1
|
Payne JM, Haebich KM, Mitchell R, Bozaoglu K, Giliberto E, Lockhart PJ, Maier A, Velasco S, Ball G, North KN, Hocking DR. Brain volumes in genetic syndromes associated with mTOR dysregulation: a systematic review and meta-analysis. Mol Psychiatry 2025; 30:1676-1688. [PMID: 39633008 DOI: 10.1038/s41380-024-02863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND/OBJECTIVES Dysregulation of molecular pathways associated with mechanistic target of rapamycin (mTOR) and elevated rates of neurodevelopmental disorders are implicated in the genetic syndromes neurofibromatosis type 1 (NF1), tuberous sclerosis complex (TSC), fragile X syndrome (FXS), and Noonan syndrome (NS). Given shared molecular and clinical features, understanding convergent and divergent implications of these syndromes on brain development may offer unique insights into disease mechanisms. While an increasing number of studies have examined brain volumes in these syndromes, the effects of each syndrome on global and subcortical brain volumes are unclear. Therefore, the aim of the current study was to conduct a systematic review and meta-analysis to synthesize existing literature on volumetric brain changes across TSC, FXS, NF1, and NS. Study outcomes were the effect sizes of the genetic syndromes on whole brain, gray and white matter, and subcortical volumes compared to typically developing controls. SUBJECTS/METHODS We performed a series of meta-analyses synthesizing data from 23 studies in NF1, TSC, FXS, and NS (pooled N = 1556) reporting whole brain volume, gray and white matter volumes, and volumes of subcortical structures compared to controls. RESULTS Meta-analyses revealed significantly larger whole brain volume, gray and white matter volumes, and subcortical volumes in NF1 compared to controls. FXS was associated with increased whole brain, and gray and white matter volumes relative to controls, but effect sizes were smaller than those seen in NF1. In contrast, studies in NS indicated smaller whole brain and gray matter volumes, and reduced subcortical volumes compared to controls. For individuals with TSC, there were no significant differences in whole brain, gray matter, and white volumes compared to controls. Volumetric effect sizes were not moderated by age, sex, or full-scale IQ. CONCLUSIONS This meta-analysis revealed that dysregulation of mTOR signaling across pre- and post-natal periods of development can result in convergent and divergent consequences for brain volume among genetic syndromes. Further research employing advanced disease modeling techniques with human pluripotent stem cell-derived in vitro models is needed to further refine our understanding of between and within syndrome variability on early brain development and identify shared molecular mechanisms for the development of pharmaceutical interventions.
Collapse
Affiliation(s)
- Jonathan M Payne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Kristina M Haebich
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Mitchell
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kiymet Bozaoglu
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Emma Giliberto
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Alice Maier
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Silvia Velasco
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW Melbourne, Melbourne, VIC, Australia
| | - Gareth Ball
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Darren R Hocking
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Ahn EH, Park JB. Molecular Mechanisms of Alzheimer's Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy. Cells 2025; 14:89. [PMID: 39851517 PMCID: PMC11764136 DOI: 10.3390/cells14020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD.
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea;
- Department of Neurology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- ELMED Co., Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
3
|
Ranasinghe T, Seo Y, Park HC, Choe SK, Cha SH. Rotenone exposure causes features of Parkinson`s disease pathology linked with muscle atrophy in developing zebrafish embryo. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136215. [PMID: 39461288 DOI: 10.1016/j.jhazmat.2024.136215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Parkinson's disease (PD) is associated with both genetic and environmental factors; however, sporadic forms of PD account for > 90 % of cases, and PD prevalence has doubled in the past 25 years. Depending on the importance of the environmental factors, various neurotoxins are used to induce PD both in vivo and in vitro. Unlike other neurodegenerative diseases, PD can be induced in vivo using specific neurotoxic chemicals. However, no chemically induced PD model is available because of the sporadic nature of PD. Rotenone is a pesticide that accelerates the induction of PD and exhibits the highest toxicity in fish, unlike other pesticides. Therefore, in this study, we aimed to establish a model exhibiting PD pathologies such as dysfunction of DArgic neuron, aggregation of ɑ-synuclein, and behavioral abnormalities, which are known features of PD pathology, by rotenone exposure at an environmentally relevant concentration (30 nM) in developing zebrafish embryos. Our results provide direct evidence for the association between PD and muscle degeneration by confirming rotenone-induced muscle atrophy. Therefore, we conclude that the rotenone-induced model presents non-motor and motor defects with extensive studies related to muscle atrophy.
Collapse
Affiliation(s)
- Thilini Ranasinghe
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea
| | - Yongbo Seo
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea; Sacopenia Total Solution Center, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea; Department of Aquatic Life Medicine, Hanseo University, Seosan-si 31962, Republic of Korea; Institute for International Fisheries Science, Hanseo University, Seosan-si 31962, Republic of Korea.
| |
Collapse
|
4
|
Nord C, Jones I, Garcia-Maestre M, Hägglund AC, Carlsson L. Reduced mTORC1-signaling in progenitor cells leads to retinal lamination deficits. Dev Dyn 2024; 253:922-939. [PMID: 38546215 DOI: 10.1002/dvdy.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Neuronal lamination is a hallmark of the mammalian central nervous system (CNS) and underlies connectivity and function. Initial formation of this tissue architecture involves the integration of various signaling pathways that regulate the differentiation and migration of neural progenitor cells. RESULTS Here, we demonstrate that mTORC1 mediates critical roles during neuronal lamination using the mouse retina as a model system. Down-regulation of mTORC1-signaling in retinal progenitor cells by conditional deletion of Rptor led to decreases in proliferation and increased apoptosis during embryogenesis. These developmental deficits preceded aberrant lamination in adult animals which was best exemplified by the fusion of the outer and inner nuclear layer and the absence of an outer plexiform layer. Moreover, ganglion cell axons originating from each Rptor-ablated retina appeared to segregate to an equal degree at the optic chiasm with both contralateral and ipsilateral projections displaying overlapping termination topographies within several retinorecipient nuclei. In combination, these visual pathway defects led to visually mediated behavioral deficits. CONCLUSIONS This study establishes a critical role for mTORC1-signaling during retinal lamination and demonstrates that this pathway regulates diverse developmental mechanisms involved in driving the stratified arrangement of neurons during CNS development.
Collapse
Affiliation(s)
- Christoffer Nord
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | | | | | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Wilson ML, Romano SN, Khatri N, Aharon D, Liu Y, Kaufman OH, Draper BW, Marlow FL. Rbpms2 promotes female fate upstream of the nutrient sensing Gator2 complex component Mios. Nat Commun 2024; 15:5248. [PMID: 38898112 PMCID: PMC11187175 DOI: 10.1038/s41467-024-49613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Reproductive success relies on proper establishment and maintenance of biological sex. In many animals, including mammals, the primary gonad is initially ovary biased. We previously showed the RNA binding protein (RNAbp), Rbpms2, is required for ovary fate in zebrafish. Here, we identified Rbpms2 targets in oocytes (Rbpms2-bound oocyte RNAs; rboRNAs). We identify Rbpms2 as a translational regulator of rboRNAs, which include testis factors and ribosome biogenesis factors. Further, genetic analyses indicate that Rbpms2 promotes nucleolar amplification via the mTorc1 signaling pathway, specifically through the mTorc1-activating Gap activity towards Rags 2 (Gator2) component, Missing oocyte (Mios). Cumulatively, our findings indicate that early gonocytes are in a dual poised, bipotential state in which Rbpms2 acts as a binary fate-switch. Specifically, Rbpms2 represses testis factors and promotes oocyte factors to promote oocyte progression through an essential Gator2-mediated checkpoint, thereby integrating regulation of sexual differentiation factors and nutritional availability pathways in zebrafish oogenesis.
Collapse
Affiliation(s)
- Miranda L Wilson
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020, New York, NY, USA
| | - Shannon N Romano
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020, New York, NY, USA
| | - Nitya Khatri
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020, New York, NY, USA
| | - Devora Aharon
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020, New York, NY, USA
| | - Yulong Liu
- Department of Molecular and Cellular Biology. University of California. 1 Shields Ave, Davis, CA, USA
| | - Odelya H Kaufman
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bruce W Draper
- Department of Molecular and Cellular Biology. University of California. 1 Shields Ave, Davis, CA, USA
| | - Florence L Marlow
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020, New York, NY, USA.
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Karalis V, Wood D, Teaney NA, Sahin M. The role of TSC1 and TSC2 proteins in neuronal axons. Mol Psychiatry 2024; 29:1165-1178. [PMID: 38212374 DOI: 10.1038/s41380-023-02402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Tuberous Sclerosis Complex 1 and 2 proteins, TSC1 and TSC2 respectively, participate in a multiprotein complex with a crucial role for the proper development and function of the nervous system. This complex primarily acts as an inhibitor of the mechanistic target of rapamycin (mTOR) kinase, and mutations in either TSC1 or TSC2 cause a neurodevelopmental disorder called Tuberous Sclerosis Complex (TSC). Neurological manifestations of TSC include brain lesions, epilepsy, autism, and intellectual disability. On the cellular level, the TSC/mTOR signaling axis regulates multiple anabolic and catabolic processes, but it is not clear how these processes contribute to specific neurologic phenotypes. Hence, several studies have aimed to elucidate the role of this signaling pathway in neurons. Of particular interest are axons, as axonal defects are associated with severe neurocognitive impairments. Here, we review findings regarding the role of the TSC1/2 protein complex in axons. Specifically, we will discuss how TSC1/2 canonical and non-canonical functions contribute to the formation and integrity of axonal structure and function.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Delaney Wood
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Nicole A Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Chang C, Banerjee SL, Park SS, Zhang XL, Cotnoir-White D, Opperman KJ, Desbois M, Grill B, Kania A. Ubiquitin ligase and signalling hub MYCBP2 is required for efficient EPHB2 tyrosine kinase receptor function. eLife 2024; 12:RP89176. [PMID: 38289221 PMCID: PMC10945567 DOI: 10.7554/elife.89176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in Caenorhabditis elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signalling effector that controls diverse cellular functions.
