1
|
Zhang M, Li R, Fu S, Kumar S, Mcginty J, Qin Y, Chen L. Deep learning enhanced light sheet fluorescence microscopy for in vivo 4D imaging of zebrafish heart beating. LIGHT, SCIENCE & APPLICATIONS 2025; 14:92. [PMID: 39994185 PMCID: PMC11850918 DOI: 10.1038/s41377-024-01710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/09/2024] [Accepted: 12/02/2024] [Indexed: 02/26/2025]
Abstract
Time-resolved volumetric fluorescence imaging over an extended duration with high spatial/temporal resolution is a key driving force in biomedical research for investigating spatial-temporal dynamics at organism-level systems, yet it remains a major challenge due to the trade-off among imaging speed, light exposure, illumination power, and image quality. Here, we present a deep-learning enhanced light sheet fluorescence microscopy (LSFM) approach that addresses the restoration of rapid volumetric time-lapse imaging with less than 0.03% light exposure and 3.3% acquisition time compared to a typical standard acquisition. We demonstrate that the convolutional neural network (CNN)-transformer network developed here, namely U-net integrated transformer (UI-Trans), successfully achieves the mitigation of complex noise-scattering-coupled degradation and outperforms state-of-the-art deep learning networks, due to its capability of faithfully learning fine details while comprehending complex global features. With the fast generation of appropriate training data via flexible switching between confocal line-scanning LSFM (LS-LSFM) and conventional LSFM, this method achieves a three- to five-fold signal-to-noise ratio (SNR) improvement and ~1.8 times contrast improvement in ex vivo zebrafish heart imaging and long-term in vivo 4D (3D morphology + time) imaging of heartbeat dynamics at different developmental stages with ultra-economical acquisitions in terms of light dosage and acquisition time.
Collapse
Affiliation(s)
- Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Renjian Li
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Songnian Fu
- Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 51006, China
| | - Sunil Kumar
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - James Mcginty
- Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Yuwen Qin
- Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 51006, China.
| | - Lingling Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
2
|
Vasudevarao MD, Posadas Pena D, Ihle M, Bongiovanni C, Maity P, Geissler D, Mohammadi HF, Rall-Scharpf M, Niemann J, Mommersteeg MTM, Redaelli S, Happ K, Wu CC, Beisaw A, Scharffetter-Kochanek K, D'Uva G, Malek Mohammadi M, Wiesmüller L, Geiger H, Weidinger G. BMP signaling promotes zebrafish heart regeneration via alleviation of replication stress. Nat Commun 2025; 16:1708. [PMID: 39962064 PMCID: PMC11832743 DOI: 10.1038/s41467-025-56993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
In contrast to mammals, adult zebrafish achieve complete heart regeneration via proliferation of cardiomyocytes. Surprisingly, we found that regenerating cardiomyocytes experience DNA replication stress, which represents one reason for declining tissue regeneration during aging in mammals. Pharmacological inhibition of ATM and ATR kinases revealed that DNA damage response signaling is essential for zebrafish heart regeneration. Manipulation of Bone Morphogenetic Protein (BMP)-Smad signaling using transgenics and mutants showed that BMP signaling alleviates cardiomyocyte replication stress. BMP signaling also rescues neonatal mouse cardiomyocytes, human fibroblasts and human hematopoietic stem and progenitor cells (HSPCs) from replication stress. DNA fiber spreading assays indicate that BMP signaling facilitates re-start of replication forks after replication stress-induced stalling. Our results identify the ability to overcome replication stress as key factor for the elevated zebrafish heart regeneration capacity and reveal a conserved role for BMP signaling in promotion of stress-free DNA replication.
Collapse
Affiliation(s)
| | - Denise Posadas Pena
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Michaela Ihle
- Department of Obstetrics and Gynecology, Ulm University, Prittwitzstraße 43, 89075, Ulm, Germany
| | - Chiara Bongiovanni
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dominik Geissler
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Hossein Falah Mohammadi
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Melanie Rall-Scharpf
- Department of Obstetrics and Gynecology, Ulm University, Prittwitzstraße 43, 89075, Ulm, Germany
| | - Julian Niemann
- Institute of Molecular Medicine, Ulm University, Meyerhofstrasse N27, 89081, Ulm, Germany
| | - Mathilda T M Mommersteeg
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Simone Redaelli
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Winterthurerstrasse 30, 8006, Zurich, Switzerland
| | - Kathrin Happ
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Chi-Chung Wu
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Arica Beisaw
- Institute of Experimental Cardiology, Heidelberg University, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Gabriele D'Uva
- Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138, Bologna, Italy
| | - Mona Malek Mohammadi
- Institute of Physiology I, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Prittwitzstraße 43, 89075, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Meyerhofstrasse N27, 89081, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
3
|
Juan T, Molina T, Xie L, Papadopoulou S, Cardoso B, Jha SG, Stainier DY. A recombinase-activated ribozyme to knock down endogenous gene expression in zebrafish. PLoS Genet 2025; 21:e1011594. [PMID: 39919116 PMCID: PMC11856399 DOI: 10.1371/journal.pgen.1011594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/25/2025] [Accepted: 01/26/2025] [Indexed: 02/09/2025] Open
Abstract
Precise regulation of gene expression is essential to understand a wide range of biological processes. Control over gene expression can be achieved using site-directed recombinases and endonucleases whose efficiency is variable and dependent on the genomic context. Here, we develop a self-cleaving ribozyme-based tool to control mRNA levels of endogenous targets in zebrafish. Using an in vivo reporter strategy, we first show that inserting the T3H48 self-cleaving ribozyme in an intron enables rapid pre-mRNA cleavage, with up to 20-fold reduction in expression, and that this ribozyme displays superior activity compared with other ribozymes. We then inserted the T3H48 ribozyme in the second intron of the albino gene using a CRISPR/Cas9 strategy and observed a pigmentation phenotype similar to that in the mutant. Using a base-editing strategy to inactivate the ribozyme, we also show that this phenotype is reversible, illustrating the specificity of the approach. In addition, we generated a Flippase- and Cre-activatable version of the T3H48 ribozyme, called RiboFlip, to control the mRNA levels of the albino gene. RiboFlip activation induced mRNA knockdown and also recapitulated the albino mutant phenotype. Furthermore, we show that a Cre- and Dre-controllable Gal4/UAS reporter in the RiboFlip cassette can label knocked-down cells independently of the expression of the target gene. Altogether, we introduce the RiboFlip cassette as a flexible tool to control endogenous gene expression in a vertebrate model and as an alternative to existing conditional knockdown strategies.
Collapse
Affiliation(s)
- Thomas Juan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tonatiuh Molina
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Lihan Xie
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Sofia Papadopoulou
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Bárbara Cardoso
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Shivam Govind Jha
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Didier Y.R. Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| |
Collapse
|
4
|
Saberigarakani A, Patel RP, Almasian M, Zhang X, Brewer J, Hassan SS, Chai J, Lee J, Fei B, Yuan J, Carroll K, Ding Y. Volumetric imaging and computation to explore contractile function in zebrafish hearts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623621. [PMID: 39605398 PMCID: PMC11601419 DOI: 10.1101/2024.11.14.623621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Despite advancements in cardiovascular engineering, heart diseases remain a leading cause of mortality. The limited understanding of the underlying mechanisms of cardiac dysfunction at the cellular level restricts the development of effective screening and therapeutic methods. To address this, we have developed a framework that incorporates light field detection and individual cell tracking to capture real-time volumetric data in zebrafish hearts, which share structural and electrical similarities with the human heart and generate 120 to 180 beats per minute. Our results indicate that the in-house system achieves an acquisition speed of 200 volumes per second, with resolutions of up to 5.02 ± 0.54 µm laterally and 9.02 ± 1.11 µm axially across the entire depth, using the estimated-maximized-smoothed deconvolution method. The subsequent deep learning-based cell trackers enable further investigation of contractile dynamics, including cellular displacement and velocity, followed by volumetric tracking of specific cells of interest from end-systole to end-diastole in an interactive environment. Collectively, our strategy facilitates real-time volumetric imaging and assessment of contractile dynamics across the entire ventricle at the cellular resolution over multiple cycles, providing significant potential for exploring intercellular interactions in both health and disease.
Collapse
|
5
|
Moran HR, Nyarko OO, O’Rourke R, Ching RCK, Riemslagh FW, Peña B, Burger A, Sucharov CC, Mosimann C. The pericardium forms as a distinct structure during heart formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613484. [PMID: 39345600 PMCID: PMC11429720 DOI: 10.1101/2024.09.18.613484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The heart integrates diverse cell lineages into a functional unit, including the pericardium, a mesothelial sac that supports heart movement, homeostasis, and immune responses. However, despite its critical roles, the developmental origins of the pericardium remain uncertain due to disparate models. Here, using live imaging, lineage tracking, and single-cell transcriptomics in zebrafish, we find the pericardium forms within the lateral plate mesoderm from dedicated anterior mesothelial progenitors and distinct from the classic heart field. Imaging of transgenic reporters in zebrafish documents lateral plate mesoderm cells that emerge lateral of the classic heart field and among a continuous mesothelial progenitor field. Single-cell transcriptomics and trajectories of hand2-expressing lateral plate mesoderm reveal distinct populations of mesothelial and cardiac precursors, including pericardial precursors that are distinct from the cardiomyocyte lineage. The mesothelial gene expression signature is conserved in mammals and carries over to post-natal development. Light sheet-based live-imaging and machine learning-supported cell tracking documents that during heart tube formation, pericardial precursors that reside at the anterior edge of the heart field migrate anteriorly and medially before fusing, enclosing the embryonic heart to form a single pericardial cavity. Pericardium formation proceeds even upon genetic disruption of heart tube formation, uncoupling the two structures. Canonical Wnt/β-catenin signaling modulates pericardial cell number, resulting in a stretched pericardial epithelium with reduced cell number upon canonical Wnt inhibition. We connect the pathological expression of secreted Wnt antagonists of the SFRP family found in pediatric dilated cardiomyopathy to increased pericardial stiffness: sFRP1 in the presence of increased catecholamines causes cardiomyocyte stiffness in neonatal rats as measured by atomic force microscopy. Altogether, our data integrate pericardium formation as an independent process into heart morphogenesis and connect disrupted pericardial tissue properties such as pericardial stiffness to pediatric cardiomyopathies.
