1
|
Natarajan P, Koupourtidou C, de Resseguier T, Thorwirth M, Bocchi R, Fischer‐Sternjak J, Gleiss S, Rodrigues D, Myoga MH, Ninkovic J, Masserdotti G, Götz M. Single Cell Deletion of the Transcription Factors Trps1 and Sox9 in Astrocytes Reveals Novel Functions in the Adult Cerebral Cortex. Glia 2025; 73:737-758. [PMID: 39610085 PMCID: PMC11845849 DOI: 10.1002/glia.24645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Astrocytes play key roles in brain function, but how these are orchestrated by transcription factors (TFs) in the adult brain and aligned with astrocyte heterogeneity is largely unknown. Here we examined the localization and function of the novel astrocyte TF Trps1 (Transcriptional Repressor GATA Binding 1) and the well-known astrocyte TF Sox9 by Cas9-mediated deletion using Mokola-pseudotyped lentiviral delivery into the adult cerebral cortex. Trps1 and Sox9 levels showed heterogeneity among adult cortical astrocytes, which prompted us to explore the effects of deleting either Sox9 or Trps1 alone or simultaneously at the single-cell (by patch-based single-cell transcriptomics) and tissue levels (by spatial transcriptomics). This revealed TF-specific functions in astrocytes, such as synapse maintenance with the strongest effects on synapse number achieved by Trps1 deletion and a common effect on immune response. In addition, spatial transcriptomics showed non-cell-autonomous effects on the surrounding cells, such as oligodendrocytes and other immune cells with TF-specific differences on the type of immune cells: Trps1 deletion affecting monocytes specifically, while Sox9 deletion acting mostly on microglia and deletion of both TF affecting mostly B cells. Taken together, this study reveals novel roles of Trps1 and Sox9 in adult astrocytes and their communication with other glial and immune cells.
Collapse
Affiliation(s)
- Poornemaa Natarajan
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Graduate School of Systemic Neurosciences, BiocenterMartinsriedGermany
- Max‐Planck‐Institute for BiochemistryInternational Max Planck Research School for Life SciencesMunichGermany
| | - Christina Koupourtidou
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Graduate School of Systemic Neurosciences, BiocenterMartinsriedGermany
- Max Planck Institute for Biological IntelligenceMartinsriedGermany
| | - Thibault de Resseguier
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
| | - Manja Thorwirth
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Riccardo Bocchi
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Judith Fischer‐Sternjak
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Sarah Gleiss
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
| | - Diana Rodrigues
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Max Planck Institute for Biological IntelligenceMartinsriedGermany
| | - Michael H. Myoga
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Max Planck Institute for Biological IntelligenceMartinsriedGermany
| | - Jovica Ninkovic
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Biomedical Center Munich, Department of Cell Biology and AnatomyLMU MunichMartinsriedGermany
- Excellence Cluster of Systems Neurology (SYNERGY)MunichGermany
| | - Giacomo Masserdotti
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Magdalena Götz
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Excellence Cluster of Systems Neurology (SYNERGY)MunichGermany
| |
Collapse
|
2
|
Kadowaki A, Wheeler MA, Li Z, Andersen BM, Lee HG, Illouz T, Lee JH, Ndayisaba A, Zandee SEJ, Basu H, Chao CC, Mahler JV, Klement W, Neel D, Bergstresser M, Rothhammer V, Lipof G, Srun L, Soleimanpour SA, Chiu I, Prat A, Khurana V, Quintana FJ. CLEC16A in astrocytes promotes mitophagy and limits pathology in a multiple sclerosis mouse model. Nat Neurosci 2025; 28:470-486. [PMID: 40033124 PMCID: PMC12039076 DOI: 10.1038/s41593-025-01875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/20/2024] [Indexed: 03/05/2025]
Abstract
Astrocytes promote neuroinflammation and neurodegeneration in multiple sclerosis (MS) through cell-intrinsic activities and their ability to recruit and activate other cell types. In a genome-wide CRISPR-based forward genetic screen investigating regulators of astrocyte proinflammatory responses, we identified the C-type lectin domain-containing 16A gene (CLEC16A), linked to MS susceptibility, as a suppressor of nuclear factor-κB (NF-κB) signaling. Gene and small-molecule perturbation studies in mouse primary and human embryonic stem cell-derived astrocytes in combination with multiomic analyses established that CLEC16A promotes mitophagy, limiting mitochondrial dysfunction and the accumulation of mitochondrial products that activate NF-κB, the NLRP3 inflammasome and gasdermin D. Astrocyte-specific Clec16a inactivation increased NF-κB, NLRP3 and gasdermin D activation in vivo, worsening experimental autoimmune encephalomyelitis, a mouse model of MS. Moreover, we detected disrupted mitophagic capacity and gasdermin D activation in astrocytes in samples from individuals with MS. These findings identify CLEC16A as a suppressor of astrocyte pathological responses and a candidate therapeutic target in MS.
