1
|
Chen Y, Jiang C, Yan B, Zhang J. Engrailed1 in Parvalbumin-Positive Neurons Regulates Eye-Specific Retinogeniculate Segregation and Visual Function. J Neurosci Res 2024; 102:e70007. [PMID: 39704330 DOI: 10.1002/jnr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/31/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Homeobox transcription factor Engrailed1 (En1) is expressed in the ectoderm and mediates the establishment of retinotectal topography, but its role in eye-specific retinogeniculate segregation and visual function remains unclear. Parvalbumin (PV) neurons, which are widely distributed in the visual pathway, play a crucial role in visual development and function. In this study, we conditionally knocked out En1 gene in PV neurons and found an expansion of the ipsilateral eye projection, while no significant effects were observed in the contralateral eye projection. Additionally, we observed a decrease in the number of PV neurons in PV-Cre:En1fl/fl mice, accompanied by an increased level of cleaved caspase-3 in PV neurons. Furthermore, the genetic ablation of PV neurons in the retina through intraocular AAV-DIO-Caspase3 injection in PV-Cre mice was sufficient to disrupt retinogeniculate segregation. Finally, we observed that PV-Cre:En1fl/fl mice exhibited enhanced visual depth perception in the visual cliff test. These results demonstrate that En1 in PV neurons participates in eye-specific retinogeniculate segregation through cell survival and regulates binocular vision.
Collapse
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Sokpor G, Kerimoglu C, Ulmke PA, Pham L, Nguyen HD, Brand-Saberi B, Staiger JF, Fischer A, Nguyen HP, Tuoc T. H3 Acetylation-Induced Basal Progenitor Generation and Neocortex Expansion Depends on the Transcription Factor Pax6. BIOLOGY 2024; 13:68. [PMID: 38392287 PMCID: PMC10886678 DOI: 10.3390/biology13020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Enrichment of basal progenitors (BPs) in the developing neocortex is a central driver of cortical enlargement. The transcription factor Pax6 is known as an essential regulator in generation of BPs. H3 lysine 9 acetylation (H3K9ac) has emerged as a crucial epigenetic mechanism that activates the gene expression program required for BP pool amplification. In this current work, we applied immunohistochemistry, RNA sequencing, chromatin immunoprecipitation and sequencing, and the yeast two-hybrid assay to reveal that the BP-genic effect of H3 acetylation is dependent on Pax6 functionality in the developing mouse cortex. In the presence of Pax6, increased H3 acetylation caused BP pool expansion, leading to enhanced neurogenesis, which evoked expansion and quasi-convolution of the mouse neocortex. Interestingly, H3 acetylation activation exacerbates the BP depletion and corticogenesis reduction effect of Pax6 ablation in cortex-specific Pax6 mutants. Furthermore, we found that H3K9 acetyltransferase KAT2A/GCN5 interacts with Pax6 and potentiates Pax6-dependent transcriptional activity. This explains a genome-wide lack of H3K9ac, especially in the promoter regions of BP-genic genes, in the Pax6 mutant cortex. Together, these findings reveal a mechanistic coupling of H3 acetylation and Pax6 in orchestrating BP production and cortical expansion through the promotion of a BP gene expression program during cortical development.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
- Lincoln Medical School, University of Lincoln, Lincoln LN6 7TS, UK
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
| | | | - Linh Pham
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Hoang Duy Nguyen
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| |
Collapse
|
3
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
4
|
Li Y, Li Z, Wang C, Yang M, He Z, Wang F, Zhang Y, Li R, Gong Y, Wang B, Fan B, Wang C, Chen L, Li H, Shi P, Wang N, Wei Z, Wang YL, Jin L, Du P, Dong J, Jiao J. Spatiotemporal transcriptome atlas reveals the regional specification of the developing human brain. Cell 2023; 186:5892-5909.e22. [PMID: 38091994 DOI: 10.1016/j.cell.2023.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.
Collapse
Affiliation(s)
- Yanxin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongqiu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Changliang Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510799, China
| | - Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ziqing He
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510799, China; Faculty of Health Sciences University of Macau, Macau 999078, China
| | - Feiyang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuehong Zhang
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China; National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yunxia Gong
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Binhong Wang
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Baoguang Fan
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Chunyue Wang
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Lei Chen
- Six Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Hong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifu Shi
- Annoroad Gene Technology, Beijing 100176, China
| | - Nana Wang
- Annoroad Gene Technology, Beijing 100176, China
| | - Zhifeng Wei
- Annoroad Gene Technology, Beijing 100176, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Peking University, National Health Commission Key Laboratory, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Ji Dong
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510799, China.
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Nguyen H, Sokpor G, Parichha A, Pham L, Saikhedkar N, Xie Y, Ulmke PA, Rosenbusch J, Pirouz M, Behr R, Stoykova A, Brand-Saberi B, Nguyen HP, Staiger JF, Tole S, Tuoc T. BAF (mSWI/SNF) complex regulates mediolateral cortical patterning in the developing forebrain. Front Cell Dev Biol 2022; 10:1011109. [PMID: 36263009 PMCID: PMC9573979 DOI: 10.3389/fcell.2022.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Early forebrain patterning entails the correct regional designation of the neuroepithelium, and appropriate specification, generation, and distribution of neural cells during brain development. Specific signaling and transcription factors are known to tightly regulate patterning of the dorsal telencephalon to afford proper structural/functional cortical arealization and morphogenesis. Nevertheless, whether and how changes of the chromatin structure link to the transcriptional program(s) that control cortical patterning remains elusive. Here, we report that the BAF chromatin remodeling complex regulates the spatiotemporal patterning of the mouse dorsal telencephalon. To determine whether and how the BAF complex regulates cortical patterning, we conditionally deleted the BAF complex scaffolding subunits BAF155 and BAF170 in the mouse dorsal telencephalic neuroepithelium. Morphological and cellular changes in the BAF mutant forebrain were examined using immunohistochemistry and in situ hybridization. RNA sequencing, Co-immunoprecipitation, and mass spectrometry were used to investigate the molecular basis of BAF complex involvement in forebrain patterning. We found that conditional ablation of BAF complex in the dorsal telencephalon neuroepithelium caused expansion of the cortical hem and medial cortex beyond their developmental boundaries. Consequently, the hippocampal primordium is not specified, the mediolateral cortical patterning is compromised, and the cortical identity is disturbed in the absence of BAF complex. The BAF complex was found to interact with the cortical hem suppressor LHX2. The BAF complex suppresses cortical hem fate to permit proper forebrain patterning. We provide evidence that BAF complex modulates mediolateral cortical patterning possibly by interacting with the transcription factor LHX2 to drive the LHX2-dependent transcriptional program essential for dorsal telencephalon patterning. Our data suggest a putative mechanistic synergy between BAF chromatin remodeling complex and LHX2 in regulating forebrain patterning and ontogeny.
Collapse
Affiliation(s)
- Huong Nguyen
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | | | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | | | - Yuanbin Xie
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Pauline Antonie Ulmke
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Mehdi Pirouz
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, United States
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jochen F. Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Shubha Tole
- Tata Institute of Fundamental Research, Mumbai, India
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| |
Collapse
|
6
|
Xing J, Chen W, Chen K, Zhu S, Lin F, Qi Y, Zhang Y, Han S, Rao T, Ruan Y, Zhao S, Yu W, Cheng F. TFAP2C Knockdown Sensitizes Bladder Cancer Cells to Cisplatin Treatment via Regulation of EGFR and NF-κB. Cancers (Basel) 2022; 14:cancers14194809. [PMID: 36230734 PMCID: PMC9562889 DOI: 10.3390/cancers14194809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Bladder cancer (BCa) is considered one of the most common neoplasms of the urology system. Cisplatin-based chemotherapy has been the primary treatment for patients with advanced or metastatic BCa. Nevertheless, cisplatin resistance often limits the treatment of bladder cancer. We expect to find approaches to improve the therapeutic efficacy of cisplatin in bladder cancer. In recent years, many studies have shown that transcription factor AP-2 gamma (TFAP2C) acts as a key player in cancer development and and its expression level is closely related to the sensitivity of tumors to cisplatin. Our study investigated whether TFAP2C affects the sensitivity of BCa cells to cisplatin and the possible mechanisms. We found that TFAP2C expression was significantly upregulated in most BCa tissues compared to adjacent normal tissues. The present study confirmed that TFAP2C knockdown enhanced the anti-tumor effects of cisplatin by decreasing cisplatin-induced activation levels of epidermal growth factor receptor (EGFR) and nuclear factor kappaB (NF-κB). Specifically, this study provides a novel approach to improve the efficacy of cisplatin. Abstract Cisplatin is the first-line chemotherapy for advanced or metastatic bladder cancer. Nevertheless, approximately half of patients with BCa are insensitive to cisplatin therapy or develop cisplatin resistance during the treatment process. Therefore, it is especially crucial to investigate ways to enhance the sensitivity of tumor cells to cisplatin. Transcription factor AP-2 gamma (TFAP2C) is involved in cancer development and chemotherapy sensitivity. However, its relationship with chemotherapy has not been studied in BCa. In this study, we aimed to investigate the therapeutic potential of TFAP2C in human BCa. Results based on TCGA (The Cancer Genome Atlas), GTEx (The Genotype-Tissue Expression) and GEO (Gene Expression Omnibus) data showed that TFAP2C expression was upregulated in BCa tissues and that its high expression was associated with poor prognosis. Meanwhile, we demonstrated the overexpression of TFAP2C in BCa clinical specimens. Subsequently, in vitro, we knocked down TFAP2C in BCa cells and found that TFAP2C knockdown further increased cell cycle arrest and apoptosis caused by cisplatin. In addition, the inhibitory effect of cisplatin on BCa cell migration and invasion was enhanced by TFAP2C knockdown. Our data indicated that cisplatin increased epidermal growth factor receptor (EGFR) and nuclear factor-kappaB (NF-κB) activation levels, but TFAP2C knockdown suppressed this effect. Finally, in vivo data further validated these findings. Our study showed that TFAP2C knockdown affected the activation levels of EGFR and NF-κB and enhanced the anti-tumor effects of cisplatin in vivo and in vitro. This provides a new direction to improve the efficacy of traditional cisplatin chemotherapy.