Collapse
Affiliation(s)
- Hannah R. Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Obed O. Nyarko
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca O’Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ryenne-Christine K. Ching
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Frederike W. Riemslagh
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Brisa Peña
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Institute, Division of Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Bioengineering Department, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Albu M, Affolter E, Gentile A, Xu Y, Kikhi K, Howard S, Kuenne C, Priya R, Gunawan F, Stainier DYR. Distinct mechanisms regulate ventricular and atrial chamber wall formation. Nat Commun 2024; 15:8159. [PMID: 39289341 PMCID: PMC11408654 DOI: 10.1038/s41467-024-52340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Tissues undergo distinct morphogenetic processes to achieve similarly shaped structures. In the heart, cardiomyocytes in both the ventricle and atrium build internal structures for efficient contraction. Ventricular wall formation (trabeculation) is initiated by cardiomyocyte delamination. How cardiomyocytes build the atrial wall is poorly understood. Using longitudinal imaging in zebrafish, we found that at least 25% of the atrial cardiomyocytes elongate along the long axis of the heart. These cell shape changes result in cell intercalation and convergent thickening, leading to the formation of the internal muscle network. We tested factors important for ventricular trabeculation including Nrg/ErbB and Notch signaling and found no evidence for their role in atrial muscle network formation. Instead, our data suggest that atrial cardiomyocyte elongation is regulated by Yap, which has not been implicated in trabeculation. Altogether, these data indicate that distinct cellular and molecular mechanisms build the internal muscle structures in the atrium and ventricle.
Collapse
Affiliation(s)
- Marga Albu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Eileen Affolter
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Alessandra Gentile
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- MRC Centre for Neurodevelopmental Disorders, King's College, London, UK
| | - Yanli Xu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Khrievono Kikhi
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Flow Cytometry Service Group, Max Planck for Heart and Lung Research, Bad Nauheim, Germany
| | - Sarah Howard
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rashmi Priya
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Francis Crick Institute, London, UK
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute of Cell Biology, University of Münster, Münster, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
7
|
Bornhorst D, Hejjaji AV, Steuter L, Woodhead NM, Maier P, Gentile A, Alhajkadour A, Santis Larrain O, Weber M, Kikhi K, Guenther S, Huisken J, Tamplin OJ, Stainier DYR, Gunawan F. The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish. Nat Commun 2024; 15:7589. [PMID: 39217144 PMCID: PMC11366026 DOI: 10.1038/s41467-024-51920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes. High-resolution microscopy and photoconversion tracing experiments uncover hematopoietic cells, mainly hematopoietic stem and progenitor cells (HSPCs)/megakaryocyte-erythroid precursors (MEPs), derived from EdCs as well as the dorsal aorta stably attached to the endocardium. Emergence of HSPCs/MEPs in hearts cultured ex vivo without external hematopoietic sources, as well as longitudinal imaging of the beating heart using light sheet microscopy, support endocardial contribution to hematopoiesis. Maintenance of these hematopoietic cells depends on the adhesion factors Integrin α4 and Vcam1 but is at least partly independent of cardiac trabeculation or shear stress. Finally, blocking primitive erythropoiesis increases cardiac-residing hematopoietic cells, suggesting that the endocardium is a hematopoietic reservoir. Altogether, these studies uncover the endocardium as a resident tissue for HSPCs/MEPs and a de novo source of hematopoietic cells.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Amulya V Hejjaji
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Lena Steuter
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Nicole M Woodhead
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Paul Maier
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Alessandra Gentile
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research (MPI-HLR), Bad Nauheim, 61231, Germany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Alhajkadour
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Octavia Santis Larrain
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Michael Weber
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Khrievono Kikhi
- Flow Cytometry and Cell Sorting Core Facility, MPI-HLR, Bad Nauheim, 61231, Germany
| | - Stefan Guenther
- Deep Sequencing Platform, MPI-HLR, Bad Nauheim, 61231, Germany
| | - Jan Huisken
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Owen J Tamplin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research (MPI-HLR), Bad Nauheim, 61231, Germany
| | - Felix Gunawan
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany.
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany.
| |
Collapse
|
8
|
Noël ES. Cardiac construction-Recent advances in morphological and transcriptional modeling of early heart development. Curr Top Dev Biol 2024; 156:121-156. [PMID: 38556421 DOI: 10.1016/bs.ctdb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
During human embryonic development the early establishment of a functional heart is vital to support the growing fetus. However, forming the embryonic heart is an extremely complex process, requiring spatiotemporally controlled cell specification and differentiation, tissue organization, and coordination of cardiac function. These complexities, in concert with the early and rapid development of the embryonic heart, mean that understanding the intricate interplay between these processes that help shape the early heart remains highly challenging. In this review I focus on recent insights from animal models that have shed new light on the earliest stages of heart development. This includes specification and organization of cardiac progenitors, cell and tissue movements that make and shape the early heart tube, and the initiation of the first beat in the developing heart. In addition I highlight relevant in vitro models that could support translation of findings from animal models to human heart development. Finally I discuss challenges that are being addressed in the field, along with future considerations that together may help move us towards a deeper understanding of how our hearts are made.
Collapse
Affiliation(s)
- Emily S Noël
- School of Biosciences and Bateson Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Wen C. Deep Learning-Based Cell Tracking in Deforming Organs and Moving Animals. Methods Mol Biol 2024; 2800:203-215. [PMID: 38709486 DOI: 10.1007/978-1-0716-3834-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cell tracking is an essential step in extracting cellular signals from moving cells, which is vital for understanding the mechanisms underlying various biological functions and processes, particularly in organs such as the brain and heart. However, cells in living organisms often exhibit extensive and complex movements caused by organ deformation and whole-body motion. These movements pose a challenge in obtaining high-quality time-lapse cell images and tracking the intricate cell movements in the captured images. Recent advances in deep learning techniques provide powerful tools for detecting cells in low-quality images with densely packed cell populations, as well as estimating cell positions for cells undergoing large nonrigid movements. This chapter introduces the challenges of cell tracking in deforming organs and moving animals, outlines the solutions to these challenges, and presents a detailed protocol for data preparation, as well as for performing cell segmentation and tracking using the latest version of 3DeeCellTracker. This protocol is expected to enable researchers to gain deeper insights into organ dynamics and biological processes.
Collapse
Affiliation(s)
- Chentao Wen
- RIKEN Center for Biodynamic Research, Kobe, Japan.
| |
Collapse
|
10
|
Apaydin O, Altaikyzy A, Filosa A, Sawamiphak S. Alpha-1 adrenergic signaling drives cardiac regeneration via extracellular matrix remodeling transcriptional program in zebrafish macrophages. Dev Cell 2023; 58:2460-2476.e7. [PMID: 37875117 DOI: 10.1016/j.devcel.2023.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/24/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
The autonomic nervous system plays a pivotal role in cardiac repair. Here, we describe the mechanistic underpinning of adrenergic signaling in fibrotic and regenerative response of the heart to be dependent on immunomodulation. A pharmacological approach identified adrenergic receptor alpha-1 as a key regulator of macrophage phenotypic diversification following myocardial damage in zebrafish. Genetic manipulation and single-cell transcriptomics showed that the receptor signals activation of an "extracellular matrix remodeling" transcriptional program in a macrophage subset, which serves as a key regulator of matrix composition and turnover. Mechanistically, adrenergic receptor alpha-1-activated macrophages determine activation of collagen-12-expressing fibroblasts, a cellular determinant of cardiac regenerative niche, through midkine-mediated paracrine crosstalk, allowing lymphatic and blood vessel growth and cardiomyocyte proliferation at the lesion site. These findings identify the mechanism of adrenergic signaling in macrophage phenotypic and functional determination and highlight the potential of neural modulation for regulation of fibrosis and coordination of myocardial regenerative response.
Collapse
Affiliation(s)
- Onur Apaydin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Akerke Altaikyzy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alessandro Filosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suphansa Sawamiphak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
11
|
Marelli F, Ernst A, Mercader N, Liebling M. PAAQ: Paired Alternating AcQuisitions for virtual high frame rate multichannel cardiac fluorescence microscopy. BIOLOGICAL IMAGING 2023; 3:e20. [PMID: 38510170 PMCID: PMC10951931 DOI: 10.1017/s2633903x23000223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/23/2023] [Accepted: 10/23/2023] [Indexed: 03/22/2024]
Abstract
In vivo fluorescence microscopy is a powerful tool to image the beating heart in its early development stages. A high acquisition frame rate is necessary to study its fast contractions, but the limited fluorescence intensity requires sensitive cameras that are often too slow. Moreover, the problem is even more complex when imaging distinct tissues in the same sample using different fluorophores. We present Paired Alternating AcQuisitions, a method to image cyclic processes in multiple channels, which requires only a single (possibly slow) camera. We generate variable temporal illumination patterns in each frame, alternating between channel-specific illuminations (fluorescence) in odd frames and a motion-encoding brightfield pattern as a common reference in even frames. Starting from the image pairs, we find the position of each reference frame in the cardiac cycle through a combination of image-based sorting and regularized curve fitting. Thanks to these estimated reference positions, we assemble multichannel videos whose frame rate is virtually increased. We characterize our method on synthetic and experimental images collected in zebrafish embryos, showing quantitative and visual improvements in the reconstructed videos over existing nongated sorting-based alternatives. Using a 15 Hz camera, we showcase a reconstructed video containing two fluorescence channels at 100 fps.