Collapse
Affiliation(s)
- Chao Chang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Sara L Banerjee
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Sung Soon Park
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Xiao Lei Zhang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
| | | | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- School of Life Sciences, Keele UniversityKeeleUnited Kingdom
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of Washington School of MedicineSeattleUnited States
- Department of Pharmacology, University of Washington School of MedicineSeattleUnited States
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| |
Collapse
|
8
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
9
|
Wilson ML, Romano SN, Khatri N, Aharon D, Liu Y, Kaufman OH, Draper BW, Marlow FL. Rbpms2 promotes female fate upstream of the nutrient sensing Gator2 complex component, Mios. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577235. [PMID: 38328218 PMCID: PMC10849709 DOI: 10.1101/2024.01.25.577235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Reproductive success relies on proper establishment and maintenance of biological sex. In many animals, including mammals, the primary gonad is initially ovary in character. We previously showed the RNA binding protein (RNAbp), Rbpms2, is required for ovary fate in zebrafish. Here, we identified Rbpms2 targets in oocytes (Rbpms2-bound oocyte RNAs; rboRNAs). We identify Rbpms2 as a translational regulator of rboRNAs, which include testis factors and ribosome biogenesis factors. Further, genetic analyses indicate that Rbpms2 promotes nucleolar amplification via the mTorc1 signaling pathway, specifically through the mTorc1-activating Gap activity towards Rags 2 (Gator2) component, Missing oocyte (Mios). Cumulatively, our findings indicate that early gonocytes are in a dual poised, bipotential state in which Rbpms2 acts as a binary fate-switch. Specifically, Rbpms2 represses testis factors and promotes oocyte factors to promote oocyte progression through an essential Gator2-mediated checkpoint, thereby integrating regulation of sexual differentiation factors and nutritional availability pathways in zebrafish oogenesis.
Collapse
Affiliation(s)
- Miranda L. Wilson
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Shannon N. Romano
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Nitya Khatri
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Devora Aharon
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
| | - Yulong Liu
- Department of Molecular and Cellular Biology. University of California. 1 Shields Ave, Davis, CA 95616
| | - Odelya H. Kaufman
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine. 1300 Morris Park Avenue, Bronx, NY 10461
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology. University of California. 1 Shields Ave, Davis, CA 95616
| | - Florence L. Marlow
- Department of Cell, Developmental, and Regenerative Biology. Icahn School of Medicine at Mount Sinai. One Gustave L. Levy Place Box 1020 New York, NY 10029-6574
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine. 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
10
|
Jiang J, Zhang L, Zou J, Liu J, Yang J, Jiang Q, Duan P, Jiang B. Phosphorylated S6K1 and 4E-BP1 play different roles in constitutively active Rheb-mediated retinal ganglion cell survival and axon regeneration after optic nerve injury. Neural Regen Res 2023; 18:2526-2534. [PMID: 37282486 PMCID: PMC10360084 DOI: 10.4103/1673-5374.371372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Ras homolog enriched in brain (Rheb) is a small GTPase that activates mammalian target of rapamycin complex 1 (mTORC1). Previous studies have shown that constitutively active Rheb can enhance the regeneration of sensory axons after spinal cord injury by activating downstream effectors of mTOR. S6K1 and 4E-BP1 are important downstream effectors of mTORC1. In this study, we investigated the role of Rheb/mTOR and its downstream effectors S6K1 and 4E-BP1 in the protection of retinal ganglion cells. We transfected an optic nerve crush mouse model with adeno-associated viral 2-mediated constitutively active Rheb and observed the effects on retinal ganglion cell survival and axon regeneration. We found that overexpression of constitutively active Rheb promoted survival of retinal ganglion cells in the acute (14 days) and chronic (21 and 42 days) stages of injury. We also found that either co-expression of the dominant-negative S6K1 mutant or the constitutively active 4E-BP1 mutant together with constitutively active Rheb markedly inhibited axon regeneration of retinal ganglion cells. This suggests that mTORC1-mediated S6K1 activation and 4E-BP1 inhibition were necessary components for constitutively active Rheb-induced axon regeneration. However, only S6K1 activation, but not 4E-BP1 knockdown, induced axon regeneration when applied alone. Furthermore, S6K1 activation promoted the survival of retinal ganglion cells at 14 days post-injury, whereas 4E-BP1 knockdown unexpectedly slightly decreased the survival of retinal ganglion cells at 14 days post-injury. Overexpression of constitutively active 4E-BP1 increased the survival of retinal ganglion cells at 14 days post-injury. Likewise, co-expressing constitutively active Rheb and constitutively active 4E-BP1 markedly increased the survival of retinal ganglion cells compared with overexpression of constitutively active Rheb alone at 14 days post-injury. These findings indicate that functional 4E-BP1 and S6K1 are neuroprotective and that 4E-BP1 may exert protective effects through a pathway at least partially independent of Rheb/mTOR. Together, our results show that constitutively active Rheb promotes the survival of retinal ganglion cells and axon regeneration through modulating S6K1 and 4E-BP1 activity. Phosphorylated S6K1 and 4E-BP1 promote axon regeneration but play an antagonistic role in the survival of retinal ganglion cells.
Collapse
Affiliation(s)
- Jikuan Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Lusi Zhang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jingling Zou
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jingyuan Liu
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Jia Yang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Qian Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Peiyun Duan
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| | - Bing Jiang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan Province, China
| |
Collapse
|
11
|
Chang C, Banerjee SL, Park SS, Zhang X, Cotnoir-White D, Opperman KJ, Desbois M, Grill B, Kania A. Ubiquitin ligase and signalling hub MYCBP2 is required for efficient EPHB2 tyrosine kinase receptor function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544638. [PMID: 37693478 PMCID: PMC10491099 DOI: 10.1101/2023.06.12.544638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in C. elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signaling effector that controls diverse cellular functions.
Collapse
Affiliation(s)
- Chao Chang
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Sara L. Banerjee
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
| | - Sung Soon Park
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Xiaolei Zhang
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - David Cotnoir-White
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| |
Collapse
|
12
|
Gąssowska-Dobrowolska M, Czapski GA, Cieślik M, Zajdel K, Frontczak-Baniewicz M, Babiec L, Adamczyk A. Microtubule Cytoskeletal Network Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2023; 24:7303. [PMID: 37108467 PMCID: PMC10138344 DOI: 10.3390/ijms24087303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic multisystem disorder caused by loss-of-function mutations in the tumour suppressors TSC1/TSC2, both of which are negative regulators of the mammalian target of rapamycin (mTOR) kinase. Importantly, mTOR hyperactivity seems to be linked with the pathobiology of autism spectrum disorders (ASD). Recent studies suggest the potential involvement of microtubule (MT) network dysfunction in the neuropathology of "mTORopathies", including ASD. Cytoskeletal reorganization could be responsible for neuroplasticity disturbances in ASD individuals. Thus, the aim of this work was to study the effect of Tsc2 haploinsufficiency on the cytoskeletal pathology and disturbances in the proteostasis of the key cytoskeletal proteins in the brain of a TSC mouse model of ASD. Western-blot analysis indicated significant brain-structure-dependent abnormalities in the microtubule-associated protein Tau (MAP-Tau), and reduced MAP1B and neurofilament light (NF-L) protein level in 2-month-old male B6;129S4-Tsc2tm1Djk/J mice. Alongside, pathological irregularities in the ultrastructure of both MT and neurofilament (NFL) networks as well as swelling of the nerve endings were demonstrated. These changes in the level of key cytoskeletal proteins in the brain of the autistic-like TSC mice suggest the possible molecular mechanisms responsible for neuroplasticity alterations in the ASD brain.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Karolina Zajdel
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Lodovichi C, Ratto GM. Control of circadian rhythm on cortical excitability and synaptic plasticity. Front Neural Circuits 2023; 17:1099598. [PMID: 37063387 PMCID: PMC10098176 DOI: 10.3389/fncir.2023.1099598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/09/2023] [Indexed: 04/18/2023] Open
Abstract
Living organisms navigate through a cyclic world: activity, feeding, social interactions are all organized along the periodic succession of night and day. At the cellular level, periodic activity is controlled by the molecular machinery driving the circadian regulation of cellular homeostasis. This mechanism adapts cell function to the external environment and its crucial importance is underlined by its robustness and redundancy. The cell autonomous clock regulates cell function by the circadian modulation of mTOR, a master controller of protein synthesis. Importantly, mTOR integrates the circadian modulation with synaptic activity and extracellular signals through a complex signaling network that includes the RAS-ERK pathway. The relationship between mTOR and the circadian clock is bidirectional, since mTOR can feedback on the cellular clock to shift the cycle to maintain the alignment with the environmental conditions. The mTOR and ERK pathways are crucial determinants of synaptic plasticity and function and thus it is not surprising that alterations of the circadian clock cause defective responses to environmental challenges, as witnessed by the bi-directional relationship between brain disorders and impaired circadian regulation. In physiological conditions, the feedback between the intrinsic clock and the mTOR pathway suggests that also synaptic plasticity should undergo circadian regulation.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
| | - Gian Michele Ratto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy
- Padova Neuroscience Center, Universitá degli Studi di Padova, Padova, Italy
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
14
|
Zhou ZX, Xu LJ, Wang HN, Cheng S, Li F, Miao Y, Lei B, Gao F, Wang Z. EphA4/ephrinA3 reverse signaling mediated downregulation of glutamate transporter GLAST in Müller cells in an experimental glaucoma model. Glia 2023; 71:720-741. [PMID: 36416239 DOI: 10.1002/glia.24307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Deficiency of glutamate transporter GLAST in Müller cells may be culpable for excessive extracellular glutamate, which involves in retinal ganglion cell (RGC) damage in glaucoma. We elucidated how GLAST was regulated in rat chronic ocular hypertension (COH) model. Western blot and whole-cell patch-clamp recordings showed that GLAST proteins and GLAST-mediated current densities in Müller cells were downregulated at the early stages of COH. In normal rats, intravitreal injection of the ephrinA3 activator EphA4-Fc mimicked the changes of GLAST in COH retinas. In purified cultured Müller cells, EphA4-Fc treatment reduced GLAST expression at mRNA and protein levels, which was reversed by the tyrosine kinase inhibitor PP2 or transfection with ephrinA3-siRNA (Si-EFNA3), suggesting that EphA4/ephrinA3 reverse signaling mediated GLAST downregulation. EphA4/ephrinA3 reverse signaling-induced GLAST downregulation was mediated by inhibiting PI3K/Akt/NF-κB pathways since EphA4-Fc treatment of cultured Müller cells reduced the levels of p-Akt/Akt and NF-κB p65, which were reversed by transfecting Si-EFNA3. In Müller cells with ephrinA3 knockdown, the PI3K inhibitor LY294002 still decreased the protein levels of NF-κB p65 in the presence of EphA4-Fc, and the mRNA levels of GLAST were reduced by LY294002 and the NF-κB inhibitor SN50, respectively. Pre-injection of the PI3K/Akt pathway activator 740 Y-P reversed the GLAST downregulation in COH retinas. Western blot and TUNEL staining showed that transfecting of Si-EFNA3 reduced Müller cell gliosis and RGC apoptosis in COH retinas. Our results suggest that activated EphA4/ephrinA3 reverse signaling induces GLAST downregulation in Müller cells via inhibiting PI3K/Akt/NF-κB pathways, thus contributing to RGC damage in glaucoma.
