1
|
Wu S, Chen J. Is age-related myelinodegenerative change an initial risk factor of neurodegenerative diseases? Neural Regen Res 2026; 21:648-658. [PMID: 40326982 DOI: 10.4103/nrr.nrr-d-24-00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/25/2024] [Indexed: 05/07/2025] Open
Abstract
Myelination, the continuous ensheathment of neuronal axons, is a lifelong process in the nervous system that is essential for the precise, temporospatial conduction of action potentials between neurons. Myelin also provides intercellular metabolic support to axons. Even minor disruptions in the integrity of myelin can impair neural performance and increase susceptibility to neurological diseases. In fact, myelin degeneration is a well-known neuropathological condition that is associated with normal aging and several neurodegenerative diseases, including multiple sclerosis and Alzheimer's disease. In the central nervous system, compact myelin sheaths are formed by fully mature oligodendrocytes. However, the entire oligodendrocyte lineage is susceptible to changes in the biological microenvironment and other risk factors that arise as the brain ages. In addition to their well-known role in action potential propagation, oligodendrocytes also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes. Therefore, myelin degeneration in the aging central nervous system is a significant contributor to the development of neurodegenerative diseases. Interventions that mitigate age-related myelin degeneration can improve neurological function in aging individuals. In this review, we investigate the changes in myelin that are associated with aging and their underlying mechanisms. We also discuss recent advances in understanding how myelin degeneration in the aging brain contributes to neurodegenerative diseases and explore the factors that can prevent, slow down, or even reverse age-related myelin degeneration. Future research will enhance our understanding of how reducing age-related myelin degeneration can be used as a therapeutic target for delaying or preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuangchan Wu
- Sanhang Institute for Brain Science and Technology (SiBST), School of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, Guangdong Province, China
| | - Jun Chen
- Sanhang Institute for Brain Science and Technology (SiBST), School of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi Province, China
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Saraswat Ohri S, Myers SA, Rood B, Brown BL, Chilton PM, Slomnicki L, Liu Y, Wei GZ, Andres KR, Mohan D, Howard RM, Whittemore SR, Hetman M. Reduced White Matter Damage and Lower Neuroinflammatory Potential of Microglia and Macrophages in Hri/Eif2ak1 -/- Mice After Contusive Spinal Cord Injury. Glia 2025; 73:1004-1021. [PMID: 39760211 DOI: 10.1002/glia.24669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Cellular stressors inhibit general protein synthesis while upregulating stress response transcripts and/or proteins. Phosphorylation of the translation factor eIF2α by one of the several stress-activated kinases is a trigger for such signaling, known as the integrated stress response (ISR). The ISR regulates cell survival and function under stress. Here, germline knockout mice were used to determine contributions by three major ISR kinases, HRI/EIF2AK1, GCN2/EIF2AK4, and PKR//EIF2AK2, to pathogenesis of moderate contusive spinal cord injury (SCI) at the thoracic T9 level. One-day post-injury (dpi), reduced levels of peIF2α were found in Hri -/- and Gcn2 -/-, but not in Pkr -/- mice. In addition, Hri -/- mice showed attenuated expression of the downstream ISR transcripts, Atf4 or Chop. Such differential effects of SCI-activated ISR correlated with a strong or moderate enhancement of locomotor recovery in Hri -/- or Gcn2 -/- mice, respectively. Hri -/- mice also showed reduced white matter loss, increased content of oligodendrocytes (OL) and attenuated neuroinflammation, including decreased lipid accumulation in microglia/macrophages. Cultured neonatal Hri -/- OLs showed lower ISR cytotoxicity. Moreover, cell autonomous reduction in neuroinflammatory potential was observed in microglia and bone marrow-derived macrophages derived from Hri -/- mice. These data identify HRI as a major positive regulator of SCI-associated secondary injury. In addition, targeting HRI may enable multimodal neuroprotection to enhance functional recovery after SCI.
Collapse
Affiliation(s)
- Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Scott A Myers
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Benjamin Rood
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Biochemistry & Molecular Genetics, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Brandon L Brown
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Paula M Chilton
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Norton Neuroscience Institute, Louisville, Kentucky, USA
| | - Lukasz Slomnicki
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Yu Liu
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - George Z Wei
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Interdisciplinary Program in Translational Neuroscience, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Divya Mohan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Russell M Howard
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Biochemistry & Molecular Genetics, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Interdisciplinary Program in Translational Neuroscience, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Biochemistry & Molecular Genetics, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Interdisciplinary Program in Translational Neuroscience, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Barik A, Bhoga D, Dhingra T, Karmarkar G, Ghosh B, Malik N, Parmar K, Datta A, Borah A, Bhattacharya P. Clemastine Reduces post-stroke Neurodegeneration by Alleviating Endoplasmic Reticulum stress-mediated Demyelination and Cognitive Impairment Through PERK/ATF4/CHOP Signaling Pathway. Neurochem Res 2025; 50:151. [PMID: 40274676 DOI: 10.1007/s11064-025-04403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
The progressive brain damage following ischemic stroke is primarily due to oxidative stress and activation of inflammatory pathways. Post-stroke neurodegeneration can lead to the loss of neurons and glial cells, including oligodendrocytes, contributing to demyelination. Following ischemic stroke, reperfusion results in increased intracellular calcium, generation of free radicals, and inflammation culminating in accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen augmenting the ER stress. ER stress has been shown to aggravate post-stroke neurodegeneration by triggering neuronal apoptosis and also contributing towards demyelination of neurons. To address the limitations of current stroke therapies, repurposing of drugs as future adjunctive therapy may be promising. Clemastine, an antihistaminic drug, improves post stroke outcome as evident in the present study. Male Sprague Dawley (SD) rats were treated with clemastine following ischemic stroke. Harvested brain tissues were subjected to different biochemical assays, molecular assays, and histopathological analysis. Clemastine was able to reduce infarct size, alleviate oxidative stress, improve neuronal count, and functional outcomes. Clemastine downregulated genes and proteins responsible for ER stress, apoptosis and demyelination as shown by the western blot and qPCR results. Our study suggests that clemastine may alleviate endoplasmic reticulum stress-mediated demyelination by modulating PERK/ATF4/CHOP axis, and may be used as one of the adjunctive therapies for stroke in future.
Collapse
Affiliation(s)
- Anirban Barik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Dipakkumar Bhoga
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Tannu Dhingra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Gautam Karmarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Nikita Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Krupanshu Parmar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar-382355, Ahmedabad, Gujarat, India.
| |
Collapse
|
4
|
Lin ML, Lin W. Thinning of originally-existing, mature myelin represents a nondestructive form of myelin loss in the adult CNS. Front Cell Neurosci 2025; 19:1565913. [PMID: 40134707 PMCID: PMC11933062 DOI: 10.3389/fncel.2025.1565913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
The main function of oligodendrocytes is to assemble and maintain myelin that wraps and insulates axons in the central nervous system (CNS). Traditionally, myelin structure, particularly its thickness, was believed to remain remarkably stable in adulthood (including early and middle adulthood, but not late adulthood or aging). However, emerging evidence reveals that the thickness of originally-existing, mature myelin (OEM) can undergo dynamic changes in the adult CNS. This overview highlights recent findings on the alteration of OEM thickness in the adult CNS, explores the underlying mechanisms, and proposes that progressive thinning of OEM represents a novel, nondestructive form of myelin loss in myelin disorders of the CNS.
Collapse
Affiliation(s)
- Min Li Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Oladapo A, Deshetty UM, Callen S, Buch S, Periyasamy P. Single-Cell RNA-Seq Uncovers Robust Glial Cell Transcriptional Changes in Methamphetamine-Administered Mice. Int J Mol Sci 2025; 26:649. [PMID: 39859365 PMCID: PMC11766323 DOI: 10.3390/ijms26020649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/30/2025] Open
Abstract
Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes. Using single-cell RNA sequencing (scRNA-seq), we analyzed the transcriptomes of 4000 glial cell-associated genes from the cortical regions of mice chronically administered methamphetamine. Methamphetamine exposure altered the key pathways in astrocytes, including the circadian rhythm and cAMP signaling; in microglia, affecting autophagy, ubiquitin-mediated proteolysis, and mitophagy; and in oligodendrocytes, disrupting lysosomal function, cytoskeletal regulation, and protein processing. Notably, several transcription factors, such as Zbtb16, Hif3a, Foxo1, and Klf9, were significantly dysregulated in the glial cells. These findings reveal profound methamphetamine-induced changes in the glial transcriptomes, particularly in the cortical regions, highlighting potential molecular pathways and transcription factors as targets for therapeutic intervention. This study provides novel insights into the glial-mediated mechanisms of methamphetamine toxicity, contributing to our understanding of its effects on the central nervous system and laying the groundwork for future strategies to mitigate its neurotoxic consequences.
Collapse
Affiliation(s)
| | | | | | | | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.O.); (U.M.D.); (S.C.); (S.B.)
| |
Collapse
|
6
|
Ndayisaba A, Halliday GM, Khurana V. Multiple System Atrophy: Pathology, Pathogenesis, and Path Forward. ANNUAL REVIEW OF PATHOLOGY 2025; 20:245-273. [PMID: 39405585 DOI: 10.1146/annurev-pathmechdis-051122-104528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disease characterized by autonomic failure and motor impairment. The hallmark pathologic finding in MSA is widespread oligodendroglial cytoplasmic inclusions rich in aggregated α-synuclein (αSyn). MSA is widely held to be an oligodendroglial synucleinopathy, and we outline lines of evidence to support this assertion, including the presence of early myelin loss. However, we also consider emerging data that support the possibility of neuronal or immune dysfunction as a primary driver of MSA. These hypotheses are placed in the context of a major recent discovery that αSyn is conformationally distinct in MSA versus other synucleinopathies such as Parkinson's disease. We outline emerging techniques in epidemiology, genetics, and molecular pathology that will shed more light on this mysterious disease. We anticipate a future in which cutting-edge developments in personalized disease modeling, including with pluripotent stem cells, bridge mechanistic developments at the bench and real benefits at the bedside.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Movement Disorders, Ann Romney Center for Neurologic Diseases, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
| | - Glenda M Halliday
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Vikram Khurana
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Division of Movement Disorders, Ann Romney Center for Neurologic Diseases, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Noori H, Alazzeh ZJ, Rehman OU, Idrees M, Marsool MDM, Abdul Rehman K, Gohil KM, Ahmad SS, Subash T, Dixon K. Endoplasmic reticulum's role in multiple sclerosis, exploring potential biomarkers, and pioneering therapeutic strategies: a comprehensive review of literature. Neurol Sci 2025; 46:113-123. [PMID: 39269572 DOI: 10.1007/s10072-024-07766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a complex and chronic autoimmune disease that affects the central nervous system. Inflammation and demyelination characterize it, which results in a range of neurological impairments. The increasing worldwide occurrence of MS, affecting an estimated 2.8 million individuals in 2020, highlights the urgent requirement for further research to tackle the significant impact it has on individuals and healthcare systems globally. OBJECTIVE In this study, we wanted to explore the complex function of the endoplasmic reticulum (ER) in the origin, development, and resolution of MS, emphasizing its importance in neuroinflammatory illnesses. The ER has become a central focus in comprehending the pathogenesis of MS. Upon reviewing the literature, we observed a lack of thorough analysis that explores the involvement of endoplasmic reticulum stress in multiple sclerosis. Thus, we aimed through this research to examine the correlations between ER stress and its influence on immunological dysregulation, demyelination, and neurodegeneration in MS. FINDINGS Based on the latest clinical trials, we suggested theories that explore possible biomarkers linked to ER stress and the unfolded protein response. Identifying molecules that are suggestive of early stages of illness and can serve as prognostic tools for improving our understanding of the heterogeneity of MS and offering novel approaches for managing the disease. Finally, through our comprehensive search, we wanted to offer a plan for future research, suggesting new and creative methods for managing MS and encouraging the creation of specific treatments that aim to reduce the impact of MS on individuals worldwide.