Collapse
Affiliation(s)
- François Marelli
- Computational Bioimaging, Idiap Research Institute, Martigny, Switzerland
- Electrical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Michael Liebling
- Computational Bioimaging, Idiap Research Institute, Martigny, Switzerland
- Electrical & Computer Engineering, University of California, Santa Barbara, CA, USA
| |
Collapse
|
12
|
Liu JTC, Glaser AK, Poudel C, Vaughan JC. Nondestructive 3D Pathology with Light-Sheet Fluorescence Microscopy for Translational Research and Clinical Assays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:231-252. [PMID: 36854208 DOI: 10.1146/annurev-anchem-091222-092734] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, there has been a revived appreciation for the importance of spatial context and morphological phenotypes for both understanding disease progression and guiding treatment decisions. Compared with conventional 2D histopathology, which is the current gold standard of medical diagnostics, nondestructive 3D pathology offers researchers and clinicians the ability to visualize orders of magnitude more tissue within their natural volumetric context. This has been enabled by rapid advances in tissue-preparation methods, high-throughput 3D microscopy instrumentation, and computational tools for processing these massive feature-rich data sets. Here, we provide a brief overview of many of these technical advances along with remaining challenges to be overcome. We also speculate on the future of 3D pathology as applied in translational investigations, preclinical drug development, and clinical decision-support assays.
Collapse
Affiliation(s)
- Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA;
- Allen Institute for Neural Dynamics, Seattle, Washington, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Zhang X, Almasian M, Hassan SS, Jotheesh R, Kadam VA, Polk AR, Saberigarakani A, Rahat A, Yuan J, Lee J, Carroll K, Ding Y. 4D Light-sheet imaging and interactive analysis of cardiac contractility in zebrafish larvae. APL Bioeng 2023; 7:026112. [PMID: 37351330 PMCID: PMC10283270 DOI: 10.1063/5.0153214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Despite ongoing efforts in cardiovascular research, the acquisition of high-resolution and high-speed images for the purpose of assessing cardiac contraction remains challenging. Light-sheet fluorescence microscopy (LSFM) offers superior spatiotemporal resolution and minimal photodamage, providing an indispensable opportunity for the in vivo study of cardiac micro-structure and contractile function in zebrafish larvae. To track the myocardial architecture and contractility, we have developed an imaging strategy ranging from LSFM system construction, retrospective synchronization, single cell tracking, to user-directed virtual reality (VR) analysis. Our system enables the four-dimensional (4D) investigation of individual cardiomyocytes across the entire atrium and ventricle during multiple cardiac cycles in a zebrafish larva at the cellular resolution. To enhance the throughput of our model reconstruction and assessment, we have developed a parallel computing-assisted algorithm for 4D synchronization, resulting in a nearly tenfold enhancement of reconstruction efficiency. The machine learning-based nuclei segmentation and VR-based interaction further allow us to quantify cellular dynamics in the myocardium from end-systole to end-diastole. Collectively, our strategy facilitates noninvasive cardiac imaging and user-directed data interpretation with improved efficiency and accuracy, holding great promise to characterize functional changes and regional mechanics at the single cell level during cardiac development and regeneration.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Milad Almasian
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Sohail S. Hassan
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Rosemary Jotheesh
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Vinay A. Kadam
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Austin R. Polk
- Department of Computer Science, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Alireza Saberigarakani
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Aayan Rahat
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Jie Yuan
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Juhyun Lee
- Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Kelli Carroll
- Department of Biology, Austin College, Sherman, Texas 75090, USA
| | - Yichen Ding
- Author to whom correspondence should be addressed:. Tel.: 972–883-7217
| |
Collapse
|
14
|
Wang P, Kitano M, Keomanee-Dizon K, Truong TV, Fraser SE, Cutrale F. A single-shot hyperspectral phasor camera for fast, multi-color fluorescence microscopy. CELL REPORTS METHODS 2023; 3:100441. [PMID: 37159674 PMCID: PMC10162951 DOI: 10.1016/j.crmeth.2023.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/16/2022] [Accepted: 03/09/2023] [Indexed: 05/11/2023]
Abstract
Hyperspectral fluorescence imaging improves multiplexed observations of biological samples by utilizing multiple color channels across the spectral range to compensate for spectral overlap between labels. Typically, spectral resolution comes at a cost of decreased detection efficiency, which both hampers imaging speed and increases photo-toxicity to the samples. Here, we present a high-speed, high-efficiency snapshot spectral acquisition method, based on optical compression of the fluorescence spectra via Fourier transform, that overcomes the challenges of discrete spectral sampling: single-shot hyperspectral phasor camera (SHy-Cam). SHy-Cam captures fluorescence spatial and spectral information in a single exposure with a standard scientific CMOS camera, with photon efficiency of over 80%, easily and with acquisition rates exceeding 30 datasets per second, making it a powerful tool for multi-color in vivo imaging. Its simple design, using readily available optical components, and its easy integration provide a low-cost solution for multi-color fluorescence imaging with increased efficiency and speed.
Collapse
Affiliation(s)
- Pu Wang
- Translational Imaging Center, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
- Biomedical Engineering, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
| | - Masahiro Kitano
- Translational Imaging Center, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
| | - Kevin Keomanee-Dizon
- Translational Imaging Center, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Thai V. Truong
- Translational Imaging Center, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
- Biomedical Engineering, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
- Biomedical Engineering, University of Southern California, 1002 West Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Power RM, Schlaeppi A, Huisken J. Compact, high-speed multi-directional selective plane illumination microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:1445-1459. [PMID: 37078034 PMCID: PMC10110309 DOI: 10.1364/boe.476217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 05/03/2023]
Abstract
We present an elegant scheme for providing multi-directional illumination in selective plane illumination microscopy (SPIM). Light sheets can be delivered from one of two opposed directions at a time and pivoted about their center for efficient stripe artifact suppression using only a single galvanometric scanning mirror to perform both functions. The scheme results in a much smaller instrument footprint and allows multi-directional illumination with reduced expense compared with comparable schemes. Switching between the illumination paths is near instantaneous and the whole-plane illumination scheme of SPIM maintains the lowest rates of photodamage, which is often sacrificed by other recently reported destriping strategies. The ease of synchronization allows this scheme to be used at higher speeds than resonant mirrors typically used in this regard. We provide validation of this approach in the dynamic environment of the zebrafish beating heart, where imaging at up to 800 frames per second is demonstrated alongside efficient suppression of artifacts.
Collapse
Affiliation(s)
- Rory M. Power
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, USA
- EMBL Imaging Centre EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anjalie Schlaeppi
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, USA
- Bioimaging and Optics Platform, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland
| | - Jan Huisken
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, USA
- Department of Integrative Biology, University of Wisconsin, Madison, 250 N Mills St, Madison, WI 53706, USA
- Department of Biology and Psychology, Georg-August-University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Zhu L, Yi C, Fei P. A practical guide to deep-learning light-field microscopy for 3D imaging of biological dynamics. STAR Protoc 2023; 4:102078. [PMID: 36853699 PMCID: PMC9898296 DOI: 10.1016/j.xpro.2023.102078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023] Open
Abstract
Here, we present a step-by-step protocol for the implementation of deep-learning-enhanced light-field microscopy enabling 3D imaging of instantaneous biological processes. We first provide the instructions to build a light-field microscope (LFM) capable of capturing optically encoded dynamic signals. Then, we detail the data processing and model training of a view-channel-depth (VCD) neural network, which enables instant 3D image reconstruction from a single 2D light-field snapshot. Finally, we describe VCD-LFM imaging of several model organisms and demonstrate image-based quantitative studies on neural activities and cardio-hemodynamics. For complete details on the use and execution of this protocol, please refer to Wang et al. (2021).1.
Collapse
Affiliation(s)
- Lanxin Zhu
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chengqiang Yi
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
17
|
Wang M, Zhou L, Hu J, Cao H, Lin D, Yu B, Qu J. Snapshot temporal compressive light-sheet fluorescence microscopy via deep denoising and total variation priors. OPTICS LETTERS 2023; 48:1144-1147. [PMID: 36857234 DOI: 10.1364/ol.475648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
We present a snapshot temporal compressive light-sheet fluorescence microscopy system to capture high-speed microscopic scenes with a low-speed camera. A deep denoising network and total variation denoiser are incorporated into a plug-and-play framework to quickly reconstruct 20 high-speed video frames from a short-time measurement. Specifically, we can observe 1,000-frames-per-second (fps) microscopic scenes when the camera works at 50 fps to capture the measurement. The proposed method can potentially be applied to observe cell and tissue motions in thick living biological specimens.
Collapse
|
18
|
Gomez-Cruz C, Laguna S, Bachiller-Pulido A, Quilez C, Cañadas-Ortega M, Albert-Smet I, Ripoll J, Muñoz-Barrutia A. Single Plane Illumination Microscopy for Microfluidic Device Imaging. BIOSENSORS 2022; 12:1110. [PMID: 36551076 PMCID: PMC9775991 DOI: 10.3390/bios12121110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional imaging of live processes at a cellular level is a challenging task. It requires high-speed acquisition capabilities, low phototoxicity, and low mechanical disturbances. Three-dimensional imaging in microfluidic devices poses additional challenges as a deep penetration of the light source is required, along with a stationary setting, so the flows are not perturbed. Different types of fluorescence microscopy techniques have been used to address these limitations; particularly, confocal microscopy and light sheet fluorescence microscopy (LSFM). This manuscript proposes a novel architecture of a type of LSFM, single-plane illumination microscopy (SPIM). This custom-made microscope includes two mirror galvanometers to scan the sample vertically and reduce shadowing artifacts while avoiding unnecessary movement. In addition, two electro-tunable lenses fine-tune the focus position and reduce the scattering caused by the microfluidic devices. The microscope has been fully set up and characterized, achieving a resolution of 1.50 μm in the x-y plane and 7.93 μm in the z-direction. The proposed architecture has risen to the challenges posed when imaging microfluidic devices and live processes, as it can successfully acquire 3D volumetric images together with time-lapse recordings, and it is thus a suitable microscopic technique for live tracking miniaturized tissue and disease models.