Collapse
Affiliation(s)
- Ji Xing
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kang Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shaoming Zhu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yucheng Qi
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunlong Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shangting Han
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence: (W.Y.); (F.C.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence: (W.Y.); (F.C.)
| |
Collapse
|
7
|
Manuel M, Tan KB, Kozic Z, Molinek M, Marcos TS, Razak MFA, Dobolyi D, Dobie R, Henderson BEP, Henderson NC, Chan WK, Daw MI, Mason JO, Price DJ. Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. PLoS Biol 2022; 20:e3001563. [PMID: 36067211 PMCID: PMC9481180 DOI: 10.1371/journal.pbio.3001563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/16/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
The development of stable specialized cell types in multicellular organisms relies on mechanisms controlling inductive intercellular signals and the competence of cells to respond to such signals. In developing cerebral cortex, progenitors generate only glutamatergic excitatory neurons despite being exposed to signals with the potential to initiate the production of other neuronal types, suggesting that their competence is limited. Here, we tested the hypothesis that this limitation is due to their expression of transcription factor Pax6. We used bulk and single-cell RNAseq to show that conditional cortex-specific Pax6 deletion from the onset of cortical neurogenesis allowed some progenitors to generate abnormal lineages resembling those normally found outside the cortex. Analysis of selected gene expression showed that the changes occurred in specific spatiotemporal patterns. We then compared the responses of control and Pax6-deleted cortical cells to in vivo and in vitro manipulations of extracellular signals. We found that Pax6 loss increased cortical progenitors' competence to generate inappropriate lineages in response to extracellular factors normally present in developing cortex, including the morphogens Shh and Bmp4. Regional variation in the levels of these factors could explain spatiotemporal patterns of fate change following Pax6 deletion in vivo. We propose that Pax6's main role in developing cortical cells is to minimize the risk of their development being derailed by the potential side effects of morphogens engaged contemporaneously in other essential functions.
Collapse
Affiliation(s)
- Martine Manuel
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Boon Tan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Zrinko Kozic
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Molinek
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Tiago Sena Marcos
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Maizatul Fazilah Abd Razak
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Dániel Dobolyi
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Beth E. P. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Wai Kit Chan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael I. Daw
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang, People’s Republic of China
| | - John O. Mason
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Price
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Loureiro-Campos E, Mateus-Pinheiro A, Patrício P, Soares-Cunha C, Silva J, Sardinha VM, Mendes-Pinheiro B, Silveira-Rosa T, Domingues AV, Rodrigues AJ, Oliveira J, Sousa N, Alves ND, Pinto L. Constitutive deficiency of the neurogenic hippocampal modulator AP2γ promotes anxiety-like behavior and cumulative memory deficits in mice from juvenile to adult periods. eLife 2021; 10:70685. [PMID: 34859784 PMCID: PMC8709574 DOI: 10.7554/elife.70685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The transcription factor activating protein two gamma (AP2γ) is an important regulator of neurogenesis both during embryonic development as well as in the postnatal brain, but its role for neurophysiology and behavior at distinct postnatal periods is still unclear. In this work, we explored the neurogenic, behavioral, and functional impact of a constitutive and heterozygous AP2γ deletion in mice from early postnatal development until adulthood. AP2γ deficiency promotes downregulation of hippocampal glutamatergic neurogenesis, altering the ontogeny of emotional and memory behaviors associated with hippocampus formation. The impairments induced by AP2γ constitutive deletion since early development leads to an anxious-like phenotype and memory impairments as early as the juvenile phase. These behavioral impairments either persist from the juvenile phase to adulthood or emerge in adult mice with deficits in behavioral flexibility and object location recognition. Collectively, we observed a progressive and cumulative impact of constitutive AP2γ deficiency on the hippocampal glutamatergic neurogenic process, as well as alterations on limbic-cortical connectivity, together with functional behavioral impairments. The results herein presented demonstrate the modulatory role exerted by the AP2γ transcription factor and the relevance of hippocampal neurogenesis in the development of emotional states and memory processes.
Collapse
Affiliation(s)
- Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Tiago Silveira-Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - João Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal.,IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
9
|
Moreau MX, Saillour Y, Cwetsch AW, Pierani A, Causeret F. Single-cell transcriptomics of the early developing mouse cerebral cortex disentangle the spatial and temporal components of neuronal fate acquisition. Development 2021; 148:269283. [PMID: 34170322 DOI: 10.1242/dev.197962] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
In the developing cerebral cortex, how progenitors that seemingly display limited diversity end up producing a vast array of neurons remains a puzzling question. The prevailing model suggests that temporal maturation of progenitors is a key driver in the diversification of the neuronal output. However, temporal constraints are unlikely to account for all diversity, especially in the ventral and lateral pallium where neuronal types significantly differ from their dorsal neocortical counterparts born at the same time. In this study, we implemented single-cell RNAseq to sample the diversity of progenitors and neurons along the dorso-ventral axis of the early developing pallium. We first identified neuronal types, mapped them on the tissue and determined their origin through genetic tracing. We characterised progenitor diversity and disentangled the gene modules underlying temporal versus spatial regulations of neuronal specification. Finally, we reconstructed the developmental trajectories followed by ventral and dorsal pallial neurons to identify lineage-specific gene waves. Our data suggest a model by which discrete neuronal fate acquisition from a continuous gradient of progenitors results from the superimposition of spatial information and temporal maturation.
Collapse
Affiliation(s)
- Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Yoann Saillour
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Andrzej W Cwetsch
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Alessandra Pierani
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| |
Collapse
|
10
|
Su C, Argenziano M, Lu S, Pippin JA, Pahl MC, Leonard ME, Cousminer DL, Johnson ME, Lasconi C, Wells AD, Chesi A, Grant SFA. 3D promoter architecture re-organization during iPSC-derived neuronal cell differentiation implicates target genes for neurodevelopmental disorders. Prog Neurobiol 2021; 201:102000. [PMID: 33545232 PMCID: PMC8096691 DOI: 10.1016/j.pneurobio.2021.102000] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/07/2020] [Accepted: 01/23/2021] [Indexed: 12/27/2022]
Abstract
Neurodevelopmental disorders are thought to arise from interrupted development of the brain at an early age. Genome-wide association studies (GWAS) have identified hundreds of loci associated with susceptibility to neurodevelopmental disorders; however, which noncoding variants regulate which genes at these loci is often unclear. To implicate neuronal GWAS effector genes, we performed an integrated analysis of transcriptomics, epigenomics and chromatin conformation changes during the development from Induced pluripotent stem cell-derived neuronal progenitor cells (NPCs) into neurons using a combination of high-resolution promoter-focused Capture-C, ATAC-seq and RNA-seq. We observed that gene expression changes during the NPC-to-neuron transition were highly dependent on both promoter accessibility changes and long-range interactions which connect distal cis-regulatory elements (enhancer or silencers) to developmental-stage-specific genes. These genome-scale promoter-cis-regulatory-element atlases implicated 454 neurodevelopmental disorder-associated, putative causal variants mapping to 600 distal targets. These putative effector genes were significantly enriched for pathways involved in the regulation of neuronal development and chromatin organization, with 27 % expressed in a stage-specific manner. The intersection of open chromatin and chromatin conformation revealed development-stage-specific gene regulatory architectures during neuronal differentiation, providing a rich resource to aid characterization of the genetic and developmental basis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chun Su
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Mariana Argenziano
- Heart Institute, University of South Florida, 560 Channelside Dr, Tampa FL 33602, United States
| | - Sumei Lu
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - James A Pippin
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Matthew C Pahl
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Michelle E Leonard
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Diana L Cousminer
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Chiara Lasconi
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Andrew D Wells
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Alessandra Chesi
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States
| | - Struan F A Grant
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States; Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, United States; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, United States; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, United States.
| |
Collapse
|
11
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
12
|
Tonazzini I, Cerri C, Del Grosso A, Antonini S, Allegra M, Caleo M, Cecchini M. Visual System Impairment in a Mouse Model of Krabbe Disease: The Twitcher Mouse. Biomolecules 2020; 11:biom11010007. [PMID: 33374753 PMCID: PMC7824544 DOI: 10.3390/biom11010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
Krabbe disease (KD, or globoid cell leukodystrophy; OMIM #245200) is an inherited neurodegenerative condition belonging to the class of the lysosomal storage disorders. It is caused by genetic alterations in the gene encoding for the enzyme galactosylceramidase, which is responsible for cleaving the glycosydic linkage of galatosylsphingosine (psychosine or PSY), a highly cytotoxic molecule. Here, we describe morphological and functional alterations in the visual system of the Twitcher (TWI) mouse, the most used animal model of Krabbe disease. We report in vivo electrophysiological recordings showing defective basic functional properties of the TWI primary visual cortex. In particular, we demonstrate a reduced visual acuity and contrast sensitivity, and a delayed visual response. Specific neuropathological alterations are present in the TWI visual cortex, with reduced myelination, increased astrogliosis and microglia activation, and around the whole brain. Finally, we quantify PSY content in the brain and optic nerves by high-pressure liquid chromatography-mass spectrometry methods. An increasing PSY accumulation with time, the characteristic hallmark of KD, is found in both districts. These results represent the first complete characterization of the TWI visual system. Our data set a baseline for an easy testing of potential therapies for this district, which is also dramatically affected in KD patients.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (I.T.); (A.D.G.); (S.A.)
| | - Chiara Cerri
- Istituto Neuroscienze-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy; (C.C.); (M.A.); (M.C.)
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (I.T.); (A.D.G.); (S.A.)
| | - Sara Antonini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (I.T.); (A.D.G.); (S.A.)
| | - Manuela Allegra
- Istituto Neuroscienze-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy; (C.C.); (M.A.); (M.C.)
- Department of Neuroscience, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France
| | - Matteo Caleo
- Istituto Neuroscienze-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy; (C.C.); (M.A.); (M.C.)
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (I.T.); (A.D.G.); (S.A.)