Collapse
MESH Headings
- Animals
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mitophagy/physiology
- Mitophagy/genetics
- Astrocytes/metabolism
- Astrocytes/pathology
- Mice
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/genetics
- Humans
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Monosaccharide Transport Proteins/genetics
- Monosaccharide Transport Proteins/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Inflammasomes/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- NF-kappa B/metabolism
- Mitochondria/metabolism
- Female
Collapse
Affiliation(s)
- Atsushi Kadowaki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, Faculty of Medicine, The University of Osaka, Suita, Japan
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian M Andersen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, VA Medical Center, Boston, MA, USA
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Illouz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie E J Zandee
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao V Mahler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wendy Klement
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Dylan Neel
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Lipof
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lena Srun
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Jo H, Dalvi A, Yang W, Morozova E, Munoz S, Glasgow SM. A fetal oncogene NUAK2 is an emerging therapeutic target in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630965. [PMID: 39803558 PMCID: PMC11722409 DOI: 10.1101/2024.12.31.630965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Glioblastoma Multiforme (GBM) is the most prevalent and highly malignant form of adult brain cancer characterized by poor overall survival rates. Effective therapeutic modalities remain limited, necessitating the search for novel treatments. Neurodevelopmental pathways have been implicated in glioma formation, with key neurodevelopmental regulators being re-expressed or co-opted during glioma tumorigenesis. Here we identified a serine/threonine kinase, NUAK family kinase 2 (NUAK2), as a fetal oncogene in mouse and human brains. We found robust expression of NUAK2 in the embryonic brain that decreases throughout postnatal stages and then is re-expressed in malignant gliomas. However, the role of NUAK2 in GBM tumorigenesis remains unclear. We demonstrate that CRIPSR-Cas9 mediated NUAK2 deletion in GBM cells results in suppression of proliferation, while overexpression leads to enhanced cell growth in both in vitro and in vivo models. Further investigation of the downstream biological processes dysregulated in the absence of NUAK2 reveals that NUAK2 modulates extracellular matrix (ECM) components to facilitate migratory behavior. Lastly, we determined that pharmaceutical inhibition of NUAK2 is sufficient to impede the proliferation and migration of malignant glioma cells. Our results suggest that NUAK2 is an actionable therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Hanhee Jo
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, 92093 CA, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, 92093 CA, USA
| | - Aneesh Dalvi
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, 92093 CA, USA
| | - Wenqi Yang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, 92093 CA, USA
| | - Elizabeth Morozova
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, 92093 CA, USA
| | - Sarah Munoz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, 92093 CA, USA
| | - Stacey M. Glasgow
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, 92093 CA, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, 92093 CA, USA
| |
Collapse
|
4
|
Wang X, Sun Q, Liu T, Lu H, Lin X, Wang W, Liu Y, Huang Y, Huang G, Sun H, Chen Q, Wang J, Tian D, Yuan F, Liu L, Wang B, Gu Y, Liu B, Chen L. Single-cell multi-omics sequencing uncovers region-specific plasticity of glioblastoma for complementary therapeutic targeting. SCIENCE ADVANCES 2024; 10:eadn4306. [PMID: 39576855 PMCID: PMC11584018 DOI: 10.1126/sciadv.adn4306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Glioblastoma (GBM) cells are highly heterogeneous and invasive, leading to treatment resistance and relapse. However, the molecular regulation in and distal to tumors remains elusive. Here, we collected paired tissues from the tumor core (TC) and peritumoral brain (PTB) for integrated snRNA-seq and snATAC-seq analyses. Tumor cells infiltrating PTB from TC behave more like oligodendrocyte progenitor cells than astrocytes at the transcriptome level. Dual-omics analyses further suggest that the distal regulatory regions in the tumor genome and specific transcription factors are potential determinants of regional heterogeneity. Notably, while activator protein 1 (AP-1) is active in all GBM states, its activity declines from TC to PTB, with another transcription factor, BACH1, showing the opposite trend. Combined inhibition of AP-1 and BACH1 more efficiently attenuates the tumor progression in mice and prolongs survival than either single-target treatment. Together, our work reveals marked molecular alterations of infiltrated GBM cells and a synergy of combination therapy targeting intratumor heterogeneity in and distal to GBM.
Collapse
Affiliation(s)
- Xin Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- BGI Research, Hangzhou 310030, China
| | - Qian Sun
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | | | - Haoran Lu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xuyi Lin
- BGI Research, Hangzhou 310030, China
| | - Weiwen Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Yang Liu
- BGI Research, Hangzhou 310030, China
| | - Yunting Huang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | | | - Haixi Sun
- BGI Research, Shenzhen 518083, China
- BGI Research, Beijing 102601, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianxue Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Junmin Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Daofeng Tian
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Fan'en Yuan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | | | - Bo Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
- BGI Research, Shenzhen 518083, China
| | - Ying Gu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- BGI Research, Beijing 102601, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baohui Liu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- BGI Research, Hangzhou 310030, China
| |
Collapse
|
5
|
Gauberg J, Moreno KB, Jayaraman K, Abumeri S, Jenkins S, Salazar AM, Meharena HS, Glasgow SM. Spinal motor neuron development and metabolism are transcriptionally regulated by Nuclear Factor IA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600888. [PMID: 38979382 PMCID: PMC11230388 DOI: 10.1101/2024.06.26.600888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Neural circuits governing all motor behaviors in vertebrates rely on the proper development of motor neurons and their precise targeting of limb muscles. Transcription factors are essential for motor neuron development, regulating their specification, migration, and axonal targeting. While transcriptional regulation of the early stages of motor neuron specification is well-established, much less is known about the role of transcription factors in the later stages of maturation and terminal arborization. Defining the molecular mechanisms of these later stages is critical for elucidating how motor circuits are constructed. Here, we demonstrate that the transcription factor Nuclear Factor-IA (NFIA) is required for motor neuron positioning, axonal branching, and neuromuscular junction formation. Moreover, we find that NFIA is required for proper mitochondrial function and ATP production, providing a new and important link between transcription factors and metabolism during motor neuron development. Together, these findings underscore the critical role of NFIA in instructing the assembly of spinal circuits for movement.
Collapse
|
6
|
Sojka C, Sloan SA. Gliomas: a reflection of temporal gliogenic principles. Commun Biol 2024; 7:156. [PMID: 38321118 PMCID: PMC10847444 DOI: 10.1038/s42003-024-05833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The hijacking of early developmental programs is a canonical feature of gliomas where neoplastic cells resemble neurodevelopmental lineages and possess mechanisms of stem cell resilience. Given these parallels, uncovering how and when in developmental time gliomagenesis intersects with normal trajectories can greatly inform our understanding of tumor biology. Here, we review how elapsing time impacts the developmental principles of astrocyte (AS) and oligodendrocyte (OL) lineages, and how these same temporal programs are replicated, distorted, or circumvented in pathological settings such as gliomas. Additionally, we discuss how normal gliogenic processes can inform our understanding of the temporal progression of gliomagenesis, including when in developmental time gliomas originate, thrive, and can be pushed towards upon therapeutic coercion.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
8
|
Zhang L, Bordey A. Advances in glioma models using in vivo electroporation to highjack neurodevelopmental processes. Biochim Biophys Acta Rev Cancer 2023; 1878:188951. [PMID: 37433417 DOI: 10.1016/j.bbcan.2023.188951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Glioma is the most prevalent type of neurological malignancies. Despite decades of efforts in neurosurgery, chemotherapy and radiation therapy, glioma remains one of the most treatment-resistant brain tumors with unfavorable outcomes. Recent progresses in genomic and epigenetic profiling have revealed new concepts of genetic events involved in the etiology of gliomas in humans, meanwhile, revolutionary technologies in gene editing and delivery allows to code these genetic "events" in animals to genetically engineer glioma models. This approach models the initiation and progression of gliomas in a natural microenvironment with an intact immune system and facilitates probing therapeutic strategies. In this review, we focus on recent advances in in vivo electroporation-based glioma modeling and outline the established genetically engineered glioma models (GEGMs).