Collapse
Affiliation(s)
- Clara Gomez-Cruz
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Sonia Laguna
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Ariadna Bachiller-Pulido
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Cristina Quilez
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Marina Cañadas-Ortega
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Ignacio Albert-Smet
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Jorge Ripoll
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28009 Madrid, Spain
| | - Arrate Muñoz-Barrutia
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28009 Madrid, Spain
| |
Collapse
|
19
|
Boquet-Pujadas A, Feaugas T, Petracchini A, Grassart A, Mary H, Manich M, Gobaa S, Olivo-Marin JC, Sauvonnet N, Labruyère E. 4D live imaging and computational modeling of a functional gut-on-a-chip evaluate how peristalsis facilitates enteric pathogen invasion. SCIENCE ADVANCES 2022; 8:eabo5767. [PMID: 36269830 PMCID: PMC9586479 DOI: 10.1126/sciadv.abo5767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/02/2022] [Indexed: 05/31/2023]
Abstract
Physical forces are essential to biological function, but their impact at the tissue level is not fully understood. The gut is under continuous mechanical stress because of peristalsis. To assess the influence of mechanical cues on enteropathogen invasion, we combine computational imaging with a mechanically active gut-on-a-chip. After infecting the device with either of two microbes, we image their behavior in real time while mapping the mechanical stress within the tissue. This is achieved by reconstructing three-dimensional videos of the ongoing invasion and leveraging on-manifold inverse problems together with viscoelastic rheology. Our results show that peristalsis accelerates the destruction and invasion of intestinal tissue by Entamoeba histolytica and colonization by Shigella flexneri. Local tension facilitates parasite penetration and activates virulence genes in the bacteria. Overall, our work highlights the fundamental role of physical cues during host-pathogen interactions and introduces a framework that opens the door to study mechanobiology on deformable tissues.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
- Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Feaugas
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
| | - Alba Petracchini
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alexandre Grassart
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
- Unit of Bioengineering and Microbiology, Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Héloïse Mary
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Maria Manich
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean-Christophe Olivo-Marin
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nathalie Sauvonnet
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
| | - Elisabeth Labruyère
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
20
|
Yang G, Wang L, Qin X, Chen X, Liang Y, Jin X, Chen C, Zhang W, Pan W, Li H. Heterogeneities of zebrafish vasculature development studied by a high throughput light-sheet flow imaging system. BIOMEDICAL OPTICS EXPRESS 2022; 13:5344-5357. [PMID: 36425637 PMCID: PMC9664872 DOI: 10.1364/boe.470058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Zebrafish is one of the ideal model animals to study the structural and functional heterogeneities in development. However, the lack of high throughput 3D imaging techniques has limited studies to only a few samples, despite zebrafish spawning tens of embryos at once. Here, we report a light-sheet flow imaging system (LS-FIS) based on light-sheet illumination and a continuous flow imager. LS-FIS enables whole-larva 3D imaging of tens of samples within half an hour. The high throughput 3D imaging capability of LS-FIS was demonstrated with the developmental study of the zebrafish vasculature from 3 to 9 days post-fertilization. Statistical analysis shows significant variances in trunk vessel development but less in hyaloid vessel development.
Collapse
Affiliation(s)
- Guang Yang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Linbo Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xiaofei Qin
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xiaohu Chen
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yong Liang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xin Jin
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chong Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Wenjuan Zhang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Li
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
21
|
Wang S, Larina IV. Following the Beat: Imaging the Valveless Pumping Function in the Early Embryonic Heart. J Cardiovasc Dev Dis 2022; 9:jcdd9080267. [PMID: 36005431 PMCID: PMC9409458 DOI: 10.3390/jcdd9080267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
In vertebrates, the coordinated beat of the early heart tube drives cardiogenesis and supports embryonic growth. How the heart pumps at this valveless stage marks a fascinating problem that is of vital significance for understanding cardiac development and defects. The developing heart achieves its function at the same time as continuous and dramatic morphological changes, which in turn modify its pumping dynamics. The beauty of this muti-time-scale process also highlights its complexity that requires interdisciplinary approaches to study. High-resolution optical imaging, particularly fast, four-dimensional (4D) imaging, plays a critical role in revealing the process of pumping, instructing numerical modeling, and enabling biomechanical analyses. In this review, we aim to connect the investigation of valveless pumping mechanisms with the recent advancements in embryonic cardiodynamic imaging, facilitating interactions between these two areas of study, in hopes of encouraging and motivating innovative work to further understand the early heartbeat.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
- Correspondence:
| | - Irina V. Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Nienhaus K, Nienhaus GU. Genetically encodable fluorescent protein markers in advanced optical imaging. Methods Appl Fluoresc 2022; 10. [PMID: 35767981 DOI: 10.1088/2050-6120/ac7d3f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| |
Collapse
|
23
|
Bruton FA, Kaveh A, Ross-Stewart KM, Matrone G, Oremek MEM, Solomonidis EG, Tucker CS, Mullins JJ, Lucas CD, Brittan M, Taylor JM, Rossi AG, Denvir MA. Macrophages trigger cardiomyocyte proliferation by increasing epicardial vegfaa expression during larval zebrafish heart regeneration. Dev Cell 2022; 57:1512-1528.e5. [PMID: 35688158 PMCID: PMC9616726 DOI: 10.1016/j.devcel.2022.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022]
Abstract
Cardiac injury leads to the loss of cardiomyocytes, which are rapidly replaced by the proliferation of the surviving cells in zebrafish, but not in mammals. In both the regenerative zebrafish and non-regenerative mammals, cardiac injury induces a sustained macrophage response. Macrophages are required for cardiomyocyte proliferation during zebrafish cardiac regeneration, but the mechanisms whereby macrophages facilitate this crucial process are fundamentally unknown. Using heartbeat-synchronized live imaging, RNA sequencing, and macrophage-null genotypes in the larval zebrafish cardiac injury model, we characterize macrophage function and reveal that these cells activate the epicardium, inducing cardiomyocyte proliferation. Mechanistically, macrophages are specifically recruited to the epicardial-myocardial niche, triggering the expansion of the epicardium, which upregulates vegfaa expression to induce cardiomyocyte proliferation. Our data suggest that epicardial Vegfaa augments a developmental cardiac growth pathway via increased endocardial notch signaling. The identification of this macrophage-dependent mechanism of cardiac regeneration highlights immunomodulation as a potential strategy for enhancing mammalian cardiac repair. Heart regeneration in larval zebrafish is characterized in detail Macrophage ablation blocks cardiomyocyte proliferation after cardiac injury Macrophages synapse with epicardial cells and promote their proliferation Epicardial Vegfaa drives cardiomyocyte proliferation during cardiac regeneration
Collapse
Affiliation(s)
- Finnius A Bruton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Aryan Kaveh
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine M Ross-Stewart
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gianfranco Matrone
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Magdalena E M Oremek
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emmanouil G Solomonidis
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Carl S Tucker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Christopher D Lucas
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Martin A Denvir
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
24
|
Kaveh A, Bruton FA, Oremek MEM, Tucker CS, Taylor JM, Mullins JJ, Rossi AG, Denvir MA. Selective Cdk9 inhibition resolves neutrophilic inflammation and enhances cardiac regeneration in larval zebrafish. Development 2022; 149:272181. [PMID: 34523672 PMCID: PMC8601713 DOI: 10.1242/dev.199636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022]
Abstract
Sustained neutrophilic inflammation is detrimental for cardiac repair and associated with adverse outcomes following myocardial infarction (MI). An attractive therapeutic strategy to treat MI is to reduce or remove infiltrating neutrophils to promote downstream reparative mechanisms. CDK9 inhibitor compounds enhance the resolution of neutrophilic inflammation; however, their effects on cardiac repair/regeneration are unknown. We have devised a cardiac injury model to investigate inflammatory and regenerative responses in larval zebrafish using heartbeat-synchronised light-sheet fluorescence microscopy. We used this model to test two clinically approved CDK9 inhibitors, AT7519 and flavopiridol, examining their effects on neutrophils, macrophages and cardiomyocyte regeneration. We found that AT7519 and flavopiridol resolve neutrophil infiltration by inducing reverse migration from the cardiac lesion. Although continuous exposure to AT7519 or flavopiridol caused adverse phenotypes, transient treatment accelerated neutrophil resolution while avoiding these effects. Transient treatment with AT7519, but not flavopiridol, augmented wound-associated macrophage polarisation, which enhanced macrophage-dependent cardiomyocyte number expansion and the rate of myocardial wound closure. Using cdk9−/− knockout mutants, we showed that AT7519 is a selective CDK9 inhibitor, revealing the potential of such treatments to promote cardiac repair/regeneration. Summary: This study is the first to show that resolving neutrophilic inflammation using a clinically approved immunomodulatory drug (AT7519) improves heart regeneration in zebrafish.
