1
|
Sha S, Zhang M, Ge T, Song L, Wu Z, Zhang H. Behavioral outcomes in the bystander and demonstrator male mice following a socially-transferred allodynia paradigm. Physiol Behav 2025; 294:114880. [PMID: 40101843 DOI: 10.1016/j.physbeh.2025.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
The state of mechanical allodynia can be socially transferred from one individual to another during a brief empathetic contact. Our recent research has identified inter-individual differences in behavioral adaptations among bystander (BY) mice after a brief social contact with a demonstrator mouse experiencing complete Freund's Adjuvant (CFA)-induced inflammatory pain. However, the impact of the duration of social contact on the development of socially transferred allodynia is not yet clear. Additionally, it remains unknown whether social contact with different subgroups of BY mice differentially affects the pain behavior of CFA demonstrator mice. In the current study, we established a socially transferred allodynia paradigm with varying durations of social contact in male C57BL/6 J mice. We found that a 30-min or a longer social exposure to a CFA demonstrator mouse led to stable mechanical allodynia in naive BY mouse. As the duration of social contact increased, the persistence of the socially transferred allodynia also extended. Interestingly, the CFA demonstrator mice exhibited a partial reversal of mechanical allodynia when exposed to the BY mice for 24 h, but not for shorter durations. Surprisingly, this analgesic-like behavioral adaptation occurred only when the BY mice were susceptible to socially transferred allodynia. These findings demonstrate that behavioral adaptations in both BY and CFA demonstrator mice develop in a time-dependent manner. Additionally, the social contact-induced analgesic-like effect in CFA mice requires a specific cage mate that is susceptible to socially transferred allodynia.
Collapse
Affiliation(s)
- Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Moruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Ting Ge
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Zhou Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China.
| |
Collapse
|
2
|
Osborne NR, Hellman KM, Burda EM, Darnell SE, Singh L, Schrepf AD, Walker LS, Tu FF. Multimodal hypersensitivity and somatic symptoms predict adolescent postmenarchal widespread pain. Pain 2025:00006396-990000000-00882. [PMID: 40288817 DOI: 10.1097/j.pain.0000000000003597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/18/2025] [Indexed: 04/29/2025]
Abstract
ABSTRACT Widespread pain in adolescence is linked with poor mental health, pain, and somatic symptoms in childhood. This prospective study in 207 premenarchal adolescents used quantitative sensory testing (QST) and multimodal hypersensitivity (MMH) measures to assess somatosensory system function and identify predictors for widespread pain (≥3/7 sites). We hypothesized that premenarchal pain, somatic symptoms, psychological factors, and somatosensory system function would predict postmenarchal widespread pain, which would be associated with greater menstrual pain intensity. At premenarchal and postmenarchal study visits, participants completed measures of somatic symptoms, a pain body map, psychosocial questionnaires, QST, and experimental MMH measures including auditory, visual, and visceral stimulation. Electroencephalography (EEG) was collected during auditory and visual tasks to identify neural correlates of MMH. Premenarchal widespread pain was reported by 25% of participants, whereas 29% developed new incident widespread pain postmenarche. Adolescents with postmenarchal widespread pain reported greater menstrual pain intensity (median [interquartile range] 47 [28-61]; 0-100 visual analog scale) than those without (24 [8-50], P = 0.001). Elevated somatic symptoms (P = 0.012), stress (P = 0.015), and sensitivity to visceral (bladder filling) (P = 0.046) and unpleasant visual stimuli (P = 0.043) were significant predictors of postmenarche widespread pain. A multivariable regression model found premenarchal body map score (OR = 1.75, 95% CI [1.20, 2.55]), somatic symptoms (OR = 1.47, 95% CI [1.03, 2.11]), and visual hypersensitivity (OR = 1.62, 95% CI [1.12, 2.33]) predicted postmenarchal widespread pain. No EEG differences in early cortical sensory processing were found. Our results suggest that increased sensitivity to multimodal unpleasant and painful stimuli represents a novel risk factor for postmenarche widespread pain.
Collapse
Affiliation(s)
- Natalie R Osborne
- Department of Obstetrics & Gynecology, Endeavor Health, Evanston, IL, United States
- Department of Obstetrics & Gynecology, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Kevin M Hellman
- Department of Obstetrics & Gynecology, Endeavor Health, Evanston, IL, United States
- Department of Obstetrics & Gynecology, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| | - Emily M Burda
- Department of Obstetrics & Gynecology, Endeavor Health, Evanston, IL, United States
| | - Sarah E Darnell
- Department of Obstetrics & Gynecology, Endeavor Health, Evanston, IL, United States
| | - Lavisha Singh
- Department of Biostatistics, Endeavor Health, Evanston, IL, United States
| | - Andrew D Schrepf
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Lynn S Walker
- Department of Pediatrics, Vanderbilt University, Nashville, TN, United States
| | - Frank F Tu
- Department of Obstetrics & Gynecology, Endeavor Health, Evanston, IL, United States
- Department of Obstetrics & Gynecology, University of Chicago Pritzker School of Medicine, Chicago, IL, United States
| |
Collapse
|
3
|
Yu YM, Xia SH, Xu Z, Zhao WN, Song L, Pan X, Zhong CC, Wang D, Gao YH, Yang JX, Wu P, Zhang H, An S, Cao JL, Ding HL. An accumbal microcircuit for the transition from acute to chronic pain. Curr Biol 2025; 35:1730-1749.e5. [PMID: 40112811 DOI: 10.1016/j.cub.2025.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Persistent nociceptive inputs arising from peripheral tissues or/and nerve injuries cause maladaptive changes in neurons or neural circuits in the central nervous system, which further confer acute injury into chronic pain transitions (pain chronification) even after the injury is resolved. However, the critical brain regions and their neural mechanisms involved in this transition have not yet been elucidated. Here, we reveal an accumbal microcircuit that is essential for pain chronification. Notably, the increase of neuronal activity in the nucleus accumbens shell (NAcS) in the acute phase (<7 days) and in core (NAcC) in the chronic phase (14-21 days) was detected in a neuropathic pain mouse model. Importantly, we demonstrated that the NAcS neuronal activation in the acute phase of injury was necessary and sufficient for the development of chronic neuropathic pain. This process was mediated by the accumbal dopamine D2 receptor-expressing neuronal microcircuit from NAcS to NAcC. Thus, our findings reveal an accumbal microcircuit mechanism for pain chronification and suggest that the early intervention targeting this microcircuit may provide a therapeutic approach to pain chronification.
Collapse
Affiliation(s)
- Yu-Mei Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Sun-Hui Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiangyu Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Chao-Chao Zhong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yi-Hong Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Peng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Shuming An
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
4
|
Kim SH, Lee J, Jang M, Roh SE, Kim S, Lee JH, Seo J, Baek J, Hwang JY, Baek IS, Lee YS, Shigetomi E, Lee CJ, Koizumi S, Kim SK, Kim SJ. Cerebellar Bergmann glia integrate noxious information and modulate nocifensive behaviors. Nat Neurosci 2025; 28:336-345. [PMID: 39748107 DOI: 10.1038/s41593-024-01807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/27/2024] [Indexed: 01/04/2025]
Abstract
The cerebellum is activated by noxious stimuli and pathological pain but its role in noxious information processing remains unknown. Here, we show that in mice, cutaneous noxious electrical stimuli induced noradrenaline (NA) release from locus coeruleus (LC) terminals in the cerebellar cortex. Bergmann glia (BG) accumulated these LC-NA signals by increasing intracellular calcium in an integrative manner ('flares'). BG flares were also elicited in response to an intraplantar capsaicin injection. Chemogenetic inactivation of LC terminals or BG in the cerebellar cortex or BG-specific knockdown of α1-adrenergic receptors suppressed BG flares, reduced nocifensive licking and had analgesic effects in nerve injury-induced chronic neuropathic pain. Moreover, chemogenetic activation of BG or an intraplantar capsaicin injection reduced Purkinje cell firing, which may disinhibit the output activity of the deep cerebellar nuclei. These results suggest a role for BG in computing noxious information from the LC and in modulating pain-related behaviors by regulating cerebellar output.
Collapse
Affiliation(s)
- Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Mirae Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Eon Roh
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soobin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jewoo Seo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jinhee Baek
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Yoon Hwang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - In Seon Baek
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Lin J, Song D, Tu Y, Zhang H. Peripheral nerve stimulation for lower-limb postoperative recovery: A systematic review and meta-analysis of randomized controlled trials. Psych J 2025; 14:15-27. [PMID: 39285647 PMCID: PMC11787885 DOI: 10.1002/pchj.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/07/2024] [Indexed: 02/04/2025]
Abstract
Patients undergoing lower-limb orthopedic surgery may experience multiple postoperative complications. Although peripheral nerve stimulation (PNS) is a promising non-pharmacological approach that has been used in lower-limb postoperative recovery, the clinical efficacy of PNS remains inconclusive. This study systematically searched three databases (PubMed, Embase, and Cochrane Library) for randomized controlled trials (RCTs) that examined the treatment effects of PNSs in patients who underwent lower-limb orthopedic surgery up to September 29, 2023. Two investigators independently identified studies, extracted data, and conducted meta-analyses with Review Manager 5.4. The outcomes were pain relief (measured by reductions in pain intensity and analgesic consumption) and functional improvements (range of motion [ROM] and length of hospitalization [LOH]). A total of 633 patients including 321 in the experimental groups and 312 in the control groups from eight RCTs were included. PNS showed no significant effect on pain intensity, while analgesic consumption was marginally significantly reduced in the experimental group. Furthermore, no significant differences were observed regarding functional improvements in ROM or LOH after the intervention. Although PNS had no significant effect on pain relief or functional improvements, the intervention exhibited a marginally significant reduction in analgesic consumption. Future trials should be conducted with larger sample sizes, longer follow-up periods, and more varied stimulation parameters.
Collapse
Affiliation(s)
- Jingxinmiao Lin
- CAS Key Laboratory of Mental HealthInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Dong Song
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yiheng Tu
- CAS Key Laboratory of Mental HealthInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Huijuan Zhang
- CAS Key Laboratory of Mental HealthInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Gil-Ugidos A, Rubal-Otero L, González-Villar A, Carrillo-De-la-Peña MT. Conditioned Pain Modulation (CPM) Paradigms: Reliability and Relationship With Individual Characteristics. Pain Manag Nurs 2024:S1524-9042(24)00314-X. [PMID: 39743474 DOI: 10.1016/j.pmn.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 12/01/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Conditioned Pain Modulation (CPM) is a useful tool for testing the functionality of endogenous pain modulation. However, inconsistent results have been obtained in clinical populations, possibly due to the wide variety of CPM protocols used and the influence of demographic and psychological characteristics of the individuals assessed. METHODS We tested the sensitivity and reliability of four commonly used CPM paradigms in a sample of 58 healthy participants. We also checked how these measures were related to Temporal Summation of Second Pain (TSSP), sociodemographic (age and sex) and psychological variables (anxiety and stress). RESULTS CPM results were influenced by the test stimulus used, with tests using pain pressure threshold (PPT) obtaining a greater number of responders (over 65%) and being the most sensitive (higher size effect: Cohen's d > 0.5). However, all measures showed excellent intrasession reliability, with strong agreement between the CPM magnitudes. CPM indices were not correlated with TSSP, age or sex, and the psychological scales did not differentiate CPM responders and non-responders. CONCLUSIONS Although the CPM indices showed good reliability, construction of a large database with standardized values for healthy individuals seems necessary for the use of CPM in clinical settings.
