1
|
Fraiman A, Ziegler LD. Ultra-rapid, quantitative, label-free antibiotic susceptibility testing via optically detected purine metabolites. Talanta 2025; 292:127907. [PMID: 40090249 DOI: 10.1016/j.talanta.2025.127907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
In order to facilitate the best antimicrobial prescribing practices and to help reduce the increasing global threat of antibiotic resistance, there is an urgent need for the development of novel and truly rapid (≤1 h) antibiotic susceptibility testing (AST) platforms. A 785 nm surface enhanced Raman spectroscopy (SERS) based phenotypic methodology is described that results in accurate minimum inhibitory concentration (MIC) determinations for all tested strain/antibiotic pairs. The SERS-AST procedure results in accurate MICs in ∼1 h, including a 30-min incubation period, and is effective for both Gram positive and negative species, and for antibiotics with different initial primary targets of antibiotic activity, and for both bactericidal and bacteriostatic antibiotics. The molecular level mechanism of this methodology is described. Bacterial SERS spectra are due to secreted purine nucleotide degradation products (principally adenine, guanine, xanthine and hypoxanthine) resulting from water washing induced bacterial stringent response and the resulting (p)ppGpp alarmone mediates nucleobase formation from unneeded tRNA and rRNA. The rewiring of metabolic responses resulting from the secondary metabolic effects of antibiotic exposure during the 30-min incubation period accounts for the dose dependence of the SERS spectral intensities which are used to accurately yield the MIC. This is the fastest demonstrated AST method yielding MICs.
Collapse
Affiliation(s)
- A Fraiman
- Department of Chemistry and the Photonics Center, Boston University, Boston, MA, 02215, USA
| | - L D Ziegler
- Department of Chemistry and the Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Morita K, Hatano A, Kokaji T, Sugimoto H, Tsuchiya T, Ozaki H, Egami R, Li D, Terakawa A, Ohno S, Inoue H, Inaba Y, Suzuki Y, Matsumoto M, Takahashi M, Izumi Y, Bamba T, Hirayama A, Soga T, Kuroda S. Structural robustness and temporal vulnerability of the starvation-responsive metabolic network in healthy and obese mouse liver. Sci Signal 2025; 18:eads2547. [PMID: 40261956 DOI: 10.1126/scisignal.ads2547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/13/2024] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
Adaptation to starvation is a multimolecular and temporally ordered process. We sought to elucidate how the healthy liver regulates various molecules in a temporally ordered manner during starvation and how obesity disrupts this process. We used multiomic data collected from the plasma and livers of wild-type and leptin-deficient obese (ob/ob) mice at multiple time points during starvation to construct a starvation-responsive metabolic network that included responsive molecules and their regulatory relationships. Analysis of the network structure showed that in wild-type mice, the key molecules for energy homeostasis, ATP and AMP, acted as hub molecules to regulate various metabolic reactions in the network. Although neither ATP nor AMP was responsive to starvation in ob/ob mice, the structural properties of the network were maintained. In wild-type mice, the molecules in the network were temporally ordered through metabolic processes coordinated by hub molecules, including ATP and AMP, and were positively or negatively coregulated. By contrast, both temporal order and coregulation were disrupted in ob/ob mice. These results suggest that the metabolic network that responds to starvation was structurally robust but temporally disrupted by the obesity-associated loss of responsiveness of the hub molecules. In addition, we propose how obesity alters the response to intermittent fasting.
Collapse
Affiliation(s)
- Keigo Morita
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Atsushi Hatano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045 Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hikaru Sugimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Takaho Tsuchiya
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Riku Egami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Akira Terakawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Department of AI Systems Medicine, M&D Data Science Center, Institute of Integrated Research, Institute of Science Tokyo, Tokyo 113-8510, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 108-8345, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
3
|
Sedighikamal H, Mashayekhan S. Critical assessment of quenching and extraction/sample preparation methods for microorganisms in metabolomics. Metabolomics 2025; 21:40. [PMID: 40082321 DOI: 10.1007/s11306-025-02228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/29/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Advancements in the research of intracellular metabolome have the potential to affect our understanding of biological processes. The applications and findings of intracellular metabolome analysis are useful in understanding cellular pathways, microbial interactions, and the detection of secreted metabolites and their functions. AIM OF REVIEW This work focuses on the analysis of intracellular metabolomes in microorganisms. The techniques used for analyzing the intracellular metabolomes including metabolomics approaches such as mass spectrometry, nuclear magnetic resonance, liquid chromatography, and gas chromatography are discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW Challenges such as sample preparation, data analysis, metabolite extraction, sample storage and collection, and processing techniques were investigated, as they can highlight emerging technologies and advancements in metabolome analysis, future applications in drug discovery, personalized medicine, systems biology, and the limitations and challenges in studying the metabolome of microorganisms.
Collapse
Affiliation(s)
- Hossein Sedighikamal
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, PO Box: 11365-11155, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, PO Box: 11365-11155, Tehran, Iran.
| |
Collapse
|
4
|
Jin Y, Chen J, Xie W, Zhang J, Yan J, Chen C, Lin J, Cai Z, Lin Z. Gold-Modified Covalent Organic Frameworks-Assisted Laser Desorption/Ionization Mass Spectrometry for Analysis of Metabolites Induced by Triclosan Exposure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7056-7065. [PMID: 39818740 DOI: 10.1021/acsami.4c16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) holds great promise for the rapid and sensitive detection of biomolecules, but its precise detection of small molecule metabolites is hindered by severe background interference from the organic matrix in the low molecular weight range. To address this issue, nanomaterials have commonly been utilized as substrates in LDI-MS. Among them, covalent organic frameworks (COFs), known for their unique optical absorption and structural properties, have garnered significant attention. Despite these advantages, their low ionization efficiency remains a challenge. Herein, a composite material of COF-S@Au nanoparticles (NPs), by incorporating Au NPs into a sulfur-functionalized COF (COF-S) through postsynthetic modification, was designed and adopted as substrates. This hybrid material leverages the synergistic effects of COF-S and Au NPs to improve the desorption/ionization efficiency and minimize background interference. The COF-S@Au NPs demonstrated a 5-16-fold improvement in MS signals of small biomolecules along with a clean background and excellent resistance to salt and protein interference. Their corresponding limits of detection (LODs) were achieved at ∼pmol. Furthermore, the COF-S@Au NPs were applied to analyze metabolites in a triclosan (TCS)-exposed mouse model, successfully identifying 10 differential metabolites associated with TCS toxicity. This work provides a foundation for developing advanced LDI-MS materials for high-performance metabolic analysis and offers valuable insights into TCS metabolic toxicity with potential applications in environmental toxicology.
Collapse
Affiliation(s)
- Yingxue Jin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiajing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wen Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinni Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingjing Yan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Canrong Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiashi Lin
- College of Physical Education, Jimei University, Xiamen, Fujian 361021, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR 999077, P. R. China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
5
|
Knapp BD, Willis L, Gonzalez C, Vashistha H, Jammal-Touma J, Tikhonov M, Ram J, Salman H, Elias JE, Huang KC. Metabolic rearrangement enables adaptation of microbial growth rate to temperature shifts. Nat Microbiol 2025; 10:185-201. [PMID: 39672961 DOI: 10.1038/s41564-024-01841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/26/2024] [Indexed: 12/15/2024]
Abstract
Temperature is a key determinant of microbial behaviour and survival in the environment and within hosts. At intermediate temperatures, growth rate varies according to the Arrhenius law of thermodynamics, which describes the effect of temperature on the rate of a chemical reaction. However, the mechanistic basis for this behaviour remains unclear. Here we use single-cell microscopy to show that Escherichia coli exhibits a gradual response to temperature upshifts with a timescale of ~1.5 doublings at the higher temperature. The response was largely independent of initial or final temperature and nutrient source. Proteomic and genomic approaches demonstrated that adaptation to temperature is independent of transcriptional, translational or membrane fluidity changes. Instead, an autocatalytic enzyme network model incorporating temperature-sensitive Michaelis-Menten kinetics recapitulates all temperature-shift dynamics through metabolome rearrangement, resulting in a transient temperature memory. The model successfully predicts alterations in the temperature response across nutrient conditions, diverse E. coli strains from hosts with different body temperatures, soil-dwelling Bacillus subtilis and fission yeast. In sum, our model provides a mechanistic framework for Arrhenius-dependent growth.
Collapse
Affiliation(s)
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Carlos Gonzalez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Jammal-Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St Louis, St Louis, MO, USA
| | - Jeffrey Ram
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Pahl V, Lubrano P, Troßmann F, Petras D, Link H. Intact protein barcoding enables one-shot identification of CRISPRi strains and their metabolic state. CELL REPORTS METHODS 2024; 4:100908. [PMID: 39603242 PMCID: PMC11704613 DOI: 10.1016/j.crmeth.2024.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Detecting strain-specific barcodes with mass spectrometry can facilitate the screening of genetically engineered bacterial libraries. Here, we introduce intact protein barcoding, a method to measure protein-based library barcodes and metabolites using flow injection mass spectrometry (FI-MS). Protein barcodes are based on ubiquitin with N-terminal tags of six amino acids. We demonstrate that FI-MS detects intact ubiquitin proteins and identifies the mass of N-terminal barcodes. In the same analysis, we measured relative concentrations of primary metabolites. We constructed six ubiquitin-barcoded CRISPR interference (CRISPRi) strains targeting metabolic enzymes and analyzed their metabolic profiles and ubiquitin barcodes. FI-MS detected barcodes and distinct metabolome changes in CRISPRi-targeted pathways. We demonstrate the scalability of intact protein barcoding by measuring 132 ubiquitin barcodes in microtiter plates. These results show that intact protein barcoding enables fast and simultaneous detection of library barcodes and intracellular metabolites, opening up new possibilities for mass spectrometry-based barcoding.