Collapse
Affiliation(s)
- Zhi-Xin Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Institutes of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Feng Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Xu LJ, Wang HN, Zhou H, Li SY, Li F, Miao Y, Lei B, Sun XH, Gao F, Wang Z. EphA4/ephrinA3 reverse signaling induced Müller cell gliosis and production of pro-inflammatory cytokines in experimental glaucoma. Brain Res 2023; 1801:148204. [PMID: 36529265 DOI: 10.1016/j.brainres.2022.148204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Previous work showed that ephrinA3/EphA4 forward signaling contributed to retinal ganglion cell (RGC) damage in experimental glaucoma. Since up-regulated patterns of ephrinA3 and EphA4 were observed in Müller cells and RGCs, an EphA4/ephrinA3 reverse signaling may exist in Müller cells of chronic ocular hypertension (COH) retina. We investigated effects of EphA4/ephrinA3 reverse signaling activation on Müller cells in COH retina. Intravitreal injection of the ephrinA3 agonist EphA4-Fc increased glial fibrillary acidic protein (GFAP) levels in normal retinas, suggestive of Müller cell gliosis, which was confirmed in purified cultured Müller cells treated with EphA4-Fc. These effects were mediated by intracellular STAT3 signaling pathway as phosphorylated STAT3 (p-STAT3) levels and ratios of p-STAT3/STAT3 were significantly increased in both COH retinas and EphA4-Fc intravitreally injected retinas, as well as in EphA4-Fc treated purified cultured Müller cells. The increase of GFAP protein levels in EphA4-Fc-injected retinas and EphA4-Fc treated purified cultured Müller cells could be partially eliminated by stattic, a selective STAT3 blocker. Co-immunoprecipitation results testified to the presence of interaction between ephrinA3 and STAT3/p-STAT3. In addition, intravitreal injection of EphA4-Fc or EphA4-Fc treatment of cultured Müller cells significantly up-regulated mRNA and protein contents of pro-inflammatory cytokines. Moreover, intravitreal injection of EphA4-Fc increased the number of apoptotic RGCs, which could be reversed by the tyrosine kinase blocker PP2. Overall, EphA4/ephrinA3 reverse signaling may induce Müller cell gliosis and increases release of pro-inflammatory factors, which could contribute to RGC death in glaucoma. Inhibition of EphA4/ephrinA3 signaling may provide an effective neuroprotection in glaucoma.
Collapse
Affiliation(s)
- Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Han Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Shu-Ying Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Bo Lei
- Institute of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, China
| | - Xing-Huai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| | - Feng Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Developing Novel Experimental Models of m-TORopathic Epilepsy and Related Neuropathologies: Translational Insights from Zebrafish. Int J Mol Sci 2023; 24:ijms24021530. [PMID: 36675042 PMCID: PMC9866103 DOI: 10.3390/ijms24021530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an important molecular regulator of cell growth and proliferation. Brain mTOR activity plays a crucial role in synaptic plasticity, cell development, migration and proliferation, as well as memory storage, protein synthesis, autophagy, ion channel expression and axonal regeneration. Aberrant mTOR signaling causes a diverse group of neurological disorders, termed 'mTORopathies'. Typically arising from mutations within the mTOR signaling pathway, these disorders are characterized by cortical malformations and other neuromorphological abnormalities that usually co-occur with severe, often treatment-resistant, epilepsy. Here, we discuss recent advances and current challenges in developing experimental models of mTOR-dependent epilepsy and other related mTORopathies, including using zebrafish models for studying these disorders, as well as outline future directions of research in this field.
Collapse
|
17
|
Dumrongprechachan V, Salisbury RB, Butler L, MacDonald ML, Kozorovitskiy Y. Dynamic proteomic and phosphoproteomic atlas of corticostriatal axons in neurodevelopment. eLife 2022; 11:e78847. [PMID: 36239373 PMCID: PMC9629834 DOI: 10.7554/elife.78847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mammalian axonal development begins in embryonic stages and continues postnatally. After birth, axonal proteomic landscape changes rapidly, coordinated by transcription, protein turnover, and post-translational modifications. Comprehensive profiling of axonal proteomes across neurodevelopment is limited, with most studies lacking cell-type and neural circuit specificity, resulting in substantial information loss. We create a Cre-dependent APEX2 reporter mouse line and map cell-type-specific proteome of corticostriatal projections across postnatal development. We synthesize analysis frameworks to define temporal patterns of axonal proteome and phosphoproteome, identifying co-regulated proteins and phosphorylations associated with genetic risk for human brain disorders. We discover proline-directed kinases as major developmental regulators. APEX2 transgenic reporter proximity labeling offers flexible strategies for subcellular proteomics with cell type specificity in early neurodevelopment, a critical period for neuropsychiatric disease.
Collapse
Affiliation(s)
- Vasin Dumrongprechachan
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- The Chemistry of Life Processes Institute, Northwestern UniversityEvanstonUnited States
| | - Ryan B Salisbury
- Department of Psychiatry, University of PittsburghPittsburghUnited States
| | - Lindsey Butler
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | | | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
- The Chemistry of Life Processes Institute, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
18
|
De Meulemeester AS, Heylen L, Siekierska A, Mills JD, Romagnolo A, Van Der Wel NN, Aronica E, de Witte PAM. Hyperactivation of mTORC1 in a double hit mutant zebrafish model of tuberous sclerosis complex causes increased seizure susceptibility and neurodevelopmental abnormalities. Front Cell Dev Biol 2022; 10:952832. [PMID: 36238691 PMCID: PMC9552079 DOI: 10.3389/fcell.2022.952832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a multisystem genetic disorder caused by pathogenic variants in TSC1 and TSC2 genes. TSC patients present with seizures and brain abnormalities such as tubers and subependymal giant cells astrocytoma (SEGA). Despite common molecular and clinical features, the severity of the disease varies greatly, even intrafamilially. The second hit hypothesis suggests that an additional, inactivating mutation in the remaining functional allele causes a more severe phenotype and therefore explains the phenotypic variability. Recently, second hit mutations have been detected frequently in mTORopathies. To investigate the pathophysiological effects of second hit mutations, several mouse models have been developed. Here, we opted for a double mutant zebrafish model that carries a LOF mutation both in the tsc2 and the depdc5 gene. To the best of our knowledge, this is the first time a second-hit model has been studied in zebrafish. Significantly, the DEP domain-containing protein 5 (DEPDC5) gene has an important role in the regulation of mTORC1, and the combination of a germline TSC2 and somatic DEPDC5 mutation has been described in a TSC patient with intractable epilepsy. Our depdc5−/−x tsc2−/− double mutant zebrafish line displayed greatly increased levels of mammalian target of rapamycin (mTORC1) activity, augmented seizure susceptibility, and early lethality which could be rescued by rapamycin. Histological analysis of the brain revealed ventricular dilatation in the tsc2 and double homozygotes. RNA-sequencing showed a linear relation between the number of differentially expressed genes (DEGs) and the degree of mTORC1 hyperactivity. Enrichment analysis of their transcriptomes revealed that many genes associated with neurological developmental processes were downregulated and mitochondrial genes were upregulated. In particular, the transcriptome of human SEGA lesions overlapped strongly with the double homozygous zebrafish larvae. The data highlight the clinical relevance of the depdc5−/− x tsc2−/− double mutant zebrafish larvae that showed a more severe phenotype compared to the single mutants. Finally, analysis of gene-drug interactions identified interesting pharmacological targets for SEGA, underscoring the value of our small zebrafish vertebrate model for future drug discovery efforts.