- Correspondence:
| |
Collapse
|
13
|
Xia X, Ding M, Xuan JF, Xing JX, Yao J, Wu X, Wang BJ. Functional polymorphisms and transcriptional analysis in the 5' region of the human serotonin receptor 1B gene (HTR1B) and their associations with psychiatric disorders. BMC Psychiatry 2020; 20:499. [PMID: 33036580 PMCID: PMC7545834 DOI: 10.1186/s12888-020-02906-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The 5-hydroxytryptamine 1B receptor (5-HT1B) plays an essential role in the serotonin (5-HT) system and is widely involved in a variety of brain activities. HTR1B is the gene encoding 5-HT1B. Genome-wide association studies have shown that HTR1B polymorphisms are closely related to multiple mental and behavioral disorders; however, the functional mechanisms underlying these associations are unknown. This study investigated the effect of several HTR1B haplotypes on regulation of gene expression in vitro and the functional sequences in the 5' regulatory region of HTR1B to determine their potential association with mental and behavioral disorders. METHODS Six haplotypes consisting of rs4140535, rs1778258, rs17273700, rs1228814, rs11568817, and rs130058 and several truncated fragments of the 5' regulatory region of HTR1B were transfected into SK-N-SH and HEK-293 cells. The relative fluorescence intensities of the different haplotypes and truncated fragments were detected using a dual-luciferase reporter assay system. RESULTS Compared to the major haplotype T-G-T-C-T-A, the relative fluorescence intensities of haplotypes C-A-T-C-T-A, C-G-T-C-T-A, C-G-C-A-G-T, and C-G-T-A-T-A were significantly lower, and that of haplotype C-G-C-A-G-A was significantly higher. Furthermore, the effects of the rs4140535T allele, the rs17273700C-rs11568817G linkage combination, and the rs1228814A allele made their relative fluorescence intensities significantly higher than their counterparts at each locus. Conversely, the rs1778258A and rs130058T alleles decreased the relative fluorescence intensities. In addition, we found that regions from - 1587 to - 1371 bp (TSS, + 1), - 1149 to - 894 bp, - 39 to + 130 bp, + 130 to + 341 bp, and + 341 to + 505 bp upregulated gene expression. In contrast, regions - 603 to - 316 bp and + 130 to + 341 bp downregulated gene expression. Region + 341 to + 505 bp played a decisive role in gene transcription. CONCLUSIONS HTR1B 5' regulatory region polymorphisms have regulatory effects on gene expression and potential correlate with several pathology and physiology conditions. This study suggests that a crucial sequence for transcription is located in region + 341 ~ + 505 bp. Regions - 1587 to - 1371 bp, - 1149 to - 894 bp, - 603 to - 316 bp, - 39 to + 130 bp, and + 130 to + 341 bp contain functional sequences that can promote or suppress the HTR1B gene expression.
Collapse
Affiliation(s)
- Xi Xia
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Mei Ding
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Jin-feng Xuan
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Jia-xin Xing
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Jun Yao
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Xue Wu
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| | - Bao-jie Wang
- grid.412449.e0000 0000 9678 1884School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| |
Collapse
|
14
|
Vascular contributions to 16p11.2 deletion autism syndrome modeled in mice. Nat Neurosci 2020; 23:1090-1101. [PMID: 32661394 DOI: 10.1038/s41593-020-0663-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
While the neuronal underpinnings of autism spectrum disorder (ASD) are being unraveled, vascular contributions to ASD remain elusive. Here, we investigated postnatal cerebrovascular development in the 16p11.2df/+ mouse model of 16p11.2 deletion ASD syndrome. We discover that 16p11.2 hemizygosity leads to male-specific, endothelium-dependent structural and functional neurovascular abnormalities. In 16p11.2df/+ mice, endothelial dysfunction results in impaired cerebral angiogenesis at postnatal day 14, and in altered neurovascular coupling and cerebrovascular reactivity at postnatal day 50. Moreover, we show that there is defective angiogenesis in primary 16p11.2df/+ mouse brain endothelial cells and in induced-pluripotent-stem-cell-derived endothelial cells from human carriers of the 16p11.2 deletion. Finally, we find that mice with an endothelium-specific 16p11.2 deletion (16p11.2ΔEC) partially recapitulate some of the behavioral changes seen in 16p11.2 syndrome, specifically hyperactivity and impaired motor learning. By showing that developmental 16p11.2 haploinsufficiency from endothelial cells results in neurovascular and behavioral changes in adults, our results point to a potential role for endothelial impairment in ASD.
Collapse
|
15
|
Vaid S, Huttner WB. Transcriptional Regulators and Human-Specific/Primate-Specific Genes in Neocortical Neurogenesis. Int J Mol Sci 2020; 21:ijms21134614. [PMID: 32610533 PMCID: PMC7369782 DOI: 10.3390/ijms21134614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
During development, starting from a pool of pluripotent stem cells, tissue-specific genetic programs help to shape and develop functional organs. To understand the development of an organ and its disorders, it is important to understand the spatio-temporal dynamics of the gene expression profiles that occur during its development. Modifications in existing genes, the de-novo appearance of new genes, or, occasionally, even the loss of genes, can greatly affect the gene expression profile of any given tissue and contribute to the evolution of organs or of parts of organs. The neocortex is evolutionarily the most recent part of the brain, it is unique to mammals, and is the seat of our higher cognitive abilities. Progenitors that give rise to this tissue undergo sequential waves of differentiation to produce the complete sets of neurons and glial cells that make up a functional neocortex. We will review herein our understanding of the transcriptional regulators that control the neural precursor cells (NPCs) during the generation of the most abundant class of neocortical neurons, the glutametergic neurons. In addition, we will discuss the roles of recently-identified human- and primate-specific genes in promoting neurogenesis, leading to neocortical expansion.
Collapse
|
16
|
TFAP2C facilitates somatic cell reprogramming by inhibiting c-Myc-dependent apoptosis and promoting mesenchymal-to-epithelial transition. Cell Death Dis 2020; 11:482. [PMID: 32587258 PMCID: PMC7316975 DOI: 10.1038/s41419-020-2684-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 02/05/2023]
Abstract
Transcription factors are known to mediate the conversion of somatic cells to induced pluripotent stem cells (iPSCs). Transcription factor TFAP2C plays important roles in the regulation of embryonic development and carcinogenesis; however, the roles of Tfap2c in regulating somatic cell reprogramming are not well understood. Here we demonstrate Tfap2c is induced during the generation of iPSCs from mouse fibroblasts and acts as a facilitator for iPSCs formation. Mechanistically, the c-Myc-dependent apoptosis, which is a roadblock to reprogramming, can be significantly mitigated by Tfap2c overexpression. Meanwhile, Tfap2c can greatly promote mesenchymal-to-epithelial transition (MET) at initiation stage of OSKM-induced reprogramming. Further analysis of gene expression and targets of Tfap2c during reprogramming by RNA-sequencing (RNA-seq) and ChIP-qPCR indicates that TFAP2C can promote epithelial gene expression by binding to their promoters directly. Finally, knockdown of E-cadherin (Cdh1), an important downstream target of TFAP2C and a critical regulator of MET antagonizes Tfap2c-mediated reprogramming. Taken together, we conclude that Tfap2c serves as a strong activator for somatic cell reprogramming through promoting the MET and inhibiting c-Myc-dependent apoptosis.
Collapse
|
17
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Muley VY, López-Victorio CJ, Ayala-Sumuano JT, González-Gallardo A, González-Santos L, Lozano-Flores C, Wray G, Hernández-Rosales M, Varela-Echavarría A. Conserved and divergent expression dynamics during early patterning of the telencephalon in mouse and chick embryos. Prog Neurobiol 2019; 186:101735. [PMID: 31846713 DOI: 10.1016/j.pneurobio.2019.101735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
The mammalian and the avian telencephalon are nearly indistinguishable at early embryonic vesicle stages but differ substantially in form and function at their adult stage. We sequenced and analyzed RNA populations present in mouse and chick during the early stages of embryonic telencephalon to understand conserved and lineage-specific developmental differences. We found approximately 3000 genes that orchestrate telencephalon development. Many chromatin-associated epigenetic and transcription regulators show high expression in both species and some show species-specific expression dynamics. Interestingly, previous studies associated them to autism, intellectual disabilities, and mental retardation supporting a causal link between their impaired functions during telencephalon development and brain dysfunction. Strikingly, the conserved up-regulated genes were differentially enriched in ontologies related to development or functions of the adult brain. Moreover, a differential enrichment of distinct repertoires of transcription factor binding motifs in their upstream promoter regions suggest a species-specific regulation of the various gene groups identified. Overall, our results reveal that the ontogenetic divergences between the mouse and chick telencephalon result from subtle differences in the regulation of common patterning signaling cascades and regulatory networks unique to each species at their very early stages of development.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlos Lozano-Flores
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Gregory Wray
- Department of Biology, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
19
|
Camargo Ortega G, Falk S, Johansson PA, Peyre E, Broix L, Sahu SK, Hirst W, Schlichthaerle T, De Juan Romero C, Draganova K, Vinopal S, Chinnappa K, Gavranovic A, Karakaya T, Steininger T, Merl-Pham J, Feederle R, Shao W, Shi SH, Hauck SM, Jungmann R, Bradke F, Borrell V, Geerlof A, Reber S, Tiwari VK, Huttner WB, Wilsch-Bräuninger M, Nguyen L, Götz M. The centrosome protein AKNA regulates neurogenesis via microtubule organization. Nature 2019; 567:113-117. [PMID: 30787442 DOI: 10.1038/s41586-019-0962-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.