Collapse
Affiliation(s)
- Vanessa Pahl
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076 Tübingen, Germany
| | - Paul Lubrano
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076 Tübingen, Germany; M3 Research Center, University of Tübingen, 72076 Tübingen, Germany
| | - Felicia Troßmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076 Tübingen, Germany; M3 Research Center, University of Tübingen, 72076 Tübingen, Germany
| | - Daniel Petras
- Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076 Tübingen, Germany; Department of Biochemistry, University of California, Riverside, 169 Aberdeen Dr., Riverside, CA 92507, USA
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 24, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections", University of Tübingen, 72076 Tübingen, Germany; M3 Research Center, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
7
|
Zhang YJ, Wang XX, Zeng LJ, Ka-Yam LAM, Dai QY, Chen Y, Chen J, Guo Y, Cai Z. Rewiring the nexus between urban traffic pollution-derived polycyclic aromatic hydrocarbon exposure and DNA injury via urinary metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125188. [PMID: 39486674 DOI: 10.1016/j.envpol.2024.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Urban road traffic environmental stress impacts outdoor population health, with oxidative damage serving as an early indicator of xenobiotic exposure. Polycyclic aromatic hydrocarbons (PAHs) as priority carcinogens pose significant public health burden, yet knowledge remains limited regarding the endogenous metabolic alternations associated with oxidative DNA injury. This cross-sectional study focused on the cohort consisting of 109 sanitation workers ("traffic exposure group") and 112 demographics-matched common residents ("controls") in South China. The goal was to elucidate the occurrence of internal exposure to nine hydroxyl PAHs, and the interrelations with oxidative DNA damage (indicated by 8-hydroxy-2'-deoxyguanosine, 8-OHdG) by linear mixed-effect regression model. T-test and orthogonal partial least squares discriminant analysis were used to determine differential metabolites in non-targeted metabolomics. Results revealed outdoor workers suffered from the heavier PAH exposure burden and exhibited a stronger dose-dependent correlation with 8-OHdG, evidenced by the higher regression coefficient (0.244, 95% CI: 0.154-0.334) than controls (0.203, 95% CI: 0.079-0.328). In total 42 differential endogenous metabolites witnessed significant expression under traffic emission scenario, mainly implicated in phenylalanine, tyrosine and tryptophan biosynthesis. The down-expressed uric acid was the unique metabolite that inversely correlated with the increased intake of ∑8PAH especially in cases. Partially attributed to the traffic-derived PAHs, the dysregulated amino acid, nicotinamide, purine, and steroid hormones metabolic pathways encompassing 11 metabolites were determined as underlying biomarkers in mediating DNA damage. Notably, our findings proposed uric acid may act as a potential antioxidant, as evidenced by the negative correlation with 8-OHdG. The study illustrates outcomes of metabolomics can collaboratively indicate DNA oxidative damage caused by PAHs linked to urban traffic exposure, which holds significant implications for future toxicological research.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiao-Xiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Li-Juan Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - L A M Ka-Yam
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Qing-Yuan Dai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yi Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Jian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
8
|
Ross TD, Klausmeier CA, Venturelli OS. Metabolic interplay drives population cycles in a cross-feeding microbial community. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618235. [PMID: 39463925 PMCID: PMC11507797 DOI: 10.1101/2024.10.14.618235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Population cycles are prevalent in ecosystems and play key roles in determining their functions1,2. While multiple mechanisms have been theoretically shown to generate population cycles3-6, there are limited examples of mutualisms driving self-sustained oscillations. Using an engineered microbial community that cross-feeds essential amino acids, we experimentally demonstrate cycles in strain abundance that are robust across environmental conditions. A nonlinear dynamical model that incorporates the experimentally observed cross-inhibition of amino acid production recapitulates the population cycles. The model shows that the cycles represent internally generated relaxation oscillations, which emerge when fast resource dynamics with positive feedback drive slow changes in strain abundance. Our findings highlight the critical role of resource dynamics and feedback in shaping population cycles in microbial communities and have implications for biotechnology.
Collapse
Affiliation(s)
- Tyler D. Ross
- Department of Biomedical Engineering, University of Wisconsin-Madison; Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison; Madison, WI 53706, USA
| | - Christopher A. Klausmeier
- W. K. Kellogg Biological Station, Michigan State University; Hickory Corners, MI 49060, USA
- Program in Ecology, Evolution and Behavior, Michigan State University; East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University; East Lansing, MI 48824, USA
- Department of Integrative Biology, Michigan State University; East Lansing, MI 48824, USA
| | - Ophelia S. Venturelli
- Department of Biomedical Engineering, University of Wisconsin-Madison; Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison; Madison, WI 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison; Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison; Madison, WI 53706, USA
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| |
Collapse
|
9
|
Chien JY, Gu YC, Chien CC, Chang CL, Cheng HW, Chiu SWY, Nee YJ, Tsai HM, Chu FY, Tang HF, Wang YL, Lin CH. Unraveling RNA contribution to the molecular origins of bacterial surface-enhanced Raman spectroscopy (SERS) signals. Sci Rep 2024; 14:19505. [PMID: 39174714 PMCID: PMC11341899 DOI: 10.1038/s41598-024-70274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is widely utilized in bacterial analyses, with the dominant SERS peaks attributed to purine metabolites released during sample preparation. Although adenosine triphosphate (ATP) and nucleic acids are potential molecular origins of these metabolites, research on their exact contributions remains limited. This study explored purine metabolite release from E. coli and RNA integrity following various sample preparation methods. Standard water washing generated dominant SERS signals within 10 s, a duration shorter than the anticipated RNA half-lives under starvation. Evaluating RNA integrity indicated that the most abundant ribosomal RNA species remained intact for hours post-washing, whereas messenger RNA and transfer RNA species degraded gradually. This suggests that bacterial SERS signatures observed after the typical washing step could originate from only a small fraction of endogenous purine-containing molecules. In contrast, acid depurination led to degradation of most RNA species, releasing about 40 times more purine derivatives than water washing. Mild heating also instigated the RNA degradation and released more purine derivatives than water washing. Notably, differences were also evident in the dominant SERS signals following these treatments. This work provides insights into SERS-based studies of purine metabolites released by bacteria and future development of methodologies.
Collapse
Affiliation(s)
- Jun-Yi Chien
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yong-Chun Gu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Chia-Chen Chien
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chia-Ling Chang
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Ho-Wen Cheng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, ROC
- Molecular Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, ROC
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Shirley Wen-Yu Chiu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Yeu-Jye Nee
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hsin-Mei Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Fang-Yeh Chu
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Hui-Fei Tang
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Yuh-Lin Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Chi-Hung Lin
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
- Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC.
- Institute of Microbiology & Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| |
Collapse
|
10
|
Ogrinc N, Barka EA, Clément C, Salzet M, Sanchez L, Fournier I. In Vivo and Real-Time Metabolic Profiling of Plant-Microbe Interactions in Leaves, Stems, and Roots of Bacterially Inoculated Chardonnay Plantlets using SpiderMass. Anal Chem 2024. [PMID: 39155838 DOI: 10.1021/acs.analchem.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
There is growing interest in limiting the use of fungicides and implementing innovative, environmentally friendly strategies, such as the use of beneficial bacteria-triggered immunity, to protect grapevines from natural pathogens. Therefore, we need rapid and innovative ways to translate the knowledge of the molecular mechanisms underlying the activation of grapevine defenses against pathogens to induced resistance. Here, we have implemented an in vivo minimally invasive approach to study the interaction between plants and beneficial bacteria based on metabolic signatures. Paraburkholderia phytofirmans strain PsJN and PsJN-grapevine were used as bacterial and plant-bacterium interaction models, respectively. Using an innovative tool, SpiderMass, based on water-assisted laser desorption ionization with an IR microsampling probe, we simultaneously detect metabolic and lipidomic species. A metabolomic spectrum was thus generated, which was used to build a library and identify the most variable and discriminative peaks between the two conditions. We then showed that caftaric acid (m/z 311.04), caftaric acid dimer (m/z 623.09), derived caftaric acid (m/z 653.15), and quercetin-O-glucuronide tended to accumulate in grapevine leaves after root bacterization with PsJN. In addition, together with these phenolic messengers, we identified lipid biomarkers such as palmitic acid, linoleic acid, and α-linoleic acid as important messengers of enhanced defense mechanisms in Chardonnay plantlets. Taken together, SpiderMass is the next-generation methodology for studying plant-microorganism metabolic interactions with the prospect of in vivo real-time analysis in viticulture.
Collapse
Affiliation(s)
- Nina Ogrinc
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Essaïd Ait Barka
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
| | - Christophe Clément
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
| | - Michel Salzet
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Lisa Sanchez
- Unité de Recherche RIBP (Résistance Induite et Bioprotec-tion des Plantes), USC INRAE 1488, Université de Reims Champagne-Ardenne Moulin de la Housse BP 1039, 51687 Reim Cedex 2, France
- Institut Universitaire de France (IUF), Paris, France, https://www.iufrance.fr/
| | - Isabelle Fournier
- Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
- Institut Universitaire de France (IUF), Paris, France, https://www.iufrance.fr/
| |
Collapse
|
11
|
Armbruster MR, Grady SF, Cho K, Patti GJ, Bythell BJ, Arnatt CK, Edwards JL. High-Throughput Metabolomics using 96-plex Isotope Tagging. Anal Chem 2024; 96:12937-12942. [PMID: 39082755 DOI: 10.1021/acs.analchem.4c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) based metabolomics suffers from extended duty cycles and matrix-dependent quantitation. Chemical tags with 96 unique masses are reported, which alleviate the metabolomic workflow bottleneck and allow for absolute quantitation. A metabolic screen for carboxylic acids was performed on mammalian cells deprived of various nutrients and showed 24% RSD and analysis of 288 samples in 2 h.
Collapse
Affiliation(s)
- Michael R Armbruster
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| | - Scott F Grady
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Dr Rm 102, St. Louis, Missouri 63110, United States
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Dr Rm 102, St. Louis, Missouri 63110, United States
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
| | - Christopher K Arnatt
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| |
Collapse
|
12
|
Wei L, Han Y, Zheng J, Xu X, Zhu L. Accelerated dissemination of antibiotic resistant genes via conjugative transfer driven by deficient denitrification in biochar-based biofiltration systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173268. [PMID: 38754503 DOI: 10.1016/j.scitotenv.2024.173268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biofiltration systems harbored and disseminated antibiotic resistance genes (ARGs), when confronting antibiotic-contained wastewater. Biochar, a widely used environmental remediation material, can mitigate antibiotic stress on adjoining microbes by lowering the availability of sorbed antibiotics, and enhance the attachment of denitrifiers. Herein, bench-scale biofiltration systems, packed with commercial biochars, were established to explore the pivotal drivers affecting ARG emergence. Results showed that biofiltration columns, achieving higher TN removal and denitrification capacity, showed a significant decrease in ARG accumulation (p < 0.05). The relative abundance of ARGs (0.014 ± 0.0008) in the attached biofilms decreased to 1/5-folds of that in the control group (0.065 ± 0.004). Functional analysis indicated ARGs' accumulation was less attributed to ARG activation or horizontal gene transfer (HGT) driven by sorbed antibiotics. Most denitrifiers, like Bradyrhizobium, Geothrix, etc., were found to be enriched and host ARGs. Nitrosative stress from deficient denitrification was demonstrated to be the dominant driver for affecting ARG accumulation and dissemination. Metagenomic and metaproteomic analysis revealed that nitrosative stress promoted the conjugative HGT of ARGs mainly via increasing the transmembrane permeability and enhancing the amino acid transport and metabolism, such as cysteine, methionine, and valine metabolism. Overall, this study highlighted the risks of deficient denitrification in promoting ARG transfer and transmission in biofiltration systems and natural ecosystems.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Yutong Han
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Jingjing Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University
| | - Xiangyang Xu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Liang Zhu
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University.
| |
Collapse
|
13
|
Lv X, Gao Z, Li B, Zhou W, Zhang S, Wang X. Mass spectrometry-based metabolomics for the investigation of antibiotic-bacterial interactions. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39004897 DOI: 10.1002/mas.21899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
With the development of analytical technologies especially mass spectrometry, metabolomics is becoming increasingly hot in the field of studying antibiotic-bacterial interactions. On the one hand, metabolomics can reveal metabolic perturbations in bacteria in the presence of antibiotics and expose metabolic mechanisms. On the other hand, through in-depth analysis of bacterial metabolic profiles, biomarkers and bioactive secondary metabolites with great potential as drug precursors can be discovered. This review focuses on the experimental workflow of bacterial metabolomics and its application to study the interaction between bacteria and antibiotics. Metabolomics improves the understanding of antibiotic lethality, reveals metabolic perturbations in antibiotic-resistant bacteria, guides the diagnosis and antibiotic treatment of infectious diseases, and aids in the exploration of antibacterial metabolites in nature. Furthermore, current limitations and directions for future developments in this area are discussed.