Collapse
Affiliation(s)
- Antonio Gil-Ugidos
- Brain and Pain lab, Institute of Psychology (IPsiUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Lara Rubal-Otero
- Brain and Pain lab, Institute of Psychology (IPsiUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Foundation for Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain.
| | - Alberto González-Villar
- Department of Basic Psychology, Psychological Neuroscience Lab, Research Center in Psychology, School of Psychology, University of Minho, Braga, Portugal.
| | | |
Collapse
|
7
|
Wu GY, Li RX, Liu J, Sun L, Yi YL, Yao J, Tang BQ, Wen HZ, Chen PH, Lou YX, Li HL, Sui JF. An excitatory neural circuit for descending inhibition of itch processing. Cell Rep 2024; 43:115062. [PMID: 39666458 DOI: 10.1016/j.celrep.2024.115062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Itch serves as a self-protection mechanism against harmful external agents, whereas uncontrolled and persistent itch severely influences the quality of life of patients and aggravates their diseases. Unfortunately, the existing treatments are largely ineffective. The current difficulty in treatment may be closely related to the fact that the central neural mechanisms underlying itch processing, especially descending inhibition of itch, are poorly understood. Here, we demonstrate that an excitatory descending neural circuit from rostral anterior cingulate cortex pyramidal (rACCPy) neurons to periaqueductal gray GABAergic (PAGGABA) neurons plays a key role in the inhibition of itch. The activity of itch-tagged rACCPy neurons decreases during the itch-evoked scratching period. Artificial activation or inhibition of the neural circuits significantly impairs or enhances itch processing, respectively. Thus, an excitatory neural circuit is identified as playing a crucial inhibitory role in descending regulation of itch, suggesting that it could be a potential target for treating itch.
Collapse
Affiliation(s)
- Guang-Yan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Ruo-Xuan Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ju Liu
- Department of Foreign Languages, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Lin Sun
- Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yi-Lun Yi
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Bo-Qin Tang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hui-Zhong Wen
- Department of Neurobiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Peng-Hui Chen
- Department of Neurobiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yun-Xiao Lou
- Department of Neurobiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hong-Li Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
8
|
Barron DS, Saltoun K, Kiesow H, Fu M, Cohen-Tanugi J, Geha P, Scheinost D, Isaac Z, Silbersweig D, Bzdok D. Pain can't be carved at the joints: defining function-based pain profiles and their relevance to chronic disease management in healthcare delivery design. BMC Med 2024; 22:594. [PMID: 39696368 PMCID: PMC11656997 DOI: 10.1186/s12916-024-03807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pain is a complex problem that is triaged, diagnosed, treated, and billed based on which body part is painful, almost without exception. While the "body part framework" guides the organization and treatment of individual patients' pain conditions, it remains unclear how to best conceptualize, study, and treat pain conditions at the population level. Here, we investigate (1) how the body part framework agrees with population-level, biologically derived pain profiles; (2) how do data-derived pain profiles interface with other symptom domains from a whole-body perspective; and (3) whether biologically derived pain profiles capture clinically salient differences in medical history. METHODS To understand how pain conditions might be best organized, we applied a carefully designed a multi-variate pattern-learning approach to a subset of the UK Biobank (n = 34,337), the largest publicly available set of real-world pain experience data to define common population-level profiles. We performed a series of post hoc analyses to validate that each pain profile reflects real-world, clinically relevant differences in patient function by probing associations of each profile across 137 medication categories, 1425 clinician-assigned ICD codes, and 757 expert-curated phenotypes. RESULTS We report four unique, biologically based pain profiles that cut across medical specialties: pain interference, depression, medical pain, and anxiety, each representing different facets of functional impairment. Importantly, these profiles do not specifically align with variables believed to be important to the standard pain evaluation, namely painful body part, pain intensity, sex, or BMI. Correlations with individual-level clinical histories reveal that our pain profiles are largely associated with clinical variables and treatments of modifiable, chronic diseases, rather than with specific body parts. Across profiles, notable differences include opioids being associated only with the pain interference profile, while antidepressants linked to the three complimentary profiles. We further provide evidence that our pain profiles offer valuable, additional insights into patients' wellbeing that are not captured by the body-part framework and make recommendations for how our pain profiles might sculpt the future design of healthcare delivery systems. CONCLUSION Overall, we provide evidence for a shift in pain medicine delivery systems from the conventional, body-part-based approach to one anchored in the pain experience and holistic profiles of patient function. This transition facilitates a more comprehensive management of chronic diseases, wherein pain treatment is integrated into broader health strategies. By focusing on holistic patient profiles, our approach not only addresses pain symptoms but also supports the management of underlying chronic conditions, thereby enhancing patient outcomes and improving quality of life. This model advocates for a seamless integration of pain management within the continuum of care for chronic diseases, emphasizing the importance of understanding and treating the interdependencies between chronic conditions and pain.
Collapse
Affiliation(s)
- Daniel S Barron
- Department of Psychiatry, Brigham & Women's Hospital, Mass General Brigham, Boston, USA.
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Boston, USA.
| | - Karin Saltoun
- Department of Biomedical Engineering, Montreal Neurological Institute, McGill University and Mila - Quebec AI Institute, Montreal, Canada
| | - Hannah Kiesow
- Department of Biomedical Engineering, Montreal Neurological Institute, McGill University and Mila - Quebec AI Institute, Montreal, Canada
| | - Melanie Fu
- Department of Psychiatry, Brigham & Women's Hospital, Mass General Brigham, Boston, USA
| | | | - Paul Geha
- Departments of Neuroscience, Psychiatry, Dentistry and Neurology, University of Rochester, Rochester, USA
| | | | - Zacharia Isaac
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Mass General Brigham, Boston, USA
| | - David Silbersweig
- Department of Psychiatry, Brigham & Women's Hospital, Mass General Brigham, Boston, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, Montreal Neurological Institute, McGill University and Mila - Quebec AI Institute, Montreal, Canada
| |
Collapse
|
9
|
Parker RL. Comparative analysis of chronic neuropathic pain and pain assessment in companion animals and humans. Front Vet Sci 2024; 11:1520043. [PMID: 39720411 PMCID: PMC11668183 DOI: 10.3389/fvets.2024.1520043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
Chronic neuropathic pain is underdiagnosed in companion animals. This paper will review the definition of pain and how classification and grading of neuropathic pain can be applied from human to veterinary medicine to increase the recognition of and the confidence in a neuropathic pain diagnosis. The mechanisms of nociception and the pathophysiology of the sensory systems that underlie the transition to chronic pain are described. Potential future methods for diagnosis and treatment of neuropathic pain in veterinary medicine are considered, utilizing the theoretical framework of pain behavior from humans and rodents. By discussing the current state of pain diagnosis in companion animals and increasing the recognition of chronic neuropathic pain, the goal is to increase understanding of chronic neuropathic pain in daily clinical practice and to aid the development of methods to diagnose and treat neuropathic pain.
Collapse
Affiliation(s)
- Rell L. Parker
- Department of Small Animal Clinical Sciences, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Luo D, Fan Z, Yin W. Chronic post-surgical pain after total knee arthroplasty: a narrative review. Perioper Med (Lond) 2024; 13:108. [PMID: 39501338 PMCID: PMC11536853 DOI: 10.1186/s13741-024-00466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/28/2024] [Indexed: 11/09/2024] Open
Abstract
Total knee arthroplasty (TKA) is an efficacious treatment for end-stage knee osteoarthritis, often accompanied by severe postoperative pain. In certain patients, this pain can persist for over 3 months and is referred to as chronic post-surgical pain (CPSP). Postoperative persistent pain has emerged as a significant and noteworthy issue impacting patient quality of life following TKA. The etiology of CPSP after TKA is multifaceted. Peripheral or central sensitizations resulting from inflammatory reactions, nerve injury, and neurobiological mechanisms are the primary mechanisms contributing to chronic persistent pain after TKA. Preoperative, intraoperative, and postoperative factors can induce pain sensitization. Once CPSP occurs after TKA, it significantly hampers patient recovery with challenging treatment options. Currently, among the preventive and therapeutic strategies for chronic pain after TKA, it is widely believed that early comprehensive preventive treatment to prevent acute to chronic pain transition can substantially reduce the incidence of CPSP following TKA. In recent years, studies have investigated perioperative strategies aimed at reducing the occurrence of persistent pain after TKA. This article provides an overview of advancements in understanding the pathogenesis, high-risk factors, and preventive measures for chronic pain following TKA. We hope that this review will guide future research directions on CPSP after TKA while contributing to clinical perioperative pain management.
Collapse
Affiliation(s)
- Dan Luo
- College of Clinical Medicine, Dali University, Dali Bai Autonomous Prefecture, Yunnan Province, 671000, China
- Department of Anesthesiology, the First Affiliated Hospital of Dali University, Dali Bai Autonomous Prefecture, Yunnan Province, 671000, China
| | - Zhidong Fan
- College of Clinical Medicine, Dali University, Dali Bai Autonomous Prefecture, Yunnan Province, 671000, China.
- Department of Anesthesiology, the First Affiliated Hospital of Dali University, Dali Bai Autonomous Prefecture, Yunnan Province, 671000, China.
| | - Wenqin Yin
- Department of Anesthesiology, the Affiliated Hospital of North Sichuan Medical College, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| |
Collapse
|
11
|
Haythornthwaite JA, Campbell CM, Edwards RR. When thinking about pain contributes to suffering: the example of pain catastrophizing. Pain 2024; 165:S68-S75. [PMID: 39560417 PMCID: PMC11581624 DOI: 10.1097/j.pain.0000000000003372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT The extensive literature on the potent role negative thoughts about pain have on the experience of pain and pain-related suffering has documented associations with important neurobiological processes involved in amplifying nociceptive signals. We focus this review on pain catastrophizing (pCAT)- appraisals of pain as threatening, overwhelming, and unmanageable- and review the evidence that these thoughts are learned in childhood through experience and observation of others, particularly caretakers and parents. For children who have learned pCAT, repeated exposures to pain over time activate pCAT and likely contribute to further amplification of pain through changes in the neurobiological pain regulatory systems, which overlap with those regulating the stress response. We propose that repeated pain and stress exposures throughout childhood, adolescence, and into adulthood alter the neurobiology of pain via a repetitive positive feedback loop that increases risk for heightened pain sensitivity over time with repeated exposures. At some point, often precipitated by an acute episode of pain and possibly influenced by allostatic load, pCAT contributes to persistence of episodic or acute pain and exacerbates pain-related suffering. This developmental trajectory is not inevitable, as the impact of pCAT on pain and pain-related suffering can be influenced by various factors. We also present future directions for work in this area.
Collapse
Affiliation(s)
- Jennifer A Haythornthwaite
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Claudia M Campbell
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative & Pain Medicine, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Soliman N, Kersebaum D, Lawn T, Sachau J, Sendel M, Vollert J. Improving neuropathic pain treatment - by rigorous stratification from bench to bedside. J Neurochem 2024; 168:3699-3714. [PMID: 36852505 DOI: 10.1111/jnc.15798] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Chronic pain is a constantly recurring and persistent illness, presenting a formidable healthcare challenge for patients and physicians alike. Current first-line analgesics offer only low-modest efficacy when averaged across populations, further contributing to this debilitating disease burden. Moreover, many recent trials for novel analgesics have not met primary efficacy endpoints, which is particularly striking considering the pharmacological advances have provided a range of highly relevant new drug targets. Heterogeneity within chronic pain cohorts is increasingly understood to play a critical role in these failures of treatment and drug discovery, with some patients deriving substantial benefits from a given intervention while it has little-to-no effect on others. As such, current treatment failures may not result from a true lack of efficacy, but rather a failure to target individuals whose pain is driven by mechanisms which it therapeutically modulates. This necessitates a move towards phenotypical stratification of patients to delineate responders and non-responders in a mechanistically driven manner. In this article, we outline a bench-to-bedside roadmap for this transition to mechanistically informed personalised pain medicine. We emphasise how the successful identification of novel analgesics is dependent on rigorous experimental design as well as the validity of models and translatability of outcome measures between the animal model and patients. Subsequently, we discuss general and specific aspects of human trial design to address heterogeneity in patient populations to increase the chance of identifying effective analgesics. Finally, we show how stratification approaches can be brought into clinical routine to the benefit of patients.