Collapse
Affiliation(s)
- Hamid Noori
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Level 6, West Wing, Oxford, OX3 9DU, UK
| | | | - Obaid Ur Rehman
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | | | | | - Khawaja Abdul Rehman
- Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan.
| | - Krutika Mahendra Gohil
- Topiwala National Medical College & Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai, India
| | | | | | - Kayla Dixon
- University of Birmingham Medical School, Birmingham, UK
| |
Collapse
|
8
|
Zhang Y, Wu X, Yao W, Ni Y, Ding X. Advances of traditional Chinese medicine preclinical mechanisms and clinical studies on diabetic peripheral neuropathy. PHARMACEUTICAL BIOLOGY 2024; 62:544-561. [PMID: 38946248 PMCID: PMC11218592 DOI: 10.1080/13880209.2024.2369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
CONTEXT Diabetic peripheral neuropathy (DPN) results in an enormous burden and reduces the quality of life for patients. Considering there is no specific drug for the management of DPN, traditional Chinese medicine (TCM) has increasingly drawn attention of clinicians and researchers around the world due to its characteristics of multiple targets, active components, and exemplary safety. OBJECTIVE To summarize the current status of TCM in the treatment of DPN and provide directions for novel drug development, the clinical effects and potential mechanisms of TCM used in treating DPN were comprehensively reviewed. METHODS Existing evidence on TCM interventions for DPN was screened from databases such as PubMed, the Cochrane Neuromuscular Disease Group Specialized Register (CENTRAL), and the Chinese National Knowledge Infrastructure Database (CNKI). The focus was on summarizing and analyzing representative preclinical and clinical TCM studies published before 2023. RESULTS This review identified the ameliorative effects of about 22 single herbal extracts, more than 30 herbal compound prescriptions, and four Chinese patent medicines on DPN in preclinical and clinical research. The latest advances in the mechanism highlight that TCM exerts its beneficial effects on DPN by inhibiting inflammation, oxidative stress and apoptosis, endoplasmic reticulum stress and improving mitochondrial function. CONCLUSIONS TCM has shown the power latent capacity in treating DPN. It is proposed that more large-scale and multi-center randomized controlled clinical trials and fundamental experiments should be conducted to further verify these findings.
Collapse
Affiliation(s)
- Yuna Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianglong Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yadong Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Wu S, Lin W. The physiological role of the unfolded protein response in the nervous system. Neural Regen Res 2024; 19:2411-2420. [PMID: 38526277 PMCID: PMC11090440 DOI: 10.4103/1673-5374.393105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/12/2023] [Indexed: 03/26/2024] Open
Abstract
The unfolded protein response (UPR) is a cellular stress response pathway activated when the endoplasmic reticulum, a crucial organelle for protein folding and modification, encounters an accumulation of unfolded or misfolded proteins. The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity, reducing protein biosynthesis, and promoting protein degradation. It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress. Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system. Here, we provide an overview of recent findings that underscore the UPR's involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions, and highlight the critical role of the UPR in brain development, memory storage, retinal cone development, myelination, and maintenance of myelin thickness.
Collapse
Affiliation(s)
- Shuangchan Wu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Mallack EJ, Wang C, Kim JS, Ross ME. A novel missense variant in HIKESHI: Clinical phenotype, in vitro functional testing, and potential for gene therapy. Am J Med Genet A 2024; 194:e63790. [PMID: 38922739 DOI: 10.1002/ajmg.a.63790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
A 7-month-old boy presented to our clinic with developmental delay, Magnetic Resonance Imaging (MRI) features of delayed myelination and diffusion restriction, and a homozygous variant of uncertain significance (c.4T>G, p.Phe2Val) in HIKESHI, a gene associated with autosomal-recessive hypomyelinating leukodystrophy 13. We hypothesized that the variant is disease-causing and aimed to rescue the cellular phenotype with vector-mediated gene replacement. HIKESHI mediates heat-induced nuclear accumulation of heat-shock proteins, including HSP70, to protect cells from stress. We generated skin fibroblasts from the proband and proband's mother (heterozygous) to compare protein expression and subcellular localization of HSP70 under heat stress conditions, and the effect of vector-mediated overexpression of HIKESHI in the proband's cells under the same heat stress conditions. Western blot analysis revealed absent HIKESHI protein from proband fibroblasts, contrasted with ample expression in parental cells. Under heat stress conditions, while the mother's cells displayed appropriate nuclear localization of HSP70, the proband's cells displayed impaired nuclear translocalization. When patient fibroblasts were provided exogenous HIKESHI, the transfected proband's cells showed restored heat-induced nuclear translocalization of HSP70 under conditions of heat stress. These functional data establish that the patient's variant is a pathogenic loss-of-function mutation, thus confirming a diagnosis of hypomyelinating leukodystrophy 13 and that vector-mediated gene replacement may be an effective treatment approach for patients with this disorder.
Collapse
Affiliation(s)
- Eric J Mallack
- Leukodystrophy Center, Department of Pediatrics, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York City, New York, USA
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Chengbing Wang
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Ji-Sun Kim
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| |
Collapse
|
11
|
Ahuja K, Vandenabeele M, Nami F, Lefevere E, Van Hoecke J, Bergmans S, Claes M, Vervliet T, Neyrinck K, Burg T, De Herdt D, Bhaskar P, Zhu Y, Looser ZJ, Loncke J, Gsell W, Plaas M, Agostinis P, Swinnen JV, Van Den Bosch L, Bultynck G, Saab AS, Wolfs E, Chai YC, Himmelreich U, Verfaillie C, Moons L, De Groef L. A deep phenotyping study in mouse and iPSC models to understand the role of oligodendroglia in optic neuropathy in Wolfram syndrome. Acta Neuropathol Commun 2024; 12:140. [PMID: 39198924 PMCID: PMC11351506 DOI: 10.1186/s40478-024-01851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Wolfram syndrome (WS) is a rare childhood disease characterized by diabetes mellitus, diabetes insipidus, blindness, deafness, neurodegeneration and eventually early death, due to autosomal recessive mutations in the WFS1 (and WFS2) gene. While it is categorized as a neurodegenerative disease, it is increasingly becoming clear that other cell types besides neurons may be affected and contribute to the pathogenesis. MRI studies in patients and phenotyping studies in WS rodent models indicate white matter/myelin loss, implicating a role for oligodendroglia in WS-associated neurodegeneration. In this study, we sought to determine if oligodendroglia are affected in WS and whether their dysfunction may be the primary cause of the observed optic neuropathy and brain neurodegeneration. We demonstrate that 7.5-month-old Wfs1∆exon8 mice display signs of abnormal myelination and a reduced number of oligodendrocyte precursor cells (OPCs) as well as abnormal axonal conduction in the optic nerve. An MRI study of the brain furthermore revealed grey and white matter loss in the cerebellum, brainstem, and superior colliculus, as is seen in WS patients. To further dissect the role of oligodendroglia in WS, we performed a transcriptomics study of WS patient iPSC-derived OPCs and pre-myelinating oligodendrocytes. Transcriptional changes compared to isogenic control cells were found for genes with a role in ER function. However, a deep phenotyping study of these WS patient iPSC-derived oligodendroglia unveiled normal differentiation, mitochondria-associated endoplasmic reticulum (ER) membrane interactions and mitochondrial function, and no overt signs of ER stress. Overall, the current study indicates that oligodendroglia functions are largely preserved in the WS mouse and patient iPSC-derived models used in this study. These findings do not support a major defect in oligodendroglia function as the primary cause of WS, and warrant further investigation of neurons and neuron-oligodendroglia interactions as a target for future neuroprotective or -restorative treatments for WS.
Collapse
Affiliation(s)
- K Ahuja
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - M Vandenabeele
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - F Nami
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - E Lefevere
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - J Van Hoecke
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - S Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - M Claes
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - T Vervliet
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - K Neyrinck
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - T Burg
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Laboratory of Neurobiology, VIB-KU Leuven, Leuven, Belgium
| | - D De Herdt
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - P Bhaskar
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Y Zhu
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Z J Looser
- Institute of Pharmacology and Toxicology, Neuroscience Center Zurich, University of Zurich, University and ETH Zurich, Zurich, Switzerland
| | - J Loncke
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - W Gsell
- Biomedical MRI Group/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - M Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - P Agostinis
- Laboratory for Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, Leuven Center for Cancer Biology, VIB-KU, Leuven Cancer Institute, VIB-KU Leuven, Leuven, Belgium
| | - J V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - L Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Laboratory of Neurobiology, VIB-KU Leuven, Leuven, Belgium
| | - G Bultynck
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - A S Saab
- Institute of Pharmacology and Toxicology, Neuroscience Center Zurich, University of Zurich, University and ETH Zurich, Zurich, Switzerland
| | - E Wolfs
- Laboratory for Functional Imaging and Research on Stem Cells, BIOMED, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Y C Chai
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - U Himmelreich
- Biomedical MRI Group/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - C Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - L Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - L De Groef
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Jiang Z, Dai X, Zhou L, Yang Z, Yu F, Kong X. Development of a polarity-sensitive ratiometric fluorescent probe based on the intramolecular reaction of spiro-oxazolidine and its applications for in situ visualizing the fluctuations of polarity during ER stress. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124337. [PMID: 38676988 DOI: 10.1016/j.saa.2024.124337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Polarity is a vital element in endoplasmic reticulum (ER) microenvironment, and its variation is closely related to many physiological and pathological activities of ER, so it is necessary to trace fluctuations of polarity in ER. However, most of fluorescent probes for detecting polarity dependent on the changes of single emission, which could be affected by many factors and cause false signals. Ratiometric fluorescent probe with "built-in calibration" can effectively avoid detection errors. Here, we have designed a ratiometric fluorescent probe HM for monitoring the ER polarity based on the intramolecular reaction of spiro-oxazolidine. It forms ring open/closed isomers driven by polarity to afford ratiometric sensing. Probe HM have manifested its ratiometric responses to polarity in spectroscopic results, which could offer much more precise information for the changes of polarity in living cells with the internal built-in correction. It also showed large emission shift ( 133 nm), high selectivity and photo-stability. In biological imaging, HM could selectively accumulate in ER with high photo-stability. Importantly, HM has ability for in situ tracing the changes of ER polarity with ratiometric behavior during the ER stress process with the stimulation of tunicamycin, dithiothreitol and hypoxia, suggesting that HM is an effective molecule tool for monitoring the variations of ER polarity.