Collapse
Affiliation(s)
- Longbo Zhang
- Departments of Neurosurgery, Changde hospital, Xiangya School of Medicine, Central South University, 818 Renmin Street, Wuling District, Changde, Hunan 415003, China; Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China; Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA.
| | - Angelique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| |
Collapse
|
9
|
Mihailova V, Stoyanova II, Tonchev AB. Glial Populations in the Human Brain Following Ischemic Injury. Biomedicines 2023; 11:2332. [PMID: 37760773 PMCID: PMC10525766 DOI: 10.3390/biomedicines11092332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in glial cells in the central nervous system due to their important role in maintaining brain homeostasis under physiological conditions and after injury. A significant amount of evidence has been accumulated regarding their capacity to exert either pro-inflammatory or anti-inflammatory effects under different pathological conditions. In combination with their proliferative potential, they contribute not only to the limitation of brain damage and tissue remodeling but also to neuronal repair and synaptic recovery. Moreover, reactive glial cells can modulate the processes of neurogenesis, neuronal differentiation, and migration of neurons in the existing neural circuits in the adult brain. By discovering precise signals within specific niches, the regulation of sequential processes in adult neurogenesis holds the potential to unlock strategies that can stimulate the generation of functional neurons, whether in response to injury or as a means of addressing degenerative neurological conditions. Cerebral ischemic stroke, a condition falling within the realm of acute vascular disorders affecting the circulation in the brain, stands as a prominent global cause of disability and mortality. Extensive investigations into glial plasticity and their intricate interactions with other cells in the central nervous system have predominantly relied on studies conducted on experimental animals, including rodents and primates. However, valuable insights have also been gleaned from in vivo studies involving poststroke patients, utilizing highly specialized imaging techniques. Following the attempts to map brain cells, the role of various transcription factors in modulating gene expression in response to cerebral ischemia is gaining increasing popularity. Although the results obtained thus far remain incomplete and occasionally ambiguous, they serve as a solid foundation for the development of strategies aimed at influencing the recovery process after ischemic brain injury.
Collapse
Affiliation(s)
- Victoria Mihailova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University Varna, 9000 Varna, Bulgaria; (I.I.S.); (A.B.T.)
| | | | | |
Collapse
|
10
|
Wei Y, Li G, Feng J, Wu F, Zhao Z, Bao Z, Zhang W, Su X, Li J, Qi X, Duan Z, Zhang Y, Vega SF, Jakola AS, Sun Y, Carén H, Jiang T, Fan X. Stalled oligodendrocyte differentiation in IDH-mutant gliomas. Genome Med 2023; 15:24. [PMID: 37055795 PMCID: PMC10103394 DOI: 10.1186/s13073-023-01175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Roughly 50% of adult gliomas harbor isocitrate dehydrogenase (IDH) mutations. According to the 2021 WHO classification guideline, these gliomas are diagnosed as astrocytomas, harboring no 1p19q co-deletion, or oligodendrogliomas, harboring 1p19q co-deletion. Recent studies report that IDH-mutant gliomas share a common developmental hierarchy. However, the neural lineages and differentiation stages in IDH-mutant gliomas remain inadequately characterized. METHODS Using bulk transcriptomes and single-cell transcriptomes, we identified genes enriched in IDH-mutant gliomas with or without 1p19q co-deletion, we also assessed the expression pattern of stage-specific signatures and key regulators of oligodendrocyte lineage differentiation. We compared the expression of oligodendrocyte lineage stage-specific markers between quiescent and proliferating malignant single cells. The gene expression profiles were validated using RNAscope analysis and myelin staining and were further substantiated using data of DNA methylation and single-cell ATAC-seq. As a control, we assessed the expression pattern of astrocyte lineage markers. RESULTS Genes concordantly enriched in both subtypes of IDH-mutant gliomas are upregulated in oligodendrocyte progenitor cells (OPC). Signatures of early stages of oligodendrocyte lineage and key regulators of OPC specification and maintenance are enriched in all IDH-mutant gliomas. In contrast, signature of myelin-forming oligodendrocytes, myelination regulators, and myelin components are significantly down-regulated or absent in IDH-mutant gliomas. Further, single-cell transcriptomes of IDH-mutant gliomas are similar to OPC and differentiation-committed oligodendrocyte progenitors, but not to myelinating oligodendrocyte. Most IDH-mutant glioma cells are quiescent; quiescent cells and proliferating cells resemble the same differentiation stage of oligodendrocyte lineage. Mirroring the gene expression profiles along the oligodendrocyte lineage, analyses of DNA methylation and single-cell ATAC-seq data demonstrate that genes of myelination regulators and myelin components are hypermethylated and show inaccessible chromatin status, whereas regulators of OPC specification and maintenance are hypomethylated and show open chromatin status. Markers of astrocyte precursors are not enriched in IDH-mutant gliomas. CONCLUSIONS Our studies show that despite differences in clinical manifestation and genomic alterations, all IDH-mutant gliomas resemble early stages of oligodendrocyte lineage and are stalled in oligodendrocyte differentiation due to blocked myelination program. These findings provide a framework to accommodate biological features and therapy development for IDH-mutant gliomas.
Collapse
Affiliation(s)
- Yanfei Wei
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jing Feng
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhaoshi Bao
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wei Zhang
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaodong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiuyi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Xueling Qi
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zejun Duan
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yunqiu Zhang
- Center of Growth Metabolism & Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sandra Ferreyra Vega
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, 41390, Sweden
| | - Yingyu Sun
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, 100070, China.
| | - Xiaolong Fan
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, 100070, China.
| |
Collapse
|
11
|
Wang J, Wang A, Tian K, Hua X, Zhang B, Zheng Y, Kong X, Li W, Xu L, Wang J, Li Z, Liu Y, Zhou Y. A Ctnnb1 enhancer regulates neocortical neurogenesis by controlling the abundance of intermediate progenitors. Cell Discov 2022; 8:74. [PMID: 35915089 PMCID: PMC9343459 DOI: 10.1038/s41421-022-00421-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
β-catenin-dependent canonical Wnt signaling plays a plethora of roles in neocortex (Ncx) development, but its function in regulating the abundance of intermediate progenitors (IPs) is elusive. Here we identified neCtnnb1, an evolutionarily conserved cis-regulatory element with typical enhancer features in developing Ncx. neCtnnb1 locates 55 kilobase upstream of and spatially close to the promoter of Ctnnb1, the gene encoding β-catenin. CRISPR/Cas9-mediated activation or interference of the neCtnnb1 locus enhanced or inhibited transcription of Ctnnb1. neCtnnb1 drove transcription predominantly in the subventricular zone of developing Ncx. Knock-out of neCtnnb1 in mice resulted in compromised expression of Ctnnb1 and the Wnt reporter in developing Ncx. Importantly, knock-out of neCtnnb1 lead to reduced production and transit-amplification of IPs, which subsequently generated fewer upper-layer Ncx projection neurons (PNs). In contrast, enhancing the canonical Wnt signaling by stabilizing β-catenin in neCtnnb1-active cells promoted the production of IPs and upper-layer Ncx PNs. ASH2L was identified as the key trans-acting factor that associates with neCtnnb1 and Ctnnb1’s promoter to maintain Ctnnb1’s transcription in both mouse and human Ncx progenitors. These findings advance understanding of transcriptional regulation of Ctnnb1, and provide insights into mechanisms underlying Ncx expansion during development.