Collapse
Affiliation(s)
- Xiaoyuan Lv
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenye Gao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Bingjie Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Zhou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Shengman Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Tengölics R, Szappanos B, Mülleder M, Kalapis D, Grézal G, Sajben C, Agostini F, Mokochinski JB, Bálint B, Nagy LG, Ralser M, Papp B. The metabolic domestication syndrome of budding yeast. Proc Natl Acad Sci U S A 2024; 121:e2313354121. [PMID: 38457520 PMCID: PMC10945815 DOI: 10.1073/pnas.2313354121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 03/10/2024] Open
Abstract
Cellular metabolism evolves through changes in the structure and quantitative states of metabolic networks. Here, we explore the evolutionary dynamics of metabolic states by focusing on the collection of metabolite levels, the metabolome, which captures key aspects of cellular physiology. Using a phylogenetic framework, we profiled metabolites in 27 populations of nine budding yeast species, providing a graduated view of metabolic variation across multiple evolutionary time scales. Metabolite levels evolve more rapidly and independently of changes in the metabolic network's structure, providing complementary information to enzyme repertoire. Although metabolome variation accumulates mainly gradually over time, it is profoundly affected by domestication. We found pervasive signatures of convergent evolution in the metabolomes of independently domesticated clades of Saccharomyces cerevisiae. Such recurring metabolite differences between wild and domesticated populations affect a substantial part of the metabolome, including rewiring of the TCA cycle and several amino acids that influence aroma production, likely reflecting adaptation to human niches. Overall, our work reveals previously unrecognized diversity in central metabolism and the pervasive influence of human-driven selection on metabolite levels in yeasts.
Collapse
Affiliation(s)
- Roland Tengölics
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
- Metabolomics Lab, Core facilities, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Balázs Szappanos
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
- Department of Biotechnology, University of Szeged, Szeged6726, Hungary
| | - Michael Mülleder
- Charité Universitätsmedizin, Core Facility High-Throughput Mass Spectrometry, Berlin10117, Germany
| | - Dorottya Kalapis
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Gábor Grézal
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Csilla Sajben
- Metabolomics Lab, Core facilities, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Federica Agostini
- Department of Biochemistry, Charité Universitätsmedizin, Berlin10117, Germany
| | - João Benhur Mokochinski
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Balázs Bálint
- Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - László G. Nagy
- Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin10117, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, LondonNW11AT, United Kingdom
| | - Balázs Papp
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
- National Laboratory for Health Security, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| |
Collapse
|
15
|
Reder GK, Bjurström EY, Brunnsåker D, Kronström F, Lasin P, Tiukova I, Savolainen OI, Dodds JN, May JC, Wikswo JP, McLean JA, King RD. AutonoMS: Automated Ion Mobility Metabolomic Fingerprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:542-550. [PMID: 38310603 PMCID: PMC10921458 DOI: 10.1021/jasms.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware that can perform manual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows, notably specialized analytical equipment, which is designed for human usage. Here we present AutonoMS, a platform for automatically running, processing, and analyzing high-throughput mass spectrometry experiments. AutonoMS is currently written around an ion mobility mass spectrometry (IM-MS) platform and can be adapted to additional analytical instruments and data processing flows. AutonoMS enables automated software agent-controlled end-to-end measurement and analysis runs from experimental specification files that can be produced by human users or upstream software processes. We demonstrate the use and abilities of AutonoMS in a high-throughput flow-injection ion mobility configuration with 5 s sample analysis time, processing robotically prepared chemical standards and cultured yeast samples in targeted and untargeted metabolomics applications. The platform exhibited consistency, reliability, and ease of use while eliminating the need for human intervention in the process of sample injection, data processing, and analysis. The platform paves the way toward a more fully automated mass spectrometry analysis and ultimately closed-loop laboratory workflows involving automated experimentation and analysis coupled to AI-driven experimentation utilizing cutting-edge analytical instrumentation. AutonoMS documentation is available at https://autonoms.readthedocs.io.
Collapse
Affiliation(s)
- Gabriel K. Reder
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
- Department
of Applied Physics, SciLifeLab, KTH Royal
Institute of Technology, Solna 171 21, Sweden
| | - Erik Y. Bjurström
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
| | - Daniel Brunnsåker
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Filip Kronström
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Praphapan Lasin
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
| | - Ievgeniia Tiukova
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
| | - Otto I. Savolainen
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg 412 96, Sweden
- Institute
of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio 702 11, Finland
| | - James N. Dodds
- Chemistry
Department, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jody C. May
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John P. Wikswo
- Vanderbilt
Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - John A. McLean
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ross D. King
- Department
of Computer Science and Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
- The Alan
Turing Institute, London NW1 2DB, U.K.
| |
Collapse
|
16
|
Ugolini GS, Wang M, Secchi E, Pioli R, Ackermann M, Stocker R. Microfluidic approaches in microbial ecology. LAB ON A CHIP 2024; 24:1394-1418. [PMID: 38344937 PMCID: PMC10898419 DOI: 10.1039/d3lc00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Microbial life is at the heart of many diverse environments and regulates most natural processes, from the functioning of animal organs to the cycling of global carbon. Yet, the study of microbial ecology is often limited by challenges in visualizing microbial processes and replicating the environmental conditions under which they unfold. Microfluidics operates at the characteristic scale at which microorganisms live and perform their functions, thus allowing for the observation and quantification of behaviors such as growth, motility, and responses to external cues, often with greater detail than classical techniques. By enabling a high degree of control in space and time of environmental conditions such as nutrient gradients, pH levels, and fluid flow patterns, microfluidics further provides the opportunity to study microbial processes in conditions that mimic the natural settings harboring microbial life. In this review, we describe how recent applications of microfluidic systems to microbial ecology have enriched our understanding of microbial life and microbial communities. We highlight discoveries enabled by microfluidic approaches ranging from single-cell behaviors to the functioning of multi-cellular communities, and we indicate potential future opportunities to use microfluidics to further advance our understanding of microbial processes and their implications.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Miaoxiao Wang
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Roberto Pioli
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
- Laboratory of Microbial Systems Ecology, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
17
|
Wu Y, Sanati O, Uchimiya M, Krishnamurthy K, Wedell J, Hoch JC, Edison AS, Delaglio F. SAND: Automated Time-Domain Modeling of NMR Spectra Applied to Metabolite Quantification. Anal Chem 2024; 96:1843-1851. [PMID: 38273718 PMCID: PMC10896553 DOI: 10.1021/acs.analchem.3c03078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Developments in untargeted nuclear magnetic resonance (NMR) metabolomics enable the profiling of thousands of biological samples. The exploitation of this rich source of information requires a detailed quantification of spectral features. However, the development of a consistent and automatic workflow has been challenging because of extensive signal overlap. To address this challenge, we introduce the software Spectral Automated NMR Decomposition (SAND). SAND follows on from the previous success of time-domain modeling and automatically quantifies entire spectra without manual interaction. The SAND approach uses hybrid optimization with Markov chain Monte Carlo methods, employing subsampling in both time and frequency domains. In particular, SAND randomly divides the time-domain data into training and validation sets to help avoid overfitting. We demonstrate the accuracy of SAND, which provides a correlation of ∼0.9 with ground truth on cases including highly overlapped simulated data sets, a two-compound mixture, and a urine sample spiked with different amounts of a four-compound mixture. We further demonstrate an automated annotation using correlation networks derived from SAND decomposed peaks, and on average, 74% of peaks for each compound can be recovered in single clusters. SAND is available in NMRbox, the cloud computing environment for NMR software hosted by the Network for Advanced NMR (NAN). Since the SAND method uses time-domain subsampling (i.e., random subset of time-domain points), it has the potential to be extended to a higher dimensionality and nonuniformly sampled data.
Collapse
Affiliation(s)
- Yue Wu
- Institute
of Bioinformatics, University of Georgia, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Omid Sanati
- School
of Electrical and Computer Engineering, University of Georgia, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Mario Uchimiya
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | | | - Jonathan Wedell
- National
Magnetic Resonance Facility, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey C. Hoch
- Department
of Molecular Biology and Biophysics, University
of Connecticut, Farmington, Connecticut 06030-3305, United States
| | - Arthur S. Edison
- Institute
of Bioinformatics, University of Georgia, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - Frank Delaglio
- Institute
for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University
of Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
18
|
Mossmann D, Müller C, Park S, Ryback B, Colombi M, Ritter N, Weißenberger D, Dazert E, Coto-Llerena M, Nuciforo S, Blukacz L, Ercan C, Jimenez V, Piscuoglio S, Bosch F, Terracciano LM, Sauer U, Heim MH, Hall MN. Arginine reprograms metabolism in liver cancer via RBM39. Cell 2023; 186:5068-5083.e23. [PMID: 37804830 PMCID: PMC10642370 DOI: 10.1016/j.cell.2023.09.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.
Collapse
Affiliation(s)
- Dirk Mossmann
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Sujin Park
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Brendan Ryback
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Marco Colombi
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | - Eva Dazert
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Mairene Coto-Llerena
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Sandro Nuciforo
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Lauriane Blukacz
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Veronica Jimenez
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Fatima Bosch
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Luigi M Terracciano
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Markus H Heim
- Department of Biomedicine, Hepatology Laboratory, University and University Hospital Basel, 4031 Basel, Switzerland; Clarunis University Center for Gastrointestinal and Liver Diseases, 4031 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
19
|
Gokul JK, Mur LAJ, Hodson AJ, Irvine-Fynn TDL, Debbonaire AR, Takeuchi N, Edwards A. Icescape-scale metabolomics reveals cyanobacterial and topographic control of the core metabolism of the cryoconite ecosystem of an Arctic ice cap. Environ Microbiol 2023; 25:2549-2563. [PMID: 37621052 DOI: 10.1111/1462-2920.16485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Glaciers host ecosystems comprised of biodiverse and active microbiota. Among glacial ecosystems, less is known about the ecology of ice caps since most studies focus on valley glaciers or ice sheet margins. Previously we detailed the microbiota of one such high Arctic ice cap, focusing on cryoconite as a microbe-mineral aggregate formed by cyanobacteria. Here, we employ metabolomics at the scale of an entire ice cap to reveal the major metabolic pathways prevailing in the cryoconite of Foxfonna, central Svalbard. We reveal how geophysical and biotic processes influence the metabolomes of its resident cryoconite microbiota. We observed differences in amino acid, fatty acid, and nucleotide synthesis across the cap reflecting the influence of ice topography and the cyanobacteria within cryoconite. Ice topography influences central carbohydrate metabolism and nitrogen assimilation, whereas bacterial community structure governs lipid, nucleotide, and carotenoid biosynthesis processes. The prominence of polyamine metabolism and nitrogen assimilation highlights the importance of recycling nitrogenous nutrients. To our knowledge, this study represents the first application of metabolomics across an entire ice mass, demonstrating its utility as a tool for revealing the fundamental metabolic processes essential for sustaining life in supraglacial ecosystems experiencing profound change due to Arctic climate change-driven mass loss.