Collapse
Affiliation(s)
| | - Lise Heylen
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | | | - James D. Mills
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom
| | - Alessia Romagnolo
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Nicole N. Van Der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instelling Nederland (SEIN), Heemstede, Netherlands
| | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
- *Correspondence: Peter A. M. de Witte,
| |
Collapse
|
19
|
Li Y, Su P, Chen Y, Nie J, Yuan TF, Wong AH, Liu F. The Eph receptor A4 plays a role in demyelination and depression-related behavior. J Clin Invest 2022; 132:e152187. [PMID: 35271507 PMCID: PMC9012277 DOI: 10.1172/jci152187] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Proper myelination of axons is crucial for normal sensory, motor, and cognitive function. Abnormal myelination is seen in brain disorders such as major depressive disorder (MDD), but the molecular mechanisms connecting demyelination with the pathobiology remain largely unknown. We observed demyelination and synaptic deficits in mice exposed to either chronic, unpredictable mild stress (CUMS) or LPS, 2 paradigms for inducing depression-like states. Pharmacological restoration of myelination normalized both synaptic deficits and depression-related behaviors. Furthermore, we found increased ephrin A4 receptor (EphA4) expression in the excitatory neurons of mice subjected to CUMS, and shRNA knockdown of EphA4 prevented demyelination and depression-like behaviors. These animal data are consistent with the decrease in myelin basic protein and the increase in EphA4 levels we observed in postmortem brain samples from patients with MDD. Our results provide insights into the etiology of depressive symptoms in some patients and suggest that inhibition of EphA4 or the promotion of myelination could be a promising strategy for treating depression.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
| | - Yuxiang Chen
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jing Nie
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Albert H.C. Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Departments of Psychiatry
- Institutes of Medical Science
- Pharmacology and Toxicology, and
| | - Fang Liu
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Departments of Psychiatry
- Institutes of Medical Science
- Physiology at the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Villa-González M, Martín-López G, Pérez-Álvarez MJ. Dysregulation of mTOR Signaling after Brain Ischemia. Int J Mol Sci 2022; 23:ijms23052814. [PMID: 35269956 PMCID: PMC8911477 DOI: 10.3390/ijms23052814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this review, we provide recent data on the role of mTOR kinase in the brain under physiological conditions and after damage, with a particular focus on cerebral ischemia. We cover the upstream and downstream pathways that regulate the activation state of mTOR complexes. Furthermore, we summarize recent advances in our understanding of mTORC1 and mTORC2 status in ischemia–hypoxia at tissue and cellular levels and analyze the existing evidence related to two types of neural cells, namely glia and neurons. Finally, we discuss the potential use of mTORC1 and mTORC2 as therapeutic targets after stroke.
Collapse
Affiliation(s)
- Mario Villa-González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
| | - Gerardo Martín-López
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
| | - María José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-2819
| |
Collapse
|
21
|
Hippocampal mTOR Dysregulation and Morphological Changes in Male Rats after Fetal Growth Restriction. Nutrients 2022; 14:nu14030451. [PMID: 35276811 PMCID: PMC8839133 DOI: 10.3390/nu14030451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal growth restriction (FGR) has been linked to long-term neurocognitive impairment, especially in males. To determine possible underlying mechanisms, we examined hippocampal cellular composition and mTOR signaling of male rat FGR offspring during main brain growth and development (postnatal days (PND) 1 and 12). FGR was either induced by a low-protein diet throughout pregnancy, experimental placental insufficiency by bilateral uterine vessel ligation or intrauterine stress by “sham” operation. Offspring after unimpaired gestation served as common controls. Low-protein diet led to a reduced cell density in the molecular dentate gyrus subregion, while intrauterine surgical stress was associated with increased cell density in the cellular CA2 subregion. Experimental placental insufficiency caused increased mTOR activation on PND 1, whereas intrauterine stress led to mTOR activation on PND 1 and 12. To determine long-term effects, we additionally examined mTOR signaling and Tau phosphorylation, which is altered in neurodegenerative diseases, on PND 180, but did not find any changes among the experimental groups. Our findings suggest that hippocampal cellular proliferation and mTOR signaling are dysregulated in different ways depending on the cause of FGR. While a low-protein diet induced a decreased cell density, prenatal surgical stress caused hyperproliferation, possibly via increased mTOR signaling.
Collapse
|
22
|
Koppers M, Holt CE. Receptor-Ribosome Coupling: A Link Between Extrinsic Signals and mRNA Translation in Neuronal Compartments. Annu Rev Neurosci 2022; 45:41-61. [DOI: 10.1146/annurev-neuro-083021-110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axons receive extracellular signals that help to guide growth and synapse formation during development and to maintain neuronal function and survival during maturity. These signals relay information via cell surface receptors that can initiate local intracellular signaling at the site of binding, including local messenger RNA (mRNA) translation. Direct coupling of translational machinery to receptors provides an attractive way to activate this local mRNA translation and change the local proteome with high spatiotemporal resolution. Here, we first discuss the increasing evidence that different external stimuli trigger translation of specific subsets of mRNAs in axons via receptors and thus play a prominent role in various processes in both developing and mature neurons. We then discuss the receptor-mediated molecular mechanisms that regulate local mRNA translational with a focus on direct receptor-ribosome coupling. We advance the idea that receptor-ribosome coupling provides several advantages over other translational regulation mechanisms and is a common mechanism in cell communication. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Max Koppers
- Department of Biology, Division of Cell Biology, Neurobiology and Biophysics, Utrecht University, Utrecht, The Netherlands
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Anaby D, Shrot S, Belenky E, Ben-Zeev B, Tzadok M. Neurite density of white matter significantly correlates with tuberous sclerosis complex disease severity. NEUROIMAGE: CLINICAL 2022; 35:103085. [PMID: 35780663 PMCID: PMC9421460 DOI: 10.1016/j.nicl.2022.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Whole-brain white matter neurite density significantly reduces with TSC severity. A white matter quantification may be important for the evaluation of TSC patients. Low neurite density clusters are larger in severe TSC patients. Neurite density is an accurate MRI metric for the evaluation of TSC white-matter.
Objective To assess whether white matter (WM) diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) derived measures correlate with tuberous sclerosis complex (TSC) disease severity. Cohort and methods A multi-shell diffusion protocol was added to the clinical MRI brain scans of thirteen patients including 6 males and 7 females with a mean ± std age of 17.2 ± 5.8 years. Fractional anisotropy (FA) and mean diffusivity (MD) were generated from DTI and neurite density index (NDI), orientation dispersion index (ODI) and free water index (fiso) were generated from NODDI. A clinical score was determined for each patient according to the existence of epilepsy, developmental delay, autism or psychiatric disorders. Whole-brain segmented WM was averaged for each parametric map and 3 group k-means clustering was performed on the NDI and FA maps. MRI quantitative parameters were correlated with the clinical scores. Results Segmented whole brain WM averages of MD and NDI values showed significant negative (p = 0.0058) and positive (p = 0.0092) correlations with the clinical scores, respectively. Additionally, the contribution of the low and high NDI-based clusters to the whole brain WM significantly correlated with the clinical scores (p = 0.03 and p = 0.00047, respectively). No correlation was found when the clusters were based on the FA maps. Conclusion Advanced diffusion MRI of TSC patients revealed widespread WM alterations. Neurite density showed significant correlations with disease severity and is therefore suggested to reflect an underlying biological process in TSC WM. The quantification of WM alterations by advanced diffusion MRI may be an additional biomarker for TSC and may be advantageous as a complementary MR protocol for the evaluation of TSC patients.
Collapse
|
24
|
Yan Y, Tian M, Li M, Zhou G, Chen Q, Xu M, Hu Y, Luo W, Guo X, Zhang C, Xie H, Wu QF, Xiong W, Liu S, Guan JS. ASH1L haploinsufficiency results in autistic-like phenotypes in mice and links Eph receptor gene to autism spectrum disorder. Neuron 2022; 110:1156-1172.e9. [DOI: 10.1016/j.neuron.2021.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/23/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
|
25
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
26
|
M Gagné L, Morin N, Lavoie N, Bisson N, Lambert JP, Mallette FA, Huot MÉ. Tyrosine phosphorylation of DEPTOR functions as a molecular switch to activate mTOR signaling. J Biol Chem 2021; 297:101291. [PMID: 34634301 PMCID: PMC8551655 DOI: 10.1016/j.jbc.2021.101291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
Metabolic dysfunction is a major driver of tumorigenesis. The serine/threonine kinase mechanistic target of rapamycin (mTOR) constitutes a key central regulator of metabolic pathways promoting cancer cell proliferation and survival. mTOR activity is regulated by metabolic sensors as well as by numerous factors comprising the phosphatase and tensin homolog/PI3K/AKT canonical pathway, which are often mutated in cancer. However, some cancers displaying constitutively active mTOR do not carry alterations within this canonical pathway, suggesting alternative modes of mTOR regulation. Since DEPTOR, an endogenous inhibitor of mTOR, was previously found to modulate both mTOR complexes 1 and 2, we investigated the different post-translational modification that could affect its inhibitory function. We found that tyrosine (Tyr) 289 phosphorylation of DEPTOR impairs its interaction with mTOR, leading to increased mTOR activation. Using proximity biotinylation assays, we identified SYK (spleen tyrosine kinase) as a kinase involved in DEPTOR Tyr 289 phosphorylation in an ephrin (erythropoietin-producing hepatocellular carcinoma) receptor–dependent manner. Altogether, our work reveals that phosphorylation of Tyr 289 of DEPTOR represents a novel molecular switch involved in the regulation of both mTOR complex 1 and mTOR complex 2.
