1
|
Troester S, Eder T, Wukowits N, Piontek M, Fernández-Pernas P, Schmoellerl J, Haladik B, Manhart G, Allram M, Maurer-Granofszky M, Scheidegger N, Nebral K, Superti-Furga G, Meisel R, Bornhauser B, Valent P, Dworzak MN, Zuber J, Boztug K, Grebien F. Transcriptional and epigenetic rewiring by the NUP98::KDM5A fusion oncoprotein directly activates CDK12. Nat Commun 2025; 16:4656. [PMID: 40389480 PMCID: PMC12089343 DOI: 10.1038/s41467-025-59930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/08/2025] [Indexed: 05/21/2025] Open
Abstract
Nucleoporin 98 (NUP98) fusion oncoproteins are strong drivers of pediatric acute myeloid leukemia (AML) with poor prognosis. Here we show that NUP98 fusion-expressing AML harbors an epigenetic signature that is characterized by increased accessibility of hematopoietic stem cell genes and enrichment of activating histone marks. We employ an AML model for ligand-induced degradation of the NUP98::KDM5A fusion oncoprotein to identify epigenetic programs and transcriptional targets that are directly regulated by NUP98::KDM5A through CUT&Tag and nascent RNA-seq. Orthogonal genome-wide CRISPR/Cas9 screening identifies 12 direct NUP98::KDM5A target genes, which are essential for AML cell growth. Among these, we validate cyclin-dependent kinase 12 (CDK12) as a druggable vulnerability in NUP98::KDM5A-expressing AML. In line with its role in the transcription of DNA damage repair genes, small-molecule-mediated CDK12 inactivation causes increased DNA damage, leading to AML cell death. Altogether, we show that NUP98::KDM5A directly regulates a core set of essential target genes and reveal CDK12 as an actionable vulnerability in AML with oncogenic NUP98 fusions.
Collapse
MESH Headings
- Humans
- Nuclear Pore Complex Proteins/metabolism
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Cyclin-Dependent Kinases/metabolism
- Cyclin-Dependent Kinases/genetics
- Epigenesis, Genetic
- Cell Line, Tumor
- Animals
- Transcription, Genetic
- Mice
- Gene Expression Regulation, Leukemic
- DNA Damage
- CRISPR-Cas Systems
- Retinoblastoma-Binding Protein 2
Collapse
Affiliation(s)
- Selina Troester
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Eder
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nadja Wukowits
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Piontek
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pablo Fernández-Pernas
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Johannes Schmoellerl
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Ben Haladik
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gabriele Manhart
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Melanie Allram
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Nastassja Scheidegger
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karin Nebral
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseologay, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Michael N Dworzak
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Grebien
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
2
|
Zhang Y, Nersisyan L, Fürst E, Alexopoulos I, Santolaria C, Huch S, Bassot C, Garre E, Sunnerhagen P, Piazza I, Pelechano V. Ribosomes modulate transcriptome abundance via generalized frameshift and out-of-frame mRNA decay. Mol Cell 2025; 85:2017-2031.e7. [PMID: 40378831 DOI: 10.1016/j.molcel.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/17/2024] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Cells need to adapt their transcriptome to quickly match cellular needs in changing environments. mRNA abundance can be controlled by altering both its synthesis and decay. Here, we show how, in response to poor nutritional conditions, the bulk of the S. cerevisiae transcriptome undergoes -1 ribosome frameshifts and experiences an accelerated out-of-frame co-translational mRNA decay. Using RNA metabolic labeling, we demonstrate that in poor nutritional conditions, nonsense-mediated mRNA decay (NMD)-dependent degradation represents at least one-third of the total mRNA decay. We further characterize this mechanism and identify low codon optimality as a key factor for ribosomes to induce out-of-frame mRNA decay. Finally, we show that this phenomenon is conserved from bacteria to humans. Our work provides evidence for a direct regulatory feedback mechanism coupling protein demand with the control of mRNA abundance to limit cellular growth and broadens the functional landscape of mRNA quality control.
Collapse
Affiliation(s)
- Yujie Zhang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden; Armenian Bioinformatics Institute, Yerevan, Armenia; Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
| | - Eliska Fürst
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Ioannis Alexopoulos
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Carlos Santolaria
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden
| | - Claudio Bassot
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Elena Garre
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg 40530 Gothenburg, Sweden
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna 171 65, Sweden.
| |
Collapse
|
3
|
Wang J, Deng X, Jian T, Yin S, Chen L, Vergnes L, Li Z, Liu H, Lee R, Lim SY, Bahn JH, Xiao X, Zhu X, Hu G, Reue K, Liu Y, Fan G. DNA methyltransferase 1 modulates mitochondrial function through bridging m 5C RNA methylation. Mol Cell 2025; 85:1999-2016.e11. [PMID: 40328247 DOI: 10.1016/j.molcel.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/25/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
DNA methyltransferase 1 (DNMT1) is an enzyme known for DNA methylation maintenance. Point mutations in its replication focus targeting sequence (RFTS) domain lead to late-onset neurodegeneration, such as autosomal dominant cerebellar ataxia-deafness and narcolepsy (ADCA-DN) disorder. Here, we demonstrated that DNMT1 has the capability to bind to mRNA transcripts and facilitate 5-methylcytosine (m5C) RNA methylation by recruiting NOP2/Sun RNA methyltransferase 2 (NSUN2). RNA m5C methylation, in turn, promotes RNA stability for those genes modulating mitochondrial function. When the DNMT1 RFTS domain is mutated in mice, it triggers aberrant DNMT1-RNA interaction and significantly elevated m5C RNA methylation and RNA stability for a portion of metabolic genes. Consequently, increased levels of metabolic RNA transcripts contribute to cumulative oxidative stress, mitochondrial dysfunction, and neurological symptoms. Collectively, our results reveal a dual role of DNMT1 in regulating both DNA and RNA methylation, which further modulates mitochondrial function, shedding light on the pathogenic mechanism of DNMT1 mutation-induced neurodegeneration.
Collapse
Affiliation(s)
- Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xiaoqian Deng
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianshen Jian
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Shanshan Yin
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linzhi Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhehao Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Huoyuan Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ryan Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sin Yee Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; The Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121.
| |
Collapse
|
4
|
Anisimova AS, Karagöz GE. HaloPROTAC3 treatment activates the unfolded protein response of the endoplasmic reticulum in nonengineered mammalian cell lines. Mol Biol Cell 2025; 36:mr3. [PMID: 40105918 DOI: 10.1091/mbc.e24-08-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Proteins fused to HaloTag, an engineered haloalkane dehalogenase, can be depleted by a heterobifunctional degrader compound HaloPROTAC3. The binding of HaloPROTAC3 to both the HaloTag and the E3 ligase von Hippel-Lindau (VHL) brings them into proximity and mediates the degradation of the HaloTag fusion proteins. Here, we generated a colon cancer cell line HCT116 expressing HaloTag fused to the RNA-binding protein IGF2BP3 to study its function. HaloPROTAC3 treatment depleted 75% of HaloTag-IGF2BP3 in 5 h. Transcriptomics revealed that HaloPROTAC3 treatment resulted in the destabilization of IGF2BP3 target mRNAs and activated the unfolded protein response (UPR). Surprisingly, we found that HaloPROTAC3 results in UPR activation in nonengineered mammalian cells. Our data demonstrate that HaloPROTAC3 causes mild endoplasmic reticulum stress independent of IGF2BP3 function and shall guide future studies using the HaloPROTAC3 protein depletion strategy.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Max Perutz Labs Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - G Elif Karagöz
- Max Perutz Labs Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Linder B, Sharma P, Wu J, Birbaumer T, Eggers C, Murakami S, Ott RE, Fenzl K, Vorgerd H, Erhard F, Jaffrey SR, Leidel SA, Steinmetz LM. tRNA modifications tune m 6A-dependent mRNA decay. Cell 2025:S0092-8674(25)00415-5. [PMID: 40311619 DOI: 10.1016/j.cell.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 11/14/2024] [Accepted: 04/06/2025] [Indexed: 05/03/2025]
Abstract
Chemically modified nucleotides in mRNA are critical regulators of gene expression, primarily through interactions with reader proteins that bind to these modifications. Here, we present a mechanism by which the epitranscriptomic mark N6-methyladenosine (m6A) is read by tRNAs during translation. Codons that are modified with m6A are decoded inefficiently by the ribosome, rendering them "non-optimal" and inducing ribosome collisions on cellular transcripts. This couples mRNA translation to decay. 5-Methoxycarbonylmethyl-2-thiouridine (mcm5s2U) in the tRNA anticodon loop counteracts this effect. This unanticipated link between the mRNA and tRNA epitranscriptomes enables the coordinated decay of mRNA regulons, including those encoding oncogenic signaling pathways. In cancer, dysregulation of the m6A and mcm5s2U biogenesis pathways-marked by a shift toward more mcm5s2U-is associated with more aggressive tumors and poor prognosis. Overall, this pan-epitranscriptomic interaction represents a novel mechanism of post-transcriptional gene regulation with implications for human health.
Collapse
Affiliation(s)
- Bastian Linder
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Puneet Sharma
- Max-Planck-Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Jie Wu
- Max-Planck-Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; The Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland; Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tosca Birbaumer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; The Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Cristian Eggers
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Shino Murakami
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Roman E Ott
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Kai Fenzl
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Hannah Vorgerd
- Max-Planck-Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Florian Erhard
- Institute of Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany; Chair of Computational Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Sebastian A Leidel
- Max-Planck-Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Ogura Y, Sun X, Zhang Z, Kawata K, Wu J, Matsubara R, Ozeki AN, Taniue K, Onoguchi-Mizutani R, Adachi S, Nakayama K, Goda N, Akimitsu N. Fragile X messenger ribonucleoprotein 1 (FMRP) regulates glycolytic gene expression under chronic hypoxia in HCT116 cells. Sci Rep 2025; 15:13273. [PMID: 40246883 PMCID: PMC12006372 DOI: 10.1038/s41598-025-91828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
Oxygen shortage, known as hypoxia, occurs commonly in both physiological and pathological conditions. Transcriptional regulation by hypoxia-inducible factors is a dominant regulatory mechanism controlling hypoxia-responsive genes during acute hypoxia; however, recent studies suggest that post-transcriptional regulation, including RNA degradation, also involves hypoxia-induced gene expression during the chronic hypoxia. In this study, we developed a method to quantify the contributions of RNA synthesis and degradation to differential gene expression, and identified 102 genes mainly regulated via RNA degradation under chronic hypoxia in HCT116 cells. Bioinformatics analysis showed that the genes mainly regulated by RNA degradation were involved in glycolysis. We examined changes in the RNA-binding ability of RNA-binding proteins by RNA interactome capture and statistical analysis using public databases. We identified fragile X messenger ribonucleoprotein 1 (FMRP) as an RNA-binding protein involved in the chronic hypoxia-induced increase in mRNAs encoding rate-limiting enzymes. This study emphasizes the importance of post-transcriptional gene regulation under chronic hypoxia in HCT116 cells.