Collapse
Affiliation(s)
- Germán Camargo Ortega
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, Germany.,Graduate School of Systemic Neurosciences, Biocenter, Ludwig-Maximilians University, Munich, Germany
| | - Sven Falk
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, Germany
| | - Pia A Johansson
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, Germany.,Laboratory of Molecular Neurogenetics, Lund University, Lund, Sweden
| | - Elise Peyre
- GIGA-Stem Cells, Molecular regulation of neurogenesis, University of Liège, Liège, Belgium
| | - Loïc Broix
- GIGA-Stem Cells, Molecular regulation of neurogenesis, University of Liège, Liège, Belgium
| | | | - William Hirst
- IRI for the Life Sciences, Humboldt University, Berlin, Germany.,Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Thomas Schlichthaerle
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Physics and Center for Nanoscience, Ludwig Maximilians University, Munich, Germany
| | - Camino De Juan Romero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Kalina Draganova
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, Germany
| | - Stanislav Vinopal
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Kaviya Chinnappa
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Anna Gavranovic
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Tugay Karakaya
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Thomas Steininger
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University, Munich, Germany
| | - Wei Shao
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,BCMB Allied Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,BCMB Allied Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Physics and Center for Nanoscience, Ludwig Maximilians University, Munich, Germany
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Victor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Arie Geerlof
- Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Simone Reber
- IRI for the Life Sciences, Humboldt University, Berlin, Germany.,University of Applied Sciences, Berlin, Germany
| | | | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Laurent Nguyen
- GIGA-Stem Cells, Molecular regulation of neurogenesis, University of Liège, Liège, Belgium
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. .,Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, Munich, Germany. .,Max Planck Institute of Biochemistry, Martinsried, Germany. .,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
20
|
Lin JM, Taroc EZM, Frias JA, Prasad A, Catizone AN, Sammons MA, Forni PE. The transcription factor Tfap2e/AP-2ε plays a pivotal role in maintaining the identity of basal vomeronasal sensory neurons. Dev Biol 2018; 441:67-82. [PMID: 29928868 DOI: 10.1016/j.ydbio.2018.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/22/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
The identity of individual neuronal cell types is defined and maintained by the expression of specific combinations of transcriptional regulators that control cell type-specific genetic programs. The epithelium of the vomeronasal organ of mice contains two major types of vomeronasal sensory neurons (VSNs): 1) the apical VSNs which express vomeronasal 1 receptors (V1r) and the G-protein subunit Gαi2 and; 2) the basal VSNs which express vomeronasal 2 receptors (V2r) and the G-protein subunit Gαo. Both cell types originate from a common pool of progenitors and eventually acquire apical or basal identity through largely unknown mechanisms. The transcription factor AP-2ε, encoded by the Tfap2e gene, plays a role in controlling the development of GABAergic interneurons in the main and accessory olfactory bulb (AOB), moreover AP-2ε has been previously described to be expressed in the basal VSNs. Here we show that AP-2ε is expressed in post-mitotic VSNs after they commit to the basal differentiation program. Loss of AP-2ε function resulted in reduced number of basal VSNs and in an increased number of neurons expressing markers of the apical lineage. Our work suggests that AP-2ε, which is expressed in late phases of differentiation, is not needed to initiate the apical-basal differentiation dichotomy but for maintaining the basal VSNs' identity. In AP-2ε mutants we observed a large number of cells that entered the basal program can express apical genes, our data suggest that differentiated VSNs of mice retain a notable level of plasticity.
Collapse
Affiliation(s)
- Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Jesus A Frias
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Aparna Prasad
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Allison N Catizone
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Morgan A Sammons
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
21
|
Chromatin Remodeling BAF155 Subunit Regulates the Genesis of Basal Progenitors in Developing Cortex. iScience 2018; 4:109-126. [PMID: 30240734 PMCID: PMC6147019 DOI: 10.1016/j.isci.2018.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/22/2018] [Accepted: 05/18/2018] [Indexed: 11/21/2022] Open
Abstract
The abundance of basal progenitors (BPs), basal radial glia progenitors (bRGs) and basal intermediate progenitors (bIPs), in primate brain has been correlated to the high degree of cortical folding. Here we examined the role of BAF155, a subunit of the chromatin remodeling BAF complex, in generation of cortical progenitor heterogeneity. The conditional deletion of BAF155 led to diminished bIP pool and increased number of bRGs, due to delamination of apical RGs. We found that BAF155 is required for normal activity of neurogenic transcription factor PAX6, thus controlling the expression of genes that are involved in bIP specification, cell-cell interaction, and establishment of adherens junction. In a PAX6-dependent manner, BAF155 regulates the expression of the CDC42 effector protein CEP4, thereby controlling progenitor delamination. Furthermore, BAF155-dependent chromatin remodeling seems to exert a specific role in the genesis of BPs through the regulation of human RG-specific genes (such as Foxn4) that possibly acquired evolutionary significance.
Collapse
|
22
|
Mateus-Pinheiro A, Alves ND, Sousa N, Pinto L. AP2γ: A New Player on Adult Hippocampal Neurogenesis Regulation. J Exp Neurosci 2018; 12:1179069518766897. [PMID: 29636632 PMCID: PMC5888809 DOI: 10.1177/1179069518766897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 11/23/2022] Open
Abstract
Since the recognition that the mammalian brain retains the ability to generate newborn neurons with functional relevance throughout life, the matrix of molecular regulators that govern adult neurogenesis has been the focus of much interest. In a recent study published in Molecular Psychiatry, we demonstrate Activating Protein 2γ (AP2γ), a transcription factor previously implicated in cell fate determination in the developing cortex, as a novel player in the regulation of glutamatergic neurogenesis in the adult hippocampus. Using distinct experimental approaches, we showed that AP2γ is specifically present in a subpopulation of transient amplifying progenitors, where it acts as a crucial promoter of proliferation and differentiation of adult-born glutamatergic granule neurons. Strikingly, deficiency of AP2γ in the adult brain compromises the generation of new glutamatergic neurons, with impact on the function of cortico-limbic circuits. Here, we share our view on how AP2γ integrates the transcriptional orchestration of glutamatergic neurogenesis in the adult hippocampus, and consequently, how it emerges as a novel molecular candidate to study the translation of environmental pressures into alterations of brain neuroplasticity in homeostatic, but also in neuropathological contexts.
Collapse
Affiliation(s)
- Antonio Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luisa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Luisa Pinto, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
23
|
Hochgerner H, Zeisel A, Lönnerberg P, Linnarsson S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat Neurosci 2018; 21:290-299. [PMID: 29335606 DOI: 10.1038/s41593-017-0056-2] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
The dentate gyrus of the hippocampus is a brain region in which neurogenesis persists into adulthood; however, the relationship between developmental and adult dentate gyrus neurogenesis has not been examined in detail. Here we used single-cell RNA sequencing to reveal the molecular dynamics and diversity of dentate gyrus cell types in perinatal, juvenile, and adult mice. We found distinct quiescent and proliferating progenitor cell types, linked by transient intermediate states to neuroblast stages and fully mature granule cells. We observed shifts in the molecular identity of quiescent and proliferating radial glia and granule cells during the postnatal period that were then maintained through adult stages. In contrast, intermediate progenitor cells, neuroblasts, and immature granule cells were nearly indistinguishable at all ages. These findings demonstrate the fundamental similarity of postnatal and adult neurogenesis in the hippocampus and pinpoint the early postnatal transformation of radial glia from embryonic progenitors to adult quiescent stem cells.
Collapse
Affiliation(s)
- Hannah Hochgerner
- Division of Molecular Neurobiology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| | - Amit Zeisel
- Division of Molecular Neurobiology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| | - Peter Lönnerberg
- Division of Molecular Neurobiology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
24
|
AP2γ controls adult hippocampal neurogenesis and modulates cognitive, but not anxiety or depressive-like behavior. Mol Psychiatry 2017; 22:1725-1734. [PMID: 27777416 DOI: 10.1038/mp.2016.169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 02/05/2023]
Abstract
Hippocampal neurogenesis has been proposed to participate in a myriad of behavioral responses, both in basal states and in the context of neuropsychiatric disorders. Here, we identify activating protein 2γ (AP2γ, also known as Tcfap2c), originally described to regulate the generation of neurons in the developing cortex, as a modulator of adult hippocampal glutamatergic neurogenesis in mice. Specifically, AP2γ is present in a sub-population of hippocampal transient amplifying progenitors. There, it is found to act as a positive regulator of the cell fate determinants Tbr2 and NeuroD, promoting proliferation and differentiation of new glutamatergic granular neurons. Conditional ablation of AP2γ in the adult brain significantly reduced hippocampal neurogenesis and disrupted neural coherence between the ventral hippocampus and the medial prefrontal cortex. Furthermore, it resulted in the precipitation of multimodal cognitive deficits. This indicates that the sub-population of AP2γ-positive hippocampal progenitors may constitute an important cellular substrate for hippocampal-dependent cognitive functions. Concurrently, AP2γ deletion produced significant impairments in contextual memory and reversal learning. More so, in a water maze reference memory task a delay in the transition to cognitive strategies relying on hippocampal function integrity was observed. Interestingly, anxiety- and depressive-like behaviors were not significantly affected. Altogether, findings open new perspectives in understanding the role of specific sub-populations of newborn neurons in the (patho)physiology of neuropsychiatric disorders affecting hippocampal neuroplasticity and cognitive function in the adult brain.
Collapse
|
25
|
Zic-Proteins Are Repressors of Dopaminergic Forebrain Fate in Mice and C. elegans. J Neurosci 2017; 37:10611-10623. [PMID: 28972122 DOI: 10.1523/jneurosci.3888-16.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 11/21/2022] Open
Abstract
In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegansSIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species.
Collapse
|
26
|
Haushalter C, Asselin L, Fraulob V, Dollé P, Rhinn M. Retinoic acid controls early neurogenesis in the developing mouse cerebral cortex. Dev Biol 2017; 430:129-141. [PMID: 28790015 DOI: 10.1016/j.ydbio.2017.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
A tight regulation of neuron production is required to generate a functional cerebral cortex and is achieved by a proper balance between proliferation and differentiation of progenitor cells. Though the vitamin A (retinol) active derivative retinoic acid (RA) has been implicated as one of the signals acting during mammalian forebrain neurogenesis, its function at the onset of neurogenesis as well as during establishment of cortical layers and neuronal subtypes remains elusive. One limitation is that murine mutants for genes encoding key enzymes involved in RA synthesis die during early embryonic development. We analysed corticogenesis in Rdh10 null mutants, in which an RA deficiency is generated as the intracellular retinol to retinaldehyde conversion is abolished. When analysed at the latest stage before lethality occurs (embryonic day [E]13.5), the mutants show smaller telencephalic vesicles and the thickness of their cortical plate is strongly reduced. The first progenitors formed in the cortical plate are radial glial (RG) cells which generate neurons either directly, or through an indirect mechanism involving the production of intermediate neuronal progenitors (INPs) which then give rise to neurons. We show that in absence of RA, the RG progenitors proliferate less and prematurely produce neurons, leading to their depletion at E11.5. Furthermore, we could demonstrate that lack of RA impairs the generation of INPs at E13.5 and affects the cell cycle exit of progenitor cells during corticogenesis, altogether leading to a deficit in projection neurons and to microcephaly.