Collapse
Affiliation(s)
- Laurence M Gagné
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, Quebec, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Nadine Morin
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, Quebec, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Noémie Lavoie
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, Quebec, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; PROTEO - Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Québec, Quebec, Canada
| | - Nicolas Bisson
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, Quebec, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; PROTEO - Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Québec, Quebec, Canada; Département de Biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, Quebec, Canada
| | - Jean-Philippe Lambert
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, Quebec, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada
| | - Frédérick A Mallette
- Département de Biochimie et Médecine moléculaire, Université de Montréal, Montréal, Quebec, Canada; Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada; Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Marc-Étienne Huot
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, Quebec, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Biologie moléculaire, biochimie médicale et pathologie, Université Laval, Québec, Quebec, Canada.
| |
Collapse
|
27
|
Scherrer B, Prohl AK, Taquet M, Kapur K, Peters JM, Tomas-Fernandez X, Davis PE, M Bebin E, Krueger DA, Northrup H, Y Wu J, Sahin M, Warfield SK. The Connectivity Fingerprint of the Fusiform Gyrus Captures the Risk of Developing Autism in Infants with Tuberous Sclerosis Complex. Cereb Cortex 2021; 30:2199-2214. [PMID: 31812987 DOI: 10.1093/cercor/bhz233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder characterized by benign tumors throughout the body; it is generally diagnosed early in life and has a high prevalence of autism spectrum disorder (ASD), making it uniquely valuable in studying the early development of autism, before neuropsychiatric symptoms become apparent. One well-documented deficit in ASD is an impairment in face processing. In this work, we assessed whether anatomical connectivity patterns of the fusiform gyrus, a central structure in face processing, capture the risk of developing autism early in life. We longitudinally imaged TSC patients at 1, 2, and 3 years of age with diffusion compartment imaging. We evaluated whether the anatomical connectivity fingerprint of the fusiform gyrus was associated with the risk of developing autism measured by the Autism Observation Scale for Infants (AOSI). Our findings suggest that the fusiform gyrus connectivity captures the risk of developing autism as early as 1 year of age and provides evidence that abnormal fusiform gyrus connectivity increases with age. Moreover, the identified connections that best capture the risk of developing autism involved the fusiform gyrus and limbic and paralimbic regions that were consistent with the ASD phenotype, involving an increased number of left-lateralized structures with increasing age.
Collapse
Affiliation(s)
- Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Anna K Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Maxime Taquet
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Jurriaan M Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Xavier Tomas-Fernandez
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Peter E Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Elizabeth M Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233 USA
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030 USA
| | - Joyce Y Wu
- Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095 USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| |
Collapse
|
28
|
Bassetti D, Luhmann HJ, Kirischuk S. Effects of Mutations in TSC Genes on Neurodevelopment and Synaptic Transmission. Int J Mol Sci 2021; 22:7273. [PMID: 34298906 PMCID: PMC8305053 DOI: 10.3390/ijms22147273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in TSC1 or TSC2 genes are linked to alterations in neuronal function which ultimately lead to the development of a complex neurological phenotype. Here we review current research on the effects that reduction in TSC1 or TSC2 can produce on the developing neural network. A crucial feature of the disease pathophysiology appears to be an early deviation from typical neurodevelopment, in the form of structural abnormalities. Epileptic seizures are one of the primary early manifestation of the disease in the CNS, followed by intellectual deficits and autism spectrum disorders (ASD). Research using mouse models suggests that morphological brain alterations might arise from the interaction of different cellular types, and hyperexcitability in the early postnatal period might be transient. Moreover, the increased excitation-to-inhibition ratio might represent a transient compensatory adjustment to stabilize the developing network rather than a primary factor for the development of ASD symptoms. The inhomogeneous results suggest region-specificity as well as an evolving picture of functional alterations along development. Furthermore, ASD symptoms and epilepsy might originate from different but potentially overlapping mechanisms, which can explain recent observations obtained in patients. Potential treatment is determined not only by the type of medicament, but also by the time point of treatment.
Collapse
Affiliation(s)
- Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany; (H.J.L.); (S.K.)
| | | | | |
Collapse
|
29
|
Proietti Onori M, Koene LMC, Schäfer CB, Nellist M, de Brito van Velze M, Gao Z, Elgersma Y, van Woerden GM. RHEB/mTOR hyperactivity causes cortical malformations and epileptic seizures through increased axonal connectivity. PLoS Biol 2021; 19:e3001279. [PMID: 34038402 PMCID: PMC8186814 DOI: 10.1371/journal.pbio.3001279] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 06/08/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Hyperactivation of the mammalian target of rapamycin (mTOR) pathway can cause malformation of cortical development (MCD) with associated epilepsy and intellectual disability (ID) through a yet unknown mechanism. Here, we made use of the recently identified dominant-active mutation in Ras Homolog Enriched in Brain 1 (RHEB), RHEBp.P37L, to gain insight in the mechanism underlying the epilepsy caused by hyperactivation of the mTOR pathway. Focal expression of RHEBp.P37L in mouse somatosensory cortex (SScx) results in an MCD-like phenotype, with increased mTOR signaling, ectopic localization of neurons, and reliable generalized seizures. We show that in this model, the mTOR-dependent seizures are caused by enhanced axonal connectivity, causing hyperexcitability of distally connected neurons. Indeed, blocking axonal vesicle release from the RHEBp.P37L neurons alone completely stopped the seizures and normalized the hyperexcitability of the distally connected neurons. These results provide new evidence of the extent of anatomical and physiological abnormalities caused by mTOR hyperactivity, beyond local malformations, which can lead to generalized epilepsy. Hyperactivation of the mTOR pathway can cause cortical malformations and epilepsy. This study reveals that these effects can be uncoupled and that mTOR hyperactivity in a limited set of neurons induces hyperexcitability in non-targeted, healthy neurons, suggesting that it is actually these changes that may underlie mTOR-driven epileptogenesis.
Collapse
Affiliation(s)
- Martina Proietti Onori
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Linda M. C. Koene
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Carmen B. Schäfer
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid Holland, the Netherlands
| | | | - Zhenyu Gao
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid Holland, the Netherlands
- * E-mail: (YE); (GMvW)
| | - Geeske M. van Woerden
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid Holland, the Netherlands
- * E-mail: (YE); (GMvW)
| |
Collapse
|
30
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
31
|
Sharma A, Mehan S. Targeting PI3K-AKT/mTOR signaling in the prevention of autism. Neurochem Int 2021; 147:105067. [PMID: 33992742 DOI: 10.1016/j.neuint.2021.105067] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
PI3K-AKT/mTOR signaling pathway represents an essential signaling mechanism for mammalian enzyme-related receptors in transducing signals or biological processes such as cell development, differentiation, cell survival, protein synthesis, and metabolism. Upregulation of the PI3K-AKT/mTOR signaling pathway involves many human brain abnormalities, including autism and other neurological dysfunctions. Autism is a neurodevelopmental disorder associated with behavior and psychiatric illness. This research-based review discusses the functional relationship between the neuropathogenic factors associated with PI3K-AKT/mTOR signaling pathway. Ultimately causes autism-like conditions associated with genetic alterations, neuronal apoptosis, mitochondrial dysfunction, and neuroinflammation. Therefore, inhibition of the PI3K-AKT/mTOR signaling pathway may have an effective therapeutic value for autism treatment. The current review also summarizes the involvement of PI3K-AKT/mTOR signaling pathway inhibitors in the treatment of autism and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Aarti Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
32
|
RHOA signaling defects result in impaired axon guidance in iPSC-derived neurons from patients with tuberous sclerosis complex. Nat Commun 2021; 12:2589. [PMID: 33972524 PMCID: PMC8110792 DOI: 10.1038/s41467-021-22770-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
Patients with Tuberous Sclerosis Complex (TSC) show aberrant wiring of neuronal connections formed during development which may contribute to symptoms of TSC, such as intellectual disabilities, autism, and epilepsy. Yet models examining the molecular basis for axonal guidance defects in developing human neurons have not been developed. Here, we generate human induced pluripotent stem cell (hiPSC) lines from a patient with TSC and genetically engineer counterparts and isogenic controls. By differentiating hiPSCs, we show that control neurons respond to canonical guidance cues as predicted. Conversely, neurons with heterozygous loss of TSC2 exhibit reduced responses to several repulsive cues and defective axon guidance. While TSC2 is a known key negative regulator of MTOR-dependent protein synthesis, we find that TSC2 signaled through MTOR-independent RHOA in growth cones. Our results suggest that neural network connectivity defects in patients with TSC may result from defects in RHOA-mediated regulation of cytoskeletal dynamics during neuronal development. Patients with Tuberous Sclerosis Complex (TSC) show aberrant wiring of neuronal connections. Here, the authors generate iPSC-derived neurons from patients with TSC. TSC2 +/− neurons show impaired mTOR-independent RhoA signaling-mediated axon guidance.
Collapse
|
33
|
Di Nardo A, Lenoël I, Winden KD, Rühmkorf A, Modi ME, Barrett L, Ercan-Herbst E, Venugopal P, Behne R, Lopes CAM, Kleiman RJ, Bettencourt-Dias M, Sahin M. Phenotypic Screen with TSC-Deficient Neurons Reveals Heat-Shock Machinery as a Druggable Pathway for mTORC1 and Reduced Cilia. Cell Rep 2021; 31:107780. [PMID: 32579942 PMCID: PMC7381997 DOI: 10.1016/j.celrep.2020.107780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/20/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a neurogenetic disorder that leads to elevated mechanistic targeting of rapamycin complex 1 (mTORC1) activity. Cilia can be affected by mTORC1 signaling, and ciliary deficits are associated with neurodevelopmental disorders. Here, we examine whether neuronal cilia are affected in TSC. We show that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. Using high-content image-based assays, we demonstrate that mTORC1 activity inversely correlates with ciliation in TSC1/2-deficientneurons.To investigate the mechanistic relationship between mTORC1 and cilia, we perform a phenotypic screen for mTORC1 inhibitors with TSC1/2-deficient neurons. We identify inhibitors ofthe heat shock protein 90 (Hsp90) that suppress mTORC1 through regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Pharmacological inhibition of Hsp90 rescues ciliation through downregulation of Hsp27. Our study uncovers the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia due to loss of TSC1/2, and it provides broadly applicable platforms for studying TSC-related neuronal dysfunction. Di Nardo et al. find that cortical tubers from TSC patients and mutant mouse brains have fewer cilia. An image-based screening of mTORC1 activity in TSC1/2-deficient neurons leads to the identification of the heat-shock machinery as a druggable signaling node to restore mTORC1 activity and cilia.