Collapse
Affiliation(s)
- Nadia Soliman
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
- Neurophysiology, Mannheim Center of Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
13
|
Fitzgerald M. On the relation of injury to pain-an infant perspective. Pain 2024; 165:S33-S38. [PMID: 39560413 DOI: 10.1097/j.pain.0000000000003366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Forty-five years ago, Patrick Wall published his John J Bonica lecture "On the relation of injury to pain."90 In this lecture, he argued that pain is better classified as an awareness of a need-state than as a sensation. This need state, he argued, serves more to promote healing than to avoid injury. Here I reframe Wall's prescient proposal to pain in early life and propose a set of different need states that are triggered when injury occurs in infancy. This paper, and my own accompanying Bonica lecture, is dedicated to his memory and to his unique contribution to the neuroscience of pain. The IASP definition of pain includes a key statement, "through their life experiences, individuals learn the concept of pain."69 But the relation between injury and pain is not fixed from birth. In early life, the links between nociception (the sense) and pain (the need state) are very different from those of adults, although no less important. I propose that injury evokes three pain need states in infancy, all of which depend on the state of maturity of the central nervous system: (1) the need to attract maternal help; (2) the need to learn the concept of pain; and (3) the need to maintain healthy activity dependent brain development.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharamcology, University College London, London, United Kingdom
| |
Collapse
|
14
|
Fenech C, Winters BL, Otsu Y, Aubrey KR. Supraspinal glycinergic neurotransmission in pain: A scoping review of current literature. J Neurochem 2024; 168:3663-3684. [PMID: 39075923 DOI: 10.1111/jnc.16191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The neurotransmitter glycine is an agonist at the strychnine-sensitive glycine receptors. In addition, it has recently been discovered to act at two new receptors, the excitatory glycine receptor and metabotropic glycine receptor. Glycine's neurotransmitter roles have been most extensively investigated in the spinal cord, where it is known to play essential roles in pain, itch, and motor function. In contrast, less is known about supraspinal glycinergic functions, and their contributions to pain circuits are largely unrecognized. As glycinergic neurons are absent from cortical regions, a clearer understanding of how supraspinal glycine modulates pain could reveal new pharmacological targets. This review aims to synthesize the published research on glycine's role in the adult brain, highlighting regions where glycine signaling may modulate pain responses. This was achieved through a scoping review methodology identifying several key regions of supraspinal pain circuitry where glycine signaling is involved. Therefore, this review unveils critical research gaps for supraspinal glycine's potential roles in pain and pain-associated responses, encouraging researchers to consider glycinergic neurotransmission more widely when investigating neural mechanisms of pain.
Collapse
Affiliation(s)
- Caitlin Fenech
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bryony L Winters
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yo Otsu
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Baumbach JL, Leonetti AM, Martin LJ. Inflammatory injury induces pain sensitization that is expressed beyond the site of injury in male (and not in female) mice. Behav Brain Res 2024; 475:115215. [PMID: 39191370 DOI: 10.1016/j.bbr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Pain is a crucial protective mechanism for the body. It alerts us to potential tissue damage or injury and promotes the avoidance of harmful stimuli. Injury-induced inflammation and tissue damage lead to pain sensitization, which amplifies responses to subsequent noxious stimuli even after an initial primary injury has recovered. This phenomenon, commonly referred to as hyperalgesic priming, was investigated in male and female mice to determine whether it is specific to the site of previous injury. We used 10μl of 50 % Freund's complete adjuvant (CFA) administered to the left hind paw as a model of peripheral injury. Both male and female mice exhibited robust site-specific mechanical hypersensitivity after CFA, which resolved within one-week post-injection. After injury resolution, only male CFA-primed mice showed enhanced and prolonged mechanical sensitivity in response to a chemical challenge or a single 0.5 mA electric footshock. Among CFA-primed male mice, shock-induced mechanical hypersensitivity was expressed in both the left (previously injured) and the right (uninjured) hind paws, suggesting a pivotal role for altered centralized processes in the expression of pain sensitization. These findings indicate that pain history regulates sensory responses to subsequent mechanical and chemical pain stimuli in a sex-specific manner-foot-shock-induced hyperalgesic priming expression among male mice generalized beyond the initial injury site.
Collapse
Affiliation(s)
| | | | - Loren J Martin
- Department of Psychology, University of Toronto, Canada; Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
16
|
Levy Gigi E, Rachmani M, Defrin R. The relationship between traumatic exposure and pain perception in children: the moderating role of posttraumatic symptoms. Pain 2024; 165:2274-2281. [PMID: 38728536 DOI: 10.1097/j.pain.0000000000003266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/07/2024] [Indexed: 05/12/2024]
Abstract
ABSTRACT Adverse childhood experiences (ACEs) affect approximately half of all children worldwide. These experiences have been linked to increased pain sensitivity in adulthood and a higher likelihood of developing severe chronic pain. However, most studies have assessed the effects of ACEs retrospectively, long after they occurred, leaving room for other factors to influence the observed outcomes. We investigated, for the first time, the association between ACEs and concurrent pain perception among young children who live in a conflict zone and are consistently exposed to potentially traumatic experiences. Participants were 60 elementary school children (ages 8-11 years) living in conflict regions (n = 39) or nonconflict regions (n = 21). Posttraumatic stress symptom (PTSS) severity, traumatic exposure, pressure pain threshold (PPT), and mechanical detection threshold (MDT) were measured. Trauma-exposed children had significantly lower PPT than did controls, but MDT was similar across groups. Pressure pain threshold correlated positively with proximity to the conflict zone and inversely with traumatic exposure magnitude and PTSS severity. In addition, PTSSs moderated the relationship between repeated traumatic exposure and PPT. Children with higher PTSS severity displayed pain hypersensitivity regardless of their traumatic exposure level, whereas in children with lower PTSS severity, greater traumatic exposure correlated with pain hypersensitivity. The results suggest that ACEs among children lead to concurrent pain hypersensitivity and distress and may put them at elevated risk of chronic pain early in life. In addition, our findings emphasize the need for identifying children with various PTSS levels to provide tailored interventions and mitigate the long-term negative effects of ACEs.
Collapse
Affiliation(s)
- Einat Levy Gigi
- Faculty of Education, Bar-Ilan University, Ramat Gan, Israel
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Moriya Rachmani
- Faculty of Education, Bar-Ilan University, Ramat Gan, Israel
| | - Ruth Defrin
- Department of Physical Therapy, Faculty of Medicine & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Wang C, Chen S, Cheng Z, Xia S, Fei CJ, Ye L, Gong L, Xi C, Wang Y. Characteristics of locus coeruleus functional connectivity network in patients with comorbid migraine and insomnia. J Headache Pain 2024; 25:159. [PMID: 39333887 PMCID: PMC11437901 DOI: 10.1186/s10194-024-01877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Migraine and insomnia are prevalent conditions that often co-occur, each exacerbating the other and substantially impacting the quality of life. The locus coeruleus (LC), a brainstem region responsible for norepinephrine synthesis, participates in pain modulation, sleep/wake cycles, and emotional regulation, rendering it a potential nexus in the comorbidity of migraine and insomnia. Disruptions in the LC-noradrenergic system have been hypothesized to contribute to the comorbidities of migraine and insomnia, although neuroimaging evidence in humans remains scarce. In this study, we aimed to investigate the intrinsic functional connectivity (FC) network of the LC in patients with comorbid migraine and subjective chronic insomnia and patients with migraine with no insomnia (MnI) using resting-state functional magnetic resonance imaging (rs-fMRI) and seed-based FC analyses. METHODS In this cross-sectional study, 30 patients with comorbid migraine and chronic insomnia (MI), 30 patients with MnI, and 30 healthy controls (HCs) were enrolled. Participants underwent neuropsychological testing and rs-fMRI. The LC-FC network was constructed using seed-based voxel-wise FC analysis. To identify group differences in LC-FC networks, voxel-wise covariance analysis was conducted with sex and age as covariates. Subsequently, a partial correlation analysis was conducted to probe the clinical relevance of aberrant LC-FC in patients with MI and MnI. RESULTS Except for the insomnia score, no other significant difference was detected in demographic characteristics and behavioral performance between the MI and MnI groups. Compared with HCs, patients with MI exhibited altered LC-FC in several brain regions, including the dorsomedial prefrontal cortex (DMPFC), anterior cerebellum, dorsolateral prefrontal cortex (DLPFC), thalamus, and parahippocampal gyrus (PHG). Lower FC between the LC and DLPFC was associated with greater insomnia severity, whereas higher FC between the LC and DMPFC was linked to longer migraine attack duration in the MI group. CONCLUSION Our findings reveal the presence of aberrant LC-FC networks in patients with MI, providing neuroimaging evidence of the interplay between these conditions. The identified LC-FC alterations may serve as potential targets for therapeutic interventions and highlight the importance of considering the LC-noradrenergic system in the management of MI.
Collapse
Affiliation(s)
- Changlin Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Sishi Chen
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Zihan Cheng
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Shiyong Xia
- Department of Radiology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Chang Jun Fei
- Department of Radiology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Li Ye
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610017, Sichuan, China.
| | - Chunhua Xi
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China.
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
18
|
Clark A. Hacking the Predictive Mind. ENTROPY (BASEL, SWITZERLAND) 2024; 26:677. [PMID: 39202147 PMCID: PMC11353553 DOI: 10.3390/e26080677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
According to active inference, constantly running prediction engines in our brain play a large role in delivering all human experience. These predictions help deliver everything we see, hear, touch, and feel. In this paper, I pursue one apparent consequence of this increasingly well-supported view. Given the constant influence of hidden predictions on human experience, can we leverage the power of prediction in the service of human flourishing? Can we learn to hack our own predictive regimes in ways that better serve our needs and purposes? Asking this question rapidly reveals a landscape that is at once familiar and new. It is also challenging, suggesting important questions about scope and dangers while casting further doubt (as if any was needed) on old assumptions about a firm mind/body divide. I review a range of possible hacks, starting with the careful use of placebos, moving on to look at chronic pain and functional disorders, and ending with some speculations concerning the complex role of genetic influences on the predictive brain.