Collapse
Affiliation(s)
- Junbao Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Andi Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Kuan Tian
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiaojiao Hua
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Bo Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Yue Zheng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiangfei Kong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Wei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Lichao Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Juan Wang
- Department of Neurology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Ying Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| | - Yan Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Sardar D, Chen HC, Reyes A, Varadharajan S, Jain A, Mohila C, Curry R, Lozzi B, Rajendran K, Cervantes A, Yu K, Jalali A, Rao G, Mack SC, Deneen B. Sox9 directs divergent epigenomic states in brain tumor subtypes. Proc Natl Acad Sci U S A 2022; 119:e2202015119. [PMID: 35858326 PMCID: PMC9303974 DOI: 10.1073/pnas.2202015119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/31/2022] [Indexed: 01/17/2023] Open
Abstract
Epigenetic dysregulation is a universal feature of cancer that results in altered patterns of gene expression that drive malignancy. Brain tumors exhibit subtype-specific epigenetic alterations; however, the molecular mechanisms responsible for these diverse epigenetic states remain unclear. Here, we show that the developmental transcription factor Sox9 differentially regulates epigenomic states in high-grade glioma (HGG) and ependymoma (EPN). Using our autochthonous mouse models, we found that Sox9 suppresses HGG growth and expands associated H3K27ac states, while promoting ZFTA-RELA (ZRFUS) EPN growth and diminishing H3K27ac states. These contrasting roles for Sox9 correspond with protein interactions with histone deacetylating complexes in HGG and an association with the ZRFUS oncofusion in EPN. Mechanistic studies revealed extensive Sox9 and ZRFUS promoter co-occupancy, indicating functional synergy in promoting EPN tumorigenesis. Together, our studies demonstrate how epigenomic states are differentially regulated in distinct subtypes of brain tumors, while revealing divergent roles for Sox9 in HGG and EPN tumorigenesis.
Collapse
Affiliation(s)
- Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
| | - Hsiao-Chi Chen
- Cancer Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Amanda Reyes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004
| | - Srinidhi Varadharajan
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030
| | - Carrie Mohila
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Rachel Curry
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Cancer Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Genetics and Genomics Program, Baylor College of Medicine, Houston, TX 77030
| | - Kavitha Rajendran
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
| | - Alexis Cervantes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030
| | - Stephen C. Mack
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030
- Cancer Cell Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
13
|
Lattke M, Guillemot F. Understanding astrocyte differentiation: Clinical relevance, technical challenges, and new opportunities in the omics era. WIREs Mech Dis 2022; 14:e1557. [PMID: 35546493 PMCID: PMC9539907 DOI: 10.1002/wsbm.1557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/06/2022]
Abstract
Astrocytes are a major type of glial cells that have essential functions in development and homeostasis of the central nervous system (CNS). Immature astrocytes in the developing CNS support neuronal maturation and possess neural-stem-cell-like properties. Mature astrocytes partially lose these functions but gain new functions essential for adult CNS homeostasis. In pathological conditions, astrocytes become "reactive", which disrupts their mature homeostatic functions and reactivates some immature astrocyte-like properties, suggesting a partial reversal of astrocyte maturation. The loss of homeostatic astrocyte functions contributes to the pathogenesis of various neurological conditions, and therefore activating maturation-promoting mechanisms may be a promising therapeutic strategy to restore homeostasis. Manipulating the mechanisms underlying astrocyte maturation might also allow to facilitate CNS regeneration by enhancing developmental functions of adult astrocytes. However, such therapeutic strategies are still some distance away because of our limited understanding of astrocyte differentiation and maturation, due to biological and technical challenges, including the high degree of similarity of astrocytes with neural stem cells and the shortcomings of astrocyte markers. Current advances in systems biology have a huge potential to overcome these challenges. Recent transcriptomic analyses have already revealed new astrocyte markers and new regulators of astrocyte differentiation. However, the epigenomic changes that presumably occur during astrocyte differentiation remain an important, largely unexplored area for future research. Emerging technologies such as CRISPR/Cas9-based functional screens will further improve our understanding of the mechanisms underlying astrocyte differentiation. This may open up new clinical approaches to restore homeostasis in neurological disorders and/or promote CNS regeneration. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Stem Cells and Development Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Michael Lattke
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Francois Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
14
|
Dady A, Davidson L, Halley PA, Storey KG. Human spinal cord in vitro differentiation pace is initially maintained in heterologous embryonic environments. eLife 2022; 11:e67283. [PMID: 35188104 PMCID: PMC8929931 DOI: 10.7554/elife.67283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Species-specific differentiation pace in vitro indicates that some aspects of neural differentiation are governed by cell intrinsic properties. Here we describe a novel in vitro human neural-rosette assay that recapitulates dorsal spinal cord differentiation but proceeds more rapidly than in the human embryo, suggesting that it lacks endogenous signalling dynamics. To test whether in vitro conditions represent an intrinsic differentiation pace, human iPSC-derived neural rosettes were challenged by grafting into the faster differentiating chicken embryonic neural tube iso-chronically, or hetero-chronically into older embryos. In both contexts in vitro differentiation pace was initially unchanged, while long-term analysis revealed iso-chronic slowed and hetero-chronic conditions promoted human neural differentiation. Moreover, hetero-chronic conditions did not alter the human neural differentiation programme, which progressed to neurogenesis, while the host embryo advanced into gliogenesis. This study demonstrates that intrinsic properties limit human differentiation pace, and that timely extrinsic signals are required for progression through an intrinsic human neural differentiation programme.