Collapse
Affiliation(s)
- Alessia Di Nardo
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isadora Lenoël
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kellen D Winden
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alina Rühmkorf
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Meera E Modi
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lee Barrett
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ebru Ercan-Herbst
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pooja Venugopal
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Behne
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carla A M Lopes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - Robin J Kleiman
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Kútna V, O'Leary VB, Newman E, Hoschl C, Ovsepian SV. Revisiting Brain Tuberous Sclerosis Complex in Rat and Human: Shared Molecular and Cellular Pathology Leads to Distinct Neurophysiological and Behavioral Phenotypes. Neurotherapeutics 2021; 18:845-858. [PMID: 33398801 PMCID: PMC8423952 DOI: 10.1007/s13311-020-01000-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a dominant autosomal genetic disorder caused by loss-of-function mutations in TSC1 and TSC2, which lead to constitutive activation of the mammalian target of rapamycin C1 (mTORC1) with its decoupling from regulatory inputs. Because mTORC1 integrates an array of molecular signals controlling protein synthesis and energy metabolism, its unrestrained activation inflates cell growth and division, resulting in the development of benign tumors in the brain and other organs. In humans, brain malformations typically manifest through a range of neuropsychiatric symptoms, among which mental retardation, intellectual disabilities with signs of autism, and refractory seizures, which are the most prominent. TSC in the rat brain presents the first-rate approximation of cellular and molecular pathology of the human brain, showing many instructive characteristics. Nevertheless, the developmental profile and distribution of lesions in the rat brain, with neurophysiological and behavioral manifestation, deviate considerably from humans, raising numerous research and translational questions. In this study, we revisit brain TSC in human and Eker rats to relate their histopathological, electrophysiological, and neurobehavioral characteristics. We discuss shared and distinct aspects of the pathology and consider factors contributing to phenotypic discrepancies. Given the shared genetic cause and molecular pathology, phenotypic deviations suggest an incomplete understanding of the disease. Narrowing the knowledge gap in the future should not only improve the characterization of the TSC rat model but also explain considerable variability in the clinical manifestation of the disease in humans.
Collapse
Affiliation(s)
- Viera Kútna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Ehren Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic.
| |
Collapse
|
35
|
Cioce M, Fazio VM. EphA2 and EGFR: Friends in Life, Partners in Crime. Can EphA2 Be a Predictive Biomarker of Response to Anti-EGFR Agents? Cancers (Basel) 2021; 13:cancers13040700. [PMID: 33572284 PMCID: PMC7915460 DOI: 10.3390/cancers13040700] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
The Eph receptors represent the largest group among Receptor Tyrosine kinase (RTK) families. The Eph/ephrin signaling axis plays center stage during development, and the deep perturbation of signaling consequent to its dysregulation in cancer reveals the multiplicity and complexity underlying its function. In the last decades, they have emerged as key players in solid tumors, including colorectal cancer (CRC); however, what causes EphA2 to switch between tumor-suppressive and tumor-promoting function is still an active theater of investigation. This review summarizes the recent advances in understanding EphA2 function in cancer, with detail on the molecular determinants of the oncogene-tumor suppressor switch function of EphA2. We describe tumor context-specific examples of EphA2 signaling and the emerging role EphA2 plays in supporting cancer-stem-cell-like populations and overcoming therapy-induced stress. In such a frame, we detail the interaction of the EphA2 and EGFR pathway in solid tumors, including colorectal cancer. We discuss the contribution of the EphA2 oncogenic signaling to the resistance to EGFR blocking agents, including cetuximab and TKIs.
Collapse
Affiliation(s)
- Mario Cioce
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Correspondence: (M.C.); (V.M.F.)
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
- Correspondence: (M.C.); (V.M.F.)
| |
Collapse
|
36
|
Leonard CE, Baydyuk M, Stepler MA, Burton DA, Donoghue MJ. EphA7 isoforms differentially regulate cortical dendrite development. PLoS One 2020; 15:e0231561. [PMID: 33275600 PMCID: PMC7717530 DOI: 10.1371/journal.pone.0231561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
The shape of a neuron facilitates its functionality within neural circuits. Dendrites integrate incoming signals from axons, receiving excitatory input onto small protrusions called dendritic spines. Therefore, understanding dendritic growth and development is fundamental for discerning neural function. We previously demonstrated that EphA7 receptor signaling during cortical development impacts dendrites in two ways: EphA7 restricts dendritic growth early and promotes dendritic spine formation later. Here, the molecular basis for this shift in EphA7 function is defined. Expression analyses reveal that EphA7 full-length (EphA7-FL) and truncated (EphA7-T1; lacking kinase domain) isoforms are dynamically expressed in the developing cortex. Peak expression of EphA7-FL overlaps with dendritic elaboration around birth, while highest expression of EphA7-T1 coincides with dendritic spine formation in early postnatal life. Overexpression studies in cultured neurons demonstrate that EphA7-FL inhibits both dendritic growth and spine formation, while EphA7-T1 increases spine density. Furthermore, signaling downstream of EphA7 shifts during development, such that in vivo inhibition of mTOR by rapamycin in EphA7-mutant neurons ameliorates dendritic branching, but not dendritic spine phenotypes. Finally, direct interaction between EphA7-FL and EphA7-T1 is demonstrated in cultured cells, which results in reduction of EphA7-FL phosphorylation. In cortex, both isoforms are colocalized to synaptic fractions and both transcripts are expressed together within individual neurons, supporting a model where EphA7-T1 modulates EphA7-FL repulsive signaling during development. Thus, the divergent functions of EphA7 during cortical dendrite development are explained by the presence of two variants of the receptor.
Collapse
Affiliation(s)
- Carrie E. Leonard
- Department of Biology, Georgetown University, Washington, DC, United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States of America
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Marissa A. Stepler
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Denver A. Burton
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Maria J. Donoghue
- Department of Biology, Georgetown University, Washington, DC, United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
37
|
Xu LJ, Gao F, Cheng S, Zhou ZX, Li F, Miao Y, Niu WR, Yuan F, Sun XH, Wang Z. Activated ephrinA3/EphA4 forward signaling induces retinal ganglion cell apoptosis in experimental glaucoma. Neuropharmacology 2020; 178:108228. [PMID: 32745487 DOI: 10.1016/j.neuropharm.2020.108228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that EphA4 participates in neuronal injury, and there is a strong interaction between ephrinA3 and EphA4. In this study, we showed that in a rat chronic ocular hypertension (COH) experimental glaucoma model, expression of EphA4 and ephrinA3 proteins was increased in retinal cells, including retinal ganglion cells (RGCs) and Müller cells, which may result in ephrinA3/EphA4 forward signaling activation on RGCs, as evidenced by increased p-EphA4/EphA4 ratio. Intravitreal injection of ephrinA3-Fc, an activator of EphA4, mimicked the effect of COH on p-EphA4/EphA4 and induced an increase in TUNEL-positive signals in normal retinas, which was accompanied by dendritic spine retraction and thinner dendrites in RGCs. Furthermore, Intravitreal injection of ephrinA3-Fc increased the levels of phosphorylated src and GluA2 (p-src and p-GluA2). Co-immunoprecipitation assay demonstrated interactions between EphA4, p-src and GluA2. Intravitreal injection of ephrinA3-Fc reduced the expression of GluA2 proteins on the surface of normal retinal cells, which was prevented by intravitreal injection of PP2, an inhibitor of src-family tyrosine kinases. Pre-injection of PP2 or the Ca2+-permeable GluA2-lacking AMPA receptor inhibitor Naspm significantly and partially reduced the number of TUNEL-positive RGCs in the ephrinA3-Fc-injected and COH retinas. Our results suggest that activated ephrinA3/EphA4 forward signaling promoted GluA2 endocytosis, then resulted in dendritic spine retraction of RGCs, thus contributing to RGC apoptosis in COH rats. Attenuation of the strength of ephrinA/EphA signaling in an appropriate manner may be an effective way for preventing the loss of RGCs in glaucoma.
Collapse
Affiliation(s)
- Lin-Jie Xu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China
| | - Shuo Cheng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi-Xin Zhou
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fang Li
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Ran Niu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Yuan
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China.
| | - Zhongfeng Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
Ucha M, Roura-Martínez D, Ambrosio E, Higuera-Matas A. The role of the mTOR pathway in models of drug-induced reward and the behavioural constituents of addiction. J Psychopharmacol 2020; 34:1176-1199. [PMID: 32854585 DOI: 10.1177/0269881120944159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to drugs of abuse induces neuroadaptations in critical nodes of the so-called reward systems that are thought to mediate the transition from controlled drug use to the compulsive drug-seeking that characterizes addictive disorders. These neural adaptations are likely to require protein synthesis, which is regulated, among others, by the mechanistic target of the rapamycin kinase (mTOR) signalling cascade. METHODS We have performed a narrative review of the literature available in PubMed about the involvement of the mTOR pathway in drug-reward and addiction-related phenomena. AIMS The aim of this study was to review the underlying architecture of this complex intracellular network and to discuss the alterations of its components that are evident after exposure to drugs of abuse. The aim was also to delineate the effects that manipulations of the mTOR network have on models of drug reward and on paradigms that recapitulate some of the psychological components of addiction. RESULTS There is evidence for the involvement of the mTOR pathway in the acute and rewarding effects of drugs of abuse, especially psychostimulants. However, the data regarding opiates are scarce. There is a need to use sophisticated animal models of addiction to ascertain the real role of the mTOR pathway in this pathology and not just in drug-mediated reward. The involvement of this pathway in behavioural addictions and impulsivity should also be studied in detail in the future. CONCLUSIONS Although there is a plethora of data about the modulation of mTOR by drugs of abuse, the involvement of this signalling pathway in addictive disorders requires further research.