Collapse
Affiliation(s)
- Zekun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Xiaoyu Dai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Lina Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Zheng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Faqi Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China.
| |
Collapse
|
13
|
Wu S, Liu P, Cvetanovic M, Lin W. Endoplasmic reticulum associated degradation preserves neurons viability by maintaining endoplasmic reticulum homeostasis. Front Neurosci 2024; 18:1437854. [PMID: 39135735 PMCID: PMC11317260 DOI: 10.3389/fnins.2024.1437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a principal quality-control mechanism responsible for targeting misfolded ER proteins for cytosolic degradation. Evidence suggests that impairment of ERAD contributes to neuron dysfunction and death in neurodegenerative diseases, many of which are characterized by accumulation and aggregation of misfolded proteins. However, the physiological role of ERAD in neurons remains unclear. The Sel1L-Hrd1 complex consisting of the E3 ubiquitin ligase Hrd1 and its adaptor protein Sel1L is the best-characterized ERAD machinery. Herein, we showed that Sel1L deficiency specifically in neurons of adult mice impaired the ERAD activity of the Sel1L-Hrd1 complex and led to disruption of ER homeostasis, ER stress and activation of the unfold protein response (UPR). Adult mice with Sel1L deficiency in neurons exhibited weight loss and severe motor dysfunction, and rapidly succumbed to death. Interestingly, Sel1L deficiency in neurons caused global brain atrophy, particularly cerebellar and hippocampal atrophy, in adult mice. Moreover, we found that cerebellar and hippocampal atrophy in these mice resulted from degeneration of Purkinje neurons and hippocampal neurons, respectively. These findings indicate that ERAD is required for maintaining ER homeostasis and the viability and function of neurons in adults under physiological conditions.
Collapse
Affiliation(s)
- Shuangchan Wu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Pingting Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Gao Y, Slomnicki LP, Kilanczyk E, Forston MD, Pietrzak M, Rouchka EC, Howard RM, Whittemore SR, Hetman M. Reduced Expression of Oligodendrocyte Linage-Enriched Transcripts During the Endoplasmic Reticulum Stress/Integrated Stress Response. ASN Neuro 2024; 16:2371162. [PMID: 39024571 PMCID: PMC11262469 DOI: 10.1080/17590914.2024.2371162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/12/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum (ER) stress in oligodendrocyte (OL) linage cells contributes to several CNS pathologies including traumatic spinal cord injury (SCI) and multiple sclerosis. Therefore, primary rat OL precursor cell (OPC) transcriptomes were analyzed using RNASeq after treatments with two ER stress-inducing drugs, thapsigargin (TG) or tunicamycin (TM). Gene ontology term (GO) enrichment showed that both drugs upregulated mRNAs associated with the general stress response. The GOs related to ER stress were only enriched for TM-upregulated mRNAs, suggesting greater ER stress selectivity of TM. Both TG and TM downregulated cell cycle/cell proliferation-associated transcripts, indicating the anti-proliferative effects of ER stress. Interestingly, many OL lineage-enriched mRNAs were downregulated, including those for transcription factors that drive OL identity such as Olig2. Moreover, ER stress-associated decreases of OL-specific gene expression were found in mature OLs from mouse models of white matter pathologies including contusive SCI, toxin-induced demyelination, and Alzheimer's disease-like neurodegeneration. Taken together, the disrupted transcriptomic fingerprint of OL lineage cells may facilitate myelin degeneration and/or dysfunction when pathological ER stress persists in OL lineage cells.
Collapse
Affiliation(s)
- Yonglin Gao
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ewa Kilanczyk
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michael D Forston
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Russell M Howard
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Cohn EF, Clayton BLL, Madhavan M, Lee KA, Yacoub S, Fedorov Y, Scavuzzo MA, Paul Friedman K, Shafer TJ, Tesar PJ. Pervasive environmental chemicals impair oligodendrocyte development. Nat Neurosci 2024; 27:836-845. [PMID: 38528201 PMCID: PMC11088982 DOI: 10.1038/s41593-024-01599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
Exposure to environmental chemicals can impair neurodevelopment, and oligodendrocytes may be particularly vulnerable, as their development extends from gestation into adulthood. However, few environmental chemicals have been assessed for potential risks to oligodendrocytes. Here, using a high-throughput developmental screen in cultured cells, we identified environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms. Quaternary compounds, ubiquitous in disinfecting agents and personal care products, were potently and selectively cytotoxic to developing oligodendrocytes, whereas organophosphate flame retardants, commonly found in household items such as furniture and electronics, prematurely arrested oligodendrocyte maturation. Chemicals from each class impaired oligodendrocyte development postnatally in mice and in a human 3D organoid model of prenatal cortical development. Analysis of epidemiological data showed that adverse neurodevelopmental outcomes were associated with childhood exposure to the top organophosphate flame retardant identified by our screen. This work identifies toxicological vulnerabilities for oligodendrocyte development and highlights the need for deeper scrutiny of these compounds' impacts on human health.
Collapse
Affiliation(s)
- Erin F Cohn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Benjamin L L Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mayur Madhavan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kristin A Lee
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sara Yacoub
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yuriy Fedorov
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Marissa A Scavuzzo
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
16
|
Libberecht K, Dirkx N, Vangansewinkel T, Vandendries W, Lambrichts I, Wolfs E. The Influence of Lysosomal Stress on Dental Pulp Stem Cell-Derived Schwann Cells. Biomolecules 2024; 14:405. [PMID: 38672423 PMCID: PMC11048368 DOI: 10.3390/biom14040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Dysregulation of the endo-lysosomal-autophagy pathway has been identified as a critical factor in the pathology of various demyelinating neurodegenerative diseases, including peripheral neuropathies. This pathway plays a crucial role in transporting newly synthesized myelin proteins to the plasma membrane in myelinating Schwann cells, making these cells susceptible to lysosome-related dysfunctions. Nevertheless, the specific impact of lysosomal dysfunction in Schwann cells and its contribution to neurodegeneration remain poorly understood. METHODS We aim to mimic lysosomal dysfunction in Schwann cells using chloroquine, a lysosomal dysfunction inducer, and to monitor lysosomal leakiness, Schwann cell viability, and apoptosis over time. Additionally, due to the ethical and experimental issues associated with cell isolation and the culturing of human Schwann cells, we use human dental pulp stem cell-derived Schwann cells (DPSC-SCs) as a model in our study. RESULTS Chloroquine incubation boosts lysosomal presence as demonstrated by an increased Lysotracker signal. Further in-depth lysosomal analysis demonstrated an increased lysosomal size and permeability as illustrated by a TEM analysis and GAL3-LAMP1 staining. Moreover, an Alamar blue assay and Caspase-3 staining demonstrates a reduced viability and increased apoptosis, respectively. CONCLUSIONS Our data indicate that prolonged lysosomal dysfunction leads to lysosomal permeability, reduced viability, and eventually apoptosis in human DPSC-SCs.
Collapse
Affiliation(s)
- Karen Libberecht
- Laboratory for Functional Imaging & Research on Stem Cells, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (K.L.); (N.D.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Nathalie Dirkx
- Laboratory for Functional Imaging & Research on Stem Cells, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (K.L.); (N.D.)
| | - Tim Vangansewinkel
- Laboratory for Functional Imaging & Research on Stem Cells, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (K.L.); (N.D.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
- Laboratory for Histology and Regeneration, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Wendy Vandendries
- Laboratory for Functional Imaging & Research on Stem Cells, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (K.L.); (N.D.)
| | - Ivo Lambrichts
- Laboratory for Histology and Regeneration, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Esther Wolfs
- Laboratory for Functional Imaging & Research on Stem Cells, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (K.L.); (N.D.)
| |
Collapse
|
17
|
Kipp M. How to Use the Cuprizone Model to Study De- and Remyelination. Int J Mol Sci 2024; 25:1445. [PMID: 38338724 PMCID: PMC10855335 DOI: 10.3390/ijms25031445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and inflammatory disorder affecting the central nervous system whose cause is still largely unknown. Oligodendrocyte degeneration results in demyelination of axons, which can eventually be repaired by a mechanism called remyelination. Prevention of demyelination and the pharmacological support of remyelination are two promising strategies to ameliorate disease progression in MS patients. The cuprizone model is commonly employed to investigate oligodendrocyte degeneration mechanisms or to explore remyelination pathways. During the last decades, several different protocols have been applied, and all have their pros and cons. This article intends to offer guidance for conducting pre-clinical trials using the cuprizone model in mice, focusing on discovering new treatment approaches to prevent oligodendrocyte degeneration or enhance remyelination.
Collapse
Affiliation(s)
- Markus Kipp
- Rostock University Medical Center, Institute of Anatomy, 18057 Rostock, Germany
| |
Collapse
|
18
|
Gjervan SC, Ozgoren OK, Gow A, Stockler-Ipsiroglu S, Pouladi MA. Claudin-11 in health and disease: implications for myelin disorders, hearing, and fertility. Front Cell Neurosci 2024; 17:1344090. [PMID: 38298375 PMCID: PMC10827939 DOI: 10.3389/fncel.2023.1344090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
Claudin-11 plays a critical role in multiple physiological processes, including myelination, auditory function, and spermatogenesis. Recently, stop-loss mutations in CLDN11 have been identified as a novel cause of hypomyelinating leukodystrophy (HLD22). Understanding the multifaceted roles of claudin-11 and the potential pathogenic mechanisms in HLD22 is crucial for devising targeted therapeutic strategies. This review outlines the biological roles of claudin-11 and the implications of claudin-11 loss in the context of the Cldn11 null mouse model. Additionally, HLD22 and proposed pathogenic mechanisms, such as endoplasmic reticulum stress, will be discussed.