Collapse
Affiliation(s)
- Yoko Ogura
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Xiaoning Sun
- Advanced Interdisciplinary Studies, Engineering Department, The University of Tokyo, Tokyo, Japan
| | - Zaijun Zhang
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kentaro Kawata
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Jinyu Wu
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ryuma Matsubara
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | | | - Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | | | - Shungo Adachi
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Koh Nakayama
- Department of Pharmacology, School of Medicine, Asahikawa Medical University, Hokkaido, 078-8510, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
7
|
Munneke MJ, Yuan Y, Preisner EC, Shelton CD, Carroll DT, Kirchoff NS, Dickson KP, Cantu JO, Douglass MV, Calcutt MW, Gibson-Corley KN, Nicholson MR, Byndloss MX, Britton RA, de Crécy-Lagard V, Skaar EP. A thiouracil desulfurase protects Clostridioides difficile RNA from 4-thiouracil incorporation, providing a competitive advantage in the gut. Cell Host Microbe 2025; 33:573-588.e7. [PMID: 40139192 PMCID: PMC11985272 DOI: 10.1016/j.chom.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/03/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Nucleotides are essential building blocks for major cellular macromolecules and are critical for life. Consequently, bacterial pathogens must acquire or synthesize nucleotides during infection. Clostridioides difficile is the most common hospital-acquired gastrointestinal infection, and nutrient acquisition is critical for pathogenesis. However, the impact of nucleotide metabolism on C. difficile infection remains unclear. Here, we discover that 4-thiouracil (4-TU), a pyrimidine analog present in the human gut, is toxic to commensal bacteria. 4-TU hijacks the uracil salvage pathway for incorporation into RNA through the uracil phosphoribosyltransferase activity encoded by PyrR and Upp. C. difficile can salvage 4-TU as a pyrimidine source through the enzymatic action of a thiouracil desulfurase (TudS), thereby contributing to C. difficile fitness in mice fed 4-TU or MiniBioreactor models of infection containing exogenous 4-TU. Collectively, these results reveal a molecular mechanism for C. difficile to utilize a poisonous pyrimidine analog in the vertebrate gut to outcompete commensal microbes.
Collapse
Affiliation(s)
- Matthew J Munneke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232-7917, USA
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Eva C Preisner
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Catherine D Shelton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232-7917, USA
| | - Darian T Carroll
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232-7917, USA
| | - Nicole S Kirchoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232-7917, USA
| | - Ken P Dickson
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jose O Cantu
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin V Douglass
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232-7917, USA
| | - M Wade Calcutt
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232-7917, USA
| | - Maribeth R Nicholson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232-7917, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232-7917, USA; Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert A Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232-7917, USA.
| |
Collapse
|
8
|
Gondane A, Itkonen HM. Dynamic O-GlcNAcylation and phosphorylation attract and expel proteins from RNA polymerase II to regulate mRNA maturation. J Biomed Sci 2025; 32:39. [PMID: 40186208 PMCID: PMC11969731 DOI: 10.1186/s12929-025-01135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Phosphorylation and O-GlcNAcylation are the key modifications regulating RNA Polymerase II (RNA Pol II)-driven transcription. Transcriptional kinases, cyclin-dependent kinase 7 (CDK7), CDK9 and CDK12 phosphorylate RNA Pol II, whereas O-GlcNAcylation is added by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA). Currently, no study has systematically evaluated how inhibiting each of these enzyme activities impacts the assembly of the appropriate protein complexes on the polymerase and the maturation of mRNA. METHODS Here, we systematically evaluate remodeling of RNA Pol II interactome and effects on the nascent mRNA maturation by using mass spectrometry and SLAM-seq, respectively. For validation, we rely predominantly on analysis of intronic polyadenylation (IPA) sites, mitochondrial flux assays (Seahorse), western blotting and patient data. RESULTS We show that OGT / OGA inhibition reciprocally affect protein recruitment to RNA Pol II, and appropriate O-GlcNAcylation levels are required for optimal function of the RNA Pol II complex. These paradoxical effects are explained through IPA, because despite being prematurely poly-adenylated, these mRNAs are scored as mature in SLAM-seq. Unlike previously proposed, we show that, similar to inhibition of CDK12, also targeting CDK9 stimulates transcription of short genes at the cost of long genes. However, our systematic proteomic- and IPA-analysis revealed that these effects are mediated by distinct molecular mechanisms: CDK9 inhibition leads to a failure of recruiting Integrator complex to RNA Pol II, and we then show that depletion of Integrator subunits phenocopy the gene length-dependent effects. In contrast, CDK12 inhibition triggers IPA. Finally, we show that dynamic O-GlcNAcylation predominantly interplays with CDK9: OGT inhibition augments CDK9 inhibitor effects on mRNA maturation due to defects in transcription elongation, while OGA inhibition rescues mRNA maturation failure caused by targeting CDK9, but induces IPA. CONCLUSION We show that dynamic O-GlcNAcylation is a negative regulator of mRNA biosynthesis and propose that the addition and removal of the modification serve as quality control-steps to ascertain successful generation of mature mRNAs. Our work identifies unprecedented redundancy in the regulation of RNA Pol II, which increases resilience towards transcriptional stress, and also underscores the difficulty of targeting transcription to control cancer.
Collapse
Affiliation(s)
- Aishwarya Gondane
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| | - Harri M Itkonen
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
9
|
Zhang X, Dhir S, Melidis L, Chen Y, Yu Z, Simeone A, Spiegel J, Adhikari S, Balasubramanian S. Optical control of gene expression using a DNA G-quadruplex targeting reversible photoswitch. Nat Chem 2025:10.1038/s41557-025-01792-1. [PMID: 40181150 DOI: 10.1038/s41557-025-01792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
Transcriptional regulation is a dynamic process that coordinates diverse cellular activities, and the use of small molecules to perturb gene expression has propelled our understanding of the fundamental regulatory mechanisms. However, small molecules typically lack the spatiotemporal precision required in highly non-invasive, controlled settings. Here we present the development of a cell-permeable small-molecule DNA G-quadruplex (G4) binder, termed G4switch, that can be reversibly toggled on and off by visible light. We have biophysically characterized the light-mediated control of G4 binding in vitro, followed by cellular, genomic mapping of G4switch to G4 targets in chromatin to confirm G4-selective, light-dependent binding in a cellular context. By deploying G4switch in living cells, we show spatiotemporal control over the expression of a set of G4-containing genes and G4-associated cell proliferation. Our studies demonstrate a chemical tool and approach to interrogate the dynamics of key biological processes directly at the molecular level in cells.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Somdutta Dhir
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Yuqi Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Zutao Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Angela Simeone
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Jochen Spiegel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Santosh Adhikari
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Shankar Balasubramanian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Khyzha N, Ahmad K, Henikoff S. Profiling transcriptome composition and dynamics within nuclear compartments using SLAM-RT&Tag. Mol Cell 2025; 85:1366-1380.e4. [PMID: 40073862 PMCID: PMC12052203 DOI: 10.1016/j.molcel.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/09/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Nuclear compartments are membrane-less regions enriched in functionally related molecules. RNA is a major component of many nuclear compartments, but the identity and dynamics of transcripts within nuclear compartments are poorly understood. Here, we applied reverse transcribe and tagment (RT&Tag) to human cell lines to identify the transcript populations of Polycomb domains and nuclear speckles. We also developed SLAM-RT&Tag, which combines RNA metabolic labeling with RT&Tag, to quantify transcript dynamics within nuclear compartments. We observed unique transcript populations with differing structures and dynamics within each compartment. Intriguingly, exceptionally long genes are transcribed adjacent to Polycomb domains and are transiently associated with chromatin. By contrast, nuclear speckles act as quality control checkpoints that transiently confine incompletely spliced polyadenylated transcripts and facilitate their post-transcriptional splicing. In summary, we demonstrate that transcripts at Polycomb domains and nuclear speckles undergo distinct RNA processing mechanisms, highlighting the pivotal role of compartmentalization in RNA maturation.
Collapse
Affiliation(s)
- Nadiya Khyzha
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
11
|
Tani H. Metabolic labeling of RNA using ribonucleoside analogs enables the evaluation of RNA synthesis and degradation rates. ANAL SCI 2025; 41:345-351. [PMID: 39699752 DOI: 10.1007/s44211-024-00704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts exceeding 200 nucleotides that do not encode proteins. Despite lacking protein-coding capabilities, lncRNAs play crucial roles in cellular processes, including gene-expression modulation and structural maintenance. The study of lncRNAs has evolved significantly since 2009, with advancements in analytical methodologies providing new insights into their functions and dynamics. Key developments include BRIC-Seq, SLAM-Seq, TUC-Seq, TimeLapse-seq, and Dyrec-Seq. These methodologies have enabled researchers to investigate lncRNA behavior under various conditions, including cellular stress responses and complex biologic systems. Future challenges include developing comprehensive techniques for identifying lncRNA-interacting proteins and advancing in vivo methodologies using model organisms. As the field progresses, integrating these technologies will enhance our understanding of lncRNA biology, potentially leading to novel therapeutic strategies and deeper insights into gene-regulation mechanisms.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama, 245-0066, Japan.
| |
Collapse
|
12
|
Ito J, Miyake K, Chiba T, Takahashi K, Uchida Y, Blackshear PJ, Asahara H, Karasuyama H. Tristetraprolin-mediated mRNA destabilization regulates basophil inflammatory responses. Allergol Int 2025; 74:263-273. [PMID: 39550253 DOI: 10.1016/j.alit.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Basophils, despite being the least common granulocytes, play crucial roles in type 2 immune responses, such as chronic allergic inflammation and protective immunity against parasites. However, the molecular mechanisms regulating basophil activation and inflammatory molecule production remain poorly understood. Therefore, we investigated the role of RNA-binding proteins, specifically tristetraprolin (TTP), in regulating inflammatory molecule production in basophils. METHODS Using antigen/IgE-stimulated basophils from wild-type (WT) and TTP-knockout (TTP-KO) mice, we performed bulk RNA sequencing, transcriptome-wide mRNA stability assays, and protein analyses. We also examined mRNA expression and protein production of inflammatory molecules in TTP-KO basophils under stimulation with IL-33 or LPS. Furthermore, we evaluated the in vivo significance of TTP in basophils using basophil-specific TTP-deficient mice and a hapten oxazolone-induced atopic dermatitis model. RESULTS TTP expression was upregulated in basophils following stimulation with antigen/IgE, IL-33, or LPS. Under these stimuli, TTP-KO basophils exhibited elevated mRNA expression of inflammatory molecules, such as Il4, Areg, Ccl3, and Cxcl2, compared to WT basophils. Transcriptome-wide mRNA stability assays revealed that TTP deficiency prolonged the mRNA half-life of these inflammatory mediators. Notably, the production of these inflammatory proteins was significantly increased in TTP-KO basophils. Moreover, basophil-specific TTP-deficient mice showed exacerbated oxazolone-induced atopic dermatitis-like skin allergic inflammation. CONCLUSIONS TTP is a key regulator of basophil activation, controlling the production of inflammatory mediators through mRNA destabilization. Our in vivo findings demonstrate that the absence of TTP in basophils significantly aggravates allergic skin inflammation, highlighting its potential as a therapeutic target for allergic diseases.