Collapse
Affiliation(s)
- Aryan Kaveh
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Finnius A Bruton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Magdalena E M Oremek
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Carl S Tucker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | - John J Mullins
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Martin A Denvir
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
25
|
Marques IJ, Ernst A, Arora P, Vianin A, Hetke T, Sanz-Morejón A, Naumann U, Odriozola A, Langa X, Andrés-Delgado L, Zuber B, Torroja C, Osterwalder M, Simões FC, Englert C, Mercader N. Wt1 transcription factor impairs cardiomyocyte specification and drives a phenotypic switch from myocardium to epicardium. Development 2022; 149:274789. [DOI: 10.1242/dev.200375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
During development, the heart grows by addition of progenitor cells to the poles of the primordial heart tube. In the zebrafish, Wilms tumor 1 transcription factor a (wt1a) and b (wt1b) genes are expressed in the pericardium, at the venous pole of the heart. From this pericardial layer, the proepicardium emerges. Proepicardial cells are subsequently transferred to the myocardial surface and form the epicardium, covering the myocardium. We found that while wt1a and wt1b expression is maintained in proepicardial cells, it is downregulated in pericardial cells that contribute cardiomyocytes to the developing heart. Sustained wt1b expression in cardiomyocytes reduced chromatin accessibility of specific genomic loci. Strikingly, a subset of wt1a- and wt1b-expressing cardiomyocytes changed their cell-adhesion properties, delaminated from the myocardium and upregulated epicardial gene expression. Thus, wt1a and wt1b act as a break for cardiomyocyte differentiation, and ectopic wt1a and wt1b expression in cardiomyocytes can lead to their transdifferentiation into epicardial-like cells.
Collapse
Affiliation(s)
- Ines J. Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Andrej Vianin
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Tanja Hetke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Andrés Sanz-Morejón
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Uta Naumann
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
| | - Adolfo Odriozola
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | | | - Benoît Zuber
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Department of Cardiology, Bern University Hospital, 3010 Bern, Switzerland
| | - Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena 07745, Germany
| | - Nadia Mercader
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| |
Collapse
|
26
|
Sacconi L, Silvestri L, Rodríguez EC, Armstrong GA, Pavone FS, Shrier A, Bub G. KHz-rate volumetric voltage imaging of the whole Zebrafish heart. BIOPHYSICAL REPORTS 2022; 2:100046. [PMID: 36425080 PMCID: PMC9680780 DOI: 10.1016/j.bpr.2022.100046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 05/11/2023]
Abstract
Fast volumetric imaging is essential for understanding the function of excitable tissues such as those found in the brain and heart. Measuring cardiac voltage transients in tissue volumes is challenging, especially at the high spatial and temporal resolutions needed to give insight to cardiac function. We introduce a new imaging modality based on simultaneous illumination of multiple planes in the tissue and parallel detection with multiple cameras, avoiding compromises inherent in any scanning approach. The system enables imaging of voltage transients in situ, allowing us, for the first time to our knowledge, to map voltage activity in the whole heart volume at KHz rates. The high spatiotemporal resolution of our method enabled the observation of novel dynamics of electrical propagation through the zebrafish atrioventricular canal.
Collapse
Affiliation(s)
- Leonardo Sacconi
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- Corresponding author
| | - Ludovico Silvestri
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | | | - Gary A.B. Armstrong
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Francesco S. Pavone
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, Canada
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Canada
- Corresponding author
| |
Collapse
|
27
|
Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2022; 179:900-917. [PMID: 33788282 DOI: 10.1111/bph.15473] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Elizabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Rob Wilkinson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Freek van Eeden
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily S Noël
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
28
|
Li X, Yue Y, Zhang Y, Liao Y, Wang Q, Bian Y, Na J, He A. Continuous live imaging reveals a subtle pathological alteration with cell behaviors in congenital heart malformation. FUNDAMENTAL RESEARCH 2022; 2:14-22. [PMID: 38933910 PMCID: PMC11197809 DOI: 10.1016/j.fmre.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
To form fully functional four-chambered structure, mammalian heart development undergoes a transient finger-shaped trabeculae, crucial for efficient contraction and exchange for gas and nutrient. Although its developmental origin and direct relevance to congenital heart disease has been studied extensively, the time-resolved cellular mechanism underlying hypotrabeculation remains elusive. Here, we employed in toto live imaging and reconstructed the holistic cell lineages and cellular behavior landscape of control and hypotrabeculed hearts of mouse embryos from E9.5 for up to 24 h. Compared to control, hypotrabeculation in ErbB2 mutants arose mainly through dual mechanisms: both reduced proliferation of trabecular cardiomyocytes from early cell fate segregation and markedly impaired oriented cell division and migration. Further examination of mosaic mutant hearts confirmed alterations in cellular behaviors in a cell autonomous manner. Thus, our work offers a framework for continuous live imaging and digital cell lineage analysis to better understand subtle pathological alterations in congenital heart disease.
Collapse
Affiliation(s)
- Xin Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhu Yue
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Youdong Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanhui Liao
- School of Software and Microelectronics, Peking University, Beijing 100871, China
| | - Qianhao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yunkun Bian
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Na
- Centre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Baillie JS, Stoyek MR, Quinn TA. Seeing the Light: The Use of Zebrafish for Optogenetic Studies of the Heart. Front Physiol 2021; 12:748570. [PMID: 35002753 PMCID: PMC8733579 DOI: 10.3389/fphys.2021.748570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Optogenetics, involving the optical measurement and manipulation of cellular activity with genetically encoded light-sensitive proteins ("reporters" and "actuators"), is a powerful experimental technique for probing (patho-)physiological function. Originally developed as a tool for neuroscience, it has now been utilized in cardiac research for over a decade, providing novel insight into the electrophysiology of the healthy and diseased heart. Among the pioneering cardiac applications of optogenetic actuators were studies in zebrafish, which first demonstrated their use for precise spatiotemporal control of cardiac activity. Zebrafish were also adopted early as an experimental model for the use of optogenetic reporters, including genetically encoded voltage- and calcium-sensitive indicators. Beyond optogenetic studies, zebrafish are becoming an increasingly important tool for cardiac research, as they combine many of the advantages of integrative and reduced experimental models. The zebrafish has striking genetic and functional cardiac similarities to that of mammals, its genome is fully sequenced and can be modified using standard techniques, it has been used to recapitulate a variety of cardiac diseases, and it allows for high-throughput investigations. For optogenetic studies, zebrafish provide additional advantages, as the whole zebrafish heart can be visualized and interrogated in vivo in the transparent, externally developing embryo, and the relatively small adult heart allows for in situ cell-specific observation and control not possible in mammals. With the advent of increasingly sophisticated fluorescence imaging approaches and methods for spatially-resolved light stimulation in the heart, the zebrafish represents an experimental model with unrealized potential for cardiac optogenetic studies. In this review we summarize the use of zebrafish for optogenetic investigations in the heart, highlighting their specific advantages and limitations, and their potential for future cardiac research.
Collapse
Affiliation(s)
- Jonathan S. Baillie
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
30
|
Mullins MC, Navajas Acedo J, Priya R, Solnica-Krezel L, Wilson SW. The zebrafish issue: 25 years on. Development 2021; 148:dev200343. [PMID: 34913466 PMCID: PMC10656453 DOI: 10.1242/dev.200343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the 1990s, labs on both sides of the Atlantic performed the largest genetic mutagenesis screen at that time using an emerging model organism: the zebrafish. Led by Christiane Nüsslein-Volhard in Tübingen, Germany, and Wolfgang Driever in Boston, USA, these colossal screens culminated in 1996 with the publication of 37 articles in a special issue of Development, which remains the journal's largest issue to this day. To celebrate the anniversary of the zebrafish issue and reflect on the 25 years since its publication, five zebrafish researchers share what the issue means to them, how it has contributed to their career and its impact on the zebrafish community.
Collapse
Affiliation(s)
- Mary C. Mullins
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA
| | | | - Rashmi Priya
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lilianna Solnica-Krezel
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London,London WC1E 6BT, UK
| |
Collapse
|
31
|
Wnt/β-catenin signaling acts cell-autonomously to promote cardiomyocyte regeneration in the zebrafish heart. Dev Biol 2021; 481:226-237. [PMID: 34748730 DOI: 10.1016/j.ydbio.2021.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
Zebrafish can achieve scar-free healing of heart injuries, and robustly replace all cardiomyocytes lost to injury via dedifferentiation and proliferation of mature cardiomyocytes. Previous studies suggested that Wnt/β-catenin signaling is active in the injured zebrafish heart, where it induces fibrosis and prevents cardiomyocyte cell cycling. Here, via targeting the destruction complex of the Wnt/β-catenin pathway with pharmacological and genetic tools, we demonstrate that Wnt/β-catenin activity is required for cardiomyocyte proliferation and dedifferentiation, as well as for maturation of the scar during regeneration. Using cardiomyocyte-specific conditional inhibition of the pathway, we show that Wnt/β-catenin signaling acts cell-autonomously to promote cardiomyocyte proliferation. Our results stand in contrast to previous reports and rather support a model in which Wnt/β-catenin signaling plays a positive role during heart regeneration in zebrafish.