Collapse
Affiliation(s)
- Sophia C. Gjervan
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Oguz K. Ozgoren
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sylvia Stockler-Ipsiroglu
- Department of Pediatrics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
- Division of Biochemical Genetics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Mahmoud A. Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Horwitz A, Levi-Carmel N, Shnaider O, Birk R. BBS genes are involved in accelerated proliferation and early differentiation of BBS-related tissues. Differentiation 2024; 135:100745. [PMID: 38215537 DOI: 10.1016/j.diff.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Bardet-Biedl syndrome (BBS) is an inherited disorder primarily ciliopathy with pleiotropic multi-systemic phenotypic involvement, including adipose, nerve, retinal, kidney, Etc. Consequently, it is characterized by obesity, cognitive impairment and retinal, kidney and cutaneous abnormalities. Initial studies, including ours have shown that BBS genes play a role in the early developmental stages of adipocytes and β-cells. However, this role in other BBS-related tissues is unknown. We investigated BBS genes involvement in the proliferation and early differentiation of different BBS cell types. The involvement of BBS genes in cellular proliferation were studied in seven in-vitro and transgenic cell models; keratinocytes (hHaCaT) and Ras-transfected keratinocytes (Ras-hHaCaT), neuronal cell lines (hSH-SY5Y and rPC-12), silenced BBS4 neural cell lines (siBbs4 hSH-SY5Y and siBbs4 rPC-12), adipocytes (m3T3L1), and ex-vivo transformed B-cells obtain from BBS4 patients, using molecular and biochemical methodologies. RashHaCaT cells showed an accelerated proliferation rate in parallel to significant reduction in the transcript levels of BBS1, 2, and 4. BBS1, 2, and 4 transcripts linked with hHaCaT cell cycle arrest (G1 phase) using both chemical (CDK4 inhibitor) and serum deprivation methodologies. Adipocyte (m3T3-L1) Bbs1, 2 and 4 transcript levels corresponded to the cell cycle phase (CDK4 inhibitor and serum deprivation). SiBBS4 hSH-SY5Y cells exhibited early cell proliferation and differentiation (wound healing assay) rates. SiBbs4 rPC-12 models exhibited significant proliferation and differentiation rate corresponding to Nestin expression levels. BBS4 patients-transformed B-cells exhibited an accelerated proliferation rate (LPS-induced methodology). In conclusions, the BBS4 gene plays a significant, similar and global role in the cellular proliferation of various BBS related tissues. These results highlight the universal role of the BBS gene in the cell cycle, and further deepen the knowledge of the mechanisms underlying the development of BBS.
Collapse
Affiliation(s)
- Avital Horwitz
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | | | - Olga Shnaider
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | - Ruth Birk
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel.
| |
Collapse
|
20
|
Bracchi-Ricard V, Nguyen K, Ricci D, Gaudette B, Henao-Meija J, Brambilla R, Martynyuk T, Gidalevitz T, Allman D, Bethea JR, Argon Y. Increased activity of IRE1 improves the clinical presentation of EAE. FASEB J 2023; 37:e23283. [PMID: 37983957 PMCID: PMC10662669 DOI: 10.1096/fj.202300769rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Activation of the endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme-1α (IRE1α) contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the contrary, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells but exhibited a beneficial effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Although mechanical allodynia was unaffected, significant improvement in motor function was found in IRE1C148S mice with EAE relative to wild type (WT) mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of proinflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) levels, suggesting improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the microglial activation marker ionized calcium-binding adapter molecule (IBA1), along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be beneficial in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.
Collapse
Affiliation(s)
| | - Kayla Nguyen
- Department of Biology, Drexel University, Philadelphia, PA
| | - Daniela Ricci
- Department of Pathology and Lab Medicine, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Gaudette
- Department of Pathology and Lab Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Meija
- Department of Pathology and Lab Medicine, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | | | | | - David Allman
- Department of Pathology and Lab Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Shen Y, Zhao W, Bao Y, Zhu J, Jiao L, Duan X, Pan T, Monroig Ó, Zhou Q, Jin M. Molecular cloning and characterization of endoplasmic reticulum stress related genes grp78 and atf6α from black seabream (Acanthopagrus schlegelii) and their expressions in response to nutritional regulation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1115-1128. [PMID: 37855969 DOI: 10.1007/s10695-023-01242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023]
Abstract
Glucose-regulated protein 78 (grp78) and activating transcription factor 6α (atf6α) are considered vital endoplasmic reticulum (ER) molecular chaperones and ER stress (ERS) sensors, respectively. In the present study, the full cDNA sequences of these two ERS-related genes were first cloned and characterized from black seabream (Acanthopagrus schlegelii). The grp78 cDNA sequence is 2606 base pair (bp) encoding a protein of 654 amino acids (aa). The atf6α cDNA sequence is 2168 base pair (bp) encoding a protein of 645 aa. The predicted aa sequences of A. schlegelii grp78 and atf6α indicated that the proteins contain all the structural features, which were characteristic of the two genes in other species. Tissues transcript abundance analysis revealed that the mRNAs of grp78 and atf6α were expressed in all measured tissues, but the highest expression of these two genes was all recorded in the gill followed by liver/ brain. Moreover, in vivo experiment found that fish intake of a high lipid diet (HLD) can trigger ERS by activating grp78/Grp78 and atf6α/Atf6α. However, it can be alleviated by dietary betaine supplementation, similar results were also obtained by in vitro experiment using primary hepatocytes of A. schlegelii. These findings will be beneficial for us to evaluate the regulator effects of HLD supplemented with betaine on ERS at the molecular level, and thus provide some novel insights into the functions of betaine in marine fish fed with an HLD.
Collapse
Affiliation(s)
- Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiayun Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xuemei Duan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Tingting Pan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes, 12595, Castellón, Spain
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
22
|
Withana M, Castorina A. Potential Crosstalk between the PACAP/VIP Neuropeptide System and Endoplasmic Reticulum Stress-Relevance to Multiple Sclerosis Pathophysiology. Cells 2023; 12:2633. [PMID: 37998368 PMCID: PMC10670126 DOI: 10.3390/cells12222633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder characterized by focal demyelination and chronic inflammation of the central nervous system (CNS). Although the exact etiology is unclear, mounting evidence indicates that endoplasmic reticulum (ER) stress represents a key event in disease pathogenesis. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related neuropeptides that are abundant in the CNS and are known to exert neuroprotective and immune modulatory roles. Activation of this endogenous neuropeptide system may interfere with ER stress processes to promote glial cell survival and myelin self-repair. However, the potential crosstalk between the PACAP/VIP system and ER stress remains elusive. In this review, we aim to discuss how these peptides ameliorate ER stress in the CNS, with a focus on MS pathology. Our goal is to emphasize the importance of this potential interaction to aid in the identification of novel therapeutic targets for the treatment of MS and other demyelinating disorders.
Collapse
Affiliation(s)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
23
|
Libberecht K, Vangansewinkel T, Van Den Bosch L, Lambrichts I, Wolfs E. Proteostasis plays an important role in demyelinating Charcot Marie Tooth disease. Biochem Pharmacol 2023; 216:115760. [PMID: 37604292 DOI: 10.1016/j.bcp.2023.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Type 1 Charcot-Marie-Tooth disease (CMT1) is the most common demyelinating peripheral neuropathy. Patients suffer from progressive muscle weakness and sensory problems. The underlying disease mechanisms of CMT1 are still unclear and no therapy is currently available, hence patients completely rely on supportive care. Balancing protein levels is a complex multistep process fundamental to maintain cells in their healthy state and a disrupted proteostasis is a hallmark of several neurodegenerative diseases. When protein misfolding occurs, protein quality control systems are activated such as chaperones, the lysosomal-autophagy system and proteasomal degradation to ensure proper degradation. However, in pathological circumstances, these mechanisms are overloaded and thereby become inefficient to clear the load of misfolded proteins. Recent evidence strongly indicates that a disbalance in proteostasis plays an important role in several forms of CMT1. In this review, we present an overview of the protein quality control systems, their role in CMT1, and potential treatment strategies to restore proteostasis.
Collapse
Affiliation(s)
- Karen Libberecht
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Tim Vangansewinkel
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; UHasselt, Biomedical Research Institute (BIOMED), Lab for Histology and Regeneration (HISTOREGEN Lab), Diepenbeek, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ivo Lambrichts
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Histology and Regeneration (HISTOREGEN Lab), Diepenbeek, Belgium
| | - Esther Wolfs
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium.
| |
Collapse
|
24
|
Chen Y, Quan S, Patil V, Kunjamma RB, Tokars HM, Leisten ED, Joy G, Wills S, Chan JR, Wong YC, Popko B. Insights into the mechanism of oligodendrocyte protection and remyelination enhancement by the integrated stress response. Glia 2023; 71:2180-2195. [PMID: 37203250 PMCID: PMC10681276 DOI: 10.1002/glia.24386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
central nervous system (CNS) inflammation triggers activation of the integrated stress response (ISR). We previously reported that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation. However, the exact mechanisms through which this occurs remain unknown. Here, we investigated whether the ISR modulator Sephin1 in combination with the oligodendrocyte differentiation enhancing reagent bazedoxifene (BZA) is able to accelerate remyelination under inflammation, and the underlying mechanisms mediating this pathway. We find that the combined treatment of Sephin1 and BZA is sufficient to accelerate early-stage remyelination in mice with ectopic IFN-γ expression in the CNS. IFN-γ, which is a critical inflammatory cytokine in multiple sclerosis (MS), inhibits oligodendrocyte precursor cell (OPC) differentiation in culture and triggers a mild ISR. Mechanistically, we further show that BZA promotes OPC differentiation in the presence of IFN-γ, while Sephin1 enhances the IFN-γ-induced ISR by reducing protein synthesis and increasing RNA stress granule formation in differentiating oligodendrocytes. Finally, pharmacological suppression of the ISR blocks stress granule formation in vitro and partially lessens the beneficial effect of Sephin1 on disease progression in a mouse model of MS, experimental autoimmune encephalitis (EAE). Overall, our findings uncover distinct mechanisms of action of BZA and Sephin1 on oligodendrocyte lineage cells under inflammatory stress, suggesting that a combination therapy may effectively promote restoring neuronal function in MS patients.