Collapse
Affiliation(s)
- Alwyn Dady
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Lindsay Davidson
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Pamela A Halley
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
15
|
Lee SD, Song J, LeBlanc VG, Marra MA. Integrative multi-omic analysis reveals neurodevelopmental gene dysregulation in CIC-knockout and IDH1 mutant cells. J Pathol 2021; 256:297-309. [PMID: 34767259 PMCID: PMC9305137 DOI: 10.1002/path.5835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
Capicua (CIC)'s transcriptional repressor function is implicated in neurodevelopment and in oligodendroglioma (ODG) aetiology. However, CIC's role in these contexts remains obscure, primarily from our currently limited knowledge regarding its biological functions. Moreover, CIC mutations in ODG invariably co‐occur with a neomorphic IDH1/2 mutation, yet the functional relationship between these two genetic events is unknown. Here, we analysed models derived from an E6/E7/hTERT‐immortalized (i.e. p53‐ and RB‐deficient) normal human astrocyte cell line. To examine the consequences of CIC loss, we compared transcriptomic and epigenomic profiles between CIC wild‐type and knockout cell lines, with and without mutant IDH1 expression. Our analyses revealed dysregulation of neurodevelopmental genes in association with CIC loss. CIC ChIP‐seq was also performed to expand upon the currently limited ensemble of known CIC target genes. Among the newly identified direct CIC target genes were EPHA2 and ID1, whose functions are linked to neurodevelopment and the tumourigenicity of in vivo glioma tumour models. NFIA, a known mediator of gliogenesis, was discovered to be uniquely overexpressed in CIC‐knockout cells expressing mutant IDH1‐R132H protein. These results identify neurodevelopment and specific genes within this context as candidate targets through which CIC alterations may contribute to the progression of IDH‐mutant gliomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stephen D Lee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Jungeun Song
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | | | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Sagner A, Zhang I, Watson T, Lazaro J, Melchionda M, Briscoe J. A shared transcriptional code orchestrates temporal patterning of the central nervous system. PLoS Biol 2021; 19:e3001450. [PMID: 34767545 PMCID: PMC8612522 DOI: 10.1371/journal.pbio.3001450] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/24/2021] [Accepted: 10/20/2021] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanisms that produce the full array of neuronal subtypes in the vertebrate nervous system are incompletely understood. Here, we provide evidence of a global temporal patterning program comprising sets of transcription factors that stratifies neurons based on the developmental time at which they are generated. This transcriptional code acts throughout the central nervous system, in parallel to spatial patterning, thereby increasing the diversity of neurons generated along the neuraxis. We further demonstrate that this temporal program operates in stem cell-derived neurons and is under the control of the TGFβ signaling pathway. Targeted perturbation of components of the temporal program, Nfia and Nfib, reveals their functional requirement for the generation of late-born neuronal subtypes. Together, our results provide evidence for the existence of a previously unappreciated global temporal transcriptional program of neuronal subtype identity and suggest that the integration of spatial and temporal patterning mechanisms diversifies and organizes neuronal subtypes in the vertebrate nervous system.
Collapse
Affiliation(s)
- Andreas Sagner
- The Francis Crick Institute, London, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Isabel Zhang
- The Francis Crick Institute, London, United Kingdom
| | | | - Jorge Lazaro
- The Francis Crick Institute, London, United Kingdom
| | | | | |
Collapse
|
17
|
Yeon GB, Shin WH, Yoo SH, Kim D, Jeon BM, Park WU, Bae Y, Park JY, You S, Na D, Kim DS. NFIB induces functional astrocytes from human pluripotent stem cell-derived neural precursor cells mimicking in vivo astrogliogenesis. J Cell Physiol 2021; 236:7625-7641. [PMID: 33949692 DOI: 10.1002/jcp.30405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
The ability to generate astrocytes from human pluripotent stem cells (hPSCs) offers a promising cellular model to study the development and physiology of human astrocytes. The extant methods for generating functional astrocytes required long culture periods and there remained much ambiguity on whether such paradigms follow the innate developmental program. In this report, we provided an efficient and rapid method for generating physiologically functional astrocytes from hPSCs. Overexpressing the nuclear factor IB in hPSC-derived neural precursor cells induced a highly enriched astrocyte population in 2 weeks. RNA sequencing and functional analyses demonstrated progressive transcriptomic and physiological changes in the cells, resembling in vivo astrocyte development. Further analyses substantiated previous results and established the MAPK pathway necessary for astrocyte differentiation. Hence, this differentiation paradigm provides a prospective in vitro model for human astrogliogenesis studies and the pathophysiology of neurological diseases concerning astrocytes.
Collapse
Affiliation(s)
- Gyu-Bum Yeon
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Korea
| | - Seo Hyun Yoo
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Dongyun Kim
- Department of Biotechnology, Korea University, Seoul, Korea
| | | | - Won-Ung Park
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Yeonju Bae
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Seungkwon You
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Korea University, Seoul, Korea.,Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
19
|
Chao M, Liu N, Sun Z, Jiang Y, Jiang T, Xv M, Jia L, Tu Y, Wang L. TGF-β Signaling Promotes Glioma Progression Through Stabilizing Sox9. Front Immunol 2021; 11:592080. [PMID: 33613515 PMCID: PMC7886799 DOI: 10.3389/fimmu.2020.592080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
Gliomas are brain and spinal cord malignancies characterized by high malignancy, high recurrence and poor prognosis, the underlying mechanisms of which remain largely elusive. Here, we found that the Sry-related high mobility group box (Sox) family transcription factor, Sox9, was upregulated and correlated with poor prognosis of clinical gliomas. Sox9 promotes migration and invasion of glioma cells and in vivo development of xenograft tumors from inoculated glioma cells. Sox9 functions downstream of the transforming growth factor-β (TGF-β) pathway, in which TGF-β signaling prevent proteasomal degradation of the Sox9 protein in glioma cells. These findings provide novel insight into the wide interplay between TGF-β signaling and oncogenic transcription factors, and have implications for targeted therapy and prognostic assessment of gliomas.
Collapse
Affiliation(s)
- Min Chao
- Departments of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Nan Liu
- Departments of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhichuan Sun
- Departments of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongli Jiang
- Departments of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tongtong Jiang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Meng Xv
- Departments of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Yanyang Tu
- Departments of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Liang Wang
- Departments of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
20
|
Alonso-Gonzalez A, Calaza M, Amigo J, González-Peñas J, Martínez-Regueiro R, Fernández-Prieto M, Parellada M, Arango C, Rodriguez-Fontenla C, Carracedo A. Exploring the biological role of postzygotic and germinal de novo mutations in ASD. Sci Rep 2021; 11:319. [PMID: 33431980 PMCID: PMC7801448 DOI: 10.1038/s41598-020-79412-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
De novo mutations (DNMs), including germinal and postzygotic mutations (PZMs), are a strong source of causality for Autism Spectrum Disorder (ASD). However, the biological processes involved behind them remain unexplored. Our aim was to detect DNMs (germinal and PZMs) in a Spanish ASD cohort (360 trios) and to explore their role across different biological hierarchies (gene, biological pathway, cell and brain areas) using bioinformatic approaches. For the majority of the analysis, a combined ASD cohort (N = 2171 trios) was created using previously published data by the Autism Sequencing Consortium (ASC). New plausible candidate genes for ASD such as FMR1 and NFIA were found. In addition, genes harboring PZMs were significantly enriched for miR-137 targets in comparison with germinal DNMs that were enriched in GO terms related to synaptic transmission. The expression pattern of genes with PZMs was restricted to early mid-fetal cortex. In contrast, the analysis of genes with germinal DNMs revealed a spatio-temporal window from early to mid-fetal development stages, with expression in the amygdala, cerebellum, cortex and striatum. These results provide evidence of the pathogenic role of PZMs and suggest the existence of distinct mechanisms between PZMs and germinal DNMs that are influencing ASD risk.