Collapse
Affiliation(s)
- Andy Clark
- Department of Philosophy, University of Sussex, Brighton BN1 9RH, UK;
- Department of Informatics, University of Sussex, Brighton BN1 9RH, UK
| |
Collapse
|
19
|
Katagiri A, Yamada M, Sato H, Toyoda H, Niwa H, Kato T. Long-lasting adverse effects of short-term stress during the suckling-mastication transition period on masticatory function and intraoral sensation in rats. Odontology 2024; 112:906-916. [PMID: 38197987 PMCID: PMC11269417 DOI: 10.1007/s10266-023-00887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/10/2023] [Indexed: 01/11/2024]
Abstract
Early-life stress affects brain development, eventually resulting in adverse behavioral and physical health consequences in adulthood. The present study assessed the hypothesis that short-term early-life stress during infancy before weaning, a period for the maturation of mastication and sleep, poses long-lasting adverse effects on masticatory function and intraoral sensations later in life.Rat pups were exposed to either maternal separation (MS) or intermittent hypoxia (IH-Infancy) for 6 h/day in the light/sleep phase from postnatal day (P)17 to P20 to generate "neglect" and "pediatric obstructive sleep apnea" models, respectively. The remaining rats were exposed to IH during P45-P48 (IH-Adult). Masticatory ability was evaluated based on the rats' ability to chew pellets and bite pasta throughout the growth period (P21-P70). Intraoral chemical and mechanical sensitivities were assessed using two-bottle preference drinking tests, and hind paw pain thresholds were measured in adulthood (after P60).No differences were found in body weight, grip force, and hind paw sensitivity in MS, IH-Infancy, and IH-Adult rats compared with naïve rats. Masticatory ability was lower in MS and IH-Infancy rats from P28 to P70 than in naïve rats. MS and IH-Infancy rats exhibited intraoral hypersensitivity to capsaicin and mechanical stimulations in adulthood. The IH-Adult rats did not display inferior masticatory ability or intraoral hypersensitivity.In conclusion, short-term early-life stress during the suckling-mastication transition period potentially causes a persistent decrease in masticatory ability and intraoral hypersensitivity in adulthood. The period is a "critical window" for the maturation of oral motor and sensory functions.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Masaharu Yamada
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Hajime Sato
- Division of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0283, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| |
Collapse
|
20
|
Han Y, Ai L, Song L, Zhou Y, Chen D, Sha S, Ji R, Li Q, Bu Q, Pan X, Zhai X, Cui M, Duan J, Yang J, Chaudhury D, Hu A, Liu H, Han MH, Cao JL, Zhang H. Midbrain glutamatergic circuit mechanism of resilience to socially transferred allodynia in male mice. Nat Commun 2024; 15:4947. [PMID: 38858350 PMCID: PMC11164890 DOI: 10.1038/s41467-024-49340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.
Collapse
Affiliation(s)
- Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Dandan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Qize Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Qingyang Bu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Xiangyu Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Jiawen Duan
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China
| | - Junxia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Dipesh Chaudhury
- Division of Science, New York University Abu Dhabi (NYUAD), Saadiyat Island, 129188, United Arab Emirates
| | - Ankang Hu
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - He Liu
- Department of Anesthesiology, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, PR China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
| |
Collapse
|
21
|
Kaplan CM, Kelleher E, Irani A, Schrepf A, Clauw DJ, Harte SE. Deciphering nociplastic pain: clinical features, risk factors and potential mechanisms. Nat Rev Neurol 2024; 20:347-363. [PMID: 38755449 DOI: 10.1038/s41582-024-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Nociplastic pain is a mechanistic term used to describe pain that arises or is sustained by altered nociception, despite the absence of tissue damage. Although nociplastic pain has distinct pathophysiology from nociceptive and neuropathic pain, these pain mechanisms often coincide within individuals, which contributes to the intractability of chronic pain. Key symptoms of nociplastic pain include pain in multiple body regions, fatigue, sleep disturbances, cognitive dysfunction, depression and anxiety. Individuals with nociplastic pain are often diffusely tender - indicative of hyperalgesia and/or allodynia - and are often more sensitive than others to non-painful sensory stimuli such as lights, odours and noises. This Review summarizes the risk factors, clinical presentation and treatment of nociplastic pain, and describes how alterations in brain function and structure, immune processing and peripheral factors might contribute to the nociplastic pain phenotype. This article concludes with a discussion of two proposed subtypes of nociplastic pain that reflect distinct neurobiological features and treatment responsivity.
Collapse
Affiliation(s)
- Chelsea M Kaplan
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Eoin Kelleher
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anushka Irani
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Division of Rheumatology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel J Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven E Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Sant'Anna MB, Kimura LF, Vieira WF, Zambelli VO, Novaes LS, Hösch NG, Picolo G. Environmental factors and their impact on chronic pain development and maintenance. Phys Life Rev 2024; 48:176-197. [PMID: 38320380 DOI: 10.1016/j.plrev.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.
Collapse
Affiliation(s)
| | - Louise Faggionato Kimura
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Willians Fernando Vieira
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
23
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
24
|
Cramer N, Ji Y, Kane MA, Pilli NR, Castro A, Posa L, Van Patten G, Masri R, Keller A. Elevated Serotonin in Mouse Spinal Dorsal Horn Is Pronociceptive. eNeuro 2023; 10:ENEURO.0293-23.2023. [PMID: 37945351 PMCID: PMC10698626 DOI: 10.1523/eneuro.0293-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Serotonergic neurons in the rostral ventral medulla (RVM) contribute to bidirectional control of pain through modulation of spinal and trigeminal nociceptive networks. Deficits in this pathway are believed to contribute to pathologic pain states, but whether changes in serotonergic mechanisms are pro- or antinociceptive is debated. We used a combination of optogenetics and fiber photometry to examine these mechanisms more closely. We find that optogenetic activation of RVM serotonergic afferents in the spinal cord of naive mice produces mechanical hypersensitivity and conditioned place aversion (CPA). Neuropathic pain, produced by chronic constriction injury of the infraorbital nerve (CCI-ION), evoked a tonic increase in serotonin (5HT) concentrations within the spinal trigeminal nucleus caudalis (SpVc), measured with liquid chromatography-tandem mass spectroscopy (LC-MS/MS). By contract, CCI-ION had no effect on the phasic serotonin transients in SpVc, evoked by noxious pinch, and measured with fiber photometry of a serotonin sensor. These findings suggest that serotonin release in the spinal cord is pronociceptive and that an increase in sustained serotonin signaling, rather than phasic or event driven increases, potentiate nociception in models of chronic pain.
Collapse
Affiliation(s)
- Nathan Cramer
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Nageswara R Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Alberto Castro
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Luca Posa
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gabrielle Van Patten
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Radi Masri
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Asaf Keller
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
25
|
Sullere S, Kunczt A, McGehee DS. A cholinergic circuit that relieves pain despite opioid tolerance. Neuron 2023; 111:3414-3434.e15. [PMID: 37734381 PMCID: PMC10843525 DOI: 10.1016/j.neuron.2023.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a tremendous burden for afflicted individuals and society. Although opioids effectively relieve pain, significant adverse outcomes limit their utility and efficacy. To investigate alternate pain control mechanisms, we explored cholinergic signaling in the ventrolateral periaqueductal gray (vlPAG), a critical nexus for descending pain modulation. Biosensor assays revealed that pain states decreased acetylcholine release in vlPAG. Activation of cholinergic projections from the pedunculopontine tegmentum to vlPAG relieved pain, even in opioid-tolerant conditions, through ⍺7 nicotinic acetylcholine receptors (nAChRs). Activating ⍺7 nAChRs with agonists or stimulating endogenous acetylcholine inhibited vlPAG neuronal activity through Ca2+ and peroxisome proliferator-activated receptor α (PPAR⍺)-dependent signaling. In vivo 2-photon imaging revealed that chronic pain induces aberrant excitability of vlPAG neuronal ensembles and that ⍺7 nAChR-mediated inhibition of these cells relieves pain, even after opioid tolerance. Finally, pain relief through these cholinergic mechanisms was not associated with tolerance, reward, or withdrawal symptoms, highlighting its potential clinical relevance.
Collapse
Affiliation(s)
- Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Alissa Kunczt
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
26
|
Lawn T, Sendel M, Baron R, Vollert J. Beyond biopsychosocial: The keystone mechanism theory of pain. Brain Behav Immun 2023; 114:187-192. [PMID: 37625555 DOI: 10.1016/j.bbi.2023.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Pain is a deeply personal experience, with interindividual differences in its chronification and treatment presenting a formidable healthcare challenge. The biopsychosocial model (BPSm) has been hugely influential within nascent attempts at precision pain medicine, steering the field away from a reductionist biomechanical viewpoint and emphasising complex interactions of biological, psychological, and social factors which shape the individuality of pain. However, despite offering a strong theoretical foundation and holistic perspective, we contend that the BPSm remains limited in its capacity to deliver truly mechanistically informed treatment of pain. We therefore propose the keystone model of pain which offers a pragmatic balance between the dimensionality expansive BPSm and overly reductive approaches, providing both theoretical and practical advantages for the transition from treating populations to individual people.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Jan Vollert
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany; Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Germany; Pain Research, Department of Surgery and Cancer, Imperial College, London, UK; Neurophysiology, Mannheim Centre for Translational Neuroscience MCTN, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg, Germany
| |
Collapse
|
27
|
Bhattacherjee A, Zhang C, Watson BR, Djekidel MN, Moffitt JR, Zhang Y. Spatial transcriptomics reveals the distinct organization of mouse prefrontal cortex and neuronal subtypes regulating chronic pain. Nat Neurosci 2023; 26:1880-1893. [PMID: 37845544 PMCID: PMC10620082 DOI: 10.1038/s41593-023-01455-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
The prefrontal cortex (PFC) is a complex brain region that regulates diverse functions ranging from cognition, emotion and executive action to even pain processing. To decode the cellular and circuit organization of such diverse functions, we employed spatially resolved single-cell transcriptome profiling of the adult mouse PFC. Results revealed that PFC has distinct cell-type composition and gene-expression patterns relative to neighboring cortical areas-with neuronal excitability-regulating genes differently expressed. These cellular and molecular features are further segregated within PFC subregions, alluding to the subregion-specificity of several PFC functions. PFC projects to major subcortical targets through combinations of neuronal subtypes, which emerge in a target-intrinsic fashion. Finally, based on these features, we identified distinct cell types and circuits in PFC underlying chronic pain, an escalating healthcare challenge with limited molecular understanding. Collectively, this comprehensive map will facilitate decoding of discrete molecular, cellular and circuit mechanisms underlying specific PFC functions in health and disease.
Collapse
Affiliation(s)
- Aritra Bhattacherjee
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Brianna R Watson
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mohamed Nadhir Djekidel
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
28
|
Hore Z, Royds J, Abuukar Abdullahi R, Lampa J, Al-Kaisy A, Denk F. Cerebrospinal fluid immune cells appear similar across neuropathic and non-neuropathic pain conditions. Wellcome Open Res 2023; 8:493. [PMID: 38707493 PMCID: PMC11069048 DOI: 10.12688/wellcomeopenres.20153.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 05/07/2024] Open
Abstract
Background Microglia have been implicated in the pathophysiology of neuropathic pain. Here, we sought to investigate whether cerebrospinal fluid (CSF) might be used as a proxy-measure of microglial activation in human participants. Methods We preformed fluorescence-activated cell sorting (FACS) of CSF immune cell populations derived from individuals who experienced pain with neuropathic features. We sorted CD4+, CD8+ T cells and monocytes and analyzed their transcriptome using RNA sequencing. We also performed Cellular Indexing of Transcriptomes and Epitopes (CITE) sequencing to characterize the expression of all CSF immune cells in a patient with postherpetic neuralgia and in a patient with neuropathic pain after failed back surgery. Results Immune cell numbers and phenotypes were not obviously different between individuals regardless of the etiology of their pain. This was true when examining our own dataset, as well as when comparing it to previously published single-cell RNA sequencing data of human CSF. In all instances, CSF monocytes showed expression of myeloid cell markers commonly associated with microglia ( P2RY12, TMEM119 and OLFML3), which will make it difficult to ascertain the origin of CSF proteins: do they derive directly from circulating CSF monocytes or could some originate in spinal cord microglia in the parenchyma? Conclusions We conclude that it will not be straightforward to use CSF as a biomarker for microglial function in humans.