Collapse
Affiliation(s)
- Yanan Chen
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Songhua Quan
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vaibhav Patil
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rejani B. Kunjamma
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haley M. Tokars
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eric D. Leisten
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Godwin Joy
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Samantha Wills
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jonah R. Chan
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Yvette C. Wong
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Popko
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Talukdar G, Orr HT, Lei Z. The PERK pathway: beneficial or detrimental for neurodegenerative diseases and tumor growth and cancer. Hum Mol Genet 2023; 32:2545-2557. [PMID: 37384418 PMCID: PMC10407711 DOI: 10.1093/hmg/ddad103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) is one of the three major sensors in the unfolded protein response (UPR). The UPR is involved in the modulation of protein synthesis as an adaptive response. Prolonged PERK activity correlates with the development of diseases and the attenuation of disease severity. Thus, the current debate focuses on the role of the PERK signaling pathway either in accelerating or preventing diseases such as neurodegenerative diseases, myelin disorders, and tumor growth and cancer. In this review, we examine the current findings on the PERK signaling pathway and whether it is beneficial or detrimental for the above-mentioned disorders.
Collapse
Affiliation(s)
- Gourango Talukdar
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Harry T Orr
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhixin Lei
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Takano C, Takano T, Masumura M, Nakamura R, Koda S, Bochimoto H, Yoshida S, Bando Y. Involvement of Degenerating 21.5 kDa Isoform of Myelin Basic Protein in the Pathogenesis of the Relapse in Murine Relapsing-Remitting Experimental Autoimmune Encephalomyelitis and MS Autopsied Brain. Int J Mol Sci 2023; 24:ijms24098160. [PMID: 37175866 PMCID: PMC10179612 DOI: 10.3390/ijms24098160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is the chronic inflammatory demyelinating disease of the CNS. Relapsing-remitting MS (RRMS) is the most common type of MS. However, the mechanisms of relapse and remission in MS have not been fully understood. While SJL mice immunized with proteolipid protein (PLP) develop relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), we have recently observed that some of these mice were resistant to the active induction of relapsing EAE after initial clinical and histological symptoms of EAE with a severity similar to the relapsing EAE mice. To clarify the mechanism of relapsing, we examined myelin morphology during PLP139-151-induced RR-EAE in the SJL mice. While RR-EAE mice showed an increased EAE severity (relapse) with CNS inflammation, demyelination with abnormal myelin morphology in the spinal cord, the resistant mice exhibited a milder EAE phenotype with diminished relapse. Compared with the RR-EAE mice, the resistant mice showed less CNS inflammation, demyelination, and abnormalities of the myelin structure. In addition, scanning electron microscopic (SEM) analysis with the osmium-maceration method displayed ultrastructural abnormalities of the myelin structure in the white matter of the RR-EAE spinal cord, but not in that of the resistant mice. While the intensity of myelin staining was reduced in the relapsing EAE spinal cord, immunohistochemistry and immunoblot analysis revealed that the 21.5 kDa isoform of degenerating myelin basic protein (MBP) was specifically induced in the relapsing EAE spinal cord. Taken together, the neuroinflammation-induced degenerating 21 kDa isoform of MBP sheds light on the development of abnormal myelin on the relapse of MS pathogenesis.
Collapse
Affiliation(s)
- Chie Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Takuma Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Makoto Masumura
- Institute for Social Innovation and Cooperation, Niigata University, Niigata 951-8510, Japan
| | | | | | - Hiroki Bochimoto
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shigetaka Yoshida
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Anatomy, Akita University Graduate School of Medicine, Hondo 1-1-1, Akita 010-8543, Japan
| |
Collapse
|
27
|
Wu S, Lin W. Endoplasmic reticulum associated degradation is essential for maintaining the viability or function of mature myelinating cells in adults. Glia 2023; 71:1360-1376. [PMID: 36708285 PMCID: PMC10023378 DOI: 10.1002/glia.24346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
Endoplasmic reticulum associated degradation (ERAD) is responsible for recognition and degradation of unfolded or misfolded proteins in the ER. Sel1L is essential for the ERAD activity of Sel1L-Hrd1 complex, the best-known ERAD machinery. Using a continuous Sel1L knockout mouse model (CNP/Cre; Sel1LloxP/loxP mice), our previous studies showed that Sel1L knockout in myelinating cells, oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS), leads to adult-onset myelin abnormalities in the CNS and PNS. Because Sel1L is deleted in myelinating cells of CNP/Cre; Sel1LloxP/loxP mice starting at very early stage of differentiation, it is impossible to rule out the possibility that the adult-onset myelin abnormalities in these mice results from developmental myelination defects caused by Sel1L knockout in myelinating cells during development. Thus, using an inducible Sel1L knockout mouse model (PLP/CreERT ; Sel1LloxP/loxP mice) that has normal, intact myelin and myelinating cells in the adult CNS and PNS prior to tamoxifen treatment, we sought to determine if Sel1L knockout in mature myelinating cells of adult mice leads to myelin abnormalities in the CNS and PNS. We showed that Sel1L knockout in mature myelinating cells caused ERAD impairment, ER stress and UPR activation. Interesting, Sel1L knockout in mature oligodendrocytes impaired their myelinating function by suppressing myelin protein translation, and resulted in progressive myelin thinning in the adult CNS. Conversely, Sel1L knockout in mature Schwann cells led to Schwann cell apoptosis and demyelination in the adult PNS. These findings demonstrate the essential roles of ERAD in mature myelinating cells in the adult CNS and PNS under physiological conditions.
Collapse
Affiliation(s)
- Shuangchan Wu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States, 55455
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States, 55455
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States, 55455
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States, 55455
| |
Collapse
|
28
|
Gao Y, Khan YA, Mo W, White KI, Perkins M, Pfuetzner RA, Trapani JG, Brunger AT, Nicolson T. Sensory deficit screen identifies nsf mutation that differentially affects SNARE recycling and quality control. Cell Rep 2023; 42:112345. [PMID: 37027300 PMCID: PMC10524599 DOI: 10.1016/j.celrep.2023.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
The AAA+ NSF complex is responsible for SNARE complex disassembly both before and after membrane fusion. Loss of NSF function results in pronounced developmental and degenerative defects. In a genetic screen for sensory deficits in zebrafish, we identified a mutation in nsf, I209N, that impairs hearing and balance in a dosage-dependent manner without accompanying defects in motility, myelination, and innervation. In vitro experiments demonstrate that while the I209N NSF protein recognizes SNARE complexes, the effects on disassembly are dependent upon the type of SNARE complex and I209N concentration. Higher levels of I209N protein produce a modest decrease in binary (syntaxin-SNAP-25) SNARE complex disassembly and residual ternary (syntaxin-1A-SNAP-25-synaptobrevin-2) disassembly, whereas at lower concentrations binary disassembly activity is strongly reduced and ternary disassembly activity is absent. Our study suggests that the differential effect on disassembly of SNARE complexes leads to selective effects on NSF-mediated membrane trafficking and auditory/vestibular function.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology, Head and Neck Surgery, Stanford Medical School, 300 Pasteur Drive, Stanford, CA 94303, USA
| | - Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Weike Mo
- Graduate Program Biomedical Sciences, Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Matthew Perkins
- Department of Biology and Neuroscience Program, Amherst College, Amherst, MA 01002, USA
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Josef G Trapani
- Department of Biology and Neuroscience Program, Amherst College, Amherst, MA 01002, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University, Stanford, CA, USA; Department of Photon Science, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Teresa Nicolson
- Department of Otolaryngology, Head and Neck Surgery, Stanford Medical School, 300 Pasteur Drive, Stanford, CA 94303, USA.
| |
Collapse
|
29
|
Bracchi-Ricard V, Nguyen K, Ricci D, Gaudette B, Henao-Meija J, Brambilla R, Martynyuk T, Gidalevitz T, Allman D, Bethea JR, Argon Y. Increased activity of IRE1 improves the clinical presentation of EAE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537391. [PMID: 37131811 PMCID: PMC10153167 DOI: 10.1101/2023.04.19.537391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Activation of the ER stress sensor IRE1α contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the other hand, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells, but exhibited a strong protective effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Significant improvement in motor function was found in IRE1C148S mice with EAE relative to WT mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of pro-inflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced CNPase levels, suggestiing improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the activation of microglial activation marker IBA1, along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be protective in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of the ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.
Collapse
Affiliation(s)
| | - Kayla Nguyen
- Department of Biology, Drexel University, Philadelphia, PA
| | - Daniela Ricci
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Gaudette
- Department of Pathology and Lab Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Meija
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | | | | | - David Allman
- Department of Pathology and Lab Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, PA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Makar TK, Guda PR, Ray S, Andhavarapu S, Keledjian K, Gerzanich V, Simard JM, Nimmagadda VKC, Bever CT. Immunomodulatory therapy with glatiramer acetate reduces endoplasmic reticulum stress and mitochondrial dysfunction in experimental autoimmune encephalomyelitis. Sci Rep 2023; 13:5635. [PMID: 37024509 PMCID: PMC10079956 DOI: 10.1038/s41598-023-29852-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/11/2023] [Indexed: 04/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are found in lesions of multiple sclerosis (MS) and animal models of MS such as experimental autoimmune encephalomyelitis (EAE), and may contribute to the neuronal loss that underlies permanent impairment. We investigated whether glatiramer acetate (GA) can reduce these changes in the spinal cords of chronic EAE mice by using routine histology, immunostaining, and electron microscopy. EAE spinal cord tissue exhibited increased inflammation, demyelination, mitochondrial dysfunction, ER stress, downregulation of NAD+ dependent pathways, and increased neuronal death. GA reversed these pathological changes, suggesting that immunomodulating therapy can indirectly induce neuroprotective effects in the CNS by mediating ER stress.
Collapse
Affiliation(s)
- Tapas K Makar
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA.