Collapse
Affiliation(s)
- Carole Haushalter
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laure Asselin
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Valérie Fraulob
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Pascal Dollé
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Muriel Rhinn
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
27
|
Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity. J Neurosci 2017; 36:6403-19. [PMID: 27307230 DOI: 10.1523/jneurosci.4067-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have found that the transcriptional coregulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the embryonic day 15.5 subventricular zone, during the peak of superficial layer CPN birth, with a progressive postmitotic refinement in expression, becoming restricted to CPN of the somatosensory cortex postnatally. We generated progenitor-stage and postmitotic forebrain-specific Cited2 conditional knock-out mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary postmitotically, to regulate both (1) broad generation of layer II/III CPN and (2) acquisition of precise area-specific molecular identity and axonal/dendritic connectivity of somatosensory CPN. This novel CPN subtype-specific and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multistage developmental regulation of neocortical development. SIGNIFICANCE STATEMENT This study identifies Cited2 as a novel subtype-specific and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We found that Cited2 functions within subventricular zone progenitors to both broadly regulate generation of superficial layer CPN throughout the neocortex, and to refine precise area-specific development and connectivity of somatosensory CPN. Gaining insight into molecular development and heterogeneity of CPN will advance understanding of both diverse functions of CPN and of the remarkable range of neurodevelopmental deficits correlated with CPN/CC development.
Collapse
|
28
|
Abstract
T-box transcription factors play key roles in the regulation of developmental processes such as cell differentiation and migration. Mammals have 17 T-box genes, of which several regulate brain development. The Tbr1 subfamily of T-box genes is particularly important in development of the cerebral cortex, olfactory bulbs (OBs), and cerebellum. This subfamily is comprised of Tbr1, Tbr2 (also known as Eomes), and Tbx21. In developing cerebral cortex, Tbr2 and Tbr1 are expressed during successive stages of differentiation in the pyramidal neuron lineage, from Tbr2+ intermediate progenitors to Tbr1+ postmitotic glutamatergic neurons. At each stage, Tbr2 and Tbr1 regulate laminar and regional identity of cortical projection neurons, cell migration, and axon guidance. In the OB, Tbr1 subfamily genes regulate neurogenesis of mitral and tufted cells, and glutamatergic juxtaglomerular interneurons. Tbr2 is also prominent in the development of retinal ganglion cells in nonimage-forming pathways. Other regions that require Tbr2 or Tbr1 in development or adulthood include the cerebellum and adult dentate gyrus. In humans, de novo mutations in TBR1 are important causes of sporadic autism and intellectual disability. Further studies of T-box transcription factors will enhance our understanding of neurodevelopmental disorders and inform approaches to new therapies.
Collapse
|
29
|
Quach TT, Lerch JK, Honnorat J, Khanna R, Duchemin AM. Neuronal networks in mental diseases and neuropathic pain: Beyond brain derived neurotrophic factor and collapsin response mediator proteins. World J Psychiatry 2016; 6:18-30. [PMID: 27014595 PMCID: PMC4804265 DOI: 10.5498/wjp.v6.i1.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/24/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023] Open
Abstract
The brain is a complex network system that has the capacity to support emotion, thought, action, learning and memory, and is characterized by constant activity, constant structural remodeling, and constant attempt to compensate for this remodeling. The basic insight that emerges from complex network organization is that substantively different networks can share common key organizational principles. Moreover, the interdependence of network organization and behavior has been successfully demonstrated for several specific tasks. From this viewpoint, increasing experimental/clinical observations suggest that mental disorders are neural network disorders. On one hand, single psychiatric disorders arise from multiple, multifactorial molecular and cellular structural/functional alterations spreading throughout local/global circuits leading to multifaceted and heterogeneous clinical symptoms. On the other hand, various mental diseases may share functional deficits across the same neural circuit as reflected in the overlap of symptoms throughout clinical diagnoses. An integrated framework including experimental measures and clinical observations will be necessary to formulate a coherent and comprehensive understanding of how neural connectivity mediates and constraints the phenotypic expression of psychiatric disorders.
Collapse
|
30
|
Sirko S, Irmler M, Gascón S, Bek S, Schneider S, Dimou L, Obermann J, De Souza Paiva D, Poirier F, Beckers J, Hauck SM, Barde YA, Götz M. Astrocyte reactivity after brain injury-: The role of galectins 1 and 3. Glia 2015; 63:2340-61. [PMID: 26250529 PMCID: PMC5042059 DOI: 10.1002/glia.22898] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 01/18/2023]
Abstract
Astrocytes react to brain injury in a heterogeneous manner with only a subset resuming proliferation and acquiring stem cell properties in vitro. In order to identify novel regulators of this subset, we performed genomewide expression analysis of reactive astrocytes isolated 5 days after stab wound injury from the gray matter of adult mouse cerebral cortex. The expression pattern was compared with astrocytes from intact cortex and adult neural stem cells (NSCs) isolated from the subependymal zone (SEZ). These comparisons revealed a set of genes expressed at higher levels in both endogenous NSCs and reactive astrocytes, including two lectins-Galectins 1 and 3. These results and the pattern of Galectin expression in the lesioned brain led us to examine the functional significance of these lectins in brains of mice lacking Galectins 1 and 3. Following stab wound injury, astrocyte reactivity including glial fibrillary acidic protein expression, proliferation and neurosphere-forming capacity were found significantly reduced in mutant animals. This phenotype could be recapitulated in vitro and was fully rescued by addition of Galectin 3, but not of Galectin 1. Thus, Galectins 1 and 3 play key roles in regulating the proliferative and NSC potential of a subset of reactive astrocytes.
Collapse
Affiliation(s)
- Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sergio Gascón
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sarah Bek
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany
| | - Sarah Schneider
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jara Obermann
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Daisylea De Souza Paiva
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Francoise Poirier
- Institut Jacques Monod, CNRS-University Paris Diderot, Paris, France
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Yves-Alain Barde
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
31
|
Salgado AJ, Sousa JC, Costa BM, Pires AO, Mateus-Pinheiro A, Teixeira FG, Pinto L, Sousa N. Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Front Cell Neurosci 2015. [PMID: 26217178 PMCID: PMC4499760 DOI: 10.3389/fncel.2015.00249] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) share few characteristics apart from self-renewal and multipotency. In fact, the neurogenic and osteogenic stem cell niches derive from two distinct embryonary structures; while the later originates from the mesoderm, as all the connective tissues do, the first derives from the ectoderm. Therefore, it is highly unlikely that stem cells isolated from one niche could form terminally differentiated cells from the other. Additionally, these two niches are associated to tissues/systems (e.g., bone and central nervous system) that have markedly different needs and display diverse functions within the human body. Nevertheless they do share common features. For instance, the differentiation of both NSCs and MSCs is intimately associated with the bone morphogenetic protein family. Moreover, both NSCs and MSCs secrete a panel of common growth factors, such as nerve growth factor (NGF), glial derived neurotrophic factor (GDNF), and brain derived neurotrophic factor (BDNF), among others. But it is not the features they share but the interaction between them that seem most important, and worth exploring; namely, it has already been shown that there are mutually beneficially effects when these cell types are co-cultured in vitro. In fact the use of MSCs, and their secretome, become a strong candidate to be used as a therapeutic tool for CNS applications, namely by triggering the endogenous proliferation and differentiation of neural progenitors, among other mechanisms. Quite interestingly it was recently revealed that MSCs could be found in the human brain, in the vicinity of capillaries. In the present review we highlight how MSCs and NSCs in the neurogenic niches interact. Furthermore, we propose directions on this field and explore the future therapeutic possibilities that may arise from the combination/interaction of MSCs and NSCs.
Collapse
Affiliation(s)
- Antonio J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Joao C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - F G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Luisa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's, PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
32
|
Altered sensory processing and dendritic remodeling in hyperexcitable visual cortical networks. Brain Struct Funct 2015; 221:2919-36. [PMID: 26163822 DOI: 10.1007/s00429-015-1080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/01/2015] [Indexed: 01/20/2023]
Abstract
Epilepsy is characterized by impaired circuit function and a propensity for spontaneous seizures, but how plastic rearrangements within the epileptic focus trigger cortical dysfunction and hyperexcitability is only partly understood. Here we have examined alterations in sensory processing and the underlying biochemical and neuroanatomical changes in tetanus neurotoxin (TeNT)-induced focal epilepsy in mouse visual cortex. We documented persistent epileptiform electrographic discharges and upregulation of GABAergic markers at the completion of TeNT effects. We also found a significant remodeling of the dendritic arbors of pyramidal neurons, with increased dendritic length and branching, and overall reduction in spine density but significant preservation of mushroom, mature spines. Functionally, spontaneous neuronal discharge was increased, visual responses were less reliable, and electrophysiological and behavioural visual acuity was consistently impaired in TeNT-injected mice. These data demonstrate robust, long-term remodeling of both inhibitory and excitatory circuitry associated with specific disturbances of network function in neocortical epilepsy.