Collapse
Affiliation(s)
- Junya Ito
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan; Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Kensuke Miyake
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
| | - Tomoki Chiba
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Kazufusa Takahashi
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Yutaro Uchida
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA; Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Hajime Karasuyama
- Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Ge T, Brickner DG, Zehr K, VanBelzen DJ, Zhang W, Caffalette C, Moeller GC, Ungerleider S, Marcou N, Jacob A, Nguyen VQ, Chait B, Rout MP, Brickner JH. Exportin-1 functions as an adaptor for transcription factor-mediated docking of chromatin at the nuclear pore complex. Mol Cell 2025; 85:1101-1116.e8. [PMID: 40068679 PMCID: PMC11928253 DOI: 10.1016/j.molcel.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/16/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Nuclear pore proteins (nucleoporins [Nups]) physically interact with hundreds of chromosomal sites, impacting transcription. In yeast, transcription factors mediate interactions between Nups and enhancers and promoters. To define the molecular basis of this mechanism, we exploited a separation-of-function mutation in the Gcn4 transcription factor that blocks its interaction with the nuclear pore complex (NPC). This mutation reduces the interaction of Gcn4 with the highly conserved nuclear export factor Crm1/Xpo1. Crm1 and Nups co-occupy enhancers, and Crm1 inhibition blocks interaction of the nuclear pore protein Nup2 with the genome. In vivo, Crm1 interacts stably with the NPC and in vitro, Crm1 binds directly to both Gcn4 and Nup2. Importantly, the interaction between Crm1 and Gcn4 requires neither Ran-guanosine triphosphate (GTP) nor the nuclear export sequence binding site. Finally, Crm1 and Ran-GTP stimulate DNA binding by Gcn4, suggesting that allosteric coupling between Crm1-Ran-GTP binding and DNA binding facilitates the docking of transcription-factor-bound enhancers at the NPC.
Collapse
Affiliation(s)
- Tiffany Ge
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Donna Garvey Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Kara Zehr
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - D Jake VanBelzen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Caffalette
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Gavin C Moeller
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Sara Ungerleider
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Nikita Marcou
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Alexis Jacob
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Vu Q Nguyen
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Brian Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
14
|
Mabin JW, Vock IW, Machyna M, Haque N, Thakran P, Zhang A, Rai G, Leibler INM, Inglese J, Simon MD, Hogg JR. Uncovering the isoform-resolution kinetic landscape of nonsense-mediated mRNA decay with EZbakR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642874. [PMID: 40161772 PMCID: PMC11952489 DOI: 10.1101/2025.03.12.642874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cellular RNA levels are a product of synthesis and degradation kinetics, which can differ among transcripts of the same gene. An important cause of isoform-specific decay is the nonsense-mediated mRNA decay (NMD) pathway, which degrades transcripts with premature termination codons (PTCs) and other features. Understanding NMD functions requires strategies to quantify isoform kinetics; however, current approaches remain limited. Methods like nucleotide-recoding RNA-seq (NR-seq) enable insights into RNA kinetics, but existing bioinformatic tools do not provide robust, isoform-specific degradation rate constant estimates. We extend the EZbakR-suite by implementing a strategy to infer isoform-level kinetics from short-read NR-seq data. This approach uncovers unexpected variability in NMD efficiency among transcripts with conserved PTC-containing exons and rapid decay of a subset of mRNAs lacking PTCs. Our findings highlight the effects of competition between NMD and other decay pathways, provide mechanistic insights into established NMD efficiency correlates, and identify transcript features promoting efficient decay.
Collapse
Affiliation(s)
- Justin W. Mabin
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Isaac W. Vock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
| | - Martin Machyna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
- Present address: Paul-Ehrlich-Institut, Host-Pathogen-Interactions, 63225 Langen, Germany
| | - Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Present address: Ultragenyx, 7000 Shoreline Ct, South San Francisco, CA 94080
| | - Poonam Thakran
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandra Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, 20850 Maryland, USA
| | | | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, 20850 Maryland, USA
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew D. Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
| | - J. Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Lyu J, Xu X, Chen C. A convenient single-cell newly synthesized transcriptome assay reveals FLI1 downregulation during T-cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.22.609222. [PMID: 39372732 PMCID: PMC11451745 DOI: 10.1101/2024.08.22.609222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Sequencing newly synthesized transcriptome alongside regular transcriptome in single cells enables the study of gene expression temporal dynamics during rapid chromatin and gene regulation processes. Existing assays for profiling single-cell newly synthesized transcriptome often require specialized technical expertise to achieve high cellular throughput, limiting their accessibility. Here, we developed NOTE-seq, a method for simultaneous profiling of regular and newly synthesized transcriptomes in single cells with high cellular throughput. NOTE-seq integrates 4-thiouridine labeling of newly synthesized RNA, thiol-alkylation-based chemical conversion, and a streamlined 10X Genomics workflow, making it accessible and convenient for biologists without extensive single-cell expertise. Using NOTE-seq, we investigated the temporal dynamics of gene expression during early-stage T-cell activation, identified transcription factors and regulons in Jurkat and naïve T cells, and uncovered the down-regulation of FLI1 as a master transcription factor upon T-cell stimulation. Notably, topoisomerase inhibition led to the depletion of both topoisomerases and FLI1 in T cells through a proteasome-dependent mechanism driven by topoisomerase cleavage complexes, highlighting potential complications topoisomerase-targeting cancer chemotherapies could pose to the immune system.
Collapse
|
16
|
Ocheltree C, Skrable B, Pimentel A, Nicholson-Shaw T, Lee SR, Lykke-Andersen J. Widespread mono- and oligoadenylation direct small noncoding RNA maturation versus degradation fates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635978. [PMID: 39975393 PMCID: PMC11838476 DOI: 10.1101/2025.01.31.635978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Small non-coding RNAs (sncRNAs) are subject to 3' end trimming and tailing activities that impact maturation versus degradation decisions during biogenesis. To investigate the dynamics of human sncRNA 3' end processing at a global level we performed genome-wide 3' end sequencing of nascently-transcribed and steady-state sncRNAs. This revealed widespread post-transcriptional adenylation of nascent sncRNAs, which came in two distinct varieties. One is characterized by oligoadenylation, which is transient, promoted by TENT4A/4B polymerases, and most commonly observed on unstable snoRNAs that are not fully processed at their 3' ends. The other is characterized by monoadenylation, which is broadly catalyzed by TENT2 and, in contrast to oligoadenylation, stably accumulates at the 3'-end of sncRNAs, including Polymerase-III-transcribed (Pol-III) RNAs and a subset of small nuclear RNAs. Monoadenylation inhibits Pol-III RNA post-transcriptional 3' uridine trimming and extension and, in the case of 7SL RNAs, prevents their accumulation with nuclear La protein and promotes their biogenesis towards assembly into cytoplasmic signal recognition particles. Thus, the biogenesis of human sncRNAs involves widespread mono- or oligo-adenylation with divergent impacts on sncRNA fates.
Collapse
|
17
|
Müller JM, Altendorfer E, Freier S, Moos K, Mayer A, Tresch A. Halfpipe: a tool for analyzing metabolic labeling RNA-seq data to quantify RNA half-lives. NAR Genom Bioinform 2025; 7:lqaf006. [PMID: 39967604 PMCID: PMC11833738 DOI: 10.1093/nargab/lqaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 02/16/2025] [Indexed: 02/20/2025] Open
Abstract
We introduce Halfpipe, a tool for analyzing RNA-seq data from metabolic RNA labeling experiments. Its main features are the absolute quantification of 4-thiouridine-labeling-induced T>C conversions in the data as generated by SLAM-seq, calculating the proportion of newly synthesized transcripts, and estimating subcellular RNA half-lives. Halfpipe excels at correcting critical biases caused by typically low labeling efficiency. We measure and compare the RNA metabolism in the G1 phase and during the mitosis of synchronized human cells. We find that RNA half-lives of constantly expressed RNAs are similar in mitosis and G1 phase, suggesting that RNA stability of those genes is constant throughout the cell cycle. Our estimates correlate well with literature values and with known RNA sequence features. Halfpipe is freely available at https://github.com/IMSBCompBio/Halfpipe.
Collapse
Affiliation(s)
- Jason M Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, 50924 Cologne, Germany
| | - Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Susanne Freier
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Katharina Moos
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, 50924 Cologne, Germany
- Center for Data and Simulation Science, University of Cologne, 50923 Cologne, Germany
| |
Collapse
|
18
|
Capitanchik C, Wilkins OG, Wagner N, Gagneur J, Ule J. From computational models of the splicing code to regulatory mechanisms and therapeutic implications. Nat Rev Genet 2025; 26:171-190. [PMID: 39358547 DOI: 10.1038/s41576-024-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Since the discovery of RNA splicing and its role in gene expression, researchers have sought a set of rules, an algorithm or a computational model that could predict the splice isoforms, and their frequencies, produced from any transcribed gene in a specific cellular context. Over the past 30 years, these models have evolved from simple position weight matrices to deep-learning models capable of integrating sequence data across vast genomic distances. Most recently, new model architectures are moving the field closer to context-specific alternative splicing predictions, and advances in sequencing technologies are expanding the type of data that can be used to inform and interpret such models. Together, these developments are driving improved understanding of splicing regulatory mechanisms and emerging applications of the splicing code to the rational design of RNA- and splicing-based therapeutics.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Oscar G Wilkins
- The Francis Crick Institute, London, UK
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
19
|
Quarto G, Li Greci A, Bizet M, Penning A, Primac I, Murisier F, Garcia-Martinez L, Borges RL, Gao Q, Cingaram PKR, Calonne E, Hassabi B, Hubert C, Herpoel A, Putmans P, Mies F, Martin J, Van der Linden L, Dube G, Kumar P, Soin R, Kumar A, Misra A, Lan J, Paque M, Gupta YK, Blomme A, Close P, Estève PO, Caine EA, Riching KM, Gueydan C, Daniels DL, Pradhan S, Shiekhattar R, David Y, Morey L, Jeschke J, Deplus R, Collignon E, Fuks F. Fine-tuning of gene expression through the Mettl3-Mettl14-Dnmt1 axis controls ESC differentiation. Cell 2025; 188:998-1018.e26. [PMID: 39826545 DOI: 10.1016/j.cell.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
The marking of DNA, histones, and RNA is central to gene expression regulation in development and disease. Recent evidence links N6-methyladenosine (m6A), installed on RNA by the METTL3-METTL14 methyltransferase complex, to histone modifications, but the link between m6A and DNA methylation remains scarcely explored. This study shows that METTL3-METTL14 recruits the DNA methyltransferase DNMT1 to chromatin for gene-body methylation. We identify a set of genes whose expression is fine-tuned by both gene-body 5mC, which promotes transcription, and m6A, which destabilizes transcripts. We demonstrate that METTL3-METTL14-dependent 5mC and m6A are both essential for the differentiation of embryonic stem cells into embryoid bodies and that the upregulation of key differentiation genes during early differentiation depends on the dynamic balance between increased 5mC and decreased m6A. Our findings add a surprising dimension to our understanding of how epigenetics and epitranscriptomics combine to regulate gene expression and impact development and likely other biological processes.