Collapse
Affiliation(s)
- Jarishma K Gokul
- Department of Life Sciences, Cledwyn Building, Aberystwyth University, Wales, UK
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Luis A J Mur
- Department of Life Sciences, Cledwyn Building, Aberystwyth University, Wales, UK
| | - Andrew J Hodson
- Department of Arctic Geology, University Centre in Svalbard (UNIS), Longyearbyen, Svalbard, Norway
- Department of Environmental Sciences, Western Norway University of Environmental Science, Sogndal, Norway
| | | | - Aliyah R Debbonaire
- Department of Life Sciences, Cledwyn Building, Aberystwyth University, Wales, UK
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| | - Arwyn Edwards
- Department of Life Sciences, Cledwyn Building, Aberystwyth University, Wales, UK
- Department of Arctic Biology, University Centre in Svalbard (UNIS), Longyearbyen, Svalbard, Norway
| |
Collapse
|
20
|
Trouillon J, Doubleday PF, Sauer U. Genomic footprinting uncovers global transcription factor responses to amino acids in Escherichia coli. Cell Syst 2023; 14:860-871.e4. [PMID: 37820729 DOI: 10.1016/j.cels.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Our knowledge of transcriptional responses to changes in nutrient availability comes primarily from few well-studied transcription factors (TFs), often lacking an unbiased genome-wide perspective. Leveraging recent advances allowing bacterial genomic footprinting, we comprehensively mapped the genome-wide regulatory responses of Escherichia coli to exogenous leucine, methionine, alanine, and lysine. The global TF Lrp was found to individually sense three amino acids and mount three different target gene responses. Overall, 531 genes had altered RNA polymerase occupancy, and 32 TFs responded directly or indirectly to the presence of amino acids, including regulators of membrane and osmotic pressure homeostasis. About 70% of the detected TF-DNA interactions had not been reported before. We thus identified 682 previously unknown TF-binding locations, for a subset of which the involved TFs were identified by affinity purification. This comprehensive map of amino acid regulation illustrates the incompleteness of the known transcriptional regulation network, even in E. coli.
Collapse
Affiliation(s)
- Julian Trouillon
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Peter F Doubleday
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
21
|
Ryback B, Vorholt JA. Coenzyme biosynthesis in response to precursor availability reveals incorporation of β-alanine from pantothenate in prototrophic bacteria. J Biol Chem 2023; 299:104919. [PMID: 37315792 PMCID: PMC10393543 DOI: 10.1016/j.jbc.2023.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and β-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for β-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.
Collapse
|
22
|
Grucela PK, Fuhrer T, Sauer U, Chao Y, Zhang YE. Ribose 5-phosphate: the key metabolite bridging the metabolisms of nucleotides and amino acids during stringent response in Escherichia coli? MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:141-144. [PMID: 37395996 PMCID: PMC10311079 DOI: 10.15698/mic2023.07.799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023]
Abstract
The bacterial stringent response and its effector alarmone guanosine penta- or tetra - phosphates (p)ppGpp are vital for bacterial tolerance and survival of various stresses in environments (including antibiotics) and host cells (virulence). (p)ppGpp does so by binding to its numerous target proteins and reprograming bacterial transcriptome to tune down the synthesis of nucleotides and rRNA/tRNA, and up-regulate amino acid biosynthesis genes. Recent identification of more novel (p)ppGpp direct binding proteins in Escherichia coli and their deep studies have unveiled unprecedented details of how (p)ppGpp coordinates the nucleotide and amino acid metabolic pathways upon stringent response; however, the mechanistic link between nucleotide and amino acid metabolisms remains still incompletely understood. Here we propose the metabolite ribose 5'-phosphate as the key link between nucleotide and amino acid metabolisms and a working model integrating both the transcriptional and metabolic effects of (p)ppGpp on E. coli physiological adaptation during the stringent response.
Collapse
Affiliation(s)
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Everett Zhang
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
23
|
Correia GD, Marchesi JR, MacIntyre DA. Moving beyond DNA: towards functional analysis of the vaginal microbiome by non-sequencing-based methods. Curr Opin Microbiol 2023; 73:102292. [PMID: 36931094 DOI: 10.1016/j.mib.2023.102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Over the last two decades, sequencing-based methods have revolutionised our understanding of niche-specific microbial complexity. In the lower female reproductive tract, these approaches have enabled identification of bacterial compositional structures associated with health and disease. Application of metagenomics and metatranscriptomics strategies have provided insight into the putative function of these communities but it is increasingly clear that direct measures of microbial and host cell function are required to understand the contribution of microbe-host interactions to pathophysiology. Here we explore and discuss current methods and approaches, many of which rely upon mass-spectrometry, being used to capture functional insight into the vaginal mucosal interface. In addition to improving mechanistic understanding, these methods offer innovative solutions for the development of diagnostic and therapeutic strategies designed to improve women's health.
Collapse
Affiliation(s)
- Gonçalo Ds Correia
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Julian R Marchesi
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK; Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Imperial College London, London W2 1NY, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
24
|
Donati S, Mattanovich M, Hjort P, Jacobsen SAB, Blomquist SD, Mangaard D, Gurdo N, Pastor FP, Maury J, Hanke R, Herrgård MJ, Wulff T, Jakočiūnas T, Nielsen LK, McCloskey D. An automated workflow for multi-omics screening of microbial model organisms. NPJ Syst Biol Appl 2023; 9:14. [PMID: 37208327 DOI: 10.1038/s41540-023-00277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Multi-omics datasets are becoming of key importance to drive discovery in fundamental research as much as generating knowledge for applied biotechnology. However, the construction of such large datasets is usually time-consuming and expensive. Automation might enable to overcome these issues by streamlining workflows from sample generation to data analysis. Here, we describe the construction of a complex workflow for the generation of high-throughput microbial multi-omics datasets. The workflow comprises a custom-built platform for automated cultivation and sampling of microbes, sample preparation protocols, analytical methods for sample analysis and automated scripts for raw data processing. We demonstrate possibilities and limitations of such workflow in generating data for three biotechnologically relevant model organisms, namely Escherichia coli, Saccharomyces cerevisiae, and Pseudomonas putida.
Collapse
Affiliation(s)
- Stefano Donati
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Matthias Mattanovich
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Pernille Hjort
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | | | - Sarah Dina Blomquist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Drude Mangaard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Nicolas Gurdo
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Felix Pacheco Pastor
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Jérôme Maury
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Rene Hanke
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Markus J Herrgård
- BioInnovation Institute, Ole Maaløes Vej 3, 2200, København, Denmark
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Tadas Jakočiūnas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Lars Keld Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Douglas McCloskey
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
25
|
Kontou EE, Walter A, Alka O, Pfeuffer J, Sachsenberg T, Mohite OS, Nuhamunada M, Kohlbacher O, Weber T. UmetaFlow: an untargeted metabolomics workflow for high-throughput data processing and analysis. J Cheminform 2023; 15:52. [PMID: 37173725 PMCID: PMC10176759 DOI: 10.1186/s13321-023-00724-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolomics experiments generate highly complex datasets, which are time and work-intensive, sometimes even error-prone if inspected manually. Therefore, new methods for automated, fast, reproducible, and accurate data processing and dereplication are required. Here, we present UmetaFlow, a computational workflow for untargeted metabolomics that combines algorithms for data pre-processing, spectral matching, molecular formula and structural predictions, and an integration to the GNPS workflows Feature-Based Molecular Networking and Ion Identity Molecular Networking for downstream analysis. UmetaFlow is implemented as a Snakemake workflow, making it easy to use, scalable, and reproducible. For more interactive computing, visualization, as well as development, the workflow is also implemented in Jupyter notebooks using the Python programming language and a set of Python bindings to the OpenMS algorithms (pyOpenMS). Finally, UmetaFlow is also offered as a web-based Graphical User Interface for parameter optimization and processing of smaller-sized datasets. UmetaFlow was validated with in-house LC-MS/MS datasets of actinomycetes producing known secondary metabolites, as well as commercial standards, and it detected all expected features and accurately annotated 76% of the molecular formulas and 65% of the structures. As a more generic validation, the publicly available MTBLS733 and MTBLS736 datasets were used for benchmarking, and UmetaFlow detected more than 90% of all ground truth features and performed exceptionally well in quantification and discriminating marker selection. We anticipate that UmetaFlow will provide a useful platform for the interpretation of large metabolomics datasets.
Collapse
Affiliation(s)
- Eftychia E Kontou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Axel Walter
- Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, Sand 14, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Oliver Alka
- Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, Sand 14, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Julianus Pfeuffer
- Visual and Data-Centric Computing, Zuse Institute Berlin, Takustr. 7, 14195, Berlin, Germany
- Algorithmic Bioinformatics, Freie Universität Berlin, Takustr. 9, 14195, Berlin, Germany
| | - Timo Sachsenberg
- Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, Sand 14, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Matin Nuhamunada
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, Sand 14, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, Schaffhausenstr. 77, 72072, Tübingen, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
26
|
Lai YH, Franke R, Pinkert L, Overwin H, Brönstrup M. Molecular Signatures of the Eagle Effect Induced by the Artificial Siderophore Conjugate LP-600 in E. coli. ACS Infect Dis 2023; 9:567-581. [PMID: 36763039 PMCID: PMC10012262 DOI: 10.1021/acsinfecdis.2c00567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Achieving cellular uptake is a central challenge for novel antibiotics targeting Gram-negative bacterial pathogens. One strategy is to hijack the bacterial iron transport system by siderophore-antibiotic conjugates that are actively imported into the cell. This was realized with the MECAM-ampicillin conjugate LP-600 we recently reported that was highly active against E. coli. In the present study, we investigate a paradoxical regrowth of E. coli upon treatment of LP-600 at concentrations 16-32 times above the minimum inhibitory concentration (MIC). The phenomenon, coined "Eagle-effect" in other systems, was not due to resistance formation, and it occurred for the siderophore conjugate but not for free ampicillin. To investigate the molecular imprint of the Eagle effect, a combined transcriptome and untargeted metabolome analysis was conducted. LP-600 induced the expression of genes involved in iron acquisition, SOS response, and the e14 prophage upon regrowth conditions. The Eagle effect was diminished in the presence of sulbactam, which we ascribe to a putative synergistic antibiotic action but not to β-lactamase inhibition. The study highlights the relevance of the Eagle effect for siderophore conjugates. Through the first systematic -omics investigations, it also demonstrates that the Eagle effect manifests not only in a paradoxical growth but also in unique gene expression and metabolite profiles.