Collapse
Affiliation(s)
- Marcos Ucha
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| |
Collapse
|
39
|
Samanta D. An Updated Review of Tuberous Sclerosis Complex-Associated Autism Spectrum Disorder. Pediatr Neurol 2020; 109:4-11. [PMID: 32563542 DOI: 10.1016/j.pediatrneurol.2020.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 01/30/2023]
Abstract
Tuberous sclerosis complex (TSC) is a neurocutaneous disorder caused by mutations of either the TSC1 or TSC2 gene. Various neuropsychiatric features, including autism, are prevalent in TSC. Recently, significant progress has been possible with the prospective calculation of the prevalence of autism in TSC, identification of early clinical and neurophysiological biomarkers to predict autism, and investigation of different therapies to prevent autism in this high-risk population. The author provides a narrative review of recent findings related to biomarkers for diagnosis of autism in TSC, as well as recent studies related to the management of TSC-associated autism. Further sophisticated modeling and analysis are required to understand the role of different models-tuber models, seizures and related neurophysiological factors models, genotype models, and brain connectivity models-to unravel the neurobiological basis of autism in TSC. Early neuropsychologic assessments may be beneficial in this high-risk group. Targeted intervention to improve visual skill, cognition, and fine motor skills with later addition of social skill training can be helpful. Multicenter, prospective studies are ongoing to identify if presymptomatic treatment with vigabatrin in patients with TSC can improve outcomes, including autism. Several studies indicated reasonable safety of everolimus in young children, and its potential application in high-risk infants with TSC, before the closure of the temporal window of permanent changes, maybe undertaken shortly.
Collapse
Affiliation(s)
- Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
40
|
Feliciano DM. The Neurodevelopmental Pathogenesis of Tuberous Sclerosis Complex (TSC). Front Neuroanat 2020; 14:39. [PMID: 32765227 PMCID: PMC7381175 DOI: 10.3389/fnana.2020.00039] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a model disorder for understanding brain development because the genes that cause TSC are known, many downstream molecular pathways have been identified, and the resulting perturbations of cellular events are established. TSC, therefore, provides an intellectual framework to understand the molecular and biochemical pathways that orchestrate normal brain development. The TSC1 and TSC2 genes encode Hamartin and Tuberin which form a GTPase activating protein (GAP) complex. Inactivating mutations in TSC genes (TSC1/TSC2) cause sustained Ras homologue enriched in brain (RHEB) activation of the mammalian isoform of the target of rapamycin complex 1 (mTORC1). TOR is a protein kinase that regulates cell size in many organisms throughout nature. mTORC1 inhibits catabolic processes including autophagy and activates anabolic processes including mRNA translation. mTORC1 regulation is achieved through two main upstream mechanisms. The first mechanism is regulation by growth factor signaling. The second mechanism is regulation by amino acids. Gene mutations that cause too much or too little mTORC1 activity lead to a spectrum of neuroanatomical changes ranging from altered brain size (micro and macrocephaly) to cortical malformations to Type I neoplasias. Because somatic mutations often underlie these changes, the timing, and location of mutation results in focal brain malformations. These mutations, therefore, provide gain-of-function and loss-of-function changes that are a powerful tool to assess the events that have gone awry during development and to determine their functional physiological consequences. Knowledge about the TSC-mTORC1 pathway has allowed scientists to predict which upstream and downstream mutations should cause commensurate neuroanatomical changes. Indeed, many of these predictions have now been clinically validated. A description of clinical imaging and histochemical findings is provided in relation to laboratory models of TSC that will allow the reader to appreciate how human pathology can provide an understanding of the fundamental mechanisms of development.
Collapse
Affiliation(s)
- David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
41
|
Yang F, Sun S, Wang C, Haas M, Yeo S, Guan JL. Targeted therapy for mTORC1-driven tumours through HDAC inhibition by exploiting innate vulnerability of mTORC1 hyper-activation. Br J Cancer 2020; 122:1791-1802. [PMID: 32336756 PMCID: PMC7283252 DOI: 10.1038/s41416-020-0839-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGOUND The mechanistic target of rapamycin complex 1 (mTORC1) is important in the development and progression of many cancers. Targeted cancer therapy using mTORC1 inhibitors is used for treatment of cancers; however, their clinical efficacies are still limited. METHODS We recently created a new mouse model for human lymphangiosarcoma by deleting Tsc1 in endothelial cells and consequent hyper-activation of mTORC1. Using Tsc1iΔEC tumour cells from this mouse model, we assessed the efficacies of histone deacetylase (HDAC) inhibitors as anti-tumour agents for mTORC1-driven tumours. RESULTS Unlike the cytostatic effect of mTORC1 inhibitors, HDAC inhibitors induced Tsc1iΔEC tumour cell death in vitro and their growth in vivo. Analysis of several HDAC inhibitors suggested stronger anti-tumour activity of class I HDAC inhibitor than class IIa or class IIb inhibitors, but these or pan HDAC inhibitor SAHA did not affect mTORC1 activation in these cells. Moreover, HDAC inhibitor-induced cell death required elevated autophagy, but was not affected by disrupting caspase-dependent apoptosis pathways. We also observed increased reactive oxygen species and endoplasmic reticulum stress in SAHA-treated tumour cells, suggesting their contribution to autophagic cell death, which were dependent on mTORC1 hyper-activation. CONCLUSION These studies suggest a potential new treatment strategy for mTORC1-driven cancers like lymphangiosarcoma through an alternative mechanism.
Collapse
Affiliation(s)
- Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Shaogang Sun
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Syn Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
42
|
The Dynein Adaptor RILP Controls Neuronal Autophagosome Biogenesis, Transport, and Clearance. Dev Cell 2020; 53:141-153.e4. [PMID: 32275887 DOI: 10.1016/j.devcel.2020.03.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 12/30/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022]
Abstract
Autophagy plays critical roles in neurodegeneration and development, but how this pathway is organized and regulated in neurons remains poorly understood. Here, we find that the dynein adaptor RILP is essential for retrograde transport of neuronal autophagosomes, and surprisingly, their biogenesis as well. We find that induction of autophagy by mTOR inhibition specifically upregulates RILP expression and its localization to autophagosomes. RILP depletion or mutations in its LC3-binding LIR motifs strongly decrease autophagosome numbers suggesting an unexpected RILP role in autophagosome biogenesis. We find that RILP also interacts with ATG5 on isolation membranes, precluding premature dynein recruitment and autophagosome transport. RILP inhibition impedes autophagic turnover and causes p62/sequestosome-1 aggregation. Together, our results identify an mTOR-responsive neuronal autophagy pathway, wherein RILP integrates the processes of autophagosome biogenesis and retrograde transport to control autophagic turnover. This pathway has important implications for understanding how autophagy contributes to neuronal function, development, and disease.
Collapse
|
43
|
Skelton PD, Stan RV, Luikart BW. The Role of PTEN in Neurodevelopment. MOLECULAR NEUROPSYCHIATRY 2020; 5:60-71. [PMID: 32399470 PMCID: PMC7206585 DOI: 10.1159/000504782] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
PTEN is a lipid and protein phosphatase that regulates cell growth and survival. Mutations to PTEN are highly penetrant for autism spectrum disorder (ASD). Here, we briefly review the evidence linking PTEN mutations to ASD and the mouse models that have been used to study the role of PTEN in neurodevelopment. We then focus on the cellular phenotypes associated with PTEN loss in neurons, highlighting the role PTEN plays in neuronal proliferation, migration, survival, morphology, and plasticity.
Collapse
Affiliation(s)
- Patrick D. Skelton
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Radu V. Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
44
|
Moon GJ, Shin M, Kim SR. Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain. Int J Mol Sci 2020; 21:E2023. [PMID: 32188096 PMCID: PMC7139780 DOI: 10.3390/ijms21062023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Ras homolog protein enriched in brain (Rheb) is a key activator of mammalian target of rapamycin complex 1 (mTORC1). The activation of mTORC1 by Rheb is associated with various processes such as protein synthesis, neuronal growth, differentiation, axonal regeneration, energy homeostasis, autophagy, and amino acid uptake. In addition, Rheb-mTORC1 signaling plays a crucial role in preventing the neurodegeneration of hippocampal neurons in the adult brain. Increasing evidence suggests that the constitutive activation of Rheb has beneficial effects against neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our recent studies revealed that adeno-associated virus serotype 1 (AAV1) transduction with Rheb(S16H), a constitutively active form of Rheb, exhibits neuroprotective properties through the induction of various neurotrophic factors, promoting neurotrophic interactions between neurons and astrocytes in the hippocampus of the adult brain. This review provides compelling evidence for the therapeutic potential of AAV1-Rheb(S16H) transduction in the hippocampus of the adult brain by exploring its neuroprotective effects and mechanisms.