Collapse
Affiliation(s)
- A Alonso-Gonzalez
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - M Calaza
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - J Amigo
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - J González-Peñas
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - R Martínez-Regueiro
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - M Fernández-Prieto
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - M Parellada
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - C Arango
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Cristina Rodriguez-Fontenla
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain.
| | - A Carracedo
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica (FPGMX), Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
21
|
Caramello A, Galichet C, Rizzoti K, Lovell-Badge R. Dentate gyrus development requires a cortical hem-derived astrocytic scaffold. eLife 2021; 10:63904. [PMID: 33393905 PMCID: PMC7806271 DOI: 10.7554/elife.63904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/01/2021] [Indexed: 01/01/2023] Open
Abstract
During embryonic development, radial glial cells give rise to neurons, then to astrocytes following the gliogenic switch. Timely regulation of the switch, operated by several transcription factors, is fundamental for allowing coordinated interactions between neurons and glia. We deleted the gene for one such factor, SOX9, early during mouse brain development and observed a significantly compromised dentate gyrus (DG). We dissected the origin of the defect, targeting embryonic Sox9 deletion to either the DG neuronal progenitor domain or the adjacent cortical hem (CH). We identified in the latter previously uncharacterized ALDH1L1+ astrocytic progenitors, which form a fimbrial-specific glial scaffold necessary for neuronal progenitor migration toward the developing DG. Our results highlight an early crucial role of SOX9 for DG development through regulation of astroglial potential acquisition in the CH. Moreover, we illustrate how formation of a local network, amidst astrocytic and neuronal progenitors originating from adjacent domains, underlays brain morphogenesis.
Collapse
Affiliation(s)
- Alessia Caramello
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
| | - Christophe Galichet
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
| | - Karine Rizzoti
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
22
|
Wu Y, Fletcher M, Gu Z, Wang Q, Costa B, Bertoni A, Man KH, Schlotter M, Felsberg J, Mangei J, Barbus M, Gaupel AC, Wang W, Weiss T, Eils R, Weller M, Liu H, Reifenberger G, Korshunov A, Angel P, Lichter P, Herrmann C, Radlwimmer B. Glioblastoma epigenome profiling identifies SOX10 as a master regulator of molecular tumour subtype. Nat Commun 2020; 11:6434. [PMID: 33339831 PMCID: PMC7749178 DOI: 10.1038/s41467-020-20225-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma frequently exhibits therapy-associated subtype transitions to mesenchymal phenotypes with adverse prognosis. Here, we perform multi-omic profiling of 60 glioblastoma primary tumours and use orthogonal analysis of chromatin and RNA-derived gene regulatory networks to identify 38 subtype master regulators, whose cell population-specific activities we further map in published single-cell RNA sequencing data. These analyses identify the oligodendrocyte precursor marker and chromatin modifier SOX10 as a master regulator in RTK I-subtype tumours. In vitro functional studies demonstrate that SOX10 loss causes a subtype switch analogous to the proneural-mesenchymal transition observed in patients at the transcriptomic, epigenetic and phenotypic levels. SOX10 repression in an in vivo syngeneic graft glioblastoma mouse model results in increased tumour invasion, immune cell infiltration and significantly reduced survival, reminiscent of progressive human glioblastoma. These results identify SOX10 as a bona fide master regulator of the RTK I subtype, with both tumour cell-intrinsic and microenvironmental effects.
Collapse
Affiliation(s)
- Yonghe Wu
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Michael Fletcher
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Zuguang Gu
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Qi Wang
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Barbara Costa
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Anna Bertoni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ka-Hou Man
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Magdalena Schlotter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jörg Felsberg
- Medical Faculty, Institute of Neuropathology, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jasmin Mangei
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martje Barbus
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ann-Christin Gaupel
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Wei Wang
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Tobias Weiss
- Department of Neurology and Brain Tumor Center, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091, Zurich, Switzerland
| | - Roland Eils
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091, Zurich, Switzerland
| | - Haikun Liu
- Division of Molecular Neurogenetics, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Guido Reifenberger
- Medical Faculty, Institute of Neuropathology, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, University of Heidelberg, Im Neuenheimer Feld 220, 69120, Heidelberg, Germany
- Clinical Cooperation Unit, Neuropathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 220-221, 69120, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Vue TY, Kollipara RK, Borromeo MD, Smith T, Mashimo T, Burns DK, Bachoo RM, Johnson JE. ASCL1 regulates neurodevelopmental transcription factors and cell cycle genes in brain tumors of glioma mouse models. Glia 2020; 68:2613-2630. [PMID: 32573857 PMCID: PMC7587013 DOI: 10.1002/glia.23873] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Glioblastomas (GBMs) are incurable brain tumors with a high degree of cellular heterogeneity and genetic mutations. Transcription factors that normally regulate neural progenitors and glial development are aberrantly coexpressed in GBM, conferring cancer stem‐like properties to drive tumor progression and therapeutic resistance. However, the functional role of individual transcription factors in GBMs in vivo remains elusive. Here, we demonstrate that the basic‐helix–loop–helix transcription factor ASCL1 regulates transcriptional targets that are central to GBM development, including neural stem cell and glial transcription factors, oncogenic signaling molecules, chromatin modifying genes, and cell cycle and mitotic genes. We also show that the loss of ASCL1 significantly reduces the proliferation of GBMs induced in the brain of a genetically relevant glioma mouse model, resulting in extended survival times. RNA‐seq analysis of mouse GBM tumors reveal that the loss of ASCL1 is associated with downregulation of cell cycle genes, illustrating an important role for ASCL1 in controlling the proliferation of GBM.