Collapse
Affiliation(s)
- Giuseppe Quarto
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Andrea Li Greci
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Audrey Penning
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Irina Primac
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Frédéric Murisier
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rodrigo L Borges
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Qingzeng Gao
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Pradeep K R Cingaram
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Bouchra Hassabi
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Céline Hubert
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Adèle Herpoel
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Frédérique Mies
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Jérôme Martin
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Louis Van der Linden
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Gaurav Dube
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Pankaj Kumar
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Romuald Soin
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Abhay Kumar
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anurag Misra
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jie Lan
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Morgane Paque
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Yogesh K Gupta
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | | | | | | | - Cyril Gueydan
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | | | | | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jana Jeschke
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium.
| |
Collapse
|
20
|
Bhandare P, Narain A, Hofstetter J, Rummel T, Wenzel J, Schülein-Völk C, Lamer S, Eilers U, Schlosser A, Eilers M, Erhard F, Wolf E. Phenotypic screens identify SCAF1 as critical activator of RNAPII elongation and global transcription. Nucleic Acids Res 2025; 53:gkae1219. [PMID: 39698826 PMCID: PMC11879057 DOI: 10.1093/nar/gkae1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Transcripts produced by RNA polymerase II (RNAPII) are fundamental for cellular responses to environmental changes. It is therefore no surprise that there exist multiple avenues for the regulation of this process. To explore the regulation mediated by RNAPII-interacting proteins, we used a small interfering RNA (siRNA)-based screen to systematically evaluate their influence on RNA synthesis. We identified several proteins that strongly affected RNAPII activity. We evaluated one of the top hits, SCAF1 (SR-related C-terminal domain-associated factor 1), using an auxin-inducible degradation system and sequencing approaches. In agreement with our screen results, acute depletion of SCAF1 decreased RNA synthesis, and showed an increase of Serine-2 phosphorylated-RNAPII (pS2-RNAPII). We found that the accumulation of pS2-RNAPII within the gene body occurred at GC-rich regions and was indicative of stalled RNAPII complexes. The accumulation of stalled RNAPII complexes was accompanied by reduced recruitment of initiating RNAPII, explaining the observed global decrease in transcriptional output. Furthermore, upon SCAF1 depletion, RNAPII complexes showed increased association with components of the proteasomal-degradation machinery. We concluded that in cells lacking SCAF1, RNAPII undergoes a rather interrupted passage, resulting in intervention by the proteasomal-degradation machinery to clear stalled RNAPII. While cells survive the compromised transcription caused by absence of SCAF1, further inhibition of proteasomal-degradation machinery is synthetically lethal.
Collapse
Affiliation(s)
- Pranjali Bhandare
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Teresa Rummel
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, Regensburg 93040, Germany
| | - Julia Wenzel
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
| | - Christina Schülein-Völk
- Core Unit High-Content Microscopy, Biocenter, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Stephanie Lamer
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Ursula Eilers
- Core Unit High-Content Microscopy, Biocenter, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Martin Eilers
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Florian Erhard
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, Regensburg 93040, Germany
| | - Elmar Wolf
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
21
|
Yang Q, Zhou Z, Li L, Lu R, Hou G, Huang C, Huang J, Li H, Zhang Y, Li J, Zhang Y, Xu A, Chen R, Wang Y, Zhao X, Huang J, Wang Y, Zhao X, Yu J. The NEXT complex regulates H3K27me3 levels to affect cancer progression by degrading G4/U-rich lncRNAs. Nucleic Acids Res 2025; 53:gkaf107. [PMID: 39988317 PMCID: PMC11840553 DOI: 10.1093/nar/gkaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
Polycomb repressive complex 2 (PRC2) is responsible for depositing H3K27me3 and plays essential roles in gene silencing during development and cancer. Meanwhile, the nuclear exosome targeting (NEXT) complex facilitates the degradation of numerous noncoding RNAs in the nucleoplasm. Here we find that the functional deficiency of the NEXT complex leads to an overall decrease in H3K27me3 levels. Specifically, ZCCHC8 depletion results in significant upregulation of nascent long noncoding RNAs (lncRNAs) containing G-quadruplex (G4) and U-Rich motifs (G4/U-Rich lncRNAs). The G4 motif binds to EZH2, blocking the chromatin recruitment of PRC2, while the U-Rich motif is specifically recognized by the NEXT complex for RNA exosome-mediated degradation. In tumor tissues with high ZCCHC8 expression in clear cell renal cell carcinoma (ccRCC) and lung adenocarcinoma (LUAD) patients, the NEXT complex excessively degrades nascent G4/U-Rich lncRNAs. Consequently, PRC2 core subunits are released and recruited to neighboring genomic loci, resulting in increased H3K27me3 levels and downregulation of adjacent genes, including tumor suppressors like SEMA5A and ARID1A. Notably, the EZH2 inhibitor Tazemetostat (EPZ-6438) exhibits greater sensitivity in cells with higher ZCCHC8 expression. Altogether, our findings demonstrate a novel mechanism that the NEXT complex regulates H3K27me3 levels by degrading nascent G4/U-Rich lncRNAs in cancer cells.
Collapse
Affiliation(s)
- Qianqian Yang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Zihan Zhou
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Guofang Hou
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Hongyan Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yafan Zhang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Junya Li
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yixin Zhang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Anan Xu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Yiwei Wang
- Department of Urology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaojing Zhao
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Department of Thoracic Surgery Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai 200025, China
| |
Collapse
|
22
|
Müller MD, Becker T, Denk T, Hashimoto S, Inada T, Beckmann R. The ribosome as a platform to coordinate mRNA decay. Nucleic Acids Res 2025; 53:gkaf049. [PMID: 39921564 PMCID: PMC11806357 DOI: 10.1093/nar/gkaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025] Open
Abstract
Messenger RNA (mRNA) homeostasis is a critical aspect of cellular function, involving the dynamic interplay between transcription and decay processes. Recent advances have revealed that the ribosome plays a central role in coordinating mRNA decay, challenging the traditional view that free mRNA is the primary substrate for degradation. This review examines the mechanisms whereby ribosomes facilitate both the licensing and execution of mRNA decay. This involves factors such as the Ccr4-Not complex, small MutS-related domain endonucleases, and various quality control pathways. We discuss how translational fidelity, as well as the presence of nonoptimal codons and ribosome collisions, can trigger decay pathways such as nonstop decay and no-go decay. Furthermore, we highlight the direct association of canonical exonucleases, such as Xrn1 and the Ski-exosome system, with the ribosome, underscoring the ribosome's multifaceted role as a platform for regulatory processes governing mRNA stability. By integrating recent findings, this review offers a comprehensive overview of the structural basis of how ribosomes not only facilitate translation but also serve as critical hubs for mRNA decay coordination.
Collapse
Affiliation(s)
- Martin B D Müller
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Thomas Becker
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Timo Denk
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Satoshi Hashimoto
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
23
|
Serdar LD, Egol JR, Lackford B, Bennett BD, Hu G, Silver DL. mRNA stability fine-tunes gene expression in the developing cortex to control neurogenesis. PLoS Biol 2025; 23:e3003031. [PMID: 39913536 PMCID: PMC11838918 DOI: 10.1371/journal.pbio.3003031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/19/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
RNA abundance is controlled by rates of synthesis and degradation. Although mis-regulation of RNA turnover is linked to neurodevelopmental disorders, how it contributes to cortical development is largely unknown. Here, we discover the landscape of RNA stability regulation in the cerebral cortex and demonstrate that intact RNA decay machinery is essential for corticogenesis in vivo. We use SLAM-seq to measure RNA half-lives transcriptome-wide across multiple stages of cortical development. Leveraging these data, we discover cis-acting features associated with RNA stability and probe the relationship between RNA half-life and developmental expression changes. Notably, RNAs that are up-regulated across development tend to be more stable, while down-regulated RNAs are less stable. Using compound mouse genetics, we discover CNOT3, a core component of the CCR4-NOT deadenylase complex linked to neurodevelopmental disease, is essential for cortical development. Conditional knockout of Cnot3 in neural progenitors and their progeny in the developing mouse cortex leads to severe microcephaly due to altered cell fate and p53-dependent apoptosis. Finally, we define the molecular targets of CNOT3, revealing it controls expression of poorly expressed, non-optimal mRNAs in the cortex, including cell cycle-related transcripts. Collectively, our findings demonstrate that fine-tuned control of RNA turnover is crucial for brain development.
Collapse
Affiliation(s)
- Lucas D. Serdar
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jacob R. Egol
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Brad Lackford
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Brian D. Bennett
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Guang Hu
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
24
|
Luzak V, Osses E, Danese A, Odendaal C, Cosentino R, Stricker S, Haanstra J, Erhard F, Siegel T. SLAM-seq reveals independent contributions of RNA processing and stability to gene expression in African trypanosomes. Nucleic Acids Res 2025; 53:gkae1203. [PMID: 39673807 PMCID: PMC11797058 DOI: 10.1093/nar/gkae1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024] Open
Abstract
Gene expression is a multi-step process that converts DNA-encoded information into proteins, involving RNA transcription, maturation, degradation, and translation. While transcriptional control is a major regulator of protein levels, the role of post-transcriptional processes such as RNA processing and degradation is less well understood due to the challenge of measuring their contributions individually. To address this challenge, we investigated the control of gene expression in Trypanosoma brucei, a unicellular parasite assumed to lack transcriptional control. Instead, mRNA levels in T. brucei are controlled by post-transcriptional processes, which enabled us to disentangle the contribution of both processes to total mRNA levels. In this study, we developed an efficient metabolic RNA labeling approach and combined ultra-short metabolic labeling with transient transcriptome sequencing (TT-seq) to confirm the long-standing assumption that RNA polymerase II transcription is unregulated in T. brucei. In addition, we established thiol (SH)-linked alkylation for metabolic sequencing of RNA (SLAM-seq) to globally quantify RNA processing rates and half-lives. Our data, combined with scRNA-seq data, indicate that RNA processing and stability independently affect total mRNA levels and contribute to the variability seen between individual cells in African trypanosomes.