Collapse
Affiliation(s)
- Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, London, England, UK
| | - Jonathan Royds
- Guy’s and St Thomas’ Chronic Pain Department, St Thomas Hospital, London, UK
| | | | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adnan Al-Kaisy
- Guy’s and St Thomas’ Chronic Pain Department, St Thomas Hospital, London, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, London, England, UK
| |
Collapse
|
29
|
Benson S, Karshikoff B. How Can Experimental Endotoxemia Contribute to Our Understanding of Pain? A Narrative Review. Neuroimmunomodulation 2023; 30:250-267. [PMID: 37797598 PMCID: PMC10619593 DOI: 10.1159/000534467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
The immune system and the central nervous system exchange information continuously. This communication is a prerequisite for adaptive responses to physiological and psychological stressors. While the implicate relationship between inflammation and pain is increasingly recognized in clinical cohorts, the underlying mechanisms and the possibilities for pharmacological and psychological approaches aimed at neuro-immune communication in pain are not fully understood yet. This calls for preclinical models which build a bridge from clinical research to laboratory research. Experimental models of systemic inflammation (experimental endotoxemia) in humans have been increasingly recognized as an approach to study the direct and causal effects of inflammation on pain perception. This narrative review provides an overview of what experimental endotoxemia studies on pain have been able to clarify so far. We report that experimental endotoxemia results in a reproducible increase in pain sensitivity, particularly for pressure and visceral pain (deep pain), which is reflected in responses of brain areas involved in pain processing. Increased levels of blood inflammatory cytokines are required for this effect, but cytokine levels do not always predict pain intensity. We address sex-dependent differences in immunological responses to endotoxin and discuss why these differences do not necessarily translate to differences in behavioral measures. We summarize psychological and cognitive factors that may moderate pain sensitization driven by immune activation. Together, studying the immune-driven changes in pain during endotoxemia offers a deeper mechanistic understanding of the role of inflammation in chronic pain. Experimental endotoxemia models can specifically help to tease out inflammatory mechanisms underlying individual differences, vulnerabilities, and comorbid psychological problems in pain syndromes. The model offers the opportunity to test the efficacy of interventions, increasing their translational applicability for personalized medical approaches.
Collapse
Affiliation(s)
- Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Medical Education, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bianka Karshikoff
- Department of Social Studies, University of Stavanger, Stavanger, Norway
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
de la Puente B, Zamanillo D, Romero L, Carceller A, Vela JM, Merlos M, Portillo-Salido E. Resilience to Pain-Related Depression in σ 1 Receptor Knockout Mice Is Associated with the Reversal of Pain-Induced Brain Changes in Affect-Related Genes. ACS Chem Neurosci 2023; 14:3714-3725. [PMID: 37738096 DOI: 10.1021/acschemneuro.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Mice lacking the σ1 receptor chaperone (σ1R-/-) are resilient to depressive-like behaviors secondary to neuropathic pain. Examining the resilience's brain mechanisms could help develop conceptually novel therapeutic strategies. We explored the diminished motivation for a natural reinforcer (white chocolate) in the partial sciatic nerve ligation (PSNL) model in wild-type (WT) and σ1R-/- mice. In the same mice, we performed a comprehensive reverse transcription quantitative PCR (qPCR) analysis across ten brain regions of seven genes implicated in pain regulation and associated affective disorders, such as anxiety and depression. PSNL induced anhedonic-like behavior in WT but not in σ1R-/- mice. In WT mice, PSNL up-regulated dopamine transporter (DAT) and its rate-limiting enzyme, tyrosine hydroxylase (Th), in the ventral tegmental area (VTA) and periaqueductal gray (PAG) as well as the serotonin transporters (SERT) and its rate-limiting enzyme tryptophan hydroxylase 2 (Tph2) in VTA. In addition, μ-opioid receptor (MOR) and σ1R were up-regulated in PAG, and MOR was also elevated in the somatosensory cortex (SS) but down-regulated in the striatum (STR). Finally, increased BDNF was found in the medial prefrontal cortex (mPFC) and hypothalamus (HPT). Sham surgery also produced PSNL-like expression changes in VTA, HPT, and STR. Genetic deletion of the σ1R in mice submitted to PSNL or sham surgery prevented changes in the expression of most of these genes. σ1R is critically involved in the supraspinal gene expression changes produced by PSNL and sham surgery. The changes in gene expression observed in WT mice may be related to pain-related depression, and the absence of these changes observed in σ1R-/- mice may be related to resilience.
Collapse
Affiliation(s)
| | - Daniel Zamanillo
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Luz Romero
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Alicia Carceller
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - José Miguel Vela
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Manuel Merlos
- Welab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
31
|
Cramer N, Ji Y, Kane M, Pilli N, Posa L, Patten GV, Masri R, Keller A. Elevated serotonin in mouse spinal dorsal horn is pronociceptive. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552838. [PMID: 37645759 PMCID: PMC10461991 DOI: 10.1101/2023.08.10.552838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Serotonergic neurons in the rostral ventral medulla (RVM) contribute to bidirectional control of pain through modulation of spinal and trigeminal nociceptive networks. Deficits in this pathway are believed to contribute to pathological pain states, but whether changes in serotonergic mechanisms are pro or anti-nociceptive are debated. We used a combination of optogenetics and fiber photometry to examine these mechanisms more closely. We find that optogenetic activation of RVM serotonergic afferents in the spinal cord of naïve mice produces mechanical hypersensitivity and conditioned place aversion. Neuropathic pain, produced by chronic constriction injury of the infraorbital nerve (CCI-ION), evoked a tonic increase in serotonin concentrations within the spinal trigeminal nucleus caudalis (SpVc), measured with liquid chromatography-tandem mass spectroscopy (LC-MS/MS). By contract, CCI-ION had no effect on the phasic serotonin transients in SpVc, evoked by noxious pinch, and measured with fiber photometry of a serotonin sensor. These findings suggest that serotonin release in the spinal cord is pronociceptive and that an increase is sustained serotonin signaling, rather than phasic or event driven increases, potentiate nociception in models of chronic pain.
Collapse
Affiliation(s)
- Nathan Cramer
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
| | - Maureen Kane
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Luca Posa
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gabrielle Van Patten
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Radi Masri
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
- UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Asaf Keller
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
32
|
Perros P, Nagy EV, Papini E, Van Der Feltz-Cornelis CM, Weetman AP, Hay HA, Abad-Madroñero J, Tallett AJ, Bilas M, Lakwijk P, Poots AJ, Hegedüs L. Hypothyroidism and Somatization: Results from E-Mode Patient Self-Assessment of Thyroid Therapy, a Cross-Sectional, International Online Patient Survey. Thyroid 2023; 33:927-939. [PMID: 37134204 DOI: 10.1089/thy.2022.0641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Background: Between 10% and 15% of hypothyroid patients experience persistent symptoms despite achieving biochemical euthyroidism. Unexplained persistent symptoms can be a sign of somatization. This is associated with distress and high health care resource use and can be classified as somatic symptom disorder (SSD). Prevalence rates for SSD differ depending on classification criteria and how they are ascertained, varying between 4% and 25%. As this has not been studied in hypothyroid patients before, the aim of this study was to document somatization in people with hypothyroidism and to explore associations with other patient characteristics and outcomes. Methods: Online, multinational cross-sectional survey of individuals with self-reported, treated hypothyroidism, which included the validated Patient Health Questionnaire-15 (PHQ-15) for assessment of somatization. Chi-squared tests with the Bonferroni correction were used to explore outcomes for respondents with a PHQ-15 score ≥10 (probable somatic symptom disorder [pSSD]) versus a PHQ-15 score <10 (absence of SSD). Results: A total of 3915 responses were received, 3516 of which contained the valid PHQ-15 data (89.8%). The median score was 11.3 (range 0-30 [confidence interval 10.9-11.3]). The prevalence of pSSD was 58.6%. Associations were found between pSSD and young age (p < 0.001), women (p < 0.001), not working (p < 0.001), having below average household income (p < 0.001), being treated with levothyroxine (LT4) (rather than combination of LT4 and L-triiodothyronine [LT3], LT3 alone, or desiccated thyroid extract) (p < 0.001), expression of the view that the thyroid medication taken did not control the symptoms of hypothyroidism well (p < 0.001), and with number of comorbidities (p < 0.001). pSSD was associated with respondent attribution of most PHQ-15 symptoms to the hypothyroidism or its treatment (p < 0.001), dissatisfaction with care and treatment of hypothyroidism (p < 0.001), a negative impact of hypothyroidism on daily living (p < 0.001), and with anxiety and low mood/depression (p < 0.001). Conclusions: This study demonstrates a high prevalence of pSSD among people with hypothyroidism and associations between pSSD and negative patient outcomes, including a tendency to attribute persistent symptoms to hypothyroidism or its treatment. SSD may be an important determinant of dissatisfaction with treatment and care among some hypothyroid patients.
Collapse
Affiliation(s)
- Petros Perros
- Department of Endocrinology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Endre Vezekenyi Nagy
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Enrico Papini
- Department of Endocrinology and Metabolism, Regina Apostolorum Hospital, Albano, Rome, Italy
| | - Christina Maria Van Der Feltz-Cornelis
- Department of Health Sciences, HYMS, University of York, York, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
| | | | | | | | | | - Megan Bilas
- Picker Institute Europe, Oxford, United Kingdom
| | - Peter Lakwijk
- Thyroid Federation International, Transpolispark, Hoofddorp, The Netherlands
| | | | - Laszlo Hegedüs
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
33
|
Antoniou G, Lambourg E, Steele JD, Colvin LA. The effect of adverse childhood experiences on chronic pain and major depression in adulthood: a systematic review and meta-analysis. Br J Anaesth 2023; 130:729-746. [PMID: 37087334 PMCID: PMC10251130 DOI: 10.1016/j.bja.2023.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Adverse childhood experiences have been linked to increased multimorbidity, with physical and mental health consequences throughout life. Chronic pain is often associated with mood disorders, such as major depressive disorder (MDD); both have been linked to adverse childhood experiences. It is unclear how the effect of adverse childhood experiences on neural processing impacts on vulnerability to chronic pain, MDD, or both, and whether there are shared mechanisms. We aimed to assess evidence for central neural changes associated with adverse childhood experiences in subjects with chronic pain, MDD, or both using systematic review and meta-analysis. METHODS Electronic databases were systematically searched for neuroimaging studies of adverse childhood experiences, with chronic pain, MDD, or both. Two independent reviewers screened title, abstracts, and full text, and assessed quality. After extraction of neuroimaging data, activation likelihood estimate meta-analysis was performed to identify significant brain regions associated with these comorbidities. RESULTS Forty-nine of 2414 studies were eligible, of which 43 investigated adverse childhood experiences and MDD and six investigated adverse childhood experiences and chronic pain. None investigated adverse childhood experiences, chronic pain, and MDD together. Functional and structural brain abnormalities were identified in the superior frontal, lingual gyrus, hippocampus, insula, putamen, superior temporal, inferior temporal gyrus, and anterior cerebellum in patients with MDD exposed to adverse childhood experiences. In addition, brain function abnormalities were identified for patients with MDD or chronic pain and exposure to adverse childhood experiences in the cingulate gyrus, inferior parietal lobule, and precuneus in task-based functional MRI studies. CONCLUSIONS We found that adverse childhood experiences exposure can result in different functional and structural brain alterations in adults with MDD or chronic pain compared with those without adverse childhood experiences. SYSTEMATIC REVIEW PROTOCOL PROSPERO CRD42021233989.
Collapse
Affiliation(s)
- Georgia Antoniou
- Division of Population Health and Genomics, Medical Research Institute, University of Dundee, Dundee, UK.
| | - Emilie Lambourg
- Division of Population Health and Genomics, Medical Research Institute, University of Dundee, Dundee, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, UK
| | - Lesley A Colvin
- Division of Population Health and Genomics, Medical Research Institute, University of Dundee, Dundee, UK
| |
Collapse
|
34
|
Kim C, Kim J, Chang H, Hong D, Hong S, Moon H. Longitudinal Change in Brain Functional Connectivity with Herpes Zoster Patients: Neuroimaging Case Series. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1045. [PMID: 37374249 DOI: 10.3390/medicina59061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
The exact mechanism involved in the development of postherpetic neuralgia (PHN) is not yet known. The objective of this study was to evaluate longitudinal functional connectivity (FC) changes in the neuroimaging case series of patients with acute herpes zoster (HZ). Cases: This study included five patients who had symptoms of HZ. Functional magnetic resonance imaging was conducted at enrollment and 3 months to determine FC changes. Of the five patients, three developed PHN. In the PHN subjects, the FC of the left superior frontal gyrus (SFG) and the right inferior frontal gyrus (IFG) were activated. The left SFG is known to contribute to higher cognitive functions and working memory. The right IFG is associated with pain processing and empathy for pain. Conclusions: Although only a few patients were enrolled in this study, the PHN could be affected by pain itself, as well as pain memory and psychological aspects such as empathy for pain.