Collapse
Affiliation(s)
- Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyler Smith
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tomoyuki Mashimo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dennis K Burns
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
González-Orozco JC, Moral-Morales AD, Camacho-Arroyo I. Progesterone through Progesterone Receptor B Isoform Promotes Rodent Embryonic Oligodendrogenesis. Cells 2020; 9:cells9040960. [PMID: 32295179 PMCID: PMC7226962 DOI: 10.3390/cells9040960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). These cells arise during the embryonic development by the specification of the neural stem cells to oligodendroglial progenitor cells (OPC); newly formed OPC proliferate, migrate, differentiate, and mature to myelinating oligodendrocytes in the perinatal period. It is known that progesterone promotes the proliferation and differentiation of OPC in early postnatal life through the activation of the intracellular progesterone receptor (PR). Progesterone supports nerve myelination after spinal cord injury in adults. However, the role of progesterone in embryonic OPC differentiation as well as the specific PR isoform involved in progesterone actions in these cells is unknown. By using primary cultures obtained from the embryonic mouse spinal cord, we showed that embryonic OPC expresses both PR-A and PR-B isoforms. We found that progesterone increases the proliferation, differentiation, and myelination potential of embryonic OPC through its PR by upregulating the expression of oligodendroglial genes such as neuron/glia antigen 2 (NG2), sex determining region Y-box9 (SOX9), myelin basic protein (MBP), 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNP1), and NK6 homeobox 1 (NKX 6.1). These effects are likely mediated by PR-B, as they are blocked by the silencing of this isoform. The results suggest that progesterone contributes to the process of oligodendrogenesis during prenatal life through specific activation of PR-B.
Collapse
|
25
|
Abstract
Astrocytes are the most abundant cell type in the central nervous system and have diverse functions in blood–brain barrier maintenance, neural circuitry formation and function, and metabolic regulation. To better understand the diverse roles of astrocytes, we will summarize what is known about astrocyte development and the challenges limiting our understanding of this process. We will also discuss new approaches and technologies advancing the field.
Collapse
Affiliation(s)
- Ekin Su Akdemir
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna Yu-Szu Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
26
|
Cheng M, Zhang ZW, Ji XH, Xu Y, Bian E, Zhao B. Super-enhancers: A new frontier for glioma treatment. Biochim Biophys Acta Rev Cancer 2020; 1873:188353. [PMID: 32112817 DOI: 10.1016/j.bbcan.2020.188353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023]
Abstract
Glioma is the most common primary malignant tumor in the human brain. Although there are a variety of treatments, such as surgery, radiation and chemotherapy, glioma is still an incurable disease. Super-enhancers (SEs) are implicated in the control of tumor cell identity, and they promote oncogenic transcription, which supports tumor cells. Inhibition of the SE complex, which is required for the assembly and maintenance of SEs, may repress oncogenic transcription and impede tumor growth. In this review, we discuss the unique characteristics of SEs compared to typical enhancers, and we summarize the recent advances in the understanding of their properties and biological role in gene regulation. Additionally, we highlight that SE-driven lncRNAs, miRNAs and genes are involved in the malignant phenotype of glioma. Most importantly, the application of SE inhibitors in different cancer subtypes has introduced new directions in glioma treatment.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Zheng Wei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Xing Hu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
27
|
Nakafuku M, Del Águila Á. Developmental dynamics of neurogenesis and gliogenesis in the postnatal mammalian brain in health and disease: Historical and future perspectives. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e369. [PMID: 31825170 DOI: 10.1002/wdev.369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
The mature mammalian brain has long been thought to be a structurally rigid, static organ since the era of Ramón y Cajal in the early 20th century. Evidence accumulated over the past three decades, however, has completely overturned this long-held view. We now know that new neurons and glia are continuously added to the brain at postnatal stages, even in mature adults of various mammalian species, including humans. Moreover, these newly added cells contribute to structural plasticity and play important roles in higher order brain function, as well as repair after damage. A major source of these new neurons and glia is neural stem cells (NSCs) that persist in specialized niches in the brain throughout life. With this new view, our understanding of normal brain physiology and interventional approaches to various brain disorders has changed markedly in recent years. This article provides a brief overview on the historical changes in our understanding of the developmental dynamics of neurogenesis and gliogenesis in the postnatal and adult mammalian brain and discusses the roles of NSCs and other progenitor populations in such cellular dynamics in health and disease of the postnatal mammalian brain. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.
Collapse
Affiliation(s)
- Masato Nakafuku
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ángela Del Águila
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
28
|
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J, Wessels MW, Hennekam RC. Variants in nuclear factor I genes influence growth and development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:611-626. [DOI: 10.1002/ajmg.c.31747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Martin Zenker
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Jens Bunt
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
| | - Ina Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Denny Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Michael Piper
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Manuela Priolo
- Operative Unit of Medical GeneticsGreat Metropolitan Hospital Bianchi‐Melacrino‐Morelli Reggio Calabria Italy
| | - Erica H. Gerkes
- Department of Genetics, University of GroningenUniversity Medical Center Groningen Groningen the Netherlands
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life SciencesState University of New York Buffalo NY
| | - Linda J. Richards
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersWomen's and Children's Hospitals NHS Foundation Trust Birmingham UK
| | - Marja W. Wessels
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | - Raoul C. Hennekam
- Department of PediatricsUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
29
|
Laug D, Huang TW, Huerta NAB, Huang AYS, Sardar D, Ortiz-Guzman J, Carlson JC, Arenkiel BR, Kuo CT, Mohila CA, Glasgow SM, Lee HK, Deneen B. Nuclear factor I-A regulates diverse reactive astrocyte responses after CNS injury. J Clin Invest 2019; 129:4408-4418. [PMID: 31498149 PMCID: PMC6763246 DOI: 10.1172/jci127492] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023] Open
Abstract
Reactive astrocytes are associated with every form of neurological injury. Despite their ubiquity, the molecular mechanisms controlling their production and diverse functions remain poorly defined. Because many features of astrocyte development are recapitulated in reactive astrocytes, we investigated the role of nuclear factor I-A (NFIA), a key transcriptional regulator of astrocyte development whose contributions to reactive astrocytes remain undefined. Here, we show that NFIA is highly expressed in reactive astrocytes in human neurological injury and identify unique roles across distinct injury states and regions of the CNS. In the spinal cord, after white matter injury (WMI), NFIA-deficient astrocytes exhibit defects in blood-brain barrier remodeling, which are correlated with the suppression of timely remyelination. In the cortex, after ischemic stroke, NFIA is required for the production of reactive astrocytes from the subventricular zone (SVZ). Mechanistically, NFIA directly regulates the expression of thrombospondin 4 (Thbs4) in the SVZ, revealing a key transcriptional node regulating reactive astrogenesis. Together, these studies uncover critical roles for NFIA in reactive astrocytes and illustrate how region- and injury-specific factors dictate the spectrum of reactive astrocyte responses.