Collapse
Affiliation(s)
- Vanessa Luzak
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Esteban Osses
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Danese
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Planegg-Martinsried 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Planegg-Martinsried 82152, Germany
| | - Christoff Odendaal
- Systems Biology Lab/A-LIFE, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Raúl O Cosentino
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan H Stricker
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Planegg-Martinsried 82152, Germany
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, Planegg-Martinsried 82152, Germany
| | - Jurgen R Haanstra
- Systems Biology Lab/A-LIFE, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Florian Erhard
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Chair of Computational Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
25
|
Margvelani G, Maquera K, Welden J, Rodgers D, Stamm S. Translation of circular RNAs. Nucleic Acids Res 2025; 53:gkae1167. [PMID: 39660652 PMCID: PMC11724312 DOI: 10.1093/nar/gkae1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNAs that are present in all eukaryotes tested. Recent RNA sequencing (RNA-seq) analyses indicate that although generally less abundant than messenger RNAs (mRNAs), over 1.8 million circRNA isoforms exist in humans, much more than the number of currently known mRNA isoforms. Most circRNAs are generated through backsplicing that depends on pre-mRNA structures, which are influenced by intronic elements, for example, primate-specific Alu elements, leading to species-specific circRNAs. CircRNAs are mostly cytosolic, stable and some were shown to influence cells by sequestering miRNAs and RNA-binding proteins. We review the increasing evidence that circRNAs are translated into proteins using several cap-independent translational mechanisms, that include internal ribosomal entry sites, N6-methyladenosine RNA modification, adenosine to inosine RNA editing and interaction with the eIF4A3 component of the exon junction complex. CircRNAs are translated under conditions that favor cap-independent translation, notably in cancer and generate proteins that are shorter than mRNA-encoded proteins, which can acquire new functions relevant in diseases.
Collapse
Affiliation(s)
- Giorgi Margvelani
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | | | - Justin Ralph Welden
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | - David W Rodgers
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | - Stefan Stamm
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| |
Collapse
|
26
|
Zhu X, Han X, Li Z, Zhou X, Yoo SH, Chen Z, Ji Z. CircaKB: a comprehensive knowledgebase of circadian genes across multiple species. Nucleic Acids Res 2025; 53:D67-D78. [PMID: 39329269 PMCID: PMC11701547 DOI: 10.1093/nar/gkae817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Circadian rhythms, which are the natural cycles that dictate various physiological processes over a 24-h period, have been increasingly recognized as important in the management and treatment of various human diseases. However, the lack of sufficient data and reliable analysis methods have been a major obstacle to understanding the bidirectional interaction between circadian variation and human health. We have developed CircaKB, a comprehensive knowledgebase of circadian genes across multiple species. CircaKB is the first knowledgebase that provides systematic annotations of the oscillatory patterns of gene expression at a genome-wide level for 15 representative species. Currently, CircaKB contains 226 time-course transcriptome datasets, covering a wide variety of tissues, organs, and cell lines. In addition, CircaKB integrates 12 computational models to facilitate reliable data analysis and identify oscillatory patterns and their variations in gene expression. CircaKB also offers powerful functionalities to its users, including easy search, fast browsing, strong visualization, and custom upload. We believe that CircaKB will be a valuable tool and resource for the circadian research community, contributing to the identification of new targets for disease prevention and treatment. We have made CircaKB freely accessible at https://cdsic.njau.edu.cn/CircaKB.
Collapse
Affiliation(s)
- Xingchen Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
- Center for Data Science and Intelligent Computing, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
| | - Xiao Han
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
- Center for Data Science and Intelligent Computing, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
| | - Zhijin Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
- Center for Data Science and Intelligent Computing, Nanjing Agricultural University, No. 1 Weigang Rd., Nanjing, Jiangsu 210095, China
| |
Collapse
|
27
|
Saveanu C. Minimal Perturbation Analysis of mRNA Degradation Rates with Tet-Off and RT-qPCR. Methods Mol Biol 2025; 2863:3-12. [PMID: 39535700 DOI: 10.1007/978-1-0716-4176-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Messenger RNA stability is an important variable in gene expression and its dynamics. High stability ensures a constant level of synthesized protein, whereas mRNA instability can be critical for regulatory processes in which protein production needs to be stopped, such as development, inflammation, or adaptation to stress. Accurate measurements of RNA degradation rates are important for understanding how RNA features and RNA binding proteins affect the posttranscriptional life of an mRNA. As an alternative to global transcriptional inhibition methods, the use of a Tet-off repressible promoter has the advantage that cells are minimally perturbed by the addition of doxycyclin during the assay. We illustrate the use of a reporter mRNA expressed from a plasmid in Saccharomyces cerevisiae cells, but similar methods can be applied to other regulated promoters, on plasmids or by genome editing, and in other organisms. RNA levels are measured by reverse transcription followed by quantitative PCR. An exponential decay law is then used to estimate how well the measurements follow this expected trend for the simplest possible mechanism of RNA degradation, where the decay is proportional to the amount of RNA present at any given time.
Collapse
Affiliation(s)
- Cosmin Saveanu
- RNA Biology of Fungal Pathogens, Institut Pasteur, Paris, France.
| |
Collapse
|
28
|
Dantsuji S, Chekulaeva M. Concurrent Profiling of Localized Transcriptome and RNA Dynamics in Neurons by Spatial SLAMseq. Methods Mol Biol 2025; 2863:297-317. [PMID: 39535717 DOI: 10.1007/978-1-0716-4176-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The asymmetric distribution of RNA within a cell plays a pivotal biological role, ensuring the distinctive shapes and functionality of subcellular compartments. In neurons, these mechanisms are fundamental to cellular growth, synaptic plasticity, and information processing. To understand these mechanisms, diverse methods have been developed to analyze localized transcripts. Here, we outline our optimized method for measurement of mRNA half-lives in subcellular neuronal compartments-neurites, and cytoplasmic and nuclear fractions of cell bodies. We call this method spatial SLAMseq, as it combines SLAMseq with subcellular compartment separation techniques. Spatial SLAMseq facilitates the concurrent measurement of mRNA dynamics and steady-state RNA levels within neuronal subcellular compartments.
Collapse
Affiliation(s)
- Sayaka Dantsuji
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
29
|
Alecki C, Rizwan J, Le P, Jacob-Tomas S, Comaduran MF, Verbrugghe M, Xu JMS, Minotti S, Lynch J, Biswas J, Wu T, Durham HD, Yeo GW, Vera M. Localized molecular chaperone synthesis maintains neuronal dendrite proteostasis. Nat Commun 2024; 15:10796. [PMID: 39737952 PMCID: PMC11685665 DOI: 10.1038/s41467-024-55055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress. The most abundant dendritic chaperone mRNA encodes a constitutive heat shock protein 70 family member (HSPA8). Proteotoxic stress also enhances HSPA8 mRNA translation efficiency in dendrites. Stress-mediated HSPA8 mRNA localization to the dendrites is impaired by depleting fused in sarcoma-an amyotrophic lateral sclerosis-related protein-in cultured spinal cord mouse motor neurons or by expressing a pathogenic variant of heterogenous nuclear ribonucleoprotein A2/B1 in neurons derived from human induced pluripotent stem cells. These results reveal a neuronal stress response in which RNA-binding proteins increase the dendritic localization of HSPA8 mRNA to maintain proteostasis and prevent neurodegeneration.
Collapse
Affiliation(s)
- Célia Alecki
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Phuong Le
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Suleima Jacob-Tomas
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Mario Fernandez Comaduran
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | | | - Sandra Minotti
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - James Lynch
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tad Wu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Heather D Durham
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
30
|
Maizels RJ, Snell DM, Briscoe J. A protocol for time-resolved transcriptomics through metabolic labeling and combinatorial indexing. STAR Protoc 2024; 5:103356. [PMID: 39356643 PMCID: PMC11472621 DOI: 10.1016/j.xpro.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
The snapshot nature of single-cell transcriptomics presents a challenge for studying the dynamics of gene expression. Metabolic labeling, where nascent RNA is labeled with 4-thiouridine (4sU), captures temporal information at the single-cell level, providing greater insight into expression dynamics. Here, we present an optimized, automation-friendly protocol for the metabolic labeling of RNA alongside single-cell RNA sequencing through combinatorial indexing. We describe steps for 4sU labeling, cell fixation and chemical treatment, and automated two-level combinatorial indexing. For complete details on the use and execution of this protocol, please refer to Maizels et al.1.
Collapse
Affiliation(s)
- Rory J Maizels
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; University College London, London, UK.
| | - Daniel M Snell
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| |
Collapse
|
31
|
Fradkin P, Shi R, Isaev K, Frey BJ, Morris Q, Lee LJ, Wang B. Orthrus: Towards Evolutionary and Functional RNA Foundation Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617658. [PMID: 39416135 PMCID: PMC11482885 DOI: 10.1101/2024.10.10.617658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In the face of rapidly accumulating genomic data, our ability to accurately predict key mature RNA properties that underlie transcript function and regulation remains limited. Pre-trained genomic foundation models offer an avenue to adapt learned RNA representations to biological prediction tasks. However, existing genomic foundation models are trained using strategies borrowed from textual or visual domains that do not leverage biological domain knowledge. Here, we introduce Orthrus, a Mamba-based mature RNA foundation model pre-trained using a novel self-supervised contrastive learning objective with biological augmentations. Orthrus is trained by maximizing embedding similarity between curated pairs of RNA transcripts, where pairs are formed from splice isoforms of 10 model organisms and transcripts from orthologous genes in 400+ mammalian species from the Zoonomia Project. This training objective results in a latent representation that clusters RNA sequences with functional and evolutionary similarities. We find that the generalized mature RNA isoform representations learned by Orthrus significantly outperform existing genomic foundation models on five mRNA property prediction tasks, and requires only a fraction of fine-tuning data to do so. Finally, we show that Orthrus is capable of capturing divergent biological function of individual transcript isoforms.
Collapse
Affiliation(s)
- Philip Fradkin
- Vector Institute, Ontario, Canada
- Computer Science, University of Toronto, Ontario, Canada
| | - Ruian Shi
- Vector Institute, Ontario, Canada
- Computer Science, University of Toronto, Ontario, Canada
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, United States
| | - Keren Isaev
- New York Genome Center, New York, United States
- Systems Biology, Columbia University, New York, United States
| | - Brendan J Frey
- Vector Institute, Ontario, Canada
- Computer Science, University of Toronto, Ontario, Canada
- Electrical and Computer Engineering, University of Toronto, Ontario, Canada
| | - Quaid Morris
- Computational and Systems Biology Program, Sloan Kettering Institute, New York, United States
| | - Leo J Lee
- Vector Institute, Ontario, Canada
- Electrical and Computer Engineering, University of Toronto, Ontario, Canada
| | - Bo Wang
- Vector Institute, Ontario, Canada
- Computer Science, University of Toronto, Ontario, Canada
- Peter Munk Cardiac Center, University Health Network, Ontario, Canada
| |
Collapse
|
32
|
Zhou Y, Ćorović M, Hoch-Kraft P, Meiser N, Mesitov M, Körtel N, Back H, Naarmann-de Vries IS, Katti K, Obrdlík A, Busch A, Dieterich C, Vaňáčová Š, Hengesbach M, Zarnack K, König J. m6A sites in the coding region trigger translation-dependent mRNA decay. Mol Cell 2024; 84:4576-4593.e12. [PMID: 39577428 DOI: 10.1016/j.molcel.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
N6-Methyladenosine (m6A) is the predominant internal RNA modification in eukaryotic messenger RNAs (mRNAs) and plays a crucial role in mRNA stability. Here, using human cells, we reveal that m6A sites in the coding sequence (CDS) trigger CDS-m6A decay (CMD), a pathway that is distinct from previously reported m6A-dependent degradation mechanisms. Importantly, CDS m6A sites act considerably faster and more efficiently than those in the 3' untranslated region, which to date have been considered the main effectors. Mechanistically, CMD depends on translation, whereby m6A deposition in the CDS triggers ribosome pausing and transcript destabilization. The subsequent decay involves the translocation of the CMD target transcripts to processing bodies (P-bodies) and recruitment of the m6A reader protein YT521-B homology domain family protein 2 (YTHDF2). Our findings highlight CMD as a previously unknown pathway, which is particularly important for controlling the expression of developmental regulators and retrogenes.