Collapse
|
32
|
Weber M, Huisken J. Multidisciplinarity Is Critical to Unlock the Full Potential of Modern Light Microscopy. Front Cell Dev Biol 2021; 9:739015. [PMID: 34746133 PMCID: PMC8567166 DOI: 10.3389/fcell.2021.739015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael Weber
- Morgridge Institute for Research, Madison, WI, United States
| | | |
Collapse
|
33
|
Bensimon-Brito A, Boezio GLM, Cardeira-da-Silva J, Wietelmann A, Ramkumar S, Lundegaard PR, Helker CSM, Ramadass R, Piesker J, Nauerth A, Mueller C, Stainier DYR. Integration of multiple imaging platforms to uncover cardiovascular defects in adult zebrafish. Cardiovasc Res 2021; 118:2665-2687. [PMID: 34609500 PMCID: PMC9491864 DOI: 10.1093/cvr/cvab310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Mammalian models have been instrumental in investigating adult heart function and human disease. However, electrophysiological differences with human hearts and high costs motivate the need for non-mammalian models. The zebrafish is a well-established genetic model to study cardiovascular development and function; however, analysis of cardiovascular phenotypes in adult specimens is particularly challenging as they are opaque. Methods and results Here, we optimized and combined multiple imaging techniques including echocardiography, magnetic resonance imaging, and micro-computed tomography to identify and analyse cardiovascular phenotypes in adult zebrafish. Using alk5a/tgfbr1a mutants as a case study, we observed morphological and functional cardiovascular defects that were undetected with conventional approaches. Correlation analysis of multiple parameters revealed an association between haemodynamic defects and structural alterations of the heart, as observed clinically. Conclusion We report a new, comprehensive, and sensitive platform to identify otherwise indiscernible cardiovascular phenotypes in adult zebrafish.
Collapse
Affiliation(s)
- Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Giulia L M Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Scientific Service Group MRI and µ-CT, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Srinath Ramkumar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Pia R Lundegaard
- Laboratory for Molecular Cardiology, Department of Cardiology, Vascular, Pulmonary and Infectious Diseases, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| |
Collapse
|
34
|
Chen X, Ping J, Sun Y, Yi C, Liu S, Gong Z, Fei P. Deep-learning on-chip light-sheet microscopy enabling video-rate volumetric imaging of dynamic biological specimens. LAB ON A CHIP 2021; 21:3420-3428. [PMID: 34486609 DOI: 10.1039/d1lc00475a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Volumetric imaging of dynamic signals in a large, moving, and light-scattering specimen is extremely challenging, owing to the requirement on high spatiotemporal resolution and difficulty in obtaining high-contrast signals. Here we report that through combining a microfluidic chip-enabled digital scanning light-sheet illumination strategy with deep-learning based image restoration, we can realize isotropic 3D imaging of a whole crawling Drosophila larva on an ordinary inverted microscope at a single-cell resolution and a high volumetric imaging rate up to 20 Hz. Enabled with high performances even unmet by current standard light-sheet fluorescence microscopes, we in toto record the neural activities during the forward and backward crawling of a 1st instar larva, and successfully correlate the calcium spiking of motor neurons with the locomotion patterns.
Collapse
Affiliation(s)
- Xiaopeng Chen
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Junyu Ping
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | - Chengqiang Yi
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | - Zhefeng Gong
- Zhejiang Lab, Hangzhou, 311121, China.
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Zhejiang Lab, Hangzhou, 311121, China.
| |
Collapse
|
35
|
Zhang G, Yu X, Huang G, Lei D, Tong M. An improved automated zebrafish larva high-throughput imaging system. Comput Biol Med 2021; 136:104702. [PMID: 34352455 DOI: 10.1016/j.compbiomed.2021.104702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022]
Abstract
As a typical multicellular model organism, the zebrafish has been increasingly used in biological research. Despite the efforts to develop automated zebrafish larva imaging systems, existing ones are still defective in terms of reliability and automation. This paper presents an improved zebrafish larva high-throughput imaging system, which makes improvements to the existing designs in the following aspects. Firstly, a single larva extraction strategy is developed to make larva loading more reliable. The aggregated larvae are identified, classified by their numbers and patterns, and separated by the aspiration pipette or water stream. Secondly, the dynamic model of larva motion in the capillary is established and an adaptive robust controller is designed for decelerating the fast-moving larva to ensure the survival rate. Thirdly, rotating the larva to the desired orientation is automated by developing an algorithm to estimate the larva's initial rotation angle. For validating the improved larva imaging system, a real-time heart rate monitoring experiment is conducted as an application example. Experimental results demonstrate that the goals of the improvements have been achieved. With these improvements, the improved zebrafish larva imaging system remarkably reduces human intervention and increases the efficiency and success/survival rates of larva imaging.
Collapse
Affiliation(s)
- Gefei Zhang
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinghu Yu
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China; Ningbo Institute of Intelligent Equipment Technology Co. Ltd., Ningbo, China
| | - Gang Huang
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Dongxu Lei
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Mingsi Tong
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
36
|
Ricci P, Gavryusev V, Müllenbroich C, Turrini L, de Vito G, Silvestri L, Sancataldo G, Pavone FS. Removing striping artifacts in light-sheet fluorescence microscopy: a review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 168:52-65. [PMID: 34274370 DOI: 10.1016/j.pbiomolbio.2021.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
In recent years, light-sheet fluorescence microscopy (LSFM) has found a broad application for imaging of diverse biological samples, ranging from sub-cellular structures to whole animals, both in-vivo and ex-vivo, owing to its many advantages relative to point-scanning methods. By providing the selective illumination of sample single planes, LSFM achieves an intrinsic optical sectioning and direct 2D image acquisition, with low out-of-focus fluorescence background, sample photo-damage and photo-bleaching. On the other hand, such an illumination scheme is prone to light absorption or scattering effects, which lead to uneven illumination and striping artifacts in the images, oriented along the light sheet propagation direction. Several methods have been developed to address this issue, ranging from fully optical solutions to entirely digital post-processing approaches. In this work, we present them, outlining their advantages, performance and limitations.
Collapse
Affiliation(s)
- Pietro Ricci
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
| | - Vladislav Gavryusev
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
| | | | - Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Neuroscience, Psychology, Drug Research and Child Health, Florence, 50139, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino, 50019, Italy
| | - Giuseppe Sancataldo
- University of Palermo, Department of Physics and Chemistry, Palermo, 90128, Italy.
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, 50019, Italy; University of Florence, Department of Physics and Astronomy, Sesto Fiorentino, 50019, Italy; National Institute of Optics, National Research Council, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
37
|
Wang Z, Ding Y, Satta S, Roustaei M, Fei P, Hsiai TK. A hybrid of light-field and light-sheet imaging to study myocardial function and intracardiac blood flow during zebrafish development. PLoS Comput Biol 2021; 17:e1009175. [PMID: 34228702 PMCID: PMC8284633 DOI: 10.1371/journal.pcbi.1009175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/16/2021] [Accepted: 06/11/2021] [Indexed: 01/07/2023] Open
Abstract
Biomechanical forces intimately contribute to cardiac morphogenesis. However, volumetric imaging to investigate the cardiac mechanics with high temporal and spatial resolution remains an imaging challenge. We hereby integrated light-field microscopy (LFM) with light-sheet fluorescence microscopy (LSFM), coupled with a retrospective gating method, to simultaneously access myocardial contraction and intracardiac blood flow at 200 volumes per second. While LSFM allows for the reconstruction of the myocardial function, LFM enables instantaneous acquisition of the intracardiac blood cells traversing across the valves. We further adopted deformable image registration to quantify the ventricular wall displacement and particle tracking velocimetry to monitor intracardiac blood flow. The integration of LFM and LSFM enabled the time-dependent tracking of the individual blood cells and the differential rates of segmental wall displacement during a cardiac cycle. Taken together, we demonstrated a hybrid system, coupled with our image analysis pipeline, to simultaneously capture the myocardial wall motion with intracardiac blood flow during cardiac development. During the conception of the heart, cardiac muscular contraction and blood flow generate biomechanical forces to influence the functional and structural development. To elucidate the underlying biomechanical mechanisms, we have embraced the zebrafish system for the ease of genetic and pharmacological manipulations and its rapidity for organ development. However, acquiring the dynamic processes (space + time domain) in the small beating zebrafish heart remains a challenge. In the presence of a rapid heartbeat, microscopy is confined by temporal resolution to image the cardiac contraction and blood flow. In this context, we demonstrated an integrated light-sheet and light-field imaging system to visualize cardiac contraction along with the flowing blood cells inside the cardiac chambers. Assuming the periodicity of the cardiac cycle, we synchronized the image data in post-processing for 3-D reconstruction. We further quantified the velocity of the various regions of cardiac muscular contraction, and tracked the individual blood cells during the cardiac cycles. The time-dependent velocity maps allow for uncovering differential segments of cardiac contraction and relaxation, and for revealing the patterns of blood flow. Thus, our integrated light-sheet and light-field imaging system provides an experimental basis to further investigate cardiac function and development.
Collapse
Affiliation(s)
- Zhaoqiang Wang
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Yichen Ding
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, United States of America
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, United States of America
| | - Mehrdad Roustaei
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (PF); (TKH)
| | - Tzung K. Hsiai
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, California, United States of America
- * E-mail: (PF); (TKH)
| |
Collapse
|
38
|
Chang BJ, Manton JD, Sapoznik E, Pohlkamp T, Terrones TS, Welf ES, Murali VS, Roudot P, Hake K, Whitehead L, York AG, Dean KM, Fiolka R. Real-time multi-angle projection imaging of biological dynamics. Nat Methods 2021; 18:829-834. [PMID: 34183831 PMCID: PMC9206531 DOI: 10.1038/s41592-021-01175-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/05/2021] [Indexed: 02/03/2023]
Abstract
We introduce a cost-effective and easily implementable scan unit that converts any camera-based microscope with optical sectioning capability into a multi-angle projection imaging system. Projection imaging reduces data overhead and accelerates imaging by a factor of >100, while also allowing users to readily view biological phenomena of interest from multiple perspectives on the fly. By rapidly interrogating the sample from just two perspectives, our method also enables real-time stereoscopic imaging and three-dimensional particle localization. We demonstrate projection imaging with spinning disk confocal, lattice light-sheet, multidirectional illumination light-sheet and oblique plane microscopes on specimens that range from organelles in single cells to the vasculature of a zebrafish embryo. Furthermore, we leverage our projection method to rapidly image cancer cell morphodynamics and calcium signaling in cultured neurons at rates up to 119 Hz as well as to simultaneously image orthogonal views of a beating embryonic zebrafish heart.