Collapse
Affiliation(s)
- Changjae Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Joongbaek Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Hyunjae Chang
- Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Dakyung Hong
- Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Sanghyun Hong
- Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Hosik Moon
- Department of Anesthesiology and Pain Medicine, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| |
Collapse
|
35
|
Pagliusi M, Gomes FV. The Role of The Rostral Ventromedial Medulla in Stress Responses. Brain Sci 2023; 13:brainsci13050776. [PMID: 37239248 DOI: 10.3390/brainsci13050776] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The rostral ventromedial medulla (RVM) is a brainstem structure critical for the descending pain modulation system involved in both pain facilitation and inhibition through its projection to the spinal cord. Since the RVM is well connected with pain- and stress-engaged brain structures, such as the anterior cingulate cortex, nucleus accumbens, and amygdala, its involvement in stress responses has become a matter of great interest. While chronic stress has been proposed as a trigger of pain chronification and related psychiatric comorbidities due to maladaptive stress responses, acute stress triggers analgesia and other adaptative responses. Here we reviewed and highlighted the critical role of the RVM in stress responses, mainly in acute stress-induced analgesia (SIA) and chronic stress-induced hyperalgesia (SIH), providing insights into pain chronification processes and comorbidity between chronic pain and psychiatric disorders.
Collapse
Affiliation(s)
- Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14015-069, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14015-069, SP, Brazil
| |
Collapse
|
36
|
Hao S, Shi W, Liu W, Chen QY, Zhuo M. Multiple modulatory roles of serotonin in chronic pain and injury-related anxiety. Front Synaptic Neurosci 2023; 15:1122381. [PMID: 37143481 PMCID: PMC10151796 DOI: 10.3389/fnsyn.2023.1122381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Chronic pain is long-lasting pain that often persists during chronic diseases or after recovery from disease or injury. It often causes serious side effects, such as insomnia, anxiety, or depression which negatively impacts the patient's overall quality of life. Serotonin (5-HT) in the central nervous system (CNS) has been recognized as an important neurotransmitter and neuromodulator which regulates various physiological functions, such as pain sensation, cognition, and emotions-especially anxiety and depression. Its widespread and diverse receptors underlie the functional complexity of 5-HT in the CNS. Recent studies found that both chronic pain and anxiety are associated with synaptic plasticity in the anterior cingulate cortex (ACC), the insular cortex (IC), and the spinal cord. 5-HT exerts multiple modulations of synaptic transmission and plasticity in the ACC and the spinal cord, including activation, inhibition, and biphasic actions. In this review, we will discuss the multiple actions of the 5-HT system in both chronic pain and injury-related anxiety, and the synaptic mechanisms behind them. It is likely that the specific 5-HT receptors would be new promising therapeutic targets for the effective treatment of chronic pain and injury-related anxiety in the future.
Collapse
Affiliation(s)
- Shun Hao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- International Institute of Brain Research, Forevercheer Medicine Pharmac Inc., Qingdao, Shandong, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weiqi Liu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qi-Yu Chen
- International Institute of Brain Research, Forevercheer Medicine Pharmac Inc., Qingdao, Shandong, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Min Zhuo
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- International Institute of Brain Research, Forevercheer Medicine Pharmac Inc., Qingdao, Shandong, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Labrakakis C. The Role of the Insular Cortex in Pain. Int J Mol Sci 2023; 24:ijms24065736. [PMID: 36982807 PMCID: PMC10056254 DOI: 10.3390/ijms24065736] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The transition from normal to chronic pain is believed to involve alterations in several brain areas that participate in the perception of pain. These plastic changes are then responsible for aberrant pain perception and comorbidities. The insular cortex is consistently found activated in pain studies of normal and chronic pain patients. Functional changes in the insula contribute to chronic pain; however, the complex mechanisms by which the insula is involved in pain perception under normal and pathological conditions are still not clear. In this review, an overview of the insular function is provided and findings on its role in pain from human studies are summarized. Recent progress on the role of the insula in pain from preclinical experimental models is reviewed, and the connectivity of the insula with other brain regions is examined to shed new light on the neuronal mechanisms of the insular cortex’s contribution to normal and pathological pain sensation. This review underlines the need for further studies on the mechanisms underlying the involvement of the insula in the chronicity of pain and the expression of comorbid disorders.
Collapse
Affiliation(s)
- Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
38
|
Morris JR, Harrison SL, Robinson J, Martin D, Avery L. Non-pharmacological and non-invasive interventions for chronic pain in people with chronic obstructive pulmonary disease: A systematic review without meta-analysis. Respir Med 2023; 211:107191. [PMID: 36889522 DOI: 10.1016/j.rmed.2023.107191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
OBJECTIVES Chronic Obstructive Pulmonary Disease (COPD) is complicated by chronic pain. People with COPD report higher pain prevalence than the general population. Despite this, chronic pain management is not reflected in current COPD clinical guidelines and pharmacological treatments are often ineffective. We conducted a systematic review that aimed to establish the efficacy of existing non-pharmacological and non-invasive interventions on pain and identify behaviour change techniques (BCTs) associated with effective pain management. METHODS A systematic review was conducted with reference to Preferred Reporting Items for Systematic Review (PRISMA) [1], Systematic review without Meta analysis (SWIM) standards [2] and Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines [3]. We searched 14 electronic databases for controlled trials of non-pharmacological and non-invasive interventions where the outcome measure assessed pain or contained a pain subscale. RESULTS Twenty-nine studies were identified involving 3,228 participants. Seven interventions reported a minimally important clinical difference in pain outcomes, although only two of these reached statistical significance (p < 0.05). A third study reported statistically significant outcomes, but this was not clinically significant (p = 0.0273). Issues with intervention reporting prevented identification of active intervention ingredients (i.e., BCTs). CONCLUSIONS Pain appears to be a meaningful issue for many individuals with COPD. However, intervention heterogeneity and issues with methodological quality limit certainty about the effectiveness of currently available non-pharmacological interventions. An improvement in reporting is required to enable identification of active intervention ingredients associated with effective pain management.
Collapse
Affiliation(s)
- Jeanette R Morris
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK.
| | - Samantha L Harrison
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK.
| | - Jonathan Robinson
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK.
| | - Denis Martin
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK.
| | - Leah Avery
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK.
| |
Collapse
|
39
|
Oughourlian TC, Tun G, Antony KM, Gupta A, Mayer EA, Rapkin AJ, Labus JS. Symptom-associated alterations in functional connectivity in primary and secondary provoked vestibulodynia. Pain 2023; 164:653-665. [PMID: 35972459 PMCID: PMC11575719 DOI: 10.1097/j.pain.0000000000002754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
ABSTRACT Primary provoked vestibulodynia (PVD) is marked by the onset of symptoms at first provoking vulvar contact, whereas secondary PVD refers to symptom onset after some period of painless vulvar contact. Different pathophysiological processes are believed to be involved in the development and maintenance of primary PVD and secondary PVD. The primary aim of this study was to test the hypotheses that the resting state functional connectivity of the brain and brain stem regions differs between these subtypes. Deep clinical phenotyping and resting state brain imaging were obtained in a large sample of a women with primary PVD (n = 46), those with secondary PVD (n = 68), and healthy control women (n = 94). The general linear model was used to test for differences in region-to-region resting state functional connectivity and psychosocial and symptom assessments. Direct statistical comparisons by onset type indicated that women with secondary PVD have increased dorsal attention-somatomotor network connectivity, whereas women with primary PVD predominantly show increased intrinsic resting state connectivity within the brain stem and the default mode network. Furthermore, compared with women with primary PVD, those with secondary PVD reported greater incidence of early life sexual abuse, greater pain catastrophizing, greater 24-hour symptom unpleasantness, and less sexual satisfaction. The findings suggest that women with secondary PVD show greater evidence for central amplification of sensory signals, whereas women with primary PVD have alterations in brain stem circuitry responsible for the processing and modulation of ascending and descending peripheral signals.
Collapse
Affiliation(s)
- Talia C. Oughourlian
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdisciplinary Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Guistinna Tun
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Kevin M. Antony
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Brain Research Institute UCLA, Gonda (Goldschmied) Neuroscience and Genetics Research Center, University of California Los Angeles, Los Angeles, CA
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Andrea J. Rapkin
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Dept. of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Brain Research Institute UCLA, Gonda (Goldschmied) Neuroscience and Genetics Research Center, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
40
|
Abstract
Pain is driven by sensation and emotion, and in turn, it motivates decisions and actions. To fully appreciate the multidimensional nature of pain, we formulate the study of pain within a closed-loop framework of sensory-motor prediction. In this closed-loop cycle, prediction plays an important role, as the interaction between prediction and actual sensory experience shapes pain perception and subsequently, action. In this Perspective, we describe the roles of two prominent computational theories-Bayesian inference and reinforcement learning-in modeling adaptive pain behaviors. We show that prediction serves as a common theme between these two theories, and that each of these theories can explain unique aspects of the pain perception-action cycle. We discuss how these computational theories and models can improve our mechanistic understandings of pain-centered processes such as anticipation, attention, placebo hypoalgesia, and pain chronification.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY 10016, USA
| | - Jing Wang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY 10016, USA
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
41
|
Jiao Y, Gao P, Dong L, Ding X, Meng Y, Qian J, Gao T, Wang R, Jiang T, Zhang Y, Kong D, Wu Y, Chen S, Xu S, Tang D, Luo P, Wu M, Meng L, Wen D, Wu C, Zhang G, Shi X, Yu W, Rong W. Molecular identification of bulbospinal ON neurons by GPER, which drives pain and morphine tolerance. J Clin Invest 2023; 133:e154588. [PMID: 36346677 PMCID: PMC9797334 DOI: 10.1172/jci154588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The rostral ventromedial medulla (RVM) exerts bidirectional descending modulation of pain attributable to the activity of electrophysiologically identified pronociceptive ON and antinociceptive OFF neurons. Here, we report that GABAergic ON neurons specifically express G protein-coupled estrogen receptor (GPER). GPER+ neurons exhibited characteristic ON-like responses upon peripheral nociceptive stimulation. Optogenetic activation of GPER+ neurons facilitated, but their ablation abrogated, pain. Furthermore, activation of GPER caused depolarization of ON cells, potentiated pain, and ameliorated morphine analgesia through desensitizing μ-type opioid receptor-mediated (MOR-mediated) activation of potassium currents. In contrast, genetic ablation or pharmacological blockade of GPER attenuated pain, enhanced morphine analgesia, and delayed the development of morphine tolerance in diverse preclinical pain models. Our data strongly indicate that GPER is a marker for GABAergic ON cells and illuminate the mechanisms underlying hormonal regulation of pain and analgesia, thus highlighting GPER as a promising target for the treatment of pain and opioid tolerance.