Collapse
Affiliation(s)
- Yi-Hui Lai
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lukas Pinkert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Heike Overwin
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany
| |
Collapse
|
27
|
Farke N, Schramm T, Verhülsdonk A, Rapp J, Link H. Systematic analysis of in-source modifications of primary metabolites during flow-injection time-of-flight mass spectrometry. Anal Biochem 2023; 664:115036. [PMID: 36627043 PMCID: PMC9902335 DOI: 10.1016/j.ab.2023.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Flow-injection mass spectrometry (FI-MS) enables metabolomics studies with a very high sample-throughput. However, FI-MS is prone to in-source modifications of analytes because samples are directly injected into the electrospray ionization source of a mass spectrometer without prior chromatographic separation. Here, we spiked authentic standards of 160 primary metabolites individually into an Escherichia coli metabolite extract and measured the thus derived 160 spike-in samples by FI-MS. Our results demonstrate that FI-MS can capture a wide range of chemically diverse analytes within 30 s measurement time. However, the data also revealed extensive in-source modifications. Across all 160 spike-in samples, we identified significant increases of 11,013 ion peaks in positive and negative mode combined. To explain these unknown m/z features, we connected them to the m/z feature of the (de-)protonated metabolite using information about mass differences and MS2 spectra. This resulted in networks that explained on average 49 % of all significant features. The networks showed that a single metabolite undergoes compound specific and often sequential in-source modifications like adductions, chemical reactions, and fragmentations. Our results show that FI-MS generates complex MS1 spectra, which leads to an overestimation of significant features, but neutral losses and MS2 spectra explain many of these features.
Collapse
Affiliation(s)
| | | | | | | | - Hannes Link
- Bacterial Metabolomics, CMFI, University Tübingen, Auf der Morgenstelle 24, 7206, Tübingen, Germany.
| |
Collapse
|
28
|
Zhu M, Dai X. Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift. Nat Commun 2023; 14:467. [PMID: 36709335 PMCID: PMC9884231 DOI: 10.1038/s41467-023-36254-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Timely adaptation to nutrient downshift is crucial for bacteria to maintain fitness during feast and famine cycle in the natural niche. However, the molecular mechanism that ensures the timely adaption of bacterial growth to nutrient downshift remains poorly understood. Here, we quantitatively investigated the adaptation of Escherichia coli to various kinds of nutrient downshift. We found that relA deficient strain, which is devoid of stringent response, exhibits a significantly longer growth lag than wild type strain during adapting to both amino acid downshift and carbon downshift. Quantitative proteomics show that increased (p)ppGpp level promotes the growth adaption of bacteria to amino acid downshift via triggering the proteome resource re-allocation from ribosome synthesis to amino acid biosynthesis. Such type of proteome re-allocation is significantly delayed in the relA-deficient strain, which underlies its longer lag than wild type strain during amino acid downshift. During carbon downshift, a lack of stringent response in relA deficient strain leads to disruption of the transcription-translation coordination, thus compromising the transcription processivity and further the timely expression of related catabolic operons for utilizing secondary carbon sources. Our studies shed light on the fundamental strategy of bacteria to maintain fitness under nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Manlu Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China.
| | - Xiongfeng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China.
| |
Collapse
|
29
|
Yu J, Hermann M, Smith R, Tomm H, Metwally H, Kolwich J, Liu C, Le Blanc JCY, Covey TR, Ross AC, Oleschuk R. Hyperspectral Visualization-Based Mass Spectrometry Imaging by LMJ-SSP: A Novel Strategy for Rapid Natural Product Profiling in Bacteria. Anal Chem 2023; 95:2020-2028. [PMID: 36634199 DOI: 10.1021/acs.analchem.2c04550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mass spectrometry imaging (MSI) has been widely used to discover natural products (NPs) from underexplored microbiological sources. However, the technique is limited by incompatibility with complicated/uneven surface topography and labor-intensive sample preparation, as well as lengthy compound profiling procedures. Here, liquid micro-junction surface sampling probe (LMJ-SSP)-based MSI is used for rapid profiling of natural products from Gram-negative marine bacteria Pseudoalteromonas on nutrient agar media without any sample preparation. A conductance-based autosampling platform with 1 mm spatial resolution and an innovative multivariant analysis-driven method was used to create one hyperspectral image for the sampling area. NP discovery requires general spatial correlation between m/z and colony location but not highly precise spatial resolution. The hyperspectral image was used to annotate different m/z by straightforward color differences without the need to directly interrogate the spectra. To demonstrate the utility of our approach, the rapid analysis of Pseudoalteromonas rubra DSM6842, Pseudoalteromonas tunicata DSM14096, Pseudoalteromonas piscicida JCM20779, and Pseudoalteromonas elyakovii ATCC700519 cultures was directly performed on Agar. Various natural products, including prodiginine and tambjamine analogues, were quickly identified from the hyperspectral image, and the dynamic extracellular environment was shown with compound heatmaps. Hyperspectral visualization-based MSI is an efficient and sensitive strategy for direct and rapid natural product profiling from different Pseudoalteromonas strains.
Collapse
Affiliation(s)
- Jian Yu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Matthias Hermann
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Rachael Smith
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Hailey Tomm
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Haidy Metwally
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jennifer Kolwich
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Chang Liu
- SCIEX, Concord, Ontario L4K 4 V8, Canada
| | | | | | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Richard Oleschuk
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
30
|
Alreshidi M, Dunstan H, MacDonald M, Saeed M, Elkahoui S, Roberts T. Significant Changes in Cytoplasmic Amino Acid Composition Occur in the Transition between Mid-Exponential and Stationary Phases of Growth of Staphylococcus aureus: An Example of Adaptive Homeostasis in Response to Nutrient Limitations. Microorganisms 2023; 11:microorganisms11010147. [PMID: 36677439 PMCID: PMC9860745 DOI: 10.3390/microorganisms11010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
The bacterial pathogen Staphylococcus aureus causes a wide range of infections that result in high morbidity and mortality rates worldwide. S. aureus is known for its capacity to survive harsh environments between hosts and certain strains are very efficient as opportunistic pathogens. It is important to understand their capacities for metabolic adaptation in response to changing environmental conditions. This investigation aimed to explore the alterations in the amino acid compositions of the cytoplasm as nutrients became limiting during the growth of S. aureus. Cells were grown under optimal growth conditions and harvested at the mid-exponential and stationary phases of growth and then extracted for the analyses of amino acids in the cytoplasm. The analyses revealed that the stationary phase cells had a significantly higher concentration of total cytoplasmic amino acids compared with cells at the mid-exponential phase and displayed substantial alterations in amino acid composition. Aspartic acid was the major amino acid in the stationary phase cells, whereas glutamic acid was the most abundant in the mid-exponential cells. The glutamic acid was reduced by 47% of its original value when the growth was extended to the stationary phase. Interestingly, certain amino acids were either absent or present depending on the phase of growth. These outcomes are in line with the premise that bacterial cells of S. aureus transition into a different form of metabolic homeostasis in the shift between the exponential and stationary phases of growth, as nutrients become depleted and waste products accumulate in the external medium. The ability of S. aureus to continually and promptly adapt to differences within growth phases may represent an essential strategy assisting its virulence as a successful opportunistic pathogen to establish infections. An understanding of the switch mechanisms controlling these obvious alterations in amino acids through the growth/life cycle of this virulent pathogen may provide novel clinical strategies to battle infection.
Collapse
Affiliation(s)
- Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia
- Correspondence: ; Tel.: +966-505498890
| | - Hugh Dunstan
- InnovAAte Pty Ltd., 45 Hunter Street, Newcastle, NSW 2300, Australia
| | - Margaret MacDonald
- Pathogenic Microbiology Laboratory, Faculty of Science, School of Environmental and Life Sciences, University Drive, Newcastle, NSW 2308, Australia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Salem Elkahoui
- Department of Biology, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Tim Roberts
- Pathogenic Microbiology Laboratory, Faculty of Science, School of Environmental and Life Sciences, University Drive, Newcastle, NSW 2308, Australia
| |
Collapse
|
31
|
Li G, Jian T, Liu X, Lv Q, Zhang G, Ling J. Application of Metabolomics in Fungal Research. Molecules 2022; 27:7365. [PMID: 36364192 PMCID: PMC9654507 DOI: 10.3390/molecules27217365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Metabolomics is an essential method to study the dynamic changes of metabolic networks and products using modern analytical techniques, as well as reveal the life phenomena and their inherent laws. Currently, more and more attention has been paid to the development of metabolic histochemistry in the fungus field. This paper reviews the application of metabolomics in fungal research from five aspects: identification, response to stress, metabolite discovery, metabolism engineering, and fungal interactions with plants.
Collapse
Affiliation(s)
- Guangyao Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tongtong Jian
- Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingtao Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
32
|
Metabolomics and modelling approaches for systems metabolic engineering. Metab Eng Commun 2022; 15:e00209. [PMID: 36281261 PMCID: PMC9587336 DOI: 10.1016/j.mec.2022.e00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic engineering involves the manipulation of microbes to produce desirable compounds through genetic engineering or synthetic biology approaches. Metabolomics involves the quantitation of intracellular and extracellular metabolites, where mass spectrometry and nuclear magnetic resonance based analytical instrumentation are often used. Here, the experimental designs, sample preparations, metabolite quenching and extraction are essential to the quantitative metabolomics workflow. The resultant metabolomics data can then be used with computational modelling approaches, such as kinetic and constraint-based modelling, to better understand underlying mechanisms and bottlenecks in the synthesis of desired compounds, thereby accelerating research through systems metabolic engineering. Constraint-based models, such as genome scale models, have been used successfully to enhance the yield of desired compounds from engineered microbes, however, unlike kinetic or dynamic models, constraint-based models do not incorporate regulatory effects. Nevertheless, the lack of time-series metabolomic data generation has hindered the usefulness of dynamic models till today. In this review, we show that improvements in automation, dynamic real-time analysis and high throughput workflows can drive the generation of more quality data for dynamic models through time-series metabolomics data generation. Spatial metabolomics also has the potential to be used as a complementary approach to conventional metabolomics, as it provides information on the localization of metabolites. However, more effort must be undertaken to identify metabolites from spatial metabolomics data derived through imaging mass spectrometry, where machine learning approaches could prove useful. On the other hand, single-cell metabolomics has also seen rapid growth, where understanding cell-cell heterogeneity can provide more insights into efficient metabolic engineering of microbes. Moving forward, with potential improvements in automation, dynamic real-time analysis, high throughput workflows, and spatial metabolomics, more data can be produced and studied using machine learning algorithms, in conjunction with dynamic models, to generate qualitative and quantitative predictions to advance metabolic engineering efforts.