Collapse
Affiliation(s)
- Bo-Jui Chang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Etai Sapoznik
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tamara S Terrones
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Erik S Welf
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vasanth S Murali
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kayley Hake
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Lachlan Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew G York
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
39
|
Gentile A, Bensimon-Brito A, Priya R, Maischein HM, Piesker J, Guenther S, Gunawan F, Stainier DYR. The EMT transcription factor Snai1 maintains myocardial wall integrity by repressing intermediate filament gene expression. eLife 2021; 10:e66143. [PMID: 34152269 PMCID: PMC8216718 DOI: 10.7554/elife.66143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
The transcription factor Snai1, a well-known regulator of epithelial-to-mesenchymal transition, has been implicated in early cardiac morphogenesis as well as in cardiac valve formation. However, a role for Snai1 in regulating other aspects of cardiac morphogenesis has not been reported. Using genetic, transcriptomic, and chimeric analyses in zebrafish, we find that Snai1b is required in cardiomyocytes for myocardial wall integrity. Loss of snai1b increases the frequency of cardiomyocyte extrusion away from the cardiac lumen. Extruding cardiomyocytes exhibit increased actomyosin contractility basally as revealed by enrichment of p-myosin and α-catenin epitope α-18, as well as disrupted intercellular junctions. Transcriptomic analysis of wild-type and snai1b mutant hearts revealed the dysregulation of intermediate filament genes, including desmin b (desmb) upregulation. Cardiomyocyte-specific desmb overexpression caused increased cardiomyocyte extrusion, recapitulating the snai1b mutant phenotype. Altogether, these results indicate that Snai1 maintains the integrity of the myocardial epithelium, at least in part by repressing desmb expression.
Collapse
Affiliation(s)
- Alessandra Gentile
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
| | - Anabela Bensimon-Brito
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Rashmi Priya
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Hans-Martin Maischein
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
| | - Janett Piesker
- Max Planck Institute for Heart and Lung Research, Microscopy Service GroupBad NauheimGermany
| | - Stefan Guenther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
- Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing PlatformBad NauheimGermany
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| | - Didier YR Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental GeneticsBad NauheimGermany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-MainBad NauheimGermany
| |
Collapse
|
40
|
Zhang B, Pas KE, Ijaseun T, Cao H, Fei P, Lee J. Automatic Segmentation and Cardiac Mechanics Analysis of Evolving Zebrafish Using Deep Learning. Front Cardiovasc Med 2021; 8:675291. [PMID: 34179138 PMCID: PMC8221393 DOI: 10.3389/fcvm.2021.675291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background: In the study of early cardiac development, it is essential to acquire accurate volume changes of the heart chambers. Although advanced imaging techniques, such as light-sheet fluorescent microscopy (LSFM), provide an accurate procedure for analyzing the heart structure, rapid, and robust segmentation is required to reduce laborious time and accurately quantify developmental cardiac mechanics. Methods: The traditional biomedical analysis involving segmentation of the intracardiac volume occurs manually, presenting bottlenecks due to enormous data volume at high axial resolution. Our advanced deep-learning techniques provide a robust method to segment the volume within a few minutes. Our U-net-based segmentation adopted manually segmented intracardiac volume changes as training data and automatically produced the other LSFM zebrafish cardiac motion images. Results: Three cardiac cycles from 2 to 5 days postfertilization (dpf) were successfully segmented by our U-net-based network providing volume changes over time. In addition to understanding each of the two chambers' cardiac function, the ventricle and atrium were separated by 3D erode morphology methods. Therefore, cardiac mechanical properties were measured rapidly and demonstrated incremental volume changes of both chambers separately. Interestingly, stroke volume (SV) remains similar in the atrium while that of the ventricle increases SV gradually. Conclusion: Our U-net-based segmentation provides a delicate method to segment the intricate inner volume of the zebrafish heart during development, thus providing an accurate, robust, and efficient algorithm to accelerate cardiac research by bypassing the labor-intensive task as well as improving the consistency in the results.
Collapse
Affiliation(s)
- Bohan Zhang
- Joint Department of Bioengineering, University of Texas (UT) Arlington/(UT) Southwestern, Arlington, TX, United States.,School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Kristofor E Pas
- Joint Department of Bioengineering, University of Texas (UT) Arlington/(UT) Southwestern, Arlington, TX, United States
| | - Toluwani Ijaseun
- Joint Department of Bioengineering, University of Texas (UT) Arlington/(UT) Southwestern, Arlington, TX, United States
| | - Hung Cao
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Juhyun Lee
- Joint Department of Bioengineering, University of Texas (UT) Arlington/(UT) Southwestern, Arlington, TX, United States.,Department of Medical Education, Texas Christian University (TCU) and University of North Texas Health Science Center (UNTHSC) School of Medicine, Fort Worth, TX, United States
| |
Collapse
|
41
|
Rödel CJ, Abdelilah-Seyfried S. A zebrafish toolbox for biomechanical signaling in cardiovascular development and disease. Curr Opin Hematol 2021; 28:198-207. [PMID: 33714969 DOI: 10.1097/moh.0000000000000648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The zebrafish embryo has emerged as a powerful model organism to investigate the mechanisms by which biophysical forces regulate vascular and cardiac cell biology during development and disease. A versatile arsenal of methods and tools is available to manipulate and analyze biomechanical signaling. This review aims to provide an overview of the experimental strategies and tools that have been utilized to study biomechanical signaling in cardiovascular developmental processes and different vascular disease models in the zebrafish embryo. Within the scope of this review, we focus on work published during the last two years. RECENT FINDINGS Genetic and pharmacological tools for the manipulation of cardiac function allow alterations of hemodynamic flow patterns in the zebrafish embryo and various types of transgenic lines are available to report endothelial cell responses to biophysical forces. These tools have not only revealed the impact of biophysical forces on cardiovascular development but also helped to establish more accurate models for cardiovascular diseases including cerebral cavernous malformations, hereditary hemorrhagic telangiectasias, arteriovenous malformations, and lymphangiopathies. SUMMARY The zebrafish embryo is a valuable vertebrate model in which in-vivo manipulations of biophysical forces due to cardiac contractility and blood flow can be performed. These analyses give important insights into biomechanical signaling pathways that control endothelial and endocardial cell behaviors. The technical advances using this vertebrate model will advance our understanding of the impact of biophysical forces in cardiovascular pathologies.
Collapse
Affiliation(s)
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Wang Z, Zhu L, Zhang H, Li G, Yi C, Li Y, Yang Y, Ding Y, Zhen M, Gao S, Hsiai TK, Fei P. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nat Methods 2021; 18:551-556. [PMID: 33574612 PMCID: PMC8107123 DOI: 10.1038/s41592-021-01058-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/26/2020] [Accepted: 01/06/2021] [Indexed: 01/20/2023]
Abstract
Light-field microscopy has emerged as a technique of choice for high-speed volumetric imaging of fast biological processes. However, artifacts, nonuniform resolution and a slow reconstruction speed have limited its full capabilities for in toto extraction of dynamic spatiotemporal patterns in samples. Here, we combined a view-channel-depth (VCD) neural network with light-field microscopy to mitigate these limitations, yielding artifact-free three-dimensional image sequences with uniform spatial resolution and high-video-rate reconstruction throughput. We imaged neuronal activities across moving Caenorhabditis elegans and blood flow in a beating zebrafish heart at single-cell resolution with volumetric imaging rates up to 200 Hz.
Collapse
Affiliation(s)
- Zhaoqiang Wang
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lanxin Zhu
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Li
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Chengqiang Yi
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Li
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yicong Yang
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Ding
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Tzung K Hsiai
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA.
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA.
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
Chen C, Gu Y, Philippe J, Zhang P, Bachman H, Zhang J, Mai J, Rufo J, Rawls JF, Davis EE, Katsanis N, Huang TJ. Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nat Commun 2021; 12:1118. [PMID: 33602914 PMCID: PMC7892888 DOI: 10.1038/s41467-021-21373-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Modern biomedical research and preclinical pharmaceutical development rely heavily on the phenotyping of small vertebrate models for various diseases prior to human testing. In this article, we demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae. This enables multispectral imaging of the zebrafish body and internal organs from different viewing perspectives. Moreover, we develop a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation of basic morphological characteristics and advanced combinations of metrics. With its contactless nature and advantages in speed and automation, our acoustofluidic rotational tweezing system has the potential to be a valuable asset in numerous fields, especially for developmental biology, small molecule screening in biochemistry, and pre-clinical drug development in pharmacology.
