiliation(s)
- Giulia Frigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Pharmacology Building, L.go E. Meneghetti 2, 35131 Padua, Italy
| | - Elisa Tramentozzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Pharmacology Building, L.go E. Meneghetti 2, 35131 Padua, Italy
| | - Genny Orso
- Scientific Institute, IRCCS Eugenio Medea, Conegliano, Treviso, Italy
| | - Giulio Ceolotto
- Department of Medicine, University of Padua, via Giustiniani 2, 35128 Padua, Italy
| | - Andrea Pagetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Pharmacology Building, L.go E. Meneghetti 2, 35131 Padua, Italy
| | - Camilla Stagni
- Department of Surgery Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, Padua, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Via Gattamelata 64, Padua, Italy
| | - Antonio Rosato
- Department of Surgery Oncology and Gastroenterology, University of Padua, Via Gattamelata 64, Padua, Italy; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Via Gattamelata 64, Padua, Italy.
| | - Paola Finotti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Pharmacology Building, L.go E. Meneghetti 2, 35131 Padua, Italy.
| |
Collapse
|
50
|
Le NPL, Bowden TA, Struwe WB, Crispin M. Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:1655-68. [PMID: 27105835 PMCID: PMC4922387 DOI: 10.1016/j.bbagen.2016.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022]
Abstract
Human serum IgG contains multiple glycoforms which exhibit a range of binding properties to effector molecules such as cellular Fc receptors. Emerging knowledge of how the Fc glycans contribute to the antibody structure and effector functions has opened new avenues for the exploitation of defined antibody glycoforms in the treatment of diseases. Here, we review the structure and activity of antibody glycoforms and highlight developments in antibody glycoengineering by both the manipulation of the cellular glycosylation machinery and by chemoenzymatic synthesis. We discuss wide ranging applications of antibody glycoengineering in the treatment of cancer, autoimmunity and inflammation. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Ngoc Phuong Lan Le
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|