Collapse
|
33
|
Kawase S, Kuwako K, Imai T, Renault-Mihara F, Yaguchi K, Itohara S, Okano H. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev 2015; 23:2250-61. [PMID: 25058468 DOI: 10.1089/scd.2014.0219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcriptional regulation of neural stem/progenitor cells (NS/PCs) is of great interest in neural development and stem cell biology. The RNA-binding protein Musashi1 (Msi1), which is often employed as a marker for NS/PCs, regulates Notch signaling to maintain NS/PCs in undifferentiated states by the translational repression of Numb expression. Considering these critical roles of Msi1 in the maintenance of NS/PCs, it is extremely important to elucidate the regulatory mechanisms by which Msi1 is selectively expressed in these cells. However, the mechanism regulating Msi1 transcription is unclear. We previously reported that the transcriptional regulatory region of Msi1 is located in the sixth intron of the Msi1 locus in NS/PCs, based on in vitro experiments. In the present study, we generated reporter transgenic mice for the sixth intronic Msi1 enhancer (Msi1-6IE), which show the reporter expression corresponding with endogenous Msi1-positive cells in developing and adult NS/PCs. We found that the core element responsible for this reporter gene activity includes palindromic Regulatory factor X (Rfx) binding sites and that Msi1-6IE was activated by Rfx. Rfx4, which was highly expressed in NS/PCs positive for the Msi1-6IE reporter, bound to this region, and both of the palindromic Rfx binding sites were required for the transactivation of Msi1-6IE. Furthermore, ectopic Rfx4 expression in the developing mouse cerebral cortex transactivates Msi1 expression in the intermediate zone. This study suggests that ciliogenic Rfx transcription factors regulate Msi1 expression through Msi1-6IE in NS/PCs.
Collapse
Affiliation(s)
- Satoshi Kawase
- 1 Department of Physiology, Keio University School of Medicine , Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Götz M, Sirko S, Beckers J, Irmler M. Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genome-wide expression analysis. Glia 2015; 63:1452-68. [PMID: 25965557 PMCID: PMC5029574 DOI: 10.1002/glia.22850] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/01/2015] [Accepted: 04/15/2015] [Indexed: 12/25/2022]
Abstract
Here, we review the stem cell hallmarks of endogenous neural stem cells (NSCs) during development and in some niches of the adult mammalian brain to then compare these with reactive astrocytes acquiring stem cell hallmarks after traumatic and ischemic brain injury. Notably, even endogenous NSCs including the earliest NSCs, the neuroepithelial cells, generate in most cases only a single type of progeny and self‐renew only for a rather short time in vivo. In vitro, however, especially cells cultured under neurosphere conditions reveal a larger potential and long‐term self‐renewal under the influence of growth factors. This is rather well comparable to reactive astrocytes in the traumatic or ischemic brain some of which acquire neurosphere‐forming capacity including multipotency and long‐term self‐renewal in vitro, while they remain within their astrocyte lineage in vivo. Both reactive astrocytes and endogenous NSCs exhibit stem cell hallmarks largely in vitro, but their lineage differs in vivo. Both populations generate largely a single cell type in vivo, but endogenous NSCs generate neurons and reactive astrocytes remain in the astrocyte lineage. However, at some early postnatal stages or in some brain regions reactive astrocytes can be released from this fate restriction, demonstrating that they can also enact neurogenesis. Thus, reactive astrocytes and NSCs share many characteristic hallmarks, but also exhibit key differences. This conclusion is further substantiated by genome‐wide expression analysis comparing NSCs at different stages with astrocytes from the intact and injured brain parenchyma. GLIA 2015;63:1452–1468
Collapse
Affiliation(s)
- Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany.,SYNERGY, Excellence Cluster of Systemic Neurology, LMU, Munich, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany.,Department of Experimental Genetics, Technical University Munich, Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
35
|
Signal transducer and activator of transcription-3 maintains the stemness of radial glia at mid-neurogenesis. J Neurosci 2015; 35:1011-23. [PMID: 25609618 DOI: 10.1523/jneurosci.2119-14.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radial glial cells are stem cell-like populations of glial nature that supply neurons either directly or indirectly via basal progenitors that give rise to neurons. Here we show that signal transducer and activator of transcription-3 (STAT3) signaling, a cytokine signaling mediated by Janus tyrosine kinase (Jak), is active during neurogenesis in radial glia (RG) but not in basal progenitors. Enhanced STAT3 signaling in cortical progenitors caused more RG to persist rather than become neurons. Targeted deletion or RNAi-mediated knockdown of Stat3 resulted in fewer radial glial cells and more basal progenitors and led to premature neurogenesis. The neuronal populations affected in Stat3 mutant mice were the late-born neurons that constitute the upper cortical layers rather than early-born neurons, thus supporting the view that the role of STAT3 at mid-neurogenesis is layer specific. Analysis of dividing RG revealed that STAT3 selectively increased the proportion of dividing RG, whereas downregulation of STAT3 reduced the proportion. Consistent with this, STAT3 activity in dividing RG was associated frequently with vertical cleavage. Pair-cell analysis showed that elevated STAT3 activity correlated with symmetric division of RG, producing more RG, whereas elimination of STAT3 generated more neurogenic cells. Together, our results suggest that STAT3 maintains the stemness of RG and inhibits their transition to basal progenitors at mid-neurogenesis, so probably preserving a pool of RG for later neurogenesis or gliogenesis.
Collapse
|
36
|
Shibata M, Gulden FO, Sestan N. From trans to cis: transcriptional regulatory networks in neocortical development. Trends Genet 2015; 31:77-87. [PMID: 25624274 DOI: 10.1016/j.tig.2014.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Transcriptional mechanisms mediated by the binding of transcription factors (TFs) to cis-acting regulatory elements (CREs) in DNA play crucial roles in directing gene expression. While TFs have been extensively studied, less effort has gone towards the identification and functional characterization of CREs and associated epigenetic modulation. However, owing to methodological and analytical advances, more comprehensive studies of regulatory elements and mechanisms are now possible. We summarize recent progress in integrative analyses of these regulatory components in the development of the cerebral neocortex, the part of the brain involved in cognition and complex behavior. These studies are uncovering not only the underlying transcriptional regulatory networks, but also how these networks are altered across species and in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Mikihito Shibata
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Forrest O Gulden
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
37
|
Tsujimura T, Klein FA, Langenfeld K, Glaser J, Huber W, Spitz F. A discrete transition zone organizes the topological and regulatory autonomy of the adjacent tfap2c and bmp7 genes. PLoS Genet 2015; 11:e1004897. [PMID: 25569170 PMCID: PMC4288730 DOI: 10.1371/journal.pgen.1004897] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022] Open
Abstract
Despite the well-documented role of remote enhancers in controlling developmental gene expression, the mechanisms that allocate enhancers to genes are poorly characterized. Here, we investigate the cis-regulatory organization of the locus containing the Tfap2c and Bmp7 genes in vivo, using a series of engineered chromosomal rearrangements. While these genes lie adjacent to one another, we demonstrate that they are independently regulated by distinct sets of enhancers, which in turn define non-overlapping regulatory domains. Chromosome conformation capture experiments reveal a corresponding partition of the locus in two distinct structural entities, demarcated by a discrete transition zone. The impact of engineered chromosomal rearrangements on the topology of the locus and the resultant gene expression changes indicate that this transition zone functionally organizes the structural partition of the locus, thereby defining enhancer-target gene allocation. This partition is, however, not absolute: we show that it allows competing interactions across it that may be non-productive for the competing gene, but modulate expression of the competed one. Altogether, these data highlight the prime role of the topological organization of the genome in long-distance regulation of gene expression. The specificity of enhancer-gene interactions is fundamental to the execution of gene regulatory programs underpinning embryonic development and cell differentiation. However, our understanding of the mechanisms conferring specificity to enhancers and target gene interactions is limited. In this study, we characterize the cis-regulatory organization of a large genomic locus consisting of two developmental genes, Tfap2c and Bmp7. We show that this locus is structurally partitioned into two distinct domains by the constitutive action of a discrete transition zone located between the two genes. This separation restricts selectively the functional action of enhancers to the genes present within the same domain. Interestingly, the effects of this region as a boundary are relative, as it allows some competing interactions to take place across domains. We show that these interactions modulate the functional output of a brain enhancer on its primary target gene resulting in the spatial restriction of its expression domain. These results support a functional link between topological chromatin domains and allocation of enhancers to genes. They further show that a precise adjustment of chromatin interaction levels fine-tunes gene regulation by long-range enhancers.
Collapse
Affiliation(s)
- Taro Tsujimura
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Felix A. Klein
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Katja Langenfeld
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Juliane Glaser
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
38
|
How to make neurons--thoughts on the molecular logic of neurogenesis in the central nervous system. Cell Tissue Res 2014; 359:5-16. [PMID: 25416507 DOI: 10.1007/s00441-014-2048-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022]
Abstract
Neuronal differentiation relies on a set of interconnected molecular events to achieve the differentiation of pan-neuronal hallmarks, together with neuronal subtype-specific features. Here, we propose a conceptual framework for these events, based on recent findings. This framework encompasses a dimension in time during development, progressing from early master regulators to later expressed effector genes and terminal selector genes. As a horizontal intersection, we propose the action of permissive fate determinants that are critical in allowing progression through the above transcriptional phases. Typically, these are widely expressed and often interact with the chromatin remodeling machinery. We conclude by discussing this model in the context of the direct fate conversion of various somatic cells into neurons.
Collapse
|
39
|
Dimou L, Götz M. Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 2014; 94:709-37. [PMID: 24987003 DOI: 10.1152/physrev.00036.2013] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The diverse functions of glial cells prompt the question to which extent specific subtypes may be devoted to a specific function. We discuss this by reviewing one of the most recently discovered roles of glial cells, their function as neural stem cells (NSCs) and progenitor cells. First we give an overview of glial stem and progenitor cells during development; these are the radial glial cells that act as NSCs and other glial progenitors, highlighting the distinction between the lineage of cells in vivo and their potential when exposed to a different environment, e.g., in vitro. We then proceed to the adult stage and discuss the glial cells that continue to act as NSCs across vertebrates and others that are more lineage-restricted, such as the adult NG2-glia, the most frequent progenitor type in the adult mammalian brain, that remain within the oligodendrocyte lineage. Upon certain injury conditions, a distinct subset of quiescent astrocytes reactivates proliferation and a larger potential, clearly demonstrating the concept of heterogeneity with distinct subtypes of, e.g., astrocytes or NG2-glia performing rather different roles after brain injury. These new insights not only highlight the importance of glial cells for brain repair but also their great potential in various aspects of regeneration.