Collapse
Affiliation(s)
- Yingfu Jiao
- Department of Anatomy and Physiology and
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Po Gao
- Department of Anatomy and Physiology and
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Dong
- Department of Anatomy and Physiology and
| | | | - Youqiang Meng
- Department of Anatomy and Physiology and
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai University of Medicine and Health Sciences Affiliated Chongming Hospital, Shanghai, China
| | | | - Ting Gao
- Department of Anatomy and Physiology and
| | - Ruoxi Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dexu Kong
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihan Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Luo
- Department of Anatomy and Physiology and
| | - Meimei Wu
- Department of Anatomy and Physiology and
| | - Li Meng
- Department of Anatomy and Physiology and
| | - Daxiang Wen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changhao Wu
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | | | - Xueyin Shi
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifang Rong
- Department of Anatomy and Physiology and
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Neuroimaging reveals a potential brain-based pre-existing mechanism that confers vulnerability to development of chronic painful chemotherapy-induced peripheral neuropathy. Br J Anaesth 2023; 130:83-93. [PMID: 36396483 DOI: 10.1016/j.bja.2022.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/23/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating condition impacting 30% of cancer survivors. This study is the first to explore whether a brain-based vulnerability to chronic sensory CIPN exists. METHODS This prospective, multicentre cohort study recruited from three sites across Scotland. Brain functional MRI (fMRI) scans (3 Tesla) were carried out on chemotherapy naïve patients at a single fMRI centre in Edinburgh, Scotland. Nociceptive stimuli (with a 256 mN monofilament) were administered during the fMRI. Development of chronic sensory/painful CIPN (CIPN+) was determined based upon European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Chemotherapy-Induced Peripheral Neuropathy 20 changes conducted 9 months after chemotherapy, and imaging data analysed using standard software. RESULTS Of 30 patients recruited (two lung, nine gynaecological, and 19 colorectal malignancies), data from 20 patients at 9 months after chemotherapy was available for analysis. Twelve were classified as CIPN+ (mean age, 63.2[9.6] yr, 9.6; six female), eight as CIPN- (mean age 62.9 [SD 5.5] yr, four female). In response to punctate stimulation, group contrast analysis showed that CIPN+ compared with CIPN- had robust activity in sensory, motor, attentional, and affective brain regions. An a priori chosen region-of-interest analysis focusing on the periaqueductal grey, an area hypothesised as relevant for developing CIPN+, showed significantly increased responses in CIPN- compared with CIPN+ patients. No difference in subcortical volumes between CIPN+ and CIPN- patients was detected. CONCLUSIONS Before administration of any chemotherapy or appearance of CIPN symptoms, we observed altered patterns of brain activity in response to nociceptive stimulation in patients who later developed chronic sensory CIPN. This suggests the possibility of a pre-existing vulnerability to developing CIPN centred on brainstem regions of the descending pain modulatory system.
Collapse
|
43
|
Pavlyshyn H, Sarapuk I. Skin-to-skin contact-An effective intervention on pain and stress reduction in preterm infants. Front Pediatr 2023; 11:1148946. [PMID: 37033163 PMCID: PMC10073438 DOI: 10.3389/fped.2023.1148946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The outcomes of pain and stress in preterm infants in the neonatal intensive care units (NICUs) compel the continued search for pain- and stress-reducing interventions. The objective of the study To investigate how skin-to-skin contact (SSC) influences chronic pain and stress in preterm infants in the NICU. Materials and methods The study included 140 preterm infants in the NICU with gestational age less than 34 weeks. The overall design was a baseline-response design. Urine and saliva were collected before (baseline) and after SSC to measure pain and stress markers by enzyme immunoassay method. The behavioral indicators of chronic pain were assessed using the EDIN (Échelle Douleur Inconfort Nouveau-Né-neonatal pain and discomfort). Results There was a significant decrease in the dopamine level in preterm infants after SSC in comparison with baseline values (85.99 [69.35; 112.20] pg/ml vs. 132.20 [104.80; 183.70] pg/ml), p < 0.001. The β-endorphin and serotonin levels increased after SSC (40.09 [26.81; 70.63] pg/ml vs. 29.87 [20.61; 46.94] pg/ml, p = 0.009 and 25.49 [20.45; 40.08] ng/ml vs. 22.30 [15.13; 31.65] ng/ml, p = 0.011, respectively). A significant decrease in cortisol levels in saliva and urine after SSC in comparison with baseline values (0.125 [0.079; 0.225] μg/dl vs. 0.371 [0.188; 1.002] μg/dl, p = 0.000 and 27.06 [14.59; 35.35] ng/ml vs. 35.25 [19.78; 61.94] ng/ml, p = 0.001, with a simultaneous increase of oxytocin level (57.00 [36.55; 88.49] pg/ml vs. 38.20 [28.78; 56.04] pg/ml, p = 0.009 were revealed. The total pain EDIN score in infants after SSC was below 6 points, significantly decreasing compared to the baseline (p < 0.05). Conclusion Preterm infants in the NICU experience stress and pain, which were confirmed by the EDIN pain scale and laboratory markers. The level of dopamine and cortisol as pain and stress hormones were reliably high, and normalized after regular SSC. Simultaneously, pain-relieving and anti-stress markers of oxytocin, β-endorphin and serotonin reliably increased in preterm infants in response to the SSC.
Collapse
|
44
|
Terzoni S, Ferrara P, Parozzi M, Colombani F, Mora C, Cilluffo S, Jeannette VG, Destrebecq A, Pinna B, Lusignani M, Chiara S, Giorgia G, Rocco B. Nurses' role in the management of persons with chronic urogenital pelvic pain syndromes: A scoping review. Neurourol Urodyn 2023; 42:13-22. [PMID: 36183384 DOI: 10.1002/nau.25053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Pelvic pain has cognitive, behavioral, sexual, and emotional consequences. Nurses involved in pelvic floor rehabilitation clinics have contacts with patients reporting chronic pain and should know the most appropriate service for patient referral, to submit the problem to professionals capable of correctly assessing and managing the condition. Furthermore, in some countries nurses can use conservative methods to treat the painful symptoms inside a multidisciplinary team such as breathing retraining, biofeedback, and noninvasive neuromodulation. This paper aims to provide an overview of the literature regarding the role of rehabilitation nurses in dealing with patients suffering from chronic urogenital pelvic pain or urogenital painful syndromes, inside a multidisciplinary team. METHODS Scoping review on Pubmed, CINAHL, Embase, Scopus, Web of Science including trials, reviews, case studies or series, and other descriptive studies regarding the role of nurses inside the multidisciplinary team in the management of males and females presenting chronic pelvic pain (CPP) or chronic pelvic pain syndrome (CPPS). RESULTS The 36 papers included in this review allowed answering research questions in four areas of nursing: collecting basic information, referring the person to appropriate services, evidence-based nursing interventions for CPP and CPPS, and proper documentation. Clinical history and assessment of breathing pattern, Muscular assessment and research of trigger points are the main points of data collection. Techniques for muscular relaxation and breathing retraining are important aspects of treatment, as well as biofeedback and noninvasive neuromodulation where the law allows nurses to practice such techniques. The McGill pain questionnaire and the pain inventory of the International Pain Society allow systematic data collection and handover. CONCLUSION Rehabilitation nurses work inside multidisciplinary teams when dealing with persons suffering from pelvic pain; further research is needed as our comprehension of the underlying pathophysiological mechanisms of CPP and CPPS evolve.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Cilluffo
- Grande Ospedale Metropolitano Niguarda-Ca' Granda, Milan, Italy
| | | | - Anne Destrebecq
- Department of Biomedical Sciences for Health, University of Milan, Italy
| | | | - Maura Lusignani
- Department of Biomedical Sciences for Health, University of Milan, Italy
| | | | | | - Bernardo Rocco
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
45
|
Diez GG, Anitua E, Castellanos N, Vázquez C, Galindo-Villardón P, Alkhraisat MH. The effect of mindfulness on the inflammatory, psychological and biomechanical domains of adult patients with low back pain: A randomized controlled clinical trial. PLoS One 2022; 17:e0276734. [PMID: 36350802 PMCID: PMC9645607 DOI: 10.1371/journal.pone.0276734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Objective This study aims to study the effect of mindfulness-based program on the psychological, biomechanical and inflammatory domains of patients with chronic low back pain. Methods A multicentre randomized and controlled clinical trial of parallel groups in patients with chronic low back pain between March 2019 to March 2020. Participants with no experience in mindfulness based intervention, were randomized to receive (36 patients) or not (34 patients) mindfulness-based stress reduction program for chronic back pain (MBSR-CBP). The program was performed in 9 sessions. Patients with chronic low back pain due to symptomatic discopathy (degenerative disc disease or herniated disc) were included. The principal outcome was changes in the blood level of cortisol and cytokines (tumor necrosis factor- α (TNF- α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukin-17 (IL-17)). Secondary outcomes (psychological factors, pain, and quality of life) were measured by validated questionnaires. Results Of the 96 randomized patients, 70 who completed the study were included in the analysis (mean [range] age: 53 [33–73] years; 66% females). MBSR-CBP stopped the increase in cortisol, and reduced pro-inflammatory cytokine IL-1β (p = 0.05). It reduced depression (p = 0.046) and stress (p = 0.0438), perceived pain (p < 0.0001), and limitations related to health (p < 0.0001). It also increased the physical function (p = 0.002) and sleep quality (p = 0.05). Furthermore, it significantly increased life satisfaction (0.006), well-being (p = 0.001) and vitality (p < 0.0001). It also increased self-compassion (p < 0.0001) and significantly reduced the overidentification (p<0.0001) and catastrophization (p = 0.002). Conclusions MBSR-CBP could be part of a multidisciplinary approach in the management of patients suffering from chronic low back pain.
Collapse
Affiliation(s)
- Gustavo G. Diez
- Nirakara Lab, Madrid, Spain
- Mindfulness and Cognitive Science Chair, Complutense University, Madrid, Spain
- * E-mail: (EA); (GGD)
| | - Eduardo Anitua
- University Institute of Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundacion Eduardo Anitua), Vitoria, Spain
- BTI Biotechnology Institute, Vitoria, Spain
- * E-mail: (EA); (GGD)
| | | | - Carmelo Vázquez
- School of Psychology, Complutense University of Madrid, Madrid, Spain
| | | | - Mohammad H. Alkhraisat
- University Institute of Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundacion Eduardo Anitua), Vitoria, Spain
- BTI Biotechnology Institute, Vitoria, Spain
| |
Collapse
|
46
|
Chang P, Fabrizi L, Fitzgerald M. Early Life Pain Experience Changes Adult Functional Pain Connectivity in the Rat Somatosensory and the Medial Prefrontal Cortex. J Neurosci 2022; 42:8284-8296. [PMID: 36192150 PMCID: PMC9653276 DOI: 10.1523/jneurosci.0416-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Early life pain (ELP) experience alters adult pain behavior and increases injury-induced pain hypersensitivity, but the effect of ELP on adult functional brain connectivity is not known. We have performed continuous local field potential (LFP) recording in the awake adult male rats to test the effect of ELP on functional cortical connectivity related to pain behavior. Primary somatosensory cortex (S1) and medial prefrontal cortex (mPFC) LFPs evoked by mechanical hindpaw stimulation were recorded simultaneously with pain reflex behavior for 10 d after adult incision injury. We show that, after adult injury, sensory evoked S1 LFP δ and γ energy and S1 LFP δ/γ frequency coupling are significantly increased in ELP rats compared with controls. Adult injury also induces increases in S1-mPFC functional connectivity, but this is significantly prolonged in ELP rats, lasting 4 d compared with 1 d in controls. Importantly, the increases in LFP energy and connectivity in ELP rats were directly correlated with increased behavioral pain hypersensitivity. Thus, ELP alters adult brain functional connectivity, both within and between cortical areas involved in sensory and affective dimensions of pain. The results reveal altered brain connectivity as a mechanism underlying the effects of ELP on adult pain perception.SIGNIFICANCE STATEMENT Pain and stress in early life has a lasting impact on pain behavior and may increase vulnerability to chronic pain in adults. Here, we record pain-related cortical activity and simultaneous pain behavior in awake adult male rats previously exposed to pain in early life. We show that functional connectivity within and between the somatosensory cortex and the medial prefrontal cortex (mPFC) is increased in these rats and that these increases are correlated with their behavioral pain hypersensitivity. The results reveal that early life pain (ELP) alters adult brain connectivity, which may explain the impact of childhood pain on adult chronic pain vulnerability.