- Research Service, Institute of Human Virology, VA Maryland Health Care System, 725 W Lombard St, Baltimore, MD, 21201, USA.
| | - Poornachander R Guda
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Sugata Ray
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Sanketh Andhavarapu
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - J Marc Simard
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - Vamshi K C Nimmagadda
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Christopher T Bever
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
- Research Service, Institute of Human Virology, VA Maryland Health Care System, 725 W Lombard St, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, Office of Research and Development, Washington, USA
| |
Collapse
|
31
|
McGuire JL, Grinspan JB, Jordan-Sciutto KL. Update on Central Nervous System Effects of HIV in Adolescents and Young Adults. Curr HIV/AIDS Rep 2023; 20:19-28. [PMID: 36809477 PMCID: PMC10695667 DOI: 10.1007/s11904-023-00651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE OF REVIEW : Behaviorally acquired (non-perinatal) HIV infection during adolescence and young adulthood occurs in the midst of key brain developmental processes such as frontal lobe neuronal pruning and myelination of white matter, but we know little about the effects of new infection and therapy on the developing brain. RECENT FINDINGS Adolescents and young adults account for a disproportionately high fraction of new HIV infections each year. Limited data exist regarding neurocognitive performance in this age group, but suggest impairment is at least as prevalent as in older adults, despite lower viremia, higher CD4 + T cell counts, and shorter durations of infection in adolescents/young adults. Neuroimaging and neuropathologic studies specific to this population are underway. The full impact of HIV on brain growth and development in youth with behaviorally acquired HIV has yet to be determined; it must be investigated further to develop future targeted treatment and mitigation strategies.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Division of Neurology, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Judith B Grinspan
- Division of Neurology, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Cohn EF, Clayton BL, Madhavan M, Yacoub S, Federov Y, Paul-Friedman K, Shafer TJ, Tesar PJ. Pervasive environmental chemicals impair oligodendrocyte development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528042. [PMID: 36798415 PMCID: PMC9934656 DOI: 10.1101/2023.02.10.528042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Exposure to environmental chemicals can impair neurodevelopment1-4. Oligodendrocytes that wrap around axons to boost neurotransmission may be particularly vulnerable to chemical toxicity as they develop throughout fetal development and into adulthood5,6. However, few environmental chemicals have been assessed for potential risks to oligodendrocyte development. Here, we utilized a high-throughput developmental screen and human cortical brain organoids, which revealed environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms. Quaternary compounds, ubiquitous in disinfecting agents, hair conditioners, and fabric softeners, were potently and selectively cytotoxic to developing oligodendrocytes through activation of the integrated stress response. Organophosphate flame retardants, commonly found in household items such as furniture and electronics, were non-cytotoxic but prematurely arrested oligodendrocyte maturation. Chemicals from each class impaired human oligodendrocyte development in a 3D organoid model of prenatal cortical development. In analysis of epidemiological data from the CDC's National Health and Nutrition Examination Survey, adverse neurodevelopmental outcomes were associated with childhood exposure to the top organophosphate flame retardant identified by our oligodendrocyte toxicity platform. Collectively, our work identifies toxicological vulnerabilities specific to oligodendrocyte development and highlights common household chemicals with high exposure risk to children that warrant deeper scrutiny for their impact on human health.
Collapse
Affiliation(s)
- Erin F. Cohn
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Benjamin L.L. Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Mayur Madhavan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Sara Yacoub
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Yuriy Federov
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Katie Paul-Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Timothy J. Shafer
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Paul J. Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
33
|
Amatruda M, Harris K, Matis A, Davies AL, McElroy D, Clark M, Linington C, Desai R, Smith KJ. Oxygen treatment reduces neurological deficits and demyelination in two animal models of multiple sclerosis. Neuropathol Appl Neurobiol 2023; 49:e12868. [PMID: 36520661 PMCID: PMC10107096 DOI: 10.1111/nan.12868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIMS The objective of the study is to explore the importance of tissue hypoxia in causing neurological deficits and demyelination in the inflamed CNS, and the value of inspiratory oxygen treatment, using both active and passive experimental autoimmune encephalomyelitis (EAE). METHODS Normobaric oxygen treatment was administered to Dark Agouti rats with either active or passive EAE, compared with room air-treated, and naïve, controls. RESULTS Severe neurological deficits in active EAE were significantly improved after just 1 h of breathing approximately 95% oxygen. The improvement was greater and more persistent when oxygen was applied either prophylactically (from immunisation for 23 days), or therapeutically from the onset of neurological deficits for 24, 48, or 72 h. Therapeutic oxygen for 72 h significantly reduced demyelination and the integrated stress response in oligodendrocytes at the peak of disease, and protected from oligodendrocyte loss, without evidence of increased oxidative damage. T-cell infiltration and cytokine expression in the spinal cord remained similar to that in untreated animals. The severe neurological deficit of animals with passive EAE occurred in conjunction with spinal hypoxia and was significantly reduced by oxygen treatment initiated before their onset. CONCLUSIONS Severe neurological deficits in both active and passive EAE can be caused by hypoxia and reduced by oxygen treatment. Oxygen treatment also reduces demyelination in active EAE, despite the autoimmune origin of the disease.
Collapse
Affiliation(s)
- Mario Amatruda
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kate Harris
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Alina Matis
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew L Davies
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Daniel McElroy
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Michael Clark
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Christopher Linington
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Roshni Desai
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
34
|
Insights into the mechanism of oligodendrocyte protection and remyelination enhancement by the integrated stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525156. [PMID: 36747743 PMCID: PMC9900777 DOI: 10.1101/2023.01.23.525156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CNS inflammation triggers activation of the integrated stress response (ISR). We previously reported that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation (Chen et al., eLife , 2021). However, the exact mechanisms through which this occurs remain unknown. Here, we investigated whether the ISR modulator Sephin1 in combination with the oligodendrocyte differentiation enhancing reagent bazedoxifene (BZA) is able to accelerate remyelination under inflammation, and the underlying mechanisms mediating this pathway. We find that the combined treatment of Sephin1 and BZA is sufficient to accelerate early-stage remyelination in mice with ectopic IFN-γ expression in the CNS. IFN-γ, which is a critical inflammatory cytokine in multiple sclerosis (MS), inhibits oligodendrocyte precursor cell (OPC) differentiation in culture and triggers a mild ISR. Mechanistically, we further show that BZA promotes OPC differentiation in the presence of IFN-γ, while Sephin1 enhances the IFN-γ-induced ISR by reducing protein synthesis and increasing RNA stress granule formation in differentiating oligodendrocytes. Finally, the ISR suppressor 2BAct is able to partially lessen the beneficial effect of Sephin1 on disease progression, in an MS mouse model of experimental autoimmune encephalitis (EAE). Overall, our findings uncover distinct mechanisms of action of BZA and Sephin1 on oligodendrocyte lineage cells under inflammatory stress, suggesting that a combination therapy may effectively promote restoring neuronal function in MS patients.
Collapse
|
35
|
Zhu J, Guo X, Ran N, Liang J, Liu F, Liu J, Wang R, Jiang L, Yang D, Liu M. Leukoencephalopathy hypomyelination with brainstem and spinal cord involvement and leg spasticity caused by DARS1 mutations. Front Genet 2023; 13:1009230. [PMID: 36712860 PMCID: PMC9878823 DOI: 10.3389/fgene.2022.1009230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 01/13/2023] Open
Abstract
Hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL), caused by aspartyl-tRNA synthetase (DARS1) gene mutations, is extremely rare, with only a few cases reported worldwide; thus, reports on HBSL treatment are few. In this review, we summarized the clinical manifestations, imaging features, treatment methods, and gene mutations responsible for HBSL based on relevant studies and cases.
Collapse
Affiliation(s)
- Jingyi Zhu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Guo
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ningjing Ran
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingtao Liang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fuyou Liu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyan Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongyu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianyan Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdong Yang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Meijun Liu, ; Dongdong Yang,
| | - Meijun Liu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Meijun Liu, ; Dongdong Yang,
| |
Collapse
|
36
|
Zhang T, Bae HG, Bhambri A, Zhang Y, Barbosa D, Xue J, Wazir S, Mulinyawe SB, Kim JH, Sun LO. Autophagy collaborates with apoptosis pathways to control myelination specificity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522394. [PMID: 36712125 PMCID: PMC9881874 DOI: 10.1101/2022.12.31.522394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oligodendrocytes are the sole myelin producing cells in the central nervous system. Oligodendrocyte numbers are tightly controlled across diverse brain regions to match local axon type and number, but the underlying mechanisms and functional significance remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under canonical settings, elicits premyelinating oligodendrocyte apoptosis during development and regulates critical aspects of nerve pulse propagation. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy acts in the TFEB-Bax/Bak pathway and elevates PUMA mRNA levels to trigger premyelinating oligodendrocyte apoptosis cell-autonomously. Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath numbers and fine-tune nerve pulse propagation. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrocyte number. HIGHLIGHTS Autophagy flux increases in the premyelinating and myelinating oligodendrocytesAutophagy promotes premyelinating oligodendrocyte (pre-OL) apoptosis to control myelination location and timing Autophagy acts in the TFEB-PUMA-Bax/Bak pathway and elevates PUMA mRNA levels to determine pre-OL fate Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath thickness and finetune nerve pulse propagation.
Collapse
|
37
|
Sajadimajd S, Deravi N, Forouhar K, Rahimi R, Kheirandish A, Bahramsoltani R. Endoplasmic reticulum as a therapeutic target in type 2 diabetes: Role of phytochemicals. Int Immunopharmacol 2023; 114:109508. [PMID: 36495694 DOI: 10.1016/j.intimp.2022.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorders characterized by insulin resistance and β-cell dysfunction with an increasing worldwide incidence. Several studies have revealed that long-term glucotoxicity results in β-cell failure and death through induction of endoplasmic reticulum (ER) stress. Owing to the chronic progression of T2DM and the low effectiveness of antidiabetic drugs in long-term use, medicinal plants and their secondary metabolites seem to be the promising alternatives. Here we have provided a comprehensive review regarding the role of phytochemicals to alleviate ER stress in T2DM. Ginsenoside compound K, baicalein, quercetin, isopulegol, kaempferol, liquiritigenin, aspalathin, and tyrosol have demonstrated remarkable improvement of T2DM via modulation of ER stress. Arctigenin and total glycosides of peony have been shown to be effective in the treatment of diabetic retinopathy through modulation of ER stress. The effectiveness of grape seed proanthocyanidins and wolfberry is also shown in the relief of diabetic neuropathy and retinopathy. Resveratrol is involved in the prevention of atherosclerosis via ER stress modulation. Taken together, the data described herein revealed the capability of herbal constituents to prevent different complications of T2DM via a decrease in ER stress which open new doors to the treatment of diabetes.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Forouhar
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roja Rahimi
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Kheirandish
- Department of Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roodabeh Bahramsoltani
- Derpartment of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
38
|
Abstract
tRNAs are key adaptor molecules that decipher the genetic code during translation of mRNAs in protein synthesis. In contrast to the traditional view of tRNAs as ubiquitously expressed housekeeping molecules, awareness is now growing that tRNA-encoding genes display tissue-specific and cell type-specific patterns of expression, and that tRNA gene expression and function are both dynamically regulated by post-transcriptional RNA modifications. Moreover, dysregulation of tRNAs, mediated by alterations in either their abundance or function, can have deleterious consequences that contribute to several distinct human diseases, including neurological disorders and cancer. Accumulating evidence shows that reprogramming of mRNA translation through altered tRNA activity can drive pathological processes in a codon-dependent manner. This Review considers the emerging evidence in support of the precise control of functional tRNA levels as an important regulatory mechanism that coordinates mRNA translation and protein expression in physiological cell homeostasis, and highlights key examples of human diseases that are linked directly to tRNA dysregulation.