Collapse
Affiliation(s)
- You Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany; Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Miona Ćorović
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt a.M., Germany
| | | | - Nadine Körtel
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Hannah Back
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Isabel S Naarmann-de Vries
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Kritika Katti
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Aleš Obrdlík
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Anke Busch
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/E35, 625 00 Brno, Czech Republic
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt a.M., Germany; Institute for Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany; Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Julian König
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
33
|
Yu J, Shang C, Deng X, Jia J, Shang X, Wang Z, Zheng Y, Zhang R, Wang Y, Zhang H, Liu H, Liu WJ, Li H, Cao B. Time-resolved scRNA-seq reveals transcription dynamics of polarized macrophages with influenza A virus infection and antigen presentation to T cells. Emerg Microbes Infect 2024; 13:2387450. [PMID: 39129565 PMCID: PMC11370681 DOI: 10.1080/22221751.2024.2387450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Throughout history, the influenza A virus has caused numerous devastating global pandemics. Macrophages, as pivotal innate immune cells, exhibit a wide range of immune functions characterized by distinct polarization states, reflecting their intricate heterogeneity. In this study, we employed the time-resolved single-cell sequencing technique coupled with metabolic RNA labelling to elucidate the dynamic transcriptional changes in distinct polarized states of bone marrow-derived macrophages (BMDMs) upon infection with the influenza A virus. Our approach not only captures the temporal dimension of transcriptional activity, which is lacking in conventional scRNA-seq methods, but also reveals that M2-polarized Arg1_macrophage cluster is the sole state supporting successful replication of influenza A virus. Furthermore, we identified distinct antigen presentation capabilities to CD4+ T and CD8+ T cells across diverse polarized states of macrophages. Notably, the M1 phenotype, exhibited by (BMDMs) and murine alveolar macrophages (AMs), demonstrated superior conventional and cross-presentation abilities for exogenous antigens, with a particular emphasis on cross-presentation capacity. Additionally, as CD8+ T cell differentiation progressed, M1 polarization exhibited an enhanced capacity for cross-presentation. All three phenotypes of BMDMs, including M1, demonstrated robust presentation to CD4+ regulatory T cells, while displaying limited ability to present to naive CD4+ T cells. These findings offer novel insights into the immunological regulatory mechanisms governing distinct polarized states of macrophages, particularly their roles in restricting the replication of influenza A virus and modulating antigen-specific T cell responses through innate immunity.
Collapse
Affiliation(s)
- Jiapei Yu
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Congcong Shang
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaoyan Deng
- THU-PKU Joint Center for Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Ju Jia
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiao Shang
- THU-PKU Joint Center for Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Zeyi Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Ying Zheng
- Department of Pulmonary and Critical Care Medicine, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, People’s Republic of China
| | - Rongling Zhang
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hui Zhang
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, People’s Republic of China
| | - Hongyu Liu
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, People’s Republic of China
| | - William J. Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention,Beijing, People’s Republic of China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Center of Respiratory Medicine, China–Japan Friendship Hospital, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
34
|
Audebert L, Feuerbach F, Zedan M, Schürch AP, Decourty L, Namane A, Permal E, Weis K, Badis G, Saveanu C. RNA degradation triggered by decapping is largely independent of initial deadenylation. EMBO J 2024; 43:6496-6524. [PMID: 39322754 PMCID: PMC11649920 DOI: 10.1038/s44318-024-00250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
RNA stability, important for eukaryotic gene expression, is thought to depend on deadenylation rates, with shortened poly(A) tails triggering decapping and 5' to 3' degradation. In contrast to this view, recent large-scale studies indicate that the most unstable mRNAs have, on average, long poly(A) tails. To clarify the role of deadenylation in mRNA decay, we first modeled mRNA poly(A) tail kinetics and mRNA stability in yeast. Independent of deadenylation rates, differences in mRNA decapping rates alone were sufficient to explain current large-scale results. To test the hypothesis that deadenylation and decapping are uncoupled, we used rapid depletion of decapping and deadenylation enzymes and measured changes in mRNA levels, poly(A) length and stability, both transcriptome-wide and with individual reporters. These experiments revealed that perturbations in poly(A) tail length did not correlate with variations in mRNA stability. Thus, while deadenylation may be critical for specific regulatory mechanisms, our results suggest that for most yeast mRNAs, it is not critical for mRNA decapping and degradation.
Collapse
Affiliation(s)
- Léna Audebert
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Sorbonne Université, Collège doctoral, F75005, Paris, France
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Frank Feuerbach
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
| | - Mostafa Zedan
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Alexandra P Schürch
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Laurence Decourty
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, RNA Biology of Fungal Pathogens, F-75015, Paris, France
| | - Abdelkader Namane
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
| | - Emmanuelle Permal
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Karsten Weis
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Gwenaël Badis
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genetics of Macromolecular Interactions, F-75015, Paris, France.
- Institut Pasteur, Université Paris Cité, RNA Biology of Fungal Pathogens, F-75015, Paris, France.
| |
Collapse
|
35
|
Todorovski I, Tsang MJ, Feran B, Fan Z, Gadipally S, Yoannidis D, Kong I, Bjelosevic S, Rivera S, Voulgaris O, Zethoven M, Hawkins E, Simpson K, Arnau GM, Papenfuss A, Johnstone R, Vervoort S. RNA kinetics influence the response to transcriptional perturbation in leukaemia cell lines. NAR Cancer 2024; 6:zcae039. [PMID: 39372038 PMCID: PMC11447529 DOI: 10.1093/narcan/zcae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Therapeutic targeting of dysregulated transcription has emerged as a promising strategy for the treatment of cancers, such as leukaemias. The therapeutic response to small molecule inhibitors of Bromodomain-Containing Proteins (BRD), such as BRD2 and BRD4, P300/cAMP-response element binding protein (CBP) and Cyclin Dependent Kinases (CDKs), is generally attributed to the selective disruption of oncogenic gene expression driven by enhancers, super-enhancers (SEs) and lineage-specific transcription factors (TFs), including the c-MYC oncogene. The selectivity of compounds targeting the transcriptional machinery may be further shaped by post-transcriptional processes. To quantitatively assess the contribution of post-transcriptional regulation in responses to transcription inhibition, we performed multi-omics analyses to accurately measure mRNA production and decay kinetics. We demonstrate that it is not only the selective disruption of mRNA production, but rather mRNA decay rates that largely influence the selectivity associated with transcriptional inhibition. Accordingly, genes down-regulated with transcriptional inhibitors are largely characterized by extremely rapid mRNA production and turnover. In line with this notion, stabilization of the c-MYC transcript through swapping of its 3' untranslated region (UTR) rendered c-MYC insensitive to transcriptional targeting. This failed to negate the impact on c-MYC downstream targets and did not abrogate therapeutic responses. Finally, we provide evidence that modulating post-transcriptional pathways, such as through ELAVL1 targeting, can sensitize long-lived mRNAs to transcriptional inhibition and be considered as a combination therapy approach in leukaemia. Taken together, these data demonstrate that mRNA kinetics influence the therapeutic response to transcriptional perturbation and can be modulated for novel therapeutic outcomes using transcriptional agents in leukaemia.
Collapse
Affiliation(s)
- Izabela Todorovski
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Mary-Jane Tsang
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Breon Feran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Zheng Fan
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Sreeja Gadipally
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - David Yoannidis
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Stefan Bjelosevic
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Sarahi Rivera
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Olivia Voulgaris
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Magnus Zethoven
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Kaylene J Simpson
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Gisela Mir Arnau
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Anthony T Papenfuss
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Stephin J Vervoort
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
36
|
Regényi E, Mashreghi MF, Schütte C, Sunkara V. Exploring transcription modalities from bimodal, single-cell RNA sequencing data. NAR Genom Bioinform 2024; 6:lqae179. [PMID: 39703422 PMCID: PMC11655292 DOI: 10.1093/nargab/lqae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
There is a growing interest in generating bimodal, single-cell RNA sequencing (RNA-seq) data for studying biological pathways. These data are predominantly utilized in understanding phenotypic trajectories using RNA velocities; however, the shape information encoded in the two-dimensional resolution of such data is not yet exploited. In this paper, we present an elliptical parametrization of two-dimensional RNA-seq data, from which we derived statistics that reveal four different modalities. These modalities can be interpreted as manifestations of the changes in the rates of splicing, transcription or degradation. We performed our analysis on a cell cycle and a colorectal cancer dataset. In both datasets, we found genes that are not picked up by differential gene expression analysis (DGEA), and are consequently unnoticed, yet visibly delineate phenotypes. This indicates that, in addition to DGEA, searching for genes that exhibit the discovered modalities could aid recovering genes that set phenotypes apart. For communities studying biomarkers and cellular phenotyping, the modalities present in bimodal RNA-seq data broaden the search space of genes, and furthermore, allow for incorporating cellular RNA processing into regulatory analyses.
Collapse
Affiliation(s)
- Enikő Regényi
- Systems Rheumatology, German Rheumatism Research Centre Berlin, Virchowweg 12, 10117 Berlin, Germany
- Visual and Data-Centric Computing, Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Systems Rheumatology, German Rheumatism Research Centre Berlin, Virchowweg 12, 10117 Berlin, Germany
| | - Christof Schütte
- Modeling and Simulation of Complex Processes, Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
| | - Vikram Sunkara
- Systems Rheumatology, German Rheumatism Research Centre Berlin, Virchowweg 12, 10117 Berlin, Germany
- Visual and Data-Centric Computing, Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
| |
Collapse
|
37
|
Guillermier C, Kumar NV, Bracken RC, Alvarez D, O'Keefe J, Gurkar A, Brown JD, Steinhauser ML. Nanoscale imaging of DNA-RNA identifies transcriptional plasticity at heterochromatin. Life Sci Alliance 2024; 7:e202402849. [PMID: 39288993 PMCID: PMC11408601 DOI: 10.26508/lsa.202402849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
The three-dimensional structure of DNA is a biophysical determinant of transcription. The density of chromatin condensation is one determinant of transcriptional output. Chromatin condensation is generally viewed as enforcing transcriptional suppression, and therefore, transcriptional output should be inversely proportional to DNA compaction. We coupled stable isotope tracers with multi-isotope imaging mass spectrometry to quantify and image nanovolumetric relationships between DNA density and newly made RNA within individual nuclei. Proliferative cell lines and cycling cells in the murine small intestine unexpectedly demonstrated no consistent relationship between DNA density and newly made RNA, even though localized examples of this phenomenon were detected at nuclear-cytoplasmic transitions. In contrast, non-dividing hepatocytes demonstrated global reduction in newly made RNA and an inverse relationship between DNA density and transcription, driven by DNA condensates at the nuclear periphery devoid of newly made RNA. Collectively, these data support an evolving model of transcriptional plasticity that extends at least to a subset of chromatin at the extreme of condensation as expected of heterochromatin.