Collapse
|
33
|
Ortmayr K, Zampieri M. Sorting-free metabolic profiling uncovers the vulnerability of fatty acid β-oxidation in in vitro quiescence models. Mol Syst Biol 2022; 18:e10716. [PMID: 36094015 PMCID: PMC9465820 DOI: 10.15252/msb.202110716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Quiescent cancer cells are rare nondiving cells with the unique ability to evade chemotherapies and resume cell division after treatment. Despite the associated risk of cancer recurrence, how cells can reversibly switch between rapid proliferation and quiescence remains a long-standing open question. By developing a unique methodology for the cell sorting-free separation of metabolic profiles in cell subpopulations in vitro, we unraveled metabolic characteristics of quiescent cells that are largely invariant to basal differences in cell types and quiescence-inducing stimuli. Consistent with our metabolome-based analysis, we show that impairing mitochondrial fatty acid β-oxidation (FAO) can induce apoptosis in quiescence-induced cells and hamper their return to proliferation. Our findings suggest that in addition to mediating energy and redox balance, FAO can play a role in preventing the buildup of toxic intermediates during transitioning to quiescence. Uncovering metabolic strategies to enter, maintain, and exit quiescence can reveal fundamental principles in cell plasticity and new potential therapeutic targets beyond cancer.
Collapse
Affiliation(s)
- Karin Ortmayr
- Institute of Molecular Systems Biology, ETHZürichSwitzerland
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life SciencesUniversity of ViennaViennaAustria
| | - Mattia Zampieri
- Institute of Molecular Systems Biology, ETHZürichSwitzerland
| |
Collapse
|
34
|
Alreshidi M, Dunstan H, Roberts T, Bardakci F, Badraoui R, Adnan M, Saeed M, Alreshidi F, Albulaihed Y, Snoussi M. Changes in Amino Acid Metabolism of Staphylococcus aureus following Growth to the Stationary Phase under Adjusted Growth Conditions. Microorganisms 2022; 10:microorganisms10081503. [PMID: 35893561 PMCID: PMC9331416 DOI: 10.3390/microorganisms10081503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The sharp increase in infections due to Staphylococcus aureus is associated with its ability to adapt to changes in its habitat. This study aimed to investigate the differences in the cytoplasmic amino acid profiles of a clinical strain of S. aureus under five combinations of stress-induced conditions representative of a wound site by varying temperature 35-37 °C, adding 0-5% NaCl and adjusting pH 6-8. The results indicated that aspartic acid, lysine, glutamic acid and histidine were the most abundant cytoplasmic amino acids in the control samples grown under optimal growth conditions. However, the magnitudes and levels of these amino acids were altered under the various wound site conditions, which led to differential cytoplasmic amino acid profiles as characterized by multivariate analyses (PLS-DA). The total cytoplasmic amino acid content was significantly reduced in the cells grown with 2.5% NaCl added at pH 7 and 37 °C relative to the control samples and other growth regimes. However, all combinations of enhanced stress conditions showed unique and characteristic changes in the concentration profiles of the cytoplasmic amino acids. These outcomes supported the hypothesis that bacterial cells of S. aureus maintain different metabolic homeostasis under various stress-induced conditions. The potent capability of S. aureus to constantly and rapidly acclimatize to variations within the environment may reflect the crucial feature supporting its virulence as an opportunistic pathogenic bacterium to invade the wound site. Understanding the control systems governing these marked changes in amino acids during the adaptation to the potential wound site conditions of this dangerous bacterium may offer new clinical controls to combat infection.
Collapse
Affiliation(s)
- Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (F.B.); (R.B.); (M.A.); (M.S.); (Y.A.); (M.S.)
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia
- Correspondence: ; Tel.: +96-65-0549-8890
| | - Hugh Dunstan
- InnovAAte Pty Ltd., 45 Hunter Street, Newcastle, NSW 2300, Australia;
| | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW 2308, Australia;
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (F.B.); (R.B.); (M.A.); (M.S.); (Y.A.); (M.S.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (F.B.); (R.B.); (M.A.); (M.S.); (Y.A.); (M.S.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta, Tunis 1017, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (F.B.); (R.B.); (M.A.); (M.S.); (Y.A.); (M.S.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (F.B.); (R.B.); (M.A.); (M.S.); (Y.A.); (M.S.)
| | - Fayez Alreshidi
- Department of Family and Community Medicine, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia;
| | - Yazeed Albulaihed
- Department of Biology, College of Science, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (F.B.); (R.B.); (M.A.); (M.S.); (Y.A.); (M.S.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (F.B.); (R.B.); (M.A.); (M.S.); (Y.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
35
|
Mengers HG, Zimmermann M, Blank LM. Using off-gas for insights through online monitoring of ethanol and baker's yeast volatilome using SESI-Orbitrap MS. Sci Rep 2022; 12:12462. [PMID: 35864195 PMCID: PMC9304407 DOI: 10.1038/s41598-022-16554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds play an essential role in every domain of life, with diverse functions. In this study, we use novel secondary electrospray ionisation high-resolution Orbitrap mass spectrometry (SESI-Orbitrap MS) to monitor the complete yeast volatilome every 2.3 s. Over 200 metabolites were identified during growth in shake flasks and bioreactor cultivations, all with their unique intensity profile. Special attention was paid to ethanol as biotech largest product and to acetaldehyde as an example of a low-abundance but highly-volatile metabolite. While HPLC and Orbitrap measurements show a high agreement for ethanol, acetaldehyde could be measured five hours earlier in the SESI-Orbitrap MS. Volatilome shifts are visible, e.g. after glucose depletion, fatty acids are converted to ethyl esters in a detoxification mechanism after stopped fatty acid biosynthesis. This work showcases the SESI-Orbitrap MS system for tracking microbial physiology without the need for sampling and for time-resolved discoveries during metabolic transitions.
Collapse
Affiliation(s)
- Hendrik G Mengers
- Institute of Applied Microbiology - iAMB, Aachener Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Martin Zimmermann
- Institute of Applied Microbiology - iAMB, Aachener Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachener Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
36
|
Cortada-Garcia J, Haggarty J, Moses T, Daly R, Alison Arnold S, Burgess K. On-line untargeted metabolomics monitoring of an E. coli succinate fermentation process. Biotechnol Bioeng 2022; 119:2757-2769. [PMID: 35798686 PMCID: PMC9541951 DOI: 10.1002/bit.28173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/19/2022] [Indexed: 11/08/2022]
Abstract
The real‐time monitoring of metabolites (RTMet) is instrumental for the industrial production of biobased fermentation products. This study shows the first application of untargeted on‐line metabolomics for the monitoring of undiluted fermentation broth samples taken automatically from a 5 L bioreactor every 5 min via flow injection mass spectrometry. The travel time from the bioreactor to the mass spectrometer was 30 s. Using mass spectrometry allows, on the one hand, the direct monitoring of targeted key process compounds of interest and, on the other hand, provides information on hundreds of additional untargeted compounds without requiring previous calibration data. In this study, this technology was applied in an Escherichia coli succinate fermentation process and 886 different m/z signals were monitored, including key process compounds (glucose, succinate, and pyruvate), potential biomarkers of biomass formation such as (R)‐2,3‐dihydroxy‐isovalerate and (R)‐2,3‐dihydroxy‐3‐methylpentanoate and compounds from the pentose phosphate pathway and nucleotide metabolism, among others. The main advantage of the RTMet technology is that it allows the monitoring of hundreds of signals without the requirement of developing partial least squares regression models, making it a perfect tool for bioprocess monitoring and for testing many different strains and process conditions for bioprocess development.
Collapse
Affiliation(s)
- Joan Cortada-Garcia
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom
| | - Jennifer Haggarty
- Institute of Infection, Immunity and Inflammation, Glasgow Polyomics, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Tessa Moses
- EdinOmics, SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Rónán Daly
- Institute of Infection, Immunity and Inflammation, Glasgow Polyomics, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - S Alison Arnold
- Ingenza Ltd., Roslin Innovation Centre, Roslin, EH25 9RG, United Kingdom
| | - Karl Burgess
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom
| |
Collapse
|
37
|
Effects of Storage Temperature on Indica-Japonica Hybrid Rice Metabolites, Analyzed Using Liquid Chromatography and Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23137421. [PMID: 35806428 PMCID: PMC9266784 DOI: 10.3390/ijms23137421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
The Yongyou series of indica-japonica hybrid rice has excellent production potential and storage performance. However, little is known about the underlying mechanism of its storage resistance. In this study, Yongyou 1540 rice (Oryza sativa cv. yongyou 1540) was stored at different temperatures, and the storability was validated though measuring nutritional components and apparent change. In addition, a broad-targeted metabolomic approach coupled with liquid chromatography-mass spectrometry was applied to analyze the metabolite changes. The study found that under high temperature storage conditions (35 °C), Yongyou 1540 was not significantly worse in terms of fatty acid value, whiteness value, and changes in electron microscope profile. A total of 19 key differential metabolites were screened, and lipid metabolites related to palmitoleic acid were found to affect the aging of rice. At the same time, two substances, guanosine 3′,5′-cyclophosphate and pipecolic acid, were beneficial to enhance the resistance of rice under harsh storage conditions, thereby delaying the deterioration of its quality and maintaining its quality. Significant regulation of galactose metabolism, alanine, aspartate and glutamate metabolism, butyrate metabolism, and arginine and proline metabolism pathways were probably responsible for the good storage capacity of Yongyou 1540.
Collapse
|
38
|
Huang H, Feng G, Wang M, Liu C, Wu Y, Dong L, Feng L, Zheng X, Chen Y. Nitric Oxide: A Neglected Driver for the Conjugative Transfer of Antibiotic Resistance Genes among Wastewater Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6466-6478. [PMID: 35512279 DOI: 10.1021/acs.est.2c01889] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dissemination of plasmid-borne antibiotic resistance genes (ARGs) in wastewater is becoming an urgent concern. Previous studies mainly focused on the effects of coexisting contaminants on plasmid conjugation, but ignored the potential contribution of some byproducts inevitably released from wastewater treatment processes. Herein, we demonstrate for the first time that nitric oxide (NO), an intermediate of the wastewater nitrogen cycle, can significantly boost the conjugative transfer of plasmid RP4 from Escherichia coli K12 to different recipients (E. coli HB101, Salmonella typhimurium, and wastewater microbiota). Phenotypic and genotypic tests confirmed that NO-induced promotion was not attributed to the SOS response, a well-recognized driver for horizontal gene transfer. Instead, NO exposure increased the outer membrane permeability of both the donor and recipient by inhibiting the expression of key genes involved in lipopolysaccharide biosynthesis (such as waaJ), thereby lowering the membrane barrier for conjugation. On the other hand, NO exposure not only resulted in the accumulation of intracellular tryptophan but also triggered the deficiency of intracellular methionine, both of which were validated to play key roles in regulating the global regulatory genes (korA, korB, and trbA) of plasmid RP4, activating its encoding transfer apparatus (represented by trfAp and trbBp). Overall, our findings highlighted the risks of NO in spreading ARGs among wastewater microbiota and updated the regulation mechanism of plasmid conjugation.