Collapse
Affiliation(s)
- Esteban A Orellana
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Elisabeth Siegal
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Harvard Initiative for RNA Medicine, Harvard University, Boston, MA, USA.
| |
Collapse
|
39
|
Doty M, Yun S, Wang Y, Hu M, Cassidy M, Hall B, Kulkarni AB. Integrative multiomic analyses of dorsal root ganglia in diabetic neuropathic pain using proteomics, phospho-proteomics, and metabolomics. Sci Rep 2022; 12:17012. [PMID: 36220867 PMCID: PMC9553906 DOI: 10.1038/s41598-022-21394-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is characterized by spontaneous pain in the extremities. Incidence of DPN continues to rise with the global diabetes epidemic. However, there remains a lack of safe, effective analgesics to control this chronic painful condition. Dorsal root ganglia (DRG) contain soma of sensory neurons and modulate sensory signal transduction into the central nervous system. In this study, we aimed to gain a deeper understanding of changes in molecular pathways in the DRG of DPN patients with chronic pain. We recently reported transcriptomic changes in the DRG with DPN. Here, we expand upon those results with integrated metabolomic, proteomic, and phospho-proteomic analyses to compare the molecular profiles of DRG from DPN donors and DRG from control donors without diabetes or chronic pain. Our analyses identified decreases of select amino acids and phospholipid metabolites in the DRG from DPN donors, which are important for cellular maintenance. Additionally, our analyses revealed changes suggestive of extracellular matrix (ECM) remodeling and altered mRNA processing. These results reveal new insights into changes in the molecular profiles associated with DPN.
Collapse
Affiliation(s)
- Megan Doty
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sijung Yun
- Predictiv Care, Inc, Mountain View, CA, 94040, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Minghan Hu
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Margaret Cassidy
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bradford Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
40
|
Ming S, Tian J, Ma K, Pei C, Li L, Wang Z, Fang Z, Liu M, Dong H, Li W, Zeng J, Peng Y, Gao X. Oxalate-induced apoptosis through ERS-ROS-NF-κB signalling pathway in renal tubular epithelial cell. Mol Med 2022; 28:88. [PMID: 35922749 PMCID: PMC9347104 DOI: 10.1186/s10020-022-00494-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
Background Kidney stones are composed of approximately 70–80% calcium oxalate. However, the exact mechanism of formation of calcium oxalate kidney stones remains unclear. In this study, we investigated the roles of endoplasmic reticulum stress (ERS), reactive oxygen species (ROS), and the NF-κB signalling pathway in the pathogenesis of oxalate-induced renal tubular epithelial cell injury and its possible molecular mechanisms. Methods We established a model to evaluate the formation of kidney stones by intraperitoneal injection of glyoxylic acid solution into mice and assessed cell morphology, apoptosis, and the expression levels of ERS, ROS, and NF-κB signalling pathway-related proteins in mouse renal tissues. Next, we treated HK-2 cells with potassium oxalate to construct a renal tubular epithelial cell injury model. We detected the changes in autophagy, apoptosis, and mitochondrial membrane potential and investigated the ultrastructure of the cells by transmission electron microscopy. Western blotting revealed the expression levels of apoptosis and autophagy proteins; mitochondrial structural and functional proteins; and ERS, ROS, and NF-κB (p65) proteins. Lastly, we studied the downregulation of NF-κB activity in HK-2 cells by lentivirus interference and confirmed the interaction between the NF-κB signalling and ERS/ROS pathways. Results We observed swelling of renal tissues, increased apoptosis of renal tubular epithelial cells, and activation of the ERS, ROS, and NF-κB signalling pathways in the oxalate group. We found that oxalate induced autophagy, apoptosis, and mitochondrial damage in HK-2 cells and activated the ERS/ROS/NF-κB pathways. Interestingly, when the NF-κB signalling pathway was inhibited, the ERS/ROS pathway was also inhibited. Conclusion Oxalate induces HK-2 cell injury through the interaction between the NF-κB signalling and ERS/ROS pathways.
Collapse
Affiliation(s)
- Shaoxiong Ming
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Jia Tian
- Department of Human Sperm Bank of Ningxia, General Hospital of Ningxia Medical University, Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Ke Ma
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Chengbin Pei
- Department of Human Sperm Bank of Ningxia, General Hospital of Ningxia Medical University, Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Ling Li
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Zeyu Wang
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Ziyu Fang
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Min Liu
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Hao Dong
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Weijian Li
- Department of Urology, Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), B24, Yinquan Road, XinchengDistrict, Qingyuan, 511518, Guangdong Province, China
| | - Jianwen Zeng
- Department of Urology, Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), B24, Yinquan Road, XinchengDistrict, Qingyuan, 511518, Guangdong Province, China
| | - Yonghan Peng
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China.
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
41
|
Curcumin protect Schwann cells from inflammation response and apoptosis induced by high glucose through the NF-κB pathway. Tissue Cell 2022; 77:101873. [PMID: 35868051 DOI: 10.1016/j.tice.2022.101873] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
Abstract
Demyelination disease as diabetes mellitus (DM) complication is characterized by apoptosis of Schwann cells (SCs) and several reports have demonstrated that high glucose content can induce an inflammation response and lead to the apoptosis of SCs. For NF-κB plays a pivotal role in the inflammatory response, hence we hypothesized that high glucose content can induce inflammation though the NF-κB pathway. First we verified that 150 mM high glucose can increase the expression of cleaved caspase 3, interleukin (IL)- 1β, Cyto-C and NF-κB with time through Western blot and increase the apoptosis of RSC96s through Flow Cytometry. Then we found that high glucose can increase the nuclear translocation NF-κB through confocal system which can promote the expression of inflammation genes such as IL-1β. Curcumin has been reported to possess anti-inflammation activities to protect cells. In this study, we found that application with 25 μM curcumin could alleviate the inflammation response and protect the cells from apoptosis. We revealed that the expression of NF-κB and p-NF-κB was decreased and the translocation was also inhibited after curcumin application. Accordingly, the secretion of IL-1β and the apoptosis of RSC96s induce by high glucose was suppressed. Our cumulative findings suggest that curcumin can protect SCs from apoptosis through the inhibition of the inflammatory response though the NF-κB pathway.
Collapse
|
42
|
Klugmann M, Kalotay E, Delerue F, Ittner LM, Bongers A, Yu J, Morris MJ, Housley GD, Fröhlich D. Developmental delay and late onset HBSL pathology in hypomorphic Dars1 M256L mice. Neurochem Res 2022; 47:1972-1984. [PMID: 35357600 PMCID: PMC9217827 DOI: 10.1007/s11064-022-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/05/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022]
Abstract
The leukodystrophy Hypomyelination with Brainstem and Spinal cord involvement and Leg spasticity (HBSL) is caused by recessive mutations of the DARS1 gene, which encodes the cytoplasmic aspartyl-tRNA synthetase. HBSL is a spectrum disorder with disease onset usually during early childhood and no available treatment options. Patients display regression of previously acquired motor milestones, spasticity, ataxia, seizures, nystagmus, and intellectual disabilities. Gene-function studies in mice revealed that homozygous Dars1 deletion is embryonically lethal, suggesting that successful modelling of HBSL requires the generation of disease-causing genocopies in mice. In this study, we introduced the pathogenic DARS1 M256L mutation located on exon nine of the murine Dars1 locus. Despite causing severe illness in humans, homozygous Dars1 M256L mice were only mildly affected. To exacerbate HBSL symptoms, we bred Dars1 M256L mice with Dars1-null 'enhancer' mice. The Dars1 M256L/- offspring displayed increased embryonic lethality, severe developmental delay, reduced body weight and size, hydrocephalus, anophthalmia, and vacuolization of the white matter. Remarkably, the Dars1 M256L/- genotype affected energy metabolism and peripheral organs more profoundly than the nervous system and resulted in reduced body fat, increased respiratory exchange ratio, reduced liver steatosis, and reduced hypocellularity of the bone marrow. In summary, homozygous Dars1 M256L and compound heterozygous Dars1 M256L/- mutation genotypes recapitulate some aspects of HBSL and primarily manifest in developmental delay as well as metabolic and peripheral changes. These aspects of the disease might have been overlooked in HBSL patients with severe neurological deficits but could be included in the differential diagnosis of HBSL in the future.
Collapse
Affiliation(s)
- Matthias Klugmann
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia.
| | - Elizabeth Kalotay
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Fabien Delerue
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2109, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, 2109, Sydney, NSW, Australia
| | - Andre Bongers
- Biomedical Resources Imaging Laboratory, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Josephine Yu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, 2052, Sydney, NSW, Australia.
| |
Collapse
|
43
|
Yao X, Wu Y, Xiao T, Zhao C, Gao F, Liu S, Tao Z, Jiang Y, Chen S, Ye J, Chen H, Long Q, Wang H, Zhou X, Shao Q, Qi L, Xia S. T-cell-specific Sel1L deletion exacerbates EAE by promoting Th1/Th17-cell differentiation. Mol Immunol 2022; 149:13-26. [PMID: 35696849 DOI: 10.1016/j.molimm.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are demyelinating neuroinflammatory diseases identified by the accumulation and aggregation of misfolded proteins in the brain. The Sel1L-Hrd1 complex comprising endoplasmic reticulum associated degradation (ERAD) is an ER-protein quality control system (ERQC) in the cell. Unfortunately, the contribution of ERAD to the development of these diseases has not been well explored. In this study, we used mice with a conditional deletion (KO) of Sel1L in T cells to dissect the role of ERAD on T cells and its contribution to the development of EAE. The results showed that Sel1L KO mice developed more severe EAE than the control wild type (WT) mice. Although, no obvious effects on peripheral T cells in steady state, more CD44-CD25+ double-negative stage 3 (DN3) cells were detected in the thymus. Moreover, Sel1L deficiency promoted the differentiation of Th1 and Th17 cells and upregulated the proliferation and apoptosis of CD4 T cells in vitro. Regarding the mechanism analyzed by RNA sequencing, 437 downregulated genes and 271 upregulated genes were detected in Sel1L deletion CD4 T cells, which covered the activation, proliferation, differentiation and apoptosis of these T cells. Thus, this study declared that the dysfunction of Sel1L in ERAD in T cells exacerbated the severity of EAE and indicated the important role of ERQC in maintaining immune homeostasis in the central nervous system.