Collapse
Affiliation(s)
- Christelle Guillermier
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naveen Vg Kumar
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronan C Bracken
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Diana Alvarez
- Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John O'Keefe
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aditi Gurkar
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan D Brown
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cardiovascular Division, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
38
|
Steinbrecht D, Minia I, Milek M, Meisig J, Blüthgen N, Landthaler M. Subcellular mRNA kinetic modeling reveals nuclear retention as rate-limiting. Mol Syst Biol 2024; 20:1346-1371. [PMID: 39548324 PMCID: PMC11611909 DOI: 10.1038/s44320-024-00073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Eukaryotic mRNAs are transcribed, processed, translated, and degraded in different subcellular compartments. Here, we measured mRNA flow rates between subcellular compartments in mouse embryonic stem cells. By combining metabolic RNA labeling, biochemical fractionation, mRNA sequencing, and mathematical modeling, we determined the half-lives of nuclear pre-, nuclear mature, cytosolic, and membrane-associated mRNAs from over 9000 genes. In addition, we estimated transcript elongation rates. Many matured mRNAs have long nuclear half-lives, indicating nuclear retention as the rate-limiting step in the flow of mRNAs. In contrast, mRNA transcripts coding for transcription factors show fast kinetic rates, and in particular short nuclear half-lives. Differentially localized mRNAs have distinct rate constant combinations, implying modular regulation. Membrane stability is high for membrane-localized mRNA and cytosolic stability is high for cytosol-localized mRNA. mRNAs encoding target signals for membranes have low cytosolic and high membrane half-lives with minor differences between signals. Transcripts of nuclear-encoded mitochondrial proteins have long nuclear retention and cytoplasmic kinetics that do not reflect co-translational targeting. Our data and analyses provide a useful resource to study spatiotemporal gene expression regulation.
Collapse
Affiliation(s)
- David Steinbrecht
- Charite-Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Igor Minia
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin, Germany
| | - Johannes Meisig
- Charite-Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Nils Blüthgen
- Charite-Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany.
- Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany.
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology, Berlin, Germany.
| |
Collapse
|
39
|
Lyu J, Chen C. Transcriptome and Temporal Transcriptome Analyses in Single Cells. Int J Mol Sci 2024; 25:12845. [PMID: 39684556 DOI: 10.3390/ijms252312845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Transcriptome analysis in single cells, enabled by single-cell RNA sequencing, has become a prevalent approach in biomedical research, ranging from investigations of gene regulation to the characterization of tissue organization. Over the past decade, advances in single-cell RNA sequencing technology, including its underlying chemistry, have significantly enhanced its performance, marking notable improvements in methodology. A recent development in the field, which integrates RNA metabolic labeling with single-cell RNA sequencing, has enabled the profiling of temporal transcriptomes in individual cells, offering new insights into dynamic biological processes involving RNA kinetics and cell fate determination. In this review, we explore the chemical principles and design improvements that have enhanced single-molecule capture efficiency, improved RNA quantification accuracy, and increased cellular throughput in single-cell transcriptome analysis. We also illustrate the concept of RNA metabolic labeling for detecting newly synthesized transcripts and summarize recent advancements that enable single-cell temporal transcriptome analysis. Additionally, we examine data analysis strategies for the precise quantification of newly synthesized transcripts and highlight key applications of transcriptome and temporal transcriptome analyses in single cells.
Collapse
Affiliation(s)
- Jun Lyu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
VanBelzen J, Sakelaris B, Brickner DG, Marcou N, Riecke H, Mangan NM, Brickner JH. Chromatin endogenous cleavage provides a global view of yeast RNA polymerase II transcription kinetics. eLife 2024; 13:RP100764. [PMID: 39607887 PMCID: PMC11604220 DOI: 10.7554/elife.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Chromatin immunoprecipitation (ChIP-seq) is the most common approach to observe global binding of proteins to DNA in vivo. The occupancy of transcription factors (TFs) from ChIP-seq agrees well with an alternative method, chromatin endogenous cleavage (ChEC-seq2). However, ChIP-seq and ChEC-seq2 reveal strikingly different patterns of enrichment of yeast RNA polymerase II (RNAPII). We hypothesized that this reflects distinct populations of RNAPII, some of which are captured by ChIP-seq and some of which are captured by ChEC-seq2. RNAPII association with enhancers and promoters - predicted from biochemical studies - is detected well by ChEC-seq2 but not by ChIP-seq. Enhancer/promoter-bound RNAPII correlates with transcription levels and matches predicted occupancy based on published rates of enhancer recruitment, preinitiation assembly, initiation, elongation, and termination. The occupancy from ChEC-seq2 allowed us to develop a stochastic model for global kinetics of RNAPII transcription which captured both the ChEC-seq2 data and changes upon chemical-genetic perturbations to transcription. Finally, RNAPII ChEC-seq2 and kinetic modeling suggests that a mutation in the Gcn4 transcription factor that blocks interaction with the NPC destabilizes promoter-associated RNAPII without altering its recruitment to the enhancer.
Collapse
Affiliation(s)
- Jake VanBelzen
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Bennet Sakelaris
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Donna G Brickner
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Nikita Marcou
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hermann Riecke
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
41
|
Wagner RE, Arnetzl L, Britto-Borges T, Heit-Mondrzyk A, Bakr A, Sollier E, Gkatza NA, Panten J, Delaunay S, Sohn D, Schmezer P, Odom DT, Müller-Decker K, Plass C, Dieterich C, Lutsik P, Bornelöv S, Frye M. SRSF2 safeguards efficient transcription of DNA damage and repair genes. Cell Rep 2024; 43:114869. [PMID: 39446588 DOI: 10.1016/j.celrep.2024.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The serine-/arginine-rich splicing factor 2 (SRSF2) plays pivotal roles in pre-mRNA processing and gene transcription. Recurrent mutations, particularly a proline-to-histidine substitution at position 95 (P95H), are common in neoplastic diseases. Here, we assess SRSF2's diverse functions in squamous cell carcinoma. We show that SRSF2 deletion or homozygous P95H mutation both cause extensive DNA damage leading to cell-cycle arrest. Mechanistically, SRSF2 regulates efficient bi-directional transcription of DNA replication and repair genes, independent from its function in splicing. Further, SRSF2 haploinsufficiency induces DNA damage without halting the cell cycle. Exposing mouse skin to tumor-promoting carcinogens enhances the clonal expansion of heterozygous Srsf2 P95H epidermal cells but unexpectedly inhibits tumor formation. To survive carcinogen treatment, Srsf2 P95H+/- cells undergo substantial transcriptional rewiring and restore bi-directional gene expression. Thus, our study underscores SRSF2's importance in regulating transcription to orchestrate the cell cycle and the DNA damage response.
Collapse
Affiliation(s)
- Rebecca E Wagner
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Leonie Arnetzl
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Anke Heit-Mondrzyk
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Jasper Panten
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sylvain Delaunay
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daniela Sohn
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Müller-Decker
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, CB2 0RE Cambridge, UK
| | - Michaela Frye
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
42
|
Zhu X, Cruz VE, Zhang H, Erzberger JP, Mendell JT. Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes. Science 2024; 386:eadq8587. [PMID: 39571015 PMCID: PMC11583848 DOI: 10.1126/science.adq8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/16/2024] [Indexed: 11/24/2024]
Abstract
The CCR4-NOT complex is a major regulator of eukaryotic messenger RNA (mRNA) stability. Slow decoding during translation promotes association of CCR4-NOT with ribosomes, accelerating mRNA degradation. We applied selective ribosome profiling to further investigate the determinants of CCR4-NOT recruitment to ribosomes in mammalian cells. This revealed that specific arginine codons in the P-site are strong signals for ribosomal recruitment of human CNOT3, a CCR4-NOT subunit. Cryo-electron microscopy and transfer RNA (tRNA) mutagenesis demonstrated that the D-arms of select arginine tRNAs interact with CNOT3 and promote its recruitment whereas other tRNA D-arms sterically clash with CNOT3. These effects link codon content to mRNA stability. Thus, in addition to their canonical decoding function, tRNAs directly engage regulatory complexes during translation, a mechanism we term P-site tRNA-mediated mRNA decay.
Collapse
MESH Headings
- Humans
- Arginine/metabolism
- Codon
- Cryoelectron Microscopy
- HEK293 Cells
- Protein Biosynthesis
- Ribosomes/metabolism
- RNA Stability
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/genetics
- Transcription Factors/metabolism
- Jurkat Cells
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victor Emmanuel Cruz
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan P. Erzberger
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
43
|
Miura H, Wang KH, Inagaki T, Chuang F, Shimoda M, Izumiya C, Watanabe T, Davis RR, Tepper CG, Komaki S, Nakajima KI, Kumar A, Izumiya Y. A LANA peptide inhibits tumor growth by inducing CHD4 protein cleavage and triggers cell death. Cell Chem Biol 2024; 31:1909-1925.e7. [PMID: 39488208 PMCID: PMC11588034 DOI: 10.1016/j.chembiol.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection, and viral genes are poised to be transcribed in the latent chromatin. In the poised chromatins, KSHV latency-associated nuclear antigen (LANA) interacts with cellular chromodomain-helicase-DNA-binding protein 4 (CHD4) and inhibits viral promoter activation. CHD4 is known to regulate cell differentiation by preventing enhancers from activating promoters. Here, we identified a putative CHD4 inhibitor peptide (VGN73) from the LANA sequence corresponding to the LANA-CHD4 interaction surface. The VGN73 interacts with CHD4 at its PHD domain with a dissociation constant (KD) of 14 nM. Pre-treatment with VGN73 enhanced monocyte differentiation into macrophages and globally altered the repertoire of activated genes in U937 cells. Furthermore, the introduction of the peptide into the cancer cells induced caspase-mediated CHD4 cleavage, triggered cell death, and inhibited tumor growth in a xenograft mouse model. The VGN73 may facilitate cell differentiation therapy.
Collapse
Affiliation(s)
- Hiroki Miura
- Department of Dermatology, School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Kang-Hsin Wang
- Department of Dermatology, School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Tomoki Inagaki
- Department of Dermatology, School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Frank Chuang
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Chie Izumiya
- Department of Dermatology, School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Tadashi Watanabe
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Ryan R Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Somayeh Komaki
- Department of Dermatology, School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Ken-Ichi Nakajima
- Department of Dermatology, School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA.