Collapse
Affiliation(s)
- Chuyi Chen
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Julien Philippe
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Jinxin Zhang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA.
| |
Collapse
|
44
|
Ding Y, Gudapati V, Lin R, Fei Y, Sevag Packard RR, Song S, Chang CC, Baek KI, Wang Z, Roustaei M, Kuang D, Jay Kuo CC, Hsiai TK. Saak Transform-Based Machine Learning for Light-Sheet Imaging of Cardiac Trabeculation. IEEE Trans Biomed Eng 2021; 68:225-235. [PMID: 32365015 PMCID: PMC7606319 DOI: 10.1109/tbme.2020.2991754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Recent advances in light-sheet fluorescence microscopy (LSFM) enable 3-dimensional (3-D) imaging of cardiac architecture and mechanics in toto. However, segmentation of the cardiac trabecular network to quantify cardiac injury remains a challenge. METHODS We hereby employed "subspace approximation with augmented kernels (Saak) transform" for accurate and efficient quantification of the light-sheet image stacks following chemotherapy-treatment. We established a machine learning framework with augmented kernels based on the Karhunen-Loeve Transform (KLT) to preserve linearity and reversibility of rectification. RESULTS The Saak transform-based machine learning enhances computational efficiency and obviates iterative optimization of cost function needed for neural networks, minimizing the number of training datasets for segmentation in our scenario. The integration of forward and inverse Saak transforms can also serve as a light-weight module to filter adversarial perturbations and reconstruct estimated images, salvaging robustness of existing classification methods. The accuracy and robustness of the Saak transform are evident following the tests of dice similarity coefficients and various adversary perturbation algorithms, respectively. The addition of edge detection further allows for quantifying the surface area to volume ratio (SVR) of the myocardium in response to chemotherapy-induced cardiac remodeling. CONCLUSION The combination of Saak transform, random forest, and edge detection augments segmentation efficiency by 20-fold as compared to manual processing. SIGNIFICANCE This new methodology establishes a robust framework for post light-sheet imaging processing, and creating a data-driven machine learning for automated quantification of cardiac ultra-structure.
Collapse
Affiliation(s)
- Yichen Ding
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Varun Gudapati
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Ruiyuan Lin
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Yanan Fei
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - René R Sevag Packard
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Sibo Song
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Chih-Chiang Chang
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Kyung In Baek
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Zhaoqiang Wang
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Mehrdad Roustaei
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Dengfeng Kuang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, and Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - C.-C. Jay Kuo
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Tzung K. Hsiai
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
45
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|
46
|
Zhao F, Zhu L, Fang C, Yu T, Zhu D, Fei P. Deep-learning super-resolution light-sheet add-on microscopy (Deep-SLAM) for easy isotropic volumetric imaging of large biological specimens. BIOMEDICAL OPTICS EXPRESS 2020; 11:7273-7285. [PMID: 33408995 PMCID: PMC7747920 DOI: 10.1364/boe.409732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Isotropic 3D histological imaging of large biological specimens is highly desired but remains highly challenging to current fluorescence microscopy technique. Here we present a new method, termed deep-learning super-resolution light-sheet add-on microscopy (Deep-SLAM), to enable fast, isotropic light-sheet fluorescence imaging on a conventional wide-field microscope. After integrating a minimized add-on device that transforms an inverted microscope into a 3D light-sheet microscope, we further integrate a deep neural network (DNN) procedure to quickly restore the ambiguous z-reconstructed planes that suffer from still insufficient axial resolution of light-sheet illumination, thereby achieving isotropic 3D imaging of thick biological specimens at single-cell resolution. We apply this easy and cost-effective Deep-SLAM approach to the anatomical imaging of single neurons in a meso-scale mouse brain, demonstrating its potential for readily converting commonly-used commercialized 2D microscopes to high-throughput 3D imaging, which is previously exclusive for high-end microscopy implementations.
Collapse
Affiliation(s)
- Fang Zhao
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contribute equally to this work
| | - Lanxin Zhu
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contribute equally to this work
| | - Chunyu Fang
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tingting Yu
- Britton Chance center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Zhu
- Britton Chance center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Fei
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
47
|
Tension heterogeneity directs form and fate to pattern the myocardial wall. Nature 2020; 588:130-134. [PMID: 33208950 DOI: 10.1038/s41586-020-2946-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
How diverse cell fates and complex forms emerge and feed back to each other to sculpt functional organs remains unclear. In the developing heart, the myocardium transitions from a simple epithelium to an intricate tissue that consists of distinct layers: the outer compact and inner trabecular layers. Defects in this process, which is known as cardiac trabeculation, cause cardiomyopathies and embryonic lethality, yet how tissue symmetry is broken to specify trabecular cardiomyocytes is unknown. Here we show that local tension heterogeneity drives organ-scale patterning and cell-fate decisions during cardiac trabeculation in zebrafish. Proliferation-induced cellular crowding at the tissue scale triggers tension heterogeneity among cardiomyocytes of the compact layer and drives those with higher contractility to delaminate and seed the trabecular layer. Experimentally, increasing crowding within the compact layer cardiomyocytes augments delamination, whereas decreasing it abrogates delamination. Using genetic mosaics in trabeculation-deficient zebrafish models-that is, in the absence of critical upstream signals such as Nrg-Erbb2 or blood flow-we find that inducing actomyosin contractility rescues cardiomyocyte delamination and is sufficient to drive cardiomyocyte fate specification, as assessed by Notch reporter expression in compact layer cardiomyocytes. Furthermore, Notch signalling perturbs the actomyosin machinery in cardiomyocytes to restrict excessive delamination, thereby preserving the architecture of the myocardial wall. Thus, tissue-scale forces converge on local cellular mechanics to generate complex forms and modulate cell-fate choices, and these multiscale regulatory interactions ensure robust self-organized organ patterning.
Collapse
|
48
|
Apaydin DC, Jaramillo PAM, Corradi L, Cosco F, Rathjen FG, Kammertoens T, Filosa A, Sawamiphak S. Early-Life Stress Regulates Cardiac Development through an IL-4-Glucocorticoid Signaling Balance. Cell Rep 2020; 33:108404. [PMID: 33207196 DOI: 10.1016/j.celrep.2020.108404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/27/2020] [Indexed: 01/06/2023] Open
Abstract
Stressful experiences early in life can increase the risk of cardiovascular diseases. However, it remains largely unknown how stress influences susceptibility to the disease onset. Here, we show that exposure to brain-processed stress disrupts myocardial growth by reducing cardiomyocyte mitotic activity. Activation of the glucocorticoid receptor (GR), the primary stress response pathway, reduces cardiomyocyte numbers, disrupts trabecular formation, and leads to contractile dysfunction of the developing myocardium. However, a physiological level of GR signaling is required to prevent cardiomyocyte hyperproliferation. Mechanistically, we identify an antagonistic interaction between the GR and the cytokine interleukin-4 (IL-4) as a key player in cardiac development. IL-4 signals transcription of key regulators of cell-cycle progression in cardiomyocytes via signal transducer and activator of transcription 3 (Stat3). GR, on the contrary, inhibits this signaling system. Thus, our findings uncover an interplay between stress and immune signaling pathways critical to orchestrating physiological growth of the heart.
Collapse
Affiliation(s)
- Dilem C Apaydin
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13092 Berlin, Germany
| | | | - Laura Corradi
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13092 Berlin, Germany
| | - Francesca Cosco
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13092 Berlin, Germany
| | - Fritz G Rathjen
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13092 Berlin, Germany
| | - Thomas Kammertoens
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13092 Berlin, Germany; Institute of Immunology, Charité Campus Berlin Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Alessandro Filosa
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13092 Berlin, Germany
| | - Suphansa Sawamiphak
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13092 Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
49
|
Schuler J, Neuendorf LM, Petersen K, Kockmann N. Micro‐computed
tomography for the
3D time‐resolved
investigation of monodisperse droplet generation in a
co‐flow
setup. AIChE J 2020. [DOI: 10.1002/aic.17111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Julia Schuler
- Laboratory of Equipment Design, Department of Biochemical and Chemical Engineering TU Dortmund University Dortmund Germany
| | - Laura Maria Neuendorf
- Laboratory of Equipment Design, Department of Biochemical and Chemical Engineering TU Dortmund University Dortmund Germany
| | - Kai Petersen
- Laboratory of Equipment Design, Department of Biochemical and Chemical Engineering TU Dortmund University Dortmund Germany
| | - Norbert Kockmann
- Laboratory of Equipment Design, Department of Biochemical and Chemical Engineering TU Dortmund University Dortmund Germany
| |
Collapse
|
50
|
Kaveh A, Bruton FA, Buckley C, Oremek MEM, Tucker CS, Mullins JJ, Taylor JM, Rossi AG, Denvir MA. Live Imaging of Heart Injury in Larval Zebrafish Reveals a Multi-Stage Model of Neutrophil and Macrophage Migration. Front Cell Dev Biol 2020; 8:579943. [PMID: 33195220 PMCID: PMC7604347 DOI: 10.3389/fcell.2020.579943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/11/2020] [Indexed: 01/11/2023] Open
Abstract
Neutrophils and macrophages are crucial effectors and modulators of repair and regeneration following myocardial infarction, but they cannot be easily observed in vivo in mammalian models. Hence many studies have utilized larval zebrafish injury models to examine neutrophils and macrophages in their tissue of interest. However, to date the migratory patterns and ontogeny of these recruited cells is unknown. In this study, we address this need by comparing our larval zebrafish model of cardiac injury to the archetypal tail fin injury model. Our in vivo imaging allowed comprehensive mapping of neutrophil and macrophage migration from primary hematopoietic sites, to the wound. Early following injury there is an acute phase of neutrophil recruitment that is followed by sustained macrophage recruitment. Both cell types are initially recruited locally and subsequently from distal sites, primarily the caudal hematopoietic tissue (CHT). Once liberated from the CHT, some neutrophils and macrophages enter circulation, but most use abluminal vascular endothelium to crawl through the larva. In both injury models the innate immune response resolves by reverse migration, with very little apoptosis or efferocytosis of neutrophils. Furthermore, our in vivo imaging led to the finding of a novel wound responsive mpeg1+ neutrophil subset, highlighting previously unrecognized heterogeneity in neutrophils. Our study provides a detailed analysis of the modes of immune cell migration in larval zebrafish, paving the way for future studies examining tissue injury and inflammation.
Collapse
Affiliation(s)
- Aryan Kaveh
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Finnius A. Bruton
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlotte Buckley
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Magdalena E. M. Oremek
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Carl S. Tucker
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - John J. Mullins
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Adriano G. Rossi
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin A. Denvir
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|