Collapse
Affiliation(s)
- Xue Yao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Department of Nuclear Medicine, Linyi Center Hospital, Linyi, Shangdong 276400, China
| | - Yi Wu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Department of Clinic Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Tengfei Xiao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Department of Clinical Laboratory, Yancheng Third People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Chuanxiang Zhao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an 223002, China
| | - Fengwei Gao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuo Liu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; The Center for Translational Medicine, Taizhou People's Hospital, Jiangsu Province 225300, China
| | - Hua Chen
- Department of Colorectal Surgery, Affifiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, China
| | - Qiaoming Long
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Medical College of Soochow University, Suzhou, Jiangsu Province 215000, China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoming Zhou
- Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qixiang Shao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an 223002, China
| | - Ling Qi
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
44
|
Zhang J, Guan M, Zhou X, Berry K, He X, Lu QR. Long Noncoding RNAs in CNS Myelination and Disease. Neuroscientist 2022; 29:287-301. [PMID: 35373640 DOI: 10.1177/10738584221083919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myelination by oligodendrocytes is crucial for neuronal survival and function, and defects in myelination or failure in myelin repair can lead to axonal degeneration and various neurological diseases. At present, the factors that promote myelination and overcome the remyelination block in demyelinating diseases are poorly defined. Although the roles of protein-coding genes in oligodendrocyte differentiation have been extensively studied, the majority of the mammalian genome is transcribed into noncoding RNAs, and the functions of these molecules in myelination are poorly characterized. Long noncoding RNAs (lncRNAs) regulate transcription at multiple levels, providing spatiotemporal control and robustness for cell type-specific gene expression and physiological functions. lncRNAs have been shown to regulate neural cell-type specification, differentiation, and maintenance of cell identity, and dysregulation of lncRNA function has been shown to contribute to neurological diseases. In this review, we discuss recent advances in our understanding of the functions of lncRNAs in oligodendrocyte development and myelination as well their roles in neurological diseases and brain tumorigenesis. A more systematic characterization of lncRNA functional networks will be instrumental for a better understanding of CNS myelination, myelin disorders, and myelin repair.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Menglong Guan
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xianyao Zhou
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xuelian He
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
45
|
Omar N, Ismail CAN, Long I. Tannins in the Treatment of Diabetic Neuropathic Pain: Research Progress and Future Challenges. Front Pharmacol 2022; 12:805854. [PMID: 35082680 PMCID: PMC8784866 DOI: 10.3389/fphar.2021.805854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus and its consequences continue to put a significant demand on medical resources across the world. Diabetic neuropathic pain (DNP) is a frequent diabetes mellitus chronic microvascular outcome. Allodynia, hyperalgesia, and aberrant or lack of nerve fibre sensation are all symptoms of DNP. These clinical characteristics will lead to worse quality of life, sleep disruption, depression, and increased mortality. Although the availability of numerous medications that alleviate the symptoms of DNP, the lack of long-term efficacy and unfavourable side effects highlight the urgent need for novel treatment strategies. This review paper systematically analysed the preclinical research on the treatment of DNP using plant phytochemicals that contain only tannins. A total of 10 original articles involved in in-vivo and in-vitro experiments addressing the promising benefits of phytochemical tannins on DNP were examined between 2008 and 2021. The information given implies that these phytochemicals may have relevant pharmacological effects on DNP symptoms through their antihyperalgesic, anti-inflammatory, and antioxidant properties; however, because of the limited sample size and limitations of the studies conducted so far, we were unable to make definitive conclusions. Before tannins may be employed as therapeutic agents for DNP, more study is needed to establish the specific molecular mechanism for all of these activities along the pain pathway and examine the side effects of tannins in the treatment of DNP.
Collapse
Affiliation(s)
- Norsuhana Omar
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Idris Long
- Biomedical Science programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
46
|
Lei Z, Stone S, Lin W. Detection of PERK Signaling in the Central Nervous System. Methods Mol Biol 2022; 2378:233-245. [PMID: 34985704 DOI: 10.1007/978-1-0716-1732-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In response to endoplasmic reticulum (ER) stress, activation of pancreatic ER kinase (PERK) signaling adapts cells to stressful conditions by phosphorylating eukaryotic translation initiation factor 2α (eIF2α). Phosphorylation of eIF2α inhibits global protein translation but stimulates the expression of numerous stress-responsive genes by inducing the transcription factor ATF4. A large number of studies have shown that activation of PERK signaling has beneficial or detrimental effects in various diseases of the central nervous system (CNS), including neurodegenerative diseases, myelin disorders, CNS injuries, among others. This chapter is devoted to describing the practical methods for the detection of PERK signaling in CNS diseases.
Collapse
Affiliation(s)
- Zhixin Lei
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, WMBB4-140, Minneapolis, MN, USA
| | - Sarrabeth Stone
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, WMBB4-140, Minneapolis, MN, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, WMBB4-140, Minneapolis, MN, USA.
| |
Collapse
|
47
|
GANAB as a Novel Biomarker in Multiple Sclerosis: Correlation with Neuroinflammation and IFI35. Pharmaceuticals (Basel) 2021; 14:ph14111195. [PMID: 34832977 PMCID: PMC8625565 DOI: 10.3390/ph14111195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) still lacks reliable biomarkers of neuroinflammation predictive for disease activity and treatment response. Thus, in a prospective study we assessed 55 MS patients (28 interferon (IFN)-treated, 10 treated with no-IFN therapies, 17 untreated) and 20 matched healthy controls (HCs) for the putative correlation of the densitometric expression of glucosidase II alpha subunit (GANAB) with clinical/paraclinical parameters and with interferon-induced protein 35 (IFI35). We also assessed the disease progression in terms of the Rio Score (RS) in order to distinguish the responder patients to IFN therapy (RS = 0) from the non-responder ones (RS ≥ 1). We found GANAB to be 2.51-fold downregulated in the IFN-treated group with respect to the untreated one (p < 0.0001) and 3.39-fold downregulated in responder patients compared to the non-responders (p < 0.0001). GANAB correlated directly with RS (r = 0.8088, p < 0.0001) and lesion load (LL) (r = 0.5824, p = 0.0014) in the IFN-treated group and inversely with disease duration (DD) (r = −0.6081, p = 0.0096) in the untreated one. Lower mean values were expressed for GANAB than IFI35 in IFN responder (p < 0.0001) and higher mean values in the non-responder patients (p = 0.0022). Inverse correlations were also expressed with IFI35 in the overall patient population (r = −0.6468, p < 0.0001). In conclusion, the modular expression of GANAB reflects IFI35, RS, DD, and LL values, making it a biomarker of neuroinflammation that is predictive for disease activity and treatment response in MS.
Collapse
|
48
|
Park NY, Kwak G, Doo HM, Kim HJ, Jang SY, Lee YI, Choi BO, Hong YB. Farnesol Ameliorates Demyelinating Phenotype in a Cellular and Animal Model of Charcot-Marie-Tooth Disease Type 1A. Curr Issues Mol Biol 2021; 43:2011-2021. [PMID: 34889893 PMCID: PMC8928981 DOI: 10.3390/cimb43030138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disease affecting the peripheral nervous system that is caused by either the demyelination of Schwann cells or degeneration of the peripheral axon. Currently, there are no treatment options to improve the degeneration of peripheral nerves in CMT patients. In this research, we assessed the potency of farnesol for improving the demyelinating phenotype using an animal model of CMT type 1A. In vitro treatment with farnesol facilitated myelin gene expression and ameliorated the myelination defect caused by PMP22 overexpression, the major causative gene in CMT. In vivo administration of farnesol enhanced the peripheral neuropathic phenotype, as shown by rotarod performance in a mouse model of CMT1A. Electrophysiologically, farnesol-administered CMT1A mice exhibited increased motor nerve conduction velocity and compound muscle action potential compared with control mice. The number and diameter of myelinated axons were also increased by farnesol treatment. The expression level of myelin protein zero (MPZ) was increased, while that of the demyelination marker, neural cell adhesion molecule (NCAM), was reduced by farnesol administration. These data imply that farnesol is efficacious in ameliorating the demyelinating phenotype of CMT, and further elucidation of the underlying mechanisms of farnesol’s effect on myelination might provide a potent therapeutic strategy for the demyelinating type of CMT.
Collapse
Affiliation(s)
- Na-Young Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea;
| | - Geon Kwak
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
| | - Hyun-Myung Doo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
| | - Hye-Jin Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
| | - So-Young Jang
- Departments of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea;
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea; (G.K.); (H.-M.D.); (H.-J.K.)
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (B.-O.C.); (Y.-B.H.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-51-240-2762 (Y.-B.H.); Fax: +82-3410-0052 (B.-O.C.); +82-51-240-2971 (Y.-B.H.)
| | - Young-Bin Hong
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea;
- Departments of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea;
- Correspondence: (B.-O.C.); (Y.-B.H.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-51-240-2762 (Y.-B.H.); Fax: +82-3410-0052 (B.-O.C.); +82-51-240-2971 (Y.-B.H.)
| |
Collapse
|
49
|
Gouna G, Klose C, Bosch-Queralt M, Liu L, Gokce O, Schifferer M, Cantuti-Castelvetri L, Simons M. TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. J Exp Med 2021; 218:e20210227. [PMID: 34424266 PMCID: PMC8404472 DOI: 10.1084/jem.20210227] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
Upon demyelinating injury, microglia orchestrate a regenerative response that promotes myelin repair, thereby restoring rapid signal propagation and protecting axons from further damage. Whereas the essential phagocytic function of microglia for remyelination is well known, the underlying metabolic pathways required for myelin debris clearance are poorly understood. Here, we show that cholesterol esterification in male mouse microglia/macrophages is a necessary adaptive response to myelin debris uptake and required for the generation of lipid droplets upon demyelinating injury. When lipid droplet biogenesis is defective, innate immune cells do not resolve, and the regenerative response fails. We found that triggering receptor expressed on myeloid cells 2 (TREM2)-deficient mice are unable to adapt to excess cholesterol exposure, form fewer lipid droplets, and build up endoplasmic reticulum (ER) stress. Alleviating ER stress in TREM2-deficient mice restores lipid droplet biogenesis and resolves the innate immune response. Thus, we conclude that TREM2-dependent formation of lipid droplets constitute a protective response required for remyelination to occur.
Collapse
Affiliation(s)
- Garyfallia Gouna
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | | | - Mar Bosch-Queralt
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Lu Liu
- Institute for Stroke and Dementia Research, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Ludovico Cantuti-Castelvetri
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
50
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|