Collapse
Affiliation(s)
- Haining Huang
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Guanqun Feng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meng Wang
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Dong
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Municipal Engn Design Inst Grp Co. Ltd., 901 Zhongshan North Second Road, Shanghai 200092, P. R. China
| | - Leiyu Feng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiong Zheng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinguang Chen
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
39
|
Wu C, Balakrishnan R, Braniff N, Mori M, Manzanarez G, Zhang Z, Hwa T. Cellular perception of growth rate and the mechanistic origin of bacterial growth law. Proc Natl Acad Sci U S A 2022; 119:e2201585119. [PMID: 35544692 PMCID: PMC9171811 DOI: 10.1073/pnas.2201585119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
Many cellular activities in bacteria are organized according to their growth rate. The notion that ppGpp measures the cell’s growth rate is well accepted in the field of bacterial physiology. However, despite decades of interrogation and the identification of multiple molecular interactions that connects ppGpp to some aspects of cell growth, we lack a system-level, quantitative picture of how this alleged “measurement” is performed. Through quantitative experiments, we show that the ppGpp pool responds inversely to the rate of translational elongation in Escherichia coli. Together with its roles in inhibiting ribosome biogenesis and activity, ppGpp closes a key regulatory circuit that enables the cell to perceive and control the rate of its growth across conditions. The celebrated linear growth law relating the ribosome content and growth rate emerges as a consequence of keeping a supply of ribosome reserves while maintaining elongation rate in slow growth conditions. Further analysis suggests the elongation rate itself is detected by sensing the ratio of dwelling and translocating ribosomes, a strategy employed to collapse the complex, high-dimensional dynamics of the molecular processes underlying cell growth to perceive the physiological state of the whole.
Collapse
Affiliation(s)
- Chenhao Wu
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Rohan Balakrishnan
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Nathan Braniff
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Matteo Mori
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Gabriel Manzanarez
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Zhongge Zhang
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Terence Hwa
- Department of Physics, University of California San Diego, La Jolla, CA 92093
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
40
|
Wu Y, Judge MT, Edison AS, Arnold J. Uncovering in vivo biochemical patterns from time-series metabolic dynamics. PLoS One 2022; 17:e0268394. [PMID: 35550643 PMCID: PMC9098013 DOI: 10.1371/journal.pone.0268394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
System biology relies on holistic biomolecule measurements, and untangling biochemical networks requires time-series metabolomics profiling. With current metabolomic approaches, time-series measurements can be taken for hundreds of metabolic features, which decode underlying metabolic regulation. Such a metabolomic dataset is untargeted with most features unannotated and inaccessible to statistical analysis and computational modeling. The high dimensionality of the metabolic space also causes mechanistic modeling to be rather cumbersome computationally. We implemented a faster exploratory workflow to visualize and extract chemical and biochemical dependencies. Time-series metabolic features (about 300 for each dataset) were extracted by Ridge Tracking-based Extract (RTExtract) on measurements from continuous in vivo monitoring of metabolism by NMR (CIVM-NMR) in Neurospora crassa under different conditions. The metabolic profiles were then smoothed and projected into lower dimensions, enabling a comparison of metabolic trends in the cultures. Next, we expanded incomplete metabolite annotation using a correlation network. Lastly, we uncovered meaningful metabolic clusters by estimating dependencies between smoothed metabolic profiles. We thus sidestepped the processes of time-consuming mechanistic modeling, difficult global optimization, and labor-intensive annotation. Multiple clusters guided insights into central energy metabolism and membrane synthesis. Dense connections with glucose 1-phosphate indicated its central position in metabolism in N. crassa. Our approach was benchmarked on simulated random network dynamics and provides a novel exploratory approach to analyzing high-dimensional metabolic dynamics.
Collapse
Affiliation(s)
- Yue Wu
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Michael T. Judge
- Department of Genetics, University of Georgia, Athens, GA, United States of America
| | - Arthur S. Edison
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
- Department of Genetics, University of Georgia, Athens, GA, United States of America
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States of America
- * E-mail: (ASE); (JA)
| | - Jonathan Arnold
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
- Department of Genetics, University of Georgia, Athens, GA, United States of America
- Department of Statistics, University of Georgia, Athens, GA, United States of America
- Department of Physics and Astronomy, University of Georgia, Athens, GA, United States of America
- * E-mail: (ASE); (JA)
| |
Collapse
|
41
|
Fornasaro S, Esposito A, Florian F, Pallavicini A, De Leo L, Not T, Lagatolla C, Mezzarobba M, Di Silvestre A, Sergo V, Bonifacio A. Spectroscopic investigation of faeces with surface-enhanced Raman scattering: a case study with coeliac patients on gluten-free diet. Anal Bioanal Chem 2022; 414:3517-3527. [PMID: 35258650 PMCID: PMC9018641 DOI: 10.1007/s00216-022-03975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/06/2022]
Abstract
Surface-enhanced Raman scattering (SERS) spectra of faecal samples can be obtained by adding AuNP to their methanol extracts according to the reported protocol, and display bands that are due to bilirubin-like species but also to xanthine and hypoxanthine, two metabolic products secreted by gut bacteria. A total of 27 faecal samples from three different groups, i.e. coeliac patients (n = 9), coeliac patients on gluten-free diet (n = 10) and a control group (n = 8), were characterized with both SERS spectroscopy and 16S rRNA sequencing analysis. Significant differences are present between SERS spectra of coeliac patients and those on gluten-free diet, with a marked increase in the relative intensity of both xanthine and hypoxanthine for the latter. Interestingly, these differences do not correlate with bacterial composition as derived from 16S rRNA sequencing.
Collapse
Affiliation(s)
- Stefano Fornasaro
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Alessandro Esposito
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Fiorella Florian
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Luigina De Leo
- Institute for Maternal Child Health-IRCCS "Burlo Garofolo" Trieste, via dell'Istria 65/1, 34100, Trieste, Italy
| | - Tarcisio Not
- Institute for Maternal Child Health-IRCCS "Burlo Garofolo" Trieste, via dell'Istria 65/1, 34100, Trieste, Italy
| | - Cristina Lagatolla
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Marica Mezzarobba
- Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128, Trieste, TS, Italy
| | - Alessia Di Silvestre
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Valter Sergo
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy
| | - Alois Bonifacio
- Raman Spectroscopy Laboratory, Department of Engineering and Architecture, University of Trieste, P.le Europa 1, 34100, Trieste, Italy.
| |
Collapse
|
42
|
Pérez Escriva P, Fuhrer T, Sauer U. Distinct N and C Cross-Feeding Networks in a Synthetic Mouse Gut Consortium. mSystems 2022; 7:e0148421. [PMID: 35357218 PMCID: PMC9040589 DOI: 10.1128/msystems.01484-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
The complex interactions between the gut microbiome and host or pathogen colonization resistance cannot be understood solely from community composition. Missing are causal relationships, such as metabolic interactions among species, to better understand what shapes the microbiome. Here, we focused on metabolic niches generated and occupied by the Oligo-Mouse-Microbiota (OMM) consortium, a synthetic community composed of 12 members that is increasingly used as a model for the mouse gut microbiome. Combining monocultures and spent medium experiments with untargeted metabolomics revealed broad metabolic diversity in the consortium, constituting a dense cross-feeding network with more than 100 pairwise interactions. Quantitative analysis of the cross-feeding network revealed distinct C and N food webs, highlighting the two Bacteroidetes members Bacteroides caecimuris and Muribaculum intestinale as primary suppliers of carbon and a more diverse group as nitrogen providers. Cross-fed metabolites were mainly carboxylic acids, amino acids, and the so far not reported nucleobases. In particular, the dicarboxylic acids malate and fumarate provided a strong physiological benefit to consumers, presumably used in anaerobic respiration. Isotopic tracer experiments validated the fate of a subset of cross-fed metabolites, such as the conversion of the most abundant cross-fed compound succinate to butyrate. Thus, we show that this consortium is tailored to produce the anti-inflammatory metabolite butyrate. Overall, we provide evidence for metabolic niches generated and occupied by OMM members that lays a metabolic foundation to facilitate an understanding of the more complex in vivo behavior of this consortium in the mouse gut. IMPORTANCE This article maps out the cross-feeding network among 10 members of a synthetic consortium that is increasingly used as the model mouse gut microbiota. Combining metabolomics with in vitro cultivations, two dense networks of carbon and nitrogen exchange are described. The vast majority of the ∼100 interactions are synergistic in nature, in several cases providing distinct physiological benefits to the recipient species. These networks lay the groundwork toward understanding gut community dynamics and host-gut microbe interactions.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
- Systems Biology Graduate School, Zurich, Switzerland
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Unraveling antimicrobial resistance using metabolomics. Drug Discov Today 2022; 27:1774-1783. [PMID: 35341988 DOI: 10.1016/j.drudis.2022.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The emergence of antimicrobial resistance (AMR) in bacterial pathogens represents a global health threat. The metabolic state of bacteria is associated with a range of genetic and phenotypic resistance mechanisms. This review provides an overview of the roles of metabolic processes that are associated with AMR mechanisms, including energy production, cell wall synthesis, cell-cell communication, and bacterial growth. These metabolic processes can be targeted with the aim of re-sensitizing resistant pathogens to antibiotic treatments. We discuss how state-of-the-art metabolomics approaches can be used for comprehensive analysis of microbial AMR-related metabolism, which may facilitate the discovery of novel drug targets and treatment strategies. TEASER: Novel treatment strategies are needed to address the emerging threat of antimicrobial resistance (AMR) in bacterial pathogens. Metabolomics approaches may help to unravel the biochemical underpinnings of AMR, thereby facilitating the discovery of metabolism-associated drug targets and treatment strategies.
Collapse
|
44
|
Microbial storage and its implications for soil ecology. THE ISME JOURNAL 2022; 16:617-629. [PMID: 34593996 PMCID: PMC8857262 DOI: 10.1038/s41396-021-01110-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Organisms throughout the tree of life accumulate chemical resources, in particular forms or compartments, to secure their availability for future use. Here we review microbial storage and its ecological significance by assembling several rich but disconnected lines of research in microbiology, biogeochemistry, and the ecology of macroscopic organisms. Evidence is drawn from various systems, but we pay particular attention to soils, where microorganisms play crucial roles in global element cycles. An assembly of genus-level data demonstrates the likely prevalence of storage traits in soil. We provide a theoretical basis for microbial storage ecology by distinguishing a spectrum of storage strategies ranging from surplus storage (storage of abundant resources that are not immediately required) to reserve storage (storage of limited resources at the cost of other metabolic functions). This distinction highlights that microorganisms can invest in storage at times of surplus and under conditions of scarcity. We then align storage with trait-based microbial life-history strategies, leading to the hypothesis that ruderal species, which are adapted to disturbance, rely less on storage than microorganisms adapted to stress or high competition. We explore the implications of storage for soil biogeochemistry, microbial biomass, and element transformations and present a process-based model of intracellular carbon storage. Our model indicates that storage can mitigate against stoichiometric imbalances, thereby enhancing biomass growth and resource-use efficiency in the face of unbalanced resources. Given the central roles of microbes in biogeochemical cycles, we propose that microbial storage may be influential on macroscopic scales, from carbon cycling to ecosystem stability.