Collapse
Affiliation(s)
- Leda Dimou
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University, Munich, Germany; Institute for Stem Cell Research, HelmholtzZentrum, Neuherberg, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University, Munich, Germany; Institute for Stem Cell Research, HelmholtzZentrum, Neuherberg, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
40
|
Tuoc TC, Pavlakis E, Tylkowski MA, Stoykova A. Control of cerebral size and thickness. Cell Mol Life Sci 2014; 71:3199-218. [PMID: 24614969 PMCID: PMC11113230 DOI: 10.1007/s00018-014-1590-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/24/2022]
Abstract
The mammalian neocortex is a sheet of cells covering the cerebrum that provides the structural basis for the perception of sensory inputs, motor output responses, cognitive function, and mental capacity of primates. Recent discoveries promote the concept that increased cortical surface size and thickness in phylogenetically advanced species is a result of an increased generation of neurons, a process that underlies higher cognitive and intellectual performance in higher primates and humans. Here, we review some of the advances in the field, focusing on the diversity of neocortical progenitors in different species and the cellular mechanisms of neurogenesis. We discuss recent views on intrinsic and extrinsic molecular determinants, including the role of epigenetic chromatin modifiers and microRNA, in the control of neuronal output in developing cortex and in the establishment of normal cortical architecture.
Collapse
Affiliation(s)
- Tran Cong Tuoc
- Institute of Neuroanatomy, Universitätsmedizin Göttingen, Kreuzbergring 40, 37075, Göttingen, Germany,
| | | | | | | |
Collapse
|
41
|
Progenitor genealogy in the developing cerebral cortex. Cell Tissue Res 2014; 359:17-32. [PMID: 25141969 DOI: 10.1007/s00441-014-1979-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
The mammalian cerebral cortex is characterized by a complex histological organization that reflects the spatio-temporal stratifications of related stem and neural progenitor cells, which are responsible for the generation of distinct glial and neuronal subtypes during development. Some work has been done to shed light on the existing filiations between these progenitors as well as their respective contribution to cortical neurogenesis. The aim of the present review is to summarize the current views of progenitor hierarchy and relationship in the developing cortex and to further discuss future research directions that would help us to understand the molecular and cellular regulating mechanisms involved in cerebral corticogenesis.
Collapse
|
42
|
Parthasarathy S, Srivatsa S, Nityanandam A, Tarabykin V. Ntf3 acts downstream of Sip1 in cortical postmitotic neurons to control progenitor cell fate through feedback signaling. Development 2014; 141:3324-30. [PMID: 25085976 DOI: 10.1242/dev.114173] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cortical progenitors undergo progressive fate restriction, thereby sequentially producing the different layers of the neocortex. However, how these progenitors precisely change their fate remains highly debatable. We have previously shown the existence of cortical feedback mechanisms wherein postmitotic neurons signal back to the progenitors and promote a switch from neurogenesis to gliogenesis. We showed that Sip1 (Zeb2), a transcriptional repressor, controls this feedback signaling. A similar mechanism was also suggested to control neuronal cell type specification; however, the underlying mechanism was not identified. Here, we provide direct evidence that in the developing mouse neocortex, Ntf3, a Sip1 target neurotrophin, acts as a feedback signal between postmitotic neurons and progenitors, promoting both apical progenitor (AP) to basal progenitor (BP) and deep layer (DL) to upper layer (UL) cell fate switches. We show that specific overexpression of Ntf3 in neocortical neurons promotes an overproduction of BP at the expense of AP. This shift is followed by a decrease in DL and an increase in UL neuronal production. Loss of Ntf3, by contrast, causes an increase in layer VI neurons but does not rescue the Sip1 mutant phenotype, implying that other parallel pathways also control the timing of progenitor cell fate switch.
Collapse
Affiliation(s)
- Srinivas Parthasarathy
- Institute for Cell and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany Max Planck Institute for Experimental Medicine, Goettingen 37075, Germany
| | - Swathi Srivatsa
- Institute for Cell and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany Max Planck Institute for Experimental Medicine, Goettingen 37075, Germany
| | - Anjana Nityanandam
- Institute for Cell and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Victor Tarabykin
- Institute for Cell and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| |
Collapse
|
43
|
Allegra M, Genovesi S, Maggia M, Cenni MC, Zunino G, Sgadò P, Caleo M, Bozzi Y. Altered GABAergic markers, increased binocularity and reduced plasticity in the visual cortex of Engrailed-2 knockout mice. Front Cell Neurosci 2014; 8:163. [PMID: 24987331 PMCID: PMC4060086 DOI: 10.3389/fncel.2014.00163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/29/2014] [Indexed: 01/23/2023] Open
Abstract
The maturation of the GABAergic system is a crucial determinant of cortical development during early postnatal life, when sensory circuits undergo a process of activity-dependent refinement. An altered excitatory/inhibitory balance has been proposed as a possible pathogenic mechanism of autism spectrum disorders (ASD). The homeobox-containing transcription factor Engrailed-2 (En2) has been associated to ASD, and En2 knockout (En2−/−) mice show ASD-like features accompanied by a partial loss of cortical GABAergic interneurons. Here we studied GABAergic markers and cortical function in En2−/− mice, by exploiting the well-known anatomical and functional features of the mouse visual system. En2 is expressed in the visual cortex at postnatal day 30 and during adulthood. When compared to age-matched En2+/+ controls, En2−/− mice showed an increased number of parvalbumin (PV+), somatostatin (SOM+), and neuropeptide Y (NPY+) positive interneurons in the visual cortex at P30, and a decreased number of SOM+ and NPY+ interneurons in the adult. At both ages, the differences in distinct interneuron populations observed between En2+/+ and En2−/− mice were layer-specific. Adult En2−/− mice displayed a normal eye-specific segregation in the retino-geniculate pathway, and in vivo electrophysiological recordings showed a normal development of basic functional properties (acuity, response latency, receptive field size) of the En2−/− primary visual cortex. However, a significant increase of binocularity was found in P30 and adult En2−/− mice, as compared to age-matched controls. Differently from what observed in En2+/+ mice, the En2−/− primary visual cortex did not respond to a brief monocular deprivation performed between P26 and P29, during the so-called “critical period.” These data suggest that altered GABAergic circuits impact baseline binocularity and plasticity in En2−/− mice, while leaving other visual functional properties unaffected.
Collapse
Affiliation(s)
- Manuela Allegra
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy ; Laboratory of Neurobiology, Scuola Normale Superiore Pisa, Italy
| | - Sacha Genovesi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Mattarello, Trento, Italy
| | - Marika Maggia
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Mattarello, Trento, Italy
| | - Maria C Cenni
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy
| | - Giulia Zunino
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Mattarello, Trento, Italy
| | - Paola Sgadò
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Mattarello, Trento, Italy
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy
| | - Yuri Bozzi
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy ; Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Mattarello, Trento, Italy
| |
Collapse
|
44
|
Vasistha NA, García-Moreno F, Arora S, Cheung AFP, Arnold SJ, Robertson EJ, Molnár Z. Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain. Cereb Cortex 2014; 25:3290-302. [PMID: 24927931 PMCID: PMC4585488 DOI: 10.1093/cercor/bhu125] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The individual contribution of different progenitor subtypes towards the mature rodent cerebral cortex is not fully understood. Intermediate progenitor cells (IPCs) are key to understanding the regulation of neuronal number during cortical development and evolution, yet their exact contribution is much debated. Intermediate progenitors in the cortical subventricular zone are defined by expression of T-box brain-2 (Tbr2). In this study we demonstrate by using the Tbr2(Cre) mouse line and state-of-the-art cell lineage labeling techniques, that IPC derived cells contribute substantial proportions 67.5% of glutamatergic but not GABAergic or astrocytic cells to all cortical layers including the earliest generated subplate zone. We also describe the laminar dispersion of clonally derived cells from IPCs using a recently described clonal analysis tool (CLoNe) and show that pair-generated cells in different layers cluster closer (142.1 ± 76.8 μm) than unrelated cells (294.9 ± 105.4 μm). The clonal dispersion from individual Tbr2 positive intermediate progenitors contributes to increasing the cortical surface. Our study also describes extracortical contributions from Tbr2+ progenitors to the lateral olfactory tract and ventromedial hypothalamic nucleus.
Collapse
Affiliation(s)
- Navneet A Vasistha
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Siddharth Arora
- Oxford Centre for Industrial and Applied Mathematics (OCIAM), University of Oxford, 24-29 St Giles', Oxford, UK
| | - Amanda F P Cheung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sebastian J Arnold
- Renal Department, University Medical Centre, Centre for Clinical Research, Breisacher Strasse 66, 79106 Freiburg, Germany BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, Ebbert A, Riley ZL, Royall JJ, Aiona K, Arnold JM, Bennet C, Bertagnolli D, Brouner K, Butler S, Caldejon S, Carey A, Cuhaciyan C, Dalley RA, Dee N, Dolbeare TA, Facer BAC, Feng D, Fliss TP, Gee G, Goldy J, Gourley L, Gregor BW, Gu G, Howard RE, Jochim JM, Kuan CL, Lau C, Lee CK, Lee F, Lemon TA, Lesnar P, McMurray B, Mastan N, Mosqueda N, Naluai-Cecchini T, Ngo NK, Nyhus J, Oldre A, Olson E, Parente J, Parker PD, Parry SE, Stevens A, Pletikos M, Reding M, Roll K, Sandman D, Sarreal M, Shapouri S, Shapovalova NV, Shen EH, Sjoquist N, Slaughterbeck CR, Smith M, Sodt AJ, Williams D, Zöllei L, Fischl B, Gerstein MB, Geschwind DH, Glass IA, Hawrylycz MJ, Hevner RF, Huang H, Jones AR, Knowles JA, Levitt P, Phillips JW, Sestan N, Wohnoutka P, Dang C, Bernard A, Hohmann JG, Lein ES. Transcriptional landscape of the prenatal human brain. Nature 2014; 508:199-206. [PMID: 24695229 PMCID: PMC4105188 DOI: 10.1038/nature13185] [Citation(s) in RCA: 914] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 02/26/2014] [Indexed: 12/21/2022]
Abstract
The anatomical and functional architecture of the human brain is largely determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and postmitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and human-expanded outer subventricular zones. Both germinal and postmitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in frontal lobe. Finally, many neurodevelopmental disorder and human evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.