Collapse
Affiliation(s)
- Pishan Chang
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
47
|
Henningsen P, Hausteiner-Wiehle C, Häuser W. Migraine in the context of chronic primary pain, chronic overlapping pain disorders, and functional somatic disorders: A narrative review. Headache 2022; 62:1272-1280. [PMID: 36373821 DOI: 10.1111/head.14419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To contextualize migraine as the most common primary headache disorder in relation to other chronic primary pain and non-pain functional somatic and mental conditions. BACKGROUND Migraine is increasingly understood as a sensory processing disorder within a broader spectrum of symptom disorders. This has implications for diagnosis and treatment. METHOD Narrative review based on a search of the literature of the last 15 years on the overlap of migraine with other symptom disorders. RESULTS Migraine as the prototypical primary headache disorder not only comprises many non-headache symptoms in itself, it also shows high comorbidity with other chronic pain and non-pain conditions (e.g., fibromyalgia syndrome, irritable bowel syndrome, functional non-epileptic seizures, depression, anxiety, and posttraumatic stress disorder). Such "symptom disorders" share several etiological factors (e.g., female preponderance, psychological vulnerability) and psychophysiological mechanisms (e.g., altered sensory processing, pain expectancy). These facts are acknowledged by several recent integrative conceptualizations such as chronic primary pain, chronic overlapping pain conditions, or functional somatic disorders. Accordingly, migraine management increasingly addresses the total symptom burden and individual contributors to symptom experience, and thus incorporates centrally acting pharmacological and non-pharmacological, that is, psychological and behavioral, treatment approaches. CONCLUSIONS Migraine and also other primary headache disorders should be seen as particular phenotypes within a broader spectrum of symptom perception and processing disorders that require integrative diagnostics and treatment. A harmonization of classifications and better interdisciplinary collaboration are desirable.
Collapse
Affiliation(s)
- Peter Henningsen
- Department of Psychosomatic Medicine and Psychotherapy, Technical University of Munich, Munich, Germany
| | - Constanze Hausteiner-Wiehle
- Department of Psychosomatic Medicine and Psychotherapy, Technical University of Munich, Munich, Germany.,Department of Neurology, BG Trauma Center Murnau, Murnau, Germany
| | - Winfried Häuser
- Department of Psychosomatic Medicine and Psychotherapy, Technical University of Munich, Munich, Germany.,Department of Internal Medicine 1, Klinikum Saarbrücken, Saarbrücken, Germany
| |
Collapse
|
48
|
Bosak N, Branco P, Kuperman P, Buxbaum C, Cohen RM, Fadel S, Zubeidat R, Hadad R, Lawen A, Saadon‐Grosman N, Sterling M, Granovsky Y, Apkarian AV, Yarnitsky D, Kahn I. Brain Connectivity Predicts Chronic Pain in Acute Mild Traumatic Brain Injury. Ann Neurol 2022; 92:819-833. [PMID: 36082761 PMCID: PMC9826527 DOI: 10.1002/ana.26463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Previous studies have established the role of the cortico-mesolimbic and descending pain modulation systems in chronic pain prediction. Mild traumatic brain injury (mTBI) is an acute pain model where chronic pain is prevalent and complicated for prediction. In this study, we set out to study whether functional connectivity (FC) of the nucleus accumbens (NAc) and the periaqueductal gray matter (PAG) is predictive of pain chronification in early-acute mTBI. METHODS To estimate FC, resting-state functional magnetic resonance imaging (fMRI) of 105 participants with mTBI following a motor vehicle collision was acquired within 72 hours post-accident. Participants were classified according to pain ratings provided at 12-months post-collision into chronic pain (head/neck pain ≥30/100, n = 44) and recovery (n = 61) groups, and their FC maps were compared. RESULTS The chronic pain group exhibited reduced negative FC between NAc and a region within the primary motor cortex corresponding with the expected representation of the area of injury. A complementary pattern was also demonstrated between PAG and the primary somatosensory cortex. PAG and NAc also shared increased FC to the rostral anterior cingulate cortex (rACC) within the recovery group. Brain connectivity further shows high classification accuracy (area under the curve [AUC] = .86) for future chronic pain, when combined with an acute pain intensity report. INTERPRETATION FC features obtained shortly after mTBI predict its transition to long-term chronic pain, and may reflect an underlying interaction of injury-related primary sensorimotor cortical areas with the mesolimbic and pain modulation systems. Our findings indicate a potential predictive biomarker and highlight targets for future early preventive interventions. ANN NEUROL 2022;92:819-833.
Collapse
Affiliation(s)
- Noam Bosak
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Paulo Branco
- Department of NeuroscienceNorthwestern University Medical SchoolChicagoIL
| | - Pora Kuperman
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Chen Buxbaum
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Ruth Manor Cohen
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Shiri Fadel
- Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Rabab Zubeidat
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Rafi Hadad
- Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Amir Lawen
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Noam Saadon‐Grosman
- Department of Medical Neurobiology, Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - Michele Sterling
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence in Road Traffic Injury RecoveryThe University of QueenslandBrisbaneAustralia
| | - Yelena Granovsky
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | | | - David Yarnitsky
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Itamar Kahn
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
49
|
Tan AC, Allen SK, Aziz I, Mercado M, Nanthakumar K, Syed F, Champion GD. Biopsychosocial sequelae of chronically painful injuries sustained in motor vehicle accidents contributing to non-recovery: A retrospective cohort study. Injury 2022; 53:3201-3208. [PMID: 35843753 DOI: 10.1016/j.injury.2022.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Claimants with chronically painful injuries sustained in motor vehicle accidents (MVAs) undergo assessment and management influenced by insurance and medico-legal processes defined by a biomedical paradigm which is discordant with best evidence. We aim to demonstrate the impact of biopsychosocial factors on post-MVA sequelae which contribute to non-recovery. METHODS This was a retrospective cohort study of medico-legal documents and reports on 300 consecutive claimants referred to a pain medicine physician over 7 years (2012-2018) for assessment of painful musculoskeletal injuries post-MVA. One hundred data items were extracted from the medico-legal documents and reports for each claimant and entered into an electronic database. Post-MVA sequelae were analysed using chi-square analysis (OR >2) for significant associations with demographic, pre-MVA and post-MVA variables. Factors with significant associations were entered into a logistic regression model to determine significant statistical predictors of post-MVA sequelae contributing to non-recovery. RESULTS The claimants were aged 17 to 80 years (mean age 42 years), and approximately half (53%, n=159) were female. The time from MVA to interview averaged 2.5 years. Widespread pain was present in 18% (n=54), and widespread somatosensory signs implying central sensitisation (OR=9.85, p<.001) was the most significant multivariate association. Long-term opiate use post-MVA (32%) was predicted by pre-MVA sleep disturbance (OR=5.08, p=.001), post-MVA major depressive disorder (MDD) (OR=3.02, p=.003) and long-term unemployment (OR=2.22. p=.007). Approximately half (47%, n=142) required post-MVA support from a psychologist or psychiatrist. Post-traumatic stress disorder (PTSD) was diagnosed by a psychiatrist or psychologist in 20% (n=59), yet early identification of risk of PTSD was rare. Pre-MVA, 89.4% (n=268) were studying or employed. Permanent unemployability post-MVA occurred in 35% (n=104) and was predicted by MDD (OR=3.59, p=.001) and antidepressant use (OR=2.17, p=.005). Major social change post-MVA (70%) was predicted by older age (OR=.966, p=.003), depressive symptoms (OR=3.71, p<.001) and opiate use (OR=2.00, p=.039). CONCLUSIONS Biomedical factors, including older age, impaired sleep and indicators of widespread central sensitisation, and psychological factors, including stress, anxiety and depression, were the most prominent multivariate associations as statistical predictors of major adverse sequelae contributing to non-recovery for claimants with chronic pain post-MVA.
Collapse
Affiliation(s)
- Aidan Christopher Tan
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.
| | - Samantha Kate Allen
- Brain Injury Rehabilitation Service, Westmead Hospital, Sydney, NSW, Australia.
| | - Iqra Aziz
- Royal North Shore Hospital, Sydney, NSW, Australia.
| | | | | | - Faisal Syed
- Wollongong Hospital, Sydney, NSW, Australia.
| | - G David Champion
- School of Women's and Children's Health, Department of Pain, University of New South Wales, Sydney, Level 7 Bright Alliance Building, High Street, Randwick, NSW 2031, Australia.
| |
Collapse
|
50
|
Mackey S, Gilam G, Darnall B, Goldin P, Kong JT, Law C, Heirich M, Karayannis N, Kao MC, Tian L, Manber R, Gross J. Mindfulness-Based Stress Reduction, Cognitive Behavioral Therapy, and Acupuncture in Chronic Low Back Pain: Protocol for Two Linked Randomized Controlled Trials. JMIR Res Protoc 2022; 11:e37823. [PMID: 36166279 PMCID: PMC9555327 DOI: 10.2196/37823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nonpharmacologic mind-body therapies have demonstrated efficacy in low back pain. However, the mechanisms underlying these therapies remain to be fully elucidated. OBJECTIVE In response to these knowledge gaps, the Stanford Center for Low Back Pain-a collaborative, National Institutes of Health P01-funded, multidisciplinary research center-was established to investigate the common and distinct biobehavioral mechanisms of three mind-body therapies for chronic low back pain: cognitive behavioral therapy (CBT) that is used to treat pain, mindfulness-based stress reduction (MBSR), and electroacupuncture. Here, we describe the design and implementation of the center structure and the associated randomized controlled trials for characterizing the mechanisms of chronic low back pain treatments. METHODS The multidisciplinary center is running two randomized controlled trials that share common resources for recruitment, enrollment, study execution, and data acquisition. We expect to recruit over 300 chronic low back pain participants across two projects and across different treatment arms within each project. The first project will examine pain-CBT compared with MBSR and a wait-list control group. The second project will examine real versus sham electroacupuncture. We will use behavioral, psychophysical, physical measure, and neuroimaging techniques to characterize the central pain modulatory and emotion regulatory systems in chronic low back pain at baseline and longitudinally. We will characterize how these interventions impact these systems, characterize the longitudinal treatment effects, and identify predictors of treatment efficacy. RESULTS Participant recruitment began on March 17, 2015, and will end in March 2023. Recruitment was halted in March 2020 due to COVID-19 and resumed in December 2021. CONCLUSIONS This center uses a comprehensive approach to study chronic low back pain. Findings are expected to significantly advance our understanding in (1) the baseline and longitudinal mechanisms of chronic low back pain, (2) the common and distinctive mechanisms of three mind-body therapies, and (3) predictors of treatment response, thereby informing future delivery of nonpharmacologic chronic low back pain treatments. TRIAL REGISTRATION ClinicalTrials.gov NCT02503475; https://clinicaltrials.gov/ct2/show/NCT02503475. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/37823.
Collapse
Affiliation(s)
- Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, United States
| | - Gadi Gilam
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Beth Darnall
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, United States
| | - Philippe Goldin
- Betty Irene Moore School of Nursing, University of California, Davis, Sacramento, CA, United States
| | - Jiang-Ti Kong
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, United States
| | - Christine Law
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, United States
| | - Marissa Heirich
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, United States
| | - Nicholas Karayannis
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, United States
| | - Ming-Chih Kao
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, United States
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Palo Alto, CA, United States
| | - Rachel Manber
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, United States
| | - James Gross
- Department of Psychology, Stanford University, Palo Alto, CA, United States
| |
Collapse
|