Collapse
|
45
|
Nasaruddin ML, Tajul Arifin K. Application of Metabolomics in the Study of Starvation-Induced Autophagy in Saccharomyces cerevisiae: A Scoping Review. J Fungi (Basel) 2021; 7:987. [PMID: 34829274 PMCID: PMC8619235 DOI: 10.3390/jof7110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
This scoping review is aimed at the application of the metabolomics platform to dissect key metabolites and their intermediates to observe the regulatory mechanisms of starvation-induced autophagy in Saccharomyces cerevisiae. Four research papers were shortlisted in this review following the inclusion and exclusion criteria. We observed a commonly shared pathway undertaken by S. cerevisiae under nutritional stress. Targeted and untargeted metabolomics was applied in either of these studies using varying platforms resulting in the annotation of several different observable metabolites. We saw a commonly shared pathway undertaken by S. cerevisiae under nutritional stress. Following nitrogen starvation, the concentration of cellular nucleosides was altered as a result of autophagic RNA degradation. Additionally, it is also found that autophagy replenishes amino acid pools to sustain macromolecule synthesis. Furthermore, in glucose starvation, nucleosides were broken down into carbonaceous metabolites that are being funneled into the non-oxidative pentose phosphate pathway. The ribose salvage allows for the survival of starved yeast. Moreover, acute glucose starvation showed autophagy to be involved in maintaining ATP/energy levels. We highlighted the practicality of metabolomics as a tool to better understand the underlying mechanisms involved to maintain homeostasis by recycling degradative products to ensure the survival of S. cerevisiae under starvation. The application of metabolomics has extended the scope of autophagy and provided newer intervention targets against cancer as well as neurodegenerative diseases in which autophagy is implicated.
Collapse
Affiliation(s)
| | - Khaizurin Tajul Arifin
- Department of Biochemistry, Faculty of Medicine, National University of Malaysia Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
46
|
Observation of universal ageing dynamics in antibiotic persistence. Nature 2021; 600:290-294. [PMID: 34789881 DOI: 10.1038/s41586-021-04114-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
Stress responses allow cells to adapt to changes in external conditions by activating specific pathways1. Here we investigate the dynamics of single cells that were subjected to acute stress that is too strong for a regulated response but not lethal. We show that when the growth of bacteria is arrested by acute transient exposure to strong inhibitors, the statistics of their regrowth dynamics can be predicted by a model for the cellular network that ignores most of the details of the underlying molecular interactions. We observed that the same stress, applied either abruptly or gradually, can lead to totally different recovery dynamics. By measuring the regrowth dynamics after stress exposure on thousands of cells, we show that the model can predict the outcome of antibiotic persistence measurements. Our results may account for the ubiquitous antibiotic persistence phenotype2, as well as for the difficulty in attempts to link it to specific genes3. More generally, our approach suggests that two different cellular states can be observed under stress: a regulated state, which prepares cells for fast recovery, and a disrupted cellular state due to acute stress, with slow and heterogeneous recovery dynamics. The disrupted state may be described by general properties of large random networks rather than by specific pathway activation. Better understanding of the disrupted state could shed new light on the survival and evolution of cells under stress.
Collapse
|
47
|
Alhusban AA, Hamadneh LA, Albustanji S, Shallan AI. Lactate and pyruvate levels correlation with lactate dehydrogenase gene expression and glucose consumption in Tamoxifen-resistant MCF-7 cells using capillary electrophoresis with contactless conductivity detection (CE-C 4 D). Electrophoresis 2021; 43:446-455. [PMID: 34687464 DOI: 10.1002/elps.202100217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Breast cancer is the second leading cause of cancer death in women after lung cancer. The first-line treatment of metastatic breast cancer in premenopausal women relies on tamoxifen. The development of tamoxifen resistance is not fully understood. In this study, capillary electrophoresis with capacitively coupled contactless conductivity detector was developed to monitor the changes in lactate and pyruvate levels in supernatant media of three models of developed MCF-7 tamoxifen-resistant cells and correlate these metabolites changes with lactate dehydrogenase genes expression and glucose consumption. The electrophoretic separation was achieved under reversed electroosmotic flow conditions. The linear ranges were 0.15-5 and 0.01-1 mM with a correlation coefficient of 0.9966 and 0.9971 and the limits of detection were 0.01 and 0.02 μM for lactate and pyruvate, respectively. Inter- and intrarun accuracy were in the range of 96.88-105.94% with precision (CV, %) of ≤7.35%. The method was completely validated and the results were in agreement with those obtained using the lactate and glucose assay kits. The results revealed a significant increase in both lactate and pyruvate production in the three tamoxifen-resistant MCF-7 cells models compared to control cells. This increase was correlated with the increase of lactate dehydrogenase genes expression and the increase of glucose consumption.
Collapse
Affiliation(s)
- Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Lama A Hamadneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Sokiyna Albustanji
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Aliaa I Shallan
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
48
|
Vaitiekūnaitė D, Snitka V. Differentiation of Closely Related Oak-Associated Gram-Negative Bacteria by Label-Free Surface Enhanced Raman Spectroscopy (SERS). Microorganisms 2021; 9:1969. [PMID: 34576865 PMCID: PMC8466144 DOI: 10.3390/microorganisms9091969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
Due to the harmful effects of chemical fertilizers and pesticides, the need for an eco-friendly solution to improve soil fertility has become a necessity, thus microbial biofertilizer research is on the rise. Plant endophytic bacteria inhabiting internal tissues represent a novel niche for research into new biofertilizer strains. However, the number of species and strains that need to be differentiated and identified to facilitate faster screening in future plant-bacteria interaction studies, is enormous. Surface enhanced Raman spectroscopy (SERS) may provide a platform for bacterial discrimination and identification, which, compared with the traditional methods, is relatively rapid, uncomplicated and ensures high specificity. In this study, we attempted to differentiate 18 bacterial isolates from two oaks via morphological, physiological, biochemical tests and SERS spectra analysis. Previous 16S rRNA gene fragment sequencing showed that three isolates belong to Paenibacillus, 3-to Pantoea and 12-to Pseudomonas genera. Additional tests were not able to further sort these bacteria into strain-specific groups. However, the obtained label-free SERS bacterial spectra along with the high-accuracy principal component (PCA) and discriminant function analyses (DFA) demonstrated the possibility to differentiate these bacteria into variant strains. Furthermore, we collected information about the biochemical characteristics of selected isolates. The results of this study suggest a promising application of SERS in combination with PCA/DFA as a rapid, non-expensive and sensitive method for the detection and identification of plant-associated bacteria.
Collapse
Affiliation(s)
- Dorotėja Vaitiekūnaitė
- Laboratory of Forest Plant Biotechnology, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania
| | - Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu Str. 65, 51369 Kaunas, Lithuania;
| |
Collapse
|
49
|
Yeung E, Kim J, Yuan Y, Gonçalves J, Murray RM. Data-driven network models for genetic circuits from time-series data with incomplete measurements. J R Soc Interface 2021; 18:20210413. [PMID: 34493091 PMCID: PMC8424335 DOI: 10.1098/rsif.2021.0413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Synthetic gene networks are frequently conceptualized and visualized as static graphs. This view of biological programming stands in stark contrast to the transient nature of biomolecular interaction, which is frequently enacted by labile molecules that are often unmeasured. Thus, the network topology and dynamics of synthetic gene networks can be difficult to verify in vivo or in vitro, due to the presence of unmeasured biological states. Here we introduce the dynamical structure function as a new mesoscopic, data-driven class of models to describe gene networks with incomplete measurements of state dynamics. We develop a network reconstruction algorithm and a code base for reconstructing the dynamical structure function from data, to enable discovery and visualization of graphical relationships in a genetic circuit diagram as time-dependent functions rather than static, unknown weights. We prove a theorem, showing that dynamical structure functions can provide a data-driven estimate of the size of crosstalk fluctuations from an idealized model. We illustrate this idea with numerical examples. Finally, we show how data-driven estimation of dynamical structure functions can explain failure modes in two experimentally implemented genetic circuits, a previously reported in vitro genetic circuit and a new E. coli-based transcriptional event detector.
Collapse
Affiliation(s)
- Enoch Yeung
- Center for Biological Engineering, Biomolecular Science and Engineering Program, Department of Mechanical Engineering, Center for Control, Dynamical Systems, and Computation, University of California, Santa Barbara, CA, USA
| | - Jongmin Kim
- Department of Life Sciences, POSTECH, Pohang, South Korea
| | - Ye Yuan
- School of Artificial Intelligence and Automation, Hua Zhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jorge Gonçalves
- Systems Biology Research Group, University of Luxembourg, Belvaux, Luxembourg
| | - Richard M. Murray
- Control and Dynamical Systems, California Institute of Technology, Pasadena, CA, USA
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
50
|
Zhuang S, Renault N, Archer I. A brief review on recent development of multidisciplinary engineering in fermentation of Saccharomyces cerevisiae. J Biotechnol 2021; 339:32-41. [PMID: 34339775 DOI: 10.1016/j.jbiotec.2021.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Abstract
Fermentation technology has unprecedented potential to upgrade state-of-art biotechnology and refine the processes used in existing ones, taking into account of complex technical, economic and environmental factors. Given the economic importance and ongoing challenges of biotech sector, multidisciplinary engineering technologies is poised to become an increasingly important tool along with the emergence of modern technology and innovation. This article reviews recent technology advancement in the field of fermentation using Saccharomyces cerevisiae. Interesting research progress has been made by leveraging multiple engineering fields such as electrical engineering, information engineering, electrochemical engineering and new material development, leading to recent development of novel real-time probes (electronic nose technology, analysis of yeast morphology and metabolites, timely control of glucose feed), improved understanding of electro-fermentation (enhanced electronic transfer provision), as well as application of cost-effective and sustainable materials (bioreactor vessel manufactured from textile, and yeast immobilisation support matrix made from abundant natural biomass). To the best of our knowledge, the subject is reviewed for the first time in recent years. Furthermore, this review also constitutes a futuristic S. cerevisiae fermentation process based on the recent advancement discussed.
Collapse
Affiliation(s)
- Shiwen Zhuang
- Industrial Biotechnology Innovation Centre (IBioIC), University of Strathclyde, Glasgow, G1 1XQ, United Kingdom; School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Neil Renault
- Industrial Biotechnology Innovation Centre (IBioIC), University of Strathclyde, Glasgow, G1 1XQ, United Kingdom; School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Ian Archer
- Industrial Biotechnology Innovation Centre (IBioIC), University of Strathclyde, Glasgow, G1 1XQ, United Kingdom
| |
Collapse
|