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
44
|
Rosa-Mercado NA, Buskirk AR, Green R. Translation elongation inhibitors stabilize select short-lived transcripts. RNA (NEW YORK, N.Y.) 2024; 30:1572-1585. [PMID: 39293933 PMCID: PMC11571809 DOI: 10.1261/rna.080138.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Translation elongation inhibitors are commonly used to study different cellular processes. Yet, their specific impact on transcription and mRNA decay has not been thoroughly assessed. Here, we use TimeLapse sequencing to investigate how translational stress impacts mRNA dynamics in human cells. Our results reveal that a distinct group of transcripts is stabilized in response to the translation elongation inhibitor emetine. These stabilized mRNAs are short-lived at steady state, and many of them encode C2H2 zinc finger proteins. The codon usage of these stabilized transcripts is suboptimal compared to other expressed transcripts, including other short-lived mRNAs that are not stabilized after emetine treatment. Finally, we show that stabilization of these transcripts is independent of ribosome quality control factors and signaling pathways activated by ribosome collisions. Our data describe a group of short-lived transcripts whose degradation is particularly sensitive to the inhibition of translation elongation.
Collapse
Affiliation(s)
- Nicolle A Rosa-Mercado
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
| | - Allen R Buskirk
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
| | - Rachel Green
- Johns Hopkins University School of Medicine, Department of Molecular Biology & Genetics, Baltimore, Maryland 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
45
|
Yin K, Xu Y, Guo Y, Zheng Z, Lin X, Zhao M, Dong H, Liang D, Zhu Z, Zheng J, Lin S, Song J, Yang C. Dyna-vivo-seq unveils cellular RNA dynamics during acute kidney injury via in vivo metabolic RNA labeling-based scRNA-seq. Nat Commun 2024; 15:9866. [PMID: 39543112 PMCID: PMC11564529 DOI: 10.1038/s41467-024-54202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
A fundamental objective of genomics is to track variations in gene expression program. While metabolic RNA labeling-based single-cell RNA sequencing offers insights into temporal biological processes, its limited applicability only to in vitro models challenges the study of in vivo gene expression dynamics. Herein, we introduce Dyna-vivo-seq, a strategy that enables time-resolved dynamic transcription profiling in vivo at the single-cell level by examining new and old RNAs. The new RNAs can offer an additional dimension to reveal cellular heterogeneity. Leveraging new RNAs, we discern two distinct high and low metabolic labeling populations among proximal tubular (PT) cells. Furthermore, we identify 90 rapidly responding transcription factors during the acute kidney injury in female mice, highlighting that high metabolic labeling PT cells exhibit heightened susceptibility to injury. Dyna-vivo-seq provides a powerful tool for the characterization of dynamic transcriptome at the single-cell level in living organism and holds great promise for biomedical applications.
Collapse
Affiliation(s)
- Kun Yin
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, PR China
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Yiling Xu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Ye Guo
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Zhong Zheng
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, PR China
| | - Xinrui Lin
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, PR China
| | - Meijuan Zhao
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - He Dong
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Dianyi Liang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Zhi Zhu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Junhua Zheng
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, PR China.
| | - Shichao Lin
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, PR China.
| | - Jia Song
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Chaoyong Yang
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, PR China.
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, PR China.
| |
Collapse
|
46
|
Kushawah G, Amaral DB, Hassan H, Gogol M, Nowotarski SH, Bazzini AA. Critical role of Spatio-Temporally Regulated Maternal RNAs in Zebrafish Embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622483. [PMID: 39574587 PMCID: PMC11580991 DOI: 10.1101/2024.11.07.622483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
The maternal-to-zygotic transition shifts regulatory control from maternal to zygotic messenger RNAs (mRNA) through maternal mRNA degradation. While temporal aspects of maternal mRNA decay are known, spatial mechanisms remain underexplored. Using CRISPR-Cas9 and CRISPR-Cas13d systems, we functionally dissected the contribution of maternal versus zygotic fractions and overcame challenges of studying embryonic lethal genes. We identified differentially distributed maternal mRNAs in specific cells and evidenced the critical role of five maternal mRNAs, cth1, arl4d, abi1b, foxa and lhx1a, in embryogenesis. Further, we focused on the functionally uncharacterized cth1 gene, revealing its essential role in gametogenesis and embryogenesis. Cth1 acts as a spatio-temporal RNA decay factor regulating mRNA stability and accumulation of its targets in a spatio-temporal manner through 3'UTR recognition during early development. Furthermore, Cth1 3'UTR drives its spatio-temporal RNA localization. Our findings provide new insights into spatio-temporal RNA decay mechanisms and highlight dual CRISPR-Cas strategies in studying embryonic development.
Collapse
Affiliation(s)
- Gopal Kushawah
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Danielson Baia Amaral
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
| | | | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
47
|
Won SJ, Zhang Y, Reinhardt CJ, Hargis LM, MacRae NS, DeMeester KE, Njomen E, Remsberg JR, Melillo B, Cravatt BF, Erb MA. Redirecting the pioneering function of FOXA1 with covalent small molecules. Mol Cell 2024; 84:4125-4141.e10. [PMID: 39413792 PMCID: PMC11560529 DOI: 10.1016/j.molcel.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Pioneer transcription factors (TFs) bind to and open closed chromatin, facilitating engagement by other regulatory factors involved in gene activation or repression. Chemical probes are lacking for pioneer TFs, which has hindered their mechanistic investigation in cells. Here, we report the chemical proteomic discovery of electrophilic compounds that stereoselectively and site-specifically bind the pioneer TF forkhead box protein A1 (FOXA1) at a cysteine (C258) within the forkhead DNA-binding domain. We show that these covalent ligands react with FOXA1 in a DNA-dependent manner and rapidly remodel its pioneer activity in prostate cancer cells reflected in redistribution of FOXA1 binding across the genome and directionally correlated changes in chromatin accessibility. Motif analysis supports a mechanism where the ligands relax the canonical DNA-binding preference of FOXA1 by strengthening interactions with suboptimal sequences in predicted proximity to C258. Our findings reveal a striking plasticity underpinning the pioneering function of FOXA1 that can be controlled by small molecules.
Collapse
Affiliation(s)
- Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuxiang Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Lauren M Hargis
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole S MacRae
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristen E DeMeester
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Evert Njomen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jarrett R Remsberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
An H, Hong Y, Goh YT, Koh CWQ, Kanwal S, Zhang Y, Lu Z, Yap PML, Neo SP, Wong CM, Wong AST, Yu Y, Ho JSY, Gunaratne J, Goh WSS. m 6Am sequesters PCF11 to suppress premature termination and drive neuroblastoma differentiation. Mol Cell 2024; 84:4142-4157.e14. [PMID: 39481383 DOI: 10.1016/j.molcel.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/08/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
N6,2'-O-dimethyladenosine (m6Am) is an abundant mRNA modification that impacts multiple diseases, but its function remains controversial because the m6Am reader is unknown. Using quantitative proteomics, we identified transcriptional terminator premature cleavage factor II (PCF11) as a m6Am-specific reader in human cells. Direct quantification of mature versus nascent RNAs reveals that m6Am does not regulate mRNA stability but promotes nascent transcription. Mechanistically, m6Am functions by sequestering PCF11 away from proximal RNA polymerase II (RNA Pol II). This suppresses PCF11 from dissociating RNA Pol II near transcription start sites, thereby promoting full-length transcription of m6Am-modified RNAs. m6Am's unique relationship with PCF11 means m6Am function is enhanced when PCF11 is reduced, which occurs during all-trans-retinoic-acid (ATRA)-induced neuroblastoma-differentiation therapy. Here, m6Am promotes expression of ATF3, which represses neuroblastoma biomarker MYCN. Depleting m6Am suppresses MYCN repression in ATRA-treated neuroblastoma and maintains their tumor-stem-like properties. Collectively, we characterize m6Am as an anti-terminator RNA modification that suppresses premature termination and modulates neuroblastoma's therapeutic response.
Collapse
Affiliation(s)
- Huihui An
- Shenzhen Bay Laboratory, Shenzhen, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yifan Hong
- Shenzhen Bay Laboratory, Shenzhen, China
| | | | | | | | - Yi Zhang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhaoqi Lu
- Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Suat Peng Neo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Chun-Ming Wong
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jessica Sook Yuin Ho
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | | | | |
Collapse
|
49
|
Zhao D, Zhang L, Yang Y. Transcriptome dynamics in mouse amygdala under acute and chronic stress revealed by thiol-labeled RNA sequencing. Neurobiol Stress 2024; 33:100688. [PMID: 39583745 PMCID: PMC11582550 DOI: 10.1016/j.ynstr.2024.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Both acute and chronic stress have significant impact on brain functions. The amygdala is essential in mediating stress responses, but how its transcriptomic dynamics change under stress remains elusive. To overcome the difficulties in detecting subtle stress-induced changes by evaluating total RNA using classic RNA sequencing, we conducted thiol-labeled RNA sequencing (SLAM-seq). We injected 4-thiouridine (4sU) into mouse amygdala followed by SLAM-seq to detect nascent mRNA induced by acute and chronic restraint stress, and found that SLAM-seq could label actively transcribed genes in the major neuronal and glial subtypes. Using SLAM-seq, we found that chronic stress led to higher turnover of a group of genes associated with myelination, and this finding is confirmed by immunostaining which showed increased myelination in the chronically stressed amygdala. Additionally, genes detected by SLAM-seq and RNA-seq only partially overlapped, suggesting that SLAM-seq and RNA-seq are complementary in identifying stress-responsive genes. By applying SLAM-seq in vivo, we obtained a rich dataset of genes with higher turnover in the amygdala under stress.
Collapse
Affiliation(s)
- Dan Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
50
|
Vukovic I, Barnada SM, Ruffin JW, Karlin J, Lokareddy RK, Cingolani G, McMahon SB. Non-redundant roles for the human mRNA decapping cofactor paralogs DCP1a and DCP1b. Life Sci Alliance 2024; 7:e202402938. [PMID: 39256052 PMCID: PMC11387620 DOI: 10.26508/lsa.202402938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Eukaryotic gene expression is regulated at the transcriptional and post-transcriptional levels, with disruption of regulation contributing significantly to human diseases. The 5' m7G mRNA cap is a central node in post-transcriptional regulation, participating in both mRNA stabilization and translation efficiency. In mammals, DCP1a and DCP1b are paralogous cofactor proteins of the mRNA cap hydrolase DCP2. As lower eukaryotes have a single DCP1 cofactor, the functional advantages gained by this evolutionary divergence remain unclear. We report the first functional dissection of DCP1a and DCP1b, demonstrating that they are non-redundant cofactors of DCP2 with unique roles in decapping complex integrity and specificity. DCP1a is essential for decapping complex assembly and interactions between the decapping complex and mRNA cap-binding proteins. DCP1b is essential for decapping complex interactions with protein degradation and translational machinery. DCP1a and DCP1b impact the turnover of distinct mRNAs. The observation that different ontological groups of mRNA molecules are regulated by DCP1a and DCP1b, along with their non-redundant roles in decapping complex integrity, provides the first evidence that these paralogs have qualitatively distinct functions.
Collapse
Affiliation(s)
- Ivana Vukovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Samantha M Barnada
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jon Karlin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ravi Kumar Lokareddy
- Academic Joint Departments - Biochemistry & Molecular Genetic, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gino Cingolani
- Academic Joint Departments - Biochemistry & Molecular Genetic, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven B McMahon
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|