Collapse
Affiliation(s)
- Gyeong Joon Moon
- BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Minsang Shin
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sang Ryong Kim
- BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
45
|
Dickinson A, Varcin KJ, Sahin M, Nelson CA, Jeste SS. Early patterns of functional brain development associated with autism spectrum disorder in tuberous sclerosis complex. Autism Res 2019; 12:1758-1773. [PMID: 31419043 PMCID: PMC6898751 DOI: 10.1002/aur.2193] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 01/12/2023]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder that confers a high risk for autism spectrum disorders (ASD), with behavioral predictors of ASD emerging early in life. Deviations in structural and functional neural connectivity are highly implicated in both TSC and ASD. For the first time, we explore whether electroencephalographic (EEG) measures of neural network function precede or predict the emergence of ASD in TSC. We determine whether altered brain function (a) is present in infancy in TSC, (b) differentiates infants with TSC based on ASD diagnostic status, and (c) is associated with later cognitive function. We studied 35 infants with TSC (N = 35), and a group of typically developing infants (N = 20) at 12 and 24 months of age. Infants with TSC were later subdivided into ASD and non-ASD groups based on clinical evaluation. We measured features of spontaneous alpha oscillations (6-12 Hz) that are closely associated with neural network development: alpha power, alpha phase coherence (APC), and peak alpha frequency (PAF). Infants with TSC demonstrated reduced interhemispheric APC compared to controls at 12 months of age, and these differences were found to be most pronounced at 24 months in the infants who later developed ASD. Across all infants, PAF at 24 months was associated with verbal and nonverbal cognition at 36 months. Associations between early network function and later neurodevelopmental and cognitive outcomes highlight the potential utility of early scalable EEG markers to identify infants with TSC requiring additional targeted intervention initiated very early in life. Autism Res 2019, 12: 1758-1773. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Approximately half of infants with tuberous sclerosis complex (TSC) develop autism. Here, using EEG, we find that there is a reduction in communication between brain regions during infancy in TSC, and that the infants who show the largest reductions are those who later develop autism. Being able to identify infants who show early signs of disrupted brain development may improve the timing of early prediction and interventions in TSC, and also help us to understand how early brain changes lead to autism.
Collapse
Affiliation(s)
- Abigail Dickinson
- UCLA Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, Los Angeles, California
| | - Kandice J Varcin
- Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, Australia
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Graduate School of Education, Cambridge, Massachusetts
| | - Shafali S Jeste
- UCLA Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
46
|
Koppers M, Cagnetta R, Shigeoka T, Wunderlich LCS, Vallejo-Ramirez P, Qiaojin Lin J, Zhao S, Jakobs MAH, Dwivedy A, Minett MS, Bellon A, Kaminski CF, Harris WA, Flanagan JG, Holt CE. Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. eLife 2019; 8:e48718. [PMID: 31746735 PMCID: PMC6894925 DOI: 10.7554/elife.48718] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Extrinsic cues trigger the local translation of specific mRNAs in growing axons via cell surface receptors. The coupling of ribosomes to receptors has been proposed as a mechanism linking signals to local translation but it is not known how broadly this mechanism operates, nor whether it can selectively regulate mRNA translation. We report that receptor-ribosome coupling is employed by multiple guidance cue receptors and this interaction is mRNA-dependent. We find that different receptors associate with distinct sets of mRNAs and RNA-binding proteins. Cue stimulation of growing Xenopus retinal ganglion cell axons induces rapid dissociation of ribosomes from receptors and the selective translation of receptor-specific mRNAs. Further, we show that receptor-ribosome dissociation and cue-induced selective translation are inhibited by co-exposure to translation-repressive cues, suggesting a novel mode of signal integration. Our findings reveal receptor-specific interactomes and suggest a generalizable model for cue-selective control of the local proteome.
Collapse
Affiliation(s)
- Max Koppers
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Roberta Cagnetta
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Toshiaki Shigeoka
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Lucia CS Wunderlich
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Pedro Vallejo-Ramirez
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Julie Qiaojin Lin
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Sixian Zhao
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Maximilian AH Jakobs
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Asha Dwivedy
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael S Minett
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Anaïs Bellon
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Clemens F Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - William A Harris
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - John G Flanagan
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | - Christine E Holt
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
47
|
Wang C, Haas MA, Yang F, Yeo S, Okamoto T, Chen S, Wen J, Sarma P, Plas DR, Guan JL. Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells. Nat Metab 2019; 1:1127-1140. [PMID: 32577608 PMCID: PMC7311104 DOI: 10.1038/s42255-019-0137-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although mTORC1 negatively regulates autophagy in cultured cells, how autophagy impacts mTORC1 signaling, in particular in vivo, is less clear. Here we show that autophagy supports mTORC1 hyperactivation in NSCs lacking Tsc1, thereby promoting defects in NSC maintenance, differentiation, tumourigenesis, and the formation of the neurodevelopmental lesion of Tuberous Sclerosis Complex (TSC). Analysing mice that lack Tsc1 and the essential autophagy gene Fip200 in NSCs we find that TSC-deficient cells require autophagy to maintain mTORC1 hyperactivation under energy stress conditions, likely to provide lipids via lipophagy to serve as an alternative energy source for OXPHOS. In vivo, inhibition of lipophagy or its downstream catabolic pathway reverses defective phenotypes caused by Tsc1-null NSCs and reduces tumorigenesis in mouse models. These results reveal a cooperative function of selective autophagy in coupling energy availability with TSC pathogenesis and suggest a potential new therapeutic strategy to treat TSC patients.
Collapse
Affiliation(s)
- Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Michael A Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Syn Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Takako Okamoto
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Song Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jian Wen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Breast Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pranjal Sarma
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
48
|
Jones I, Hägglund AC, Carlsson L. Reduced mTORC1-signalling in retinal progenitor cells leads to visual pathway dysfunction. Biol Open 2019; 8:bio.044370. [PMID: 31285269 PMCID: PMC6737973 DOI: 10.1242/bio.044370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Development of the vertebrate central nervous system involves the co-ordinated differentiation of progenitor cells and the establishment of functional neural networks. This neurogenic process is driven by both intracellular and extracellular cues that converge on the mammalian target of rapamycin complex 1 (mTORC1). Here we demonstrate that mTORC1-signalling mediates multi-faceted roles during central nervous system development using the mouse retina as a model system. Downregulation of mTORC1-signalling in retinal progenitor cells by conditional ablation of Rptor leads to proliferation deficits and an over-production of retinal ganglion cells during embryonic development. In contrast, reduced mTORC1-signalling in postnatal animals leads to temporal deviations in programmed cell death and the consequent production of asymmetric retinal ganglion cell mosaics and associated loss of axonal termination topographies in the dorsal lateral geniculate nucleus of adult mice. In combination these developmental defects induce visually mediated behavioural deficits. These collective observations demonstrate that mTORC1-signalling mediates critical roles during visual pathway development and function. Summary: Conditional deletion of Rptor in retinal progenitor cells demonstrates that mTORC1-signalling is critical for visual pathway development and function.
Collapse
Affiliation(s)
- Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
| | - Anna-Carin Hägglund
- Umeå Center for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
| | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
49
|
Teotia P, Van Hook MJ, Fischer D, Ahmad I. Human retinal ganglion cell axon regeneration by recapitulating developmental mechanisms: effects of recruitment of the mTOR pathway. Development 2019; 146:dev178012. [PMID: 31273087 PMCID: PMC6633601 DOI: 10.1242/dev.178012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
The poor axon regeneration in the central nervous system (CNS) often leads to permanent functional deficit following disease or injury. For example, degeneration of retinal ganglion cell (RGC) axons in glaucoma leads to irreversible loss of vision. Here, we have tested the hypothesis that the mTOR pathway regulates the development of human RGCs and that its recruitment after injury facilitates axon regeneration. We observed that the mTOR pathway is active during RGC differentiation, and using the induced pluripotent stem cell model of neurogenesis show that it facilitates the differentiation, function and neuritogenesis of human RGCs. Using a microfluidic model, we demonstrate that recruitment of the mTOR pathway facilitates human RGC axon regeneration after axotomy, providing evidence that the recapitulation of developmental mechanism(s) might be a viable approach for facilitating axon regeneration in the diseased or injured human CNS, thus helping to reduce and/or recover loss of function.
Collapse
Affiliation(s)
- Pooja Teotia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew J Van Hook
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dietmar Fischer
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
- Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
50
|
Carlin D, Halevi AE, Ewan EE, Moore AM, Cavalli V. Nociceptor Deletion of Tsc2 Enhances Axon Regeneration by Inducing a Conditioning Injury Response in Dorsal Root Ganglia. eNeuro 2019; 6:ENEURO.0168-19.2019. [PMID: 31182472 PMCID: PMC6595439 DOI: 10.1523/eneuro.0168-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/30/2022] Open
Abstract
Neurons of the PNS are able to regenerate injured axons, a process requiring significant cellular resources to establish and maintain long-distance growth. Genetic activation of mTORC1, a potent regulator of cellular metabolism and protein translation, improves axon regeneration of peripheral neurons by an unresolved mechanism. To gain insight into this process, we activated mTORC1 signaling in mouse nociceptors via genetic deletion of its negative regulator Tsc2. Perinatal deletion of Tsc2 in nociceptors enhanced initial axon growth after sciatic nerve crush, however by 3 d post-injury axon elongation rate became similar to controls. mTORC1 inhibition prior to nerve injury was required to suppress the enhanced axon growth. Gene expression analysis in purified nociceptors revealed that Tsc2-deficient nociceptors had increased activity of regeneration-associated transcription factors (RATFs), including cJun and Atf3, in the absence of injury. Additionally, nociceptor deletion of Tsc2 activated satellite glial cells and macrophages in the dorsal root ganglia (DRG) in a similar manner to nerve injury. Surprisingly, these changes improved axon length but not percentage of initiating axons in dissociated cultures. The pro-regenerative environment in naïve DRG was recapitulated by AAV8-mediated deletion of Tsc2 in adult mice, suggesting that this phenotype does not result from a developmental effect. Consistently, AAV8-mediated Tsc2 deletion did not improve behavioral recovery after a sciatic nerve crush injury despite initially enhanced axon growth. Together, these data show that neuronal mTORC1 activation induces an incomplete pro-regenerative environment in the DRG that improves initial but not later axon growth after nerve injury.
Collapse
Affiliation(s)
- Dan Carlin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Alexandra E Halevi
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric E Ewan
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Amy M Moore
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO 63110
| | - Valeria Cavalli
- Department of Neuroscience, Center of Regenerative Medicine, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|