Collapse
Affiliation(s)
- Jeremy A Miller
- 1] Allen Institute for Brain Science, Seattle, Washington 98103, USA [2]
| | - Song-Lin Ding
- 1] Allen Institute for Brain Science, Seattle, Washington 98103, USA [2]
| | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Kimberly A Smith
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Amanda Ebbert
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Zackery L Riley
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Joshua J Royall
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Kaylynn Aiona
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - James M Arnold
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Crissa Bennet
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | | | - Krissy Brouner
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Stephanie Butler
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Shiella Caldejon
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Anita Carey
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | | | - Rachel A Dalley
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Tim A Dolbeare
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | | | - David Feng
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Tim P Fliss
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Garrett Gee
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Lindsey Gourley
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | | | - Guangyu Gu
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Robert E Howard
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Jayson M Jochim
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Chihchau L Kuan
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Christopher Lau
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Chang-Kyu Lee
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Felix Lee
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Tracy A Lemon
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Bergen McMurray
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Naveed Mastan
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Nerick Mosqueda
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Theresa Naluai-Cecchini
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 1959 North East Pacific Street, Box 356320, Seattle, Washington 98195, USA
| | - Nhan-Kiet Ngo
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Aaron Oldre
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Eric Olson
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Jody Parente
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Patrick D Parker
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Sheana E Parry
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Allison Stevens
- 1] Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Computer Science and AI Lab, MIT, Cambridge, Massachusetts 02139, USA
| | - Mihovil Pletikos
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Melissa Reding
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Kate Roll
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - David Sandman
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Melaine Sarreal
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Sheila Shapouri
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | | | - Elaine H Shen
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Nathan Sjoquist
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | | | - Michael Smith
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Andy J Sodt
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Derric Williams
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Lilla Zöllei
- Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Bruce Fischl
- 1] Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Computer Science and AI Lab, MIT, Cambridge, Massachusetts 02139, USA
| | - Mark B Gerstein
- 1] Program in Computational Biology and Bioinformatics, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA [2] Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology and Semel Institute David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | - Ian A Glass
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 1959 North East Pacific Street, Box 356320, Seattle, Washington 98195, USA
| | | | - Robert F Hevner
- 1] Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, USA [2] Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98105, USA
| | - Hao Huang
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Allan R Jones
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - James A Knowles
- Zilkha Neurogenetic Institute, and Department of Psychiatry, University of Southern California, Los Angeles, California 90033, USA
| | - Pat Levitt
- 1] Department of Pediatrics, Children's Hospital, Los Angeles, California 90027, USA [2] Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - John W Phillips
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Nenad Sestan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Paul Wohnoutka
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Chinh Dang
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - John G Hohmann
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, Washington 98103, USA
| |
Collapse
|
46
|
Díaz-Alonso J, Aguado T, de Salas-Quiroga A, Ortega Z, Guzmán M, Galve-Roperh I. CB1 Cannabinoid Receptor-Dependent Activation of mTORC1/Pax6 Signaling Drives Tbr2 Expression and Basal Progenitor Expansion in the Developing Mouse Cortex. Cereb Cortex 2014; 25:2395-408. [PMID: 24610119 DOI: 10.1093/cercor/bhu039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The CB1 cannabinoid receptor regulates cortical progenitor proliferation during embryonic development, but the molecular mechanism of this action remains unknown. Here, we report that CB1-deficient mouse embryos show premature cell cycle exit, decreased Pax6- and Tbr2-positive cell number, and reduced mammalian target of rapamycin complex 1 (mTORC1) activation in the ventricular and subventricular cortical zones. Pharmacological stimulation of the CB1 receptor in cortical slices and progenitor cell cultures activated the mTORC1 pathway and increased the number of Pax6- and Tbr2-expressing cells. Likewise, acute CB1 knockdown in utero reduced mTORC1 activation and cannabinoid-induced Tbr2-positive cell generation. Luciferase reporter and chromatin immunoprecipitation assays revealed that the CB1 receptor drives Tbr2 expression downstream of Pax6 induction in an mTORC1-dependent manner. Altogether, our results demonstrate that the CB1 receptor tunes dorsal telencephalic progenitor proliferation by sustaining the transcriptional activity of the Pax6-Tbr2 axis via the mTORC1 pathway, and suggest that alterations of CB1 receptor signaling, by producing the missexpression of progenitor identity determinants may contribute to neurodevelopmental alterations.
Collapse
Affiliation(s)
- Javier Díaz-Alonso
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Universitario de Investigaciones Neuroquímicas (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, Madrid 28040, Spain
| | - Tania Aguado
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Universitario de Investigaciones Neuroquímicas (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, Madrid 28040, Spain
| | - Adán de Salas-Quiroga
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Universitario de Investigaciones Neuroquímicas (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, Madrid 28040, Spain
| | - Zaira Ortega
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Universitario de Investigaciones Neuroquímicas (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, Madrid 28040, Spain
| | - Manuel Guzmán
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Universitario de Investigaciones Neuroquímicas (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, Madrid 28040, Spain
| | - Ismael Galve-Roperh
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Universitario de Investigaciones Neuroquímicas (IUIN), Department of Biochemistry and Molecular Biology I, Complutense University, Madrid 28040, Spain
| |
Collapse
|
47
|
Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 2013; 14:755-69. [PMID: 24105342 DOI: 10.1038/nrn3586] [Citation(s) in RCA: 627] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sophisticated circuitry of the neocortex is assembled from a diverse repertoire of neuronal subtypes generated during development under precise molecular regulation. In recent years, several key controls over the specification and differentiation of neocortical projection neurons have been identified. This work provides substantial insight into the 'molecular logic' underlying cortical development and increasingly supports a model in which individual progenitor-stage and postmitotic regulators are embedded within highly interconnected networks that gate sequential developmental decisions. Here, we provide an integrative account of the molecular controls that direct the progressive development and delineation of subtype and area identity of neocortical projection neurons.
Collapse
|
48
|
Leyva-Díaz E, López-Bendito G. In and out from the cortex: development of major forebrain connections. Neuroscience 2013; 254:26-44. [PMID: 24042037 DOI: 10.1016/j.neuroscience.2013.08.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
In this review we discuss recent advances in the understanding of the development of forebrain projections attending to their origin, fate determination, and axon guidance. Major forebrain connections include callosal, corticospinal, corticothalamic and thalamocortical projections. Although distinct transcriptional programs specify these subpopulations of projecting neurons, the mechanisms involved in their axonal development are similar. Guidance by short- and long-range molecular cues, interaction with intermediate target populations and activity-dependent mechanisms contribute to their development. Moreover, some of these connections interact with each other showing that the development of these axonal tracts is a well-orchestrated event. Finally, we will recapitulate recent discoveries that challenge the field of neural wiring that show that these forebrain connections can be changed once formed. The field of reprogramming has arrived to postmitotic cortical neurons and has showed us that forebrain connectivity is not immutable and might be changed by manipulations in the transcriptional program of matured cells.
Collapse
Affiliation(s)
- E Leyva-Díaz
- Instituto de Neurociencias de Alicante, CSIC & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | | |
Collapse
|
49
|
Tuoc TC, Narayanan R, Stoykova A. BAF chromatin remodeling complex: cortical size regulation and beyond. Cell Cycle 2013; 12:2953-9. [PMID: 23974113 DOI: 10.4161/cc.25999] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The multi-subunit chromatin remodeling BAF complex controls different developmental processes. Using cortex-specific conditional knockout and overexpression mouse models, we have recently reported that BAF170, a subunit of the vertebrate BAF chromatin remodeling complex, interacts with transcription factor (TF) Pax6 to control cortical size and volume. The mechanistic basis includes suppression of the expression of Pax6 target genes, which are required for genesis of cortical intermediate progenitors (IPs) and specification of late neuronal subtype identity. In addition, we showed that a dynamic competition between BAF170 and BAF155 subunits within the BAF complex during progression of neurogenesis is a primary event in modulating the size of the mammalian cortex. Here, we present additional insights into the interaction between the BAF complex and TF Pax6 in the genesis of IPs of the developing cortex. Furthermore, we show that such competition between BAF170 and BAF155 is involved as well in the determination of the size of the embryonic body. Our results add new insights into a cell-intrinsic mechanism, mediated by the chromatin remodeling BAF complex that controls vertebrate body shape and size.
Collapse
Affiliation(s)
- Tran Cong Tuoc
- Institute of Neuroanatomy; Universitätsmedizin Göttingen; Göttingen, Germany
| | | | | |
Collapse
|
50
|
Stahl R, Walcher T, De Juan Romero C, Pilz GA, Cappello S, Irmler M, Sanz-Aquela JM, Beckers J, Blum R, Borrell V, Götz M. Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 2013; 153:535-49. [PMID: 23622239 DOI: 10.1016/j.cell.2013.03.027] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/31/2013] [Accepted: 03/13/2013] [Indexed: 11/19/2022]
Abstract
Evolution of the mammalian brain encompassed a remarkable increase in size of the cerebral cortex, which includes tangential and radial expansion. However, the mechanisms underlying these key features are still largely unknown. Here, we identified the DNA-associated protein Trnp1 as a regulator of cerebral cortex expansion in both of these dimensions. Gain- and loss-of-function experiments in the mouse cerebral cortex in vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion. In contrast, lower levels promote radial expansion, with a potent increase of the number of intermediate progenitors and basal radial glial cells leading to folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences in the cerebral cortex of human fetuses, anticipating radial or tangential expansion. Thus, the dynamic regulation of Trnp1 is critical to control tangential and radial expansion of the cerebral cortex in mammals.
Collapse
Affiliation(s)
- Ronny Stahl
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilian University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|