Collapse
Affiliation(s)
- Dylan Laug
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Navish A. Bosquez Huerta
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Yu-Szu Huang
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Joshua Ortiz-Guzman
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
| | - Jeffrey C. Carlson
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin R. Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA.,Department of Neuroscience and,Department of Human and Molecular Genetics Baylor College of Medicine, Houston, Texas, USA
| | - Chay T. Kuo
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Carrie A. Mohila
- Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | | | - Hyun Kyoung Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA.,Department of Neuroscience and,Department of Pediatrics, Division of Neurology, Texas Children’s Hospital, Houston, Texas, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy and,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA.,Department of Neuroscience and,Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
30
|
Abstract
Gliomas are heterogeneous tumours derived from glial cells and remain the deadliest form of brain cancer. Although the glioma stem cell sits at the apex of the cellular hierarchy, how it produces the vast cellular constituency associated with frank glioma remains poorly defined. We explore glioma tumorigenesis through the lens of glial development, starting with the neurogenic-gliogenic switch and progressing through oligodendrocyte and astrocyte differentiation. Beginning with the factors that influence normal glial linage progression and diversity, a pattern emerges that has useful parallels in the development of glioma and may ultimately provide targetable pathways for much-needed new therapeutics.
Collapse
|
31
|
Li J, Khankan RR, Caneda C, Godoy MI, Haney MS, Krawczyk MC, Bassik MC, Sloan SA, Zhang Y. Astrocyte-to-astrocyte contact and a positive feedback loop of growth factor signaling regulate astrocyte maturation. Glia 2019; 67:1571-1597. [PMID: 31033049 PMCID: PMC6557696 DOI: 10.1002/glia.23630] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023]
Abstract
Astrocytes are critical for the development and function of the central nervous system. In developing brains, immature astrocytes undergo morphological, molecular, cellular, and functional changes as they mature. Although the mechanisms that regulate the maturation of other major cell types in the central nervous system such as neurons and oligodendrocytes have been extensively studied, little is known about the cellular and molecular mechanisms that control astrocyte maturation. Here, we identified molecular markers of astrocyte maturation and established an in vitro assay for studying the mechanisms of astrocyte maturation. Maturing astrocytes in vitro exhibit similar molecular changes and represent multiple molecular subtypes of astrocytes found in vivo. Using this system, we found that astrocyte‐to‐astrocyte contact strongly promotes astrocyte maturation. In addition, secreted signals from microglia, oligodendrocyte precursor cells, or endothelial cells affect a small subset of astrocyte genes but do not consistently change astrocyte maturation. To identify molecular mechanisms underlying astrocyte maturation, we treated maturing astrocytes with molecules that affect the function of tumor‐associated genes. We found that a positive feedback loop of heparin‐binding epidermal growth factor‐like growth factor (HBEGF) and epidermal growth factor receptor (EGFR) signaling regulates astrocytes maturation. Furthermore, HBEGF, EGFR, and tumor protein 53 (TP53) affect the expression of genes important for cilium development, the circadian clock, and synapse function. These results revealed cellular and molecular mechanisms underlying astrocytes maturation with implications for the understanding of glioblastoma.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Rana R Khankan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Christine Caneda
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Marlesa I Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Michael S Haney
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Mitchell C Krawczyk
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California.,Intellectual and Developmental Disabilities Research Center at UCLA, Los Angeles, California.,Brain Research Institute at UCLA, Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, California.,Molecular Biology Institute at UCLA, Los Angeles, California
| |
Collapse
|
32
|
Delile J, Rayon T, Melchionda M, Edwards A, Briscoe J, Sagner A. Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord. Development 2019; 146:dev173807. [PMID: 30846445 PMCID: PMC6602353 DOI: 10.1242/dev.173807] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
The coordinated spatial and temporal regulation of gene expression in the vertebrate neural tube determines the identity of neural progenitors and the function and physiology of the neurons they generate. Progress has been made deciphering the gene regulatory programmes that are responsible for this process; however, the complexity of the tissue has hampered the systematic analysis of the network and the underlying mechanisms. To address this, we used single cell mRNA sequencing to profile cervical and thoracic regions of the developing mouse neural tube between embryonic days 9.5-13.5. We confirmed that the data accurately recapitulates neural tube development, allowing us to identify new markers for specific progenitor and neuronal populations. In addition, the analysis highlighted a previously underappreciated temporal component to the mechanisms that generate neuronal diversity, and revealed common features in the sequence of transcriptional events that lead to the differentiation of specific neuronal subtypes. Together, the data offer insight into the mechanisms that are responsible for neuronal specification and provide a compendium of gene expression for classifying spinal cord cell types that will support future studies of neural tube development, function and disease.
Collapse
Affiliation(s)
- Julien Delile
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Teresa Rayon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Amelia Edwards
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreas Sagner
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
33
|
Yamamoto S, Uchida Y, Ohtani T, Nozaki E, Yin C, Gotoh Y, Yakushiji-Kaminatsui N, Higashiyama T, Suzuki T, Takemoto T, Shiraishi YI, Kuroiwa A. Hoxa13 regulates expression of common Hox target genes involved in cartilage development to coordinate the expansion of the autopodal anlage. Dev Growth Differ 2019; 61:228-251. [PMID: 30895612 PMCID: PMC6850407 DOI: 10.1111/dgd.12601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/04/2023]
Abstract
To elucidate the role of Hox genes in limb cartilage development, we identified the target genes of HOXA11 and HOXA13 by ChIP‐Seq. The ChIP DNA fragment contained evolutionarily conserved sequences and multiple highly conserved HOX binding sites. A substantial portion of the HOXA11 ChIP fragment overlapped with the HOXA13 ChIP fragment indicating that both factors share common targets. Deletion of the target regions neighboring Bmp2 or Tshz2 reduced their expression in the autopod suggesting that they function as the limb bud‐specific enhancers. We identified the Hox downstream genes as exhibiting expression changes in the Hoxa13 knock out (KO) and Hoxd11‐13 deletion double mutant (Hox13 dKO) autopod by Genechip analysis. The Hox downstream genes neighboring the ChIP fragment were defined as the direct targets of Hox. We analyzed the spatial expression pattern of the Hox target genes that encode two different categories of transcription factors during autopod development and Hox13dKO limb bud. (a) Bcl11a, encoding a repressor of cartilage differentiation, was expressed in the E11.5 autopod and was substantially reduced in the Hox13dKO. (b) The transcription factors Aff3, Bnc2, Nfib and Runx1t1 were expressed in the zeugopodal cartilage but not in the autopod due to the repressive or relatively weak transcriptional activity of Hox13 at E11.5. Interestingly, the expression of these genes was later observed in the autopodal cartilage at E12.5. These results indicate that Hox13 transiently suspends the cartilage differentiation in the autopodal anlage via multiple pathways until establishing the paddle‐shaped structure required to generate five digits.
Collapse
Affiliation(s)
- Shiori Yamamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Yuji Uchida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Tomomi Ohtani
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Erina Nozaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Chunyang Yin
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Yoshihiro Gotoh
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | | | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai-shi, Aichi-ken, Japan
| | - Tatsuya Takemoto
- Laboratory for Embryology, Institute for Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yo-Ichi Shiraishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Atsushi Kuroiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| |
Collapse
|
34
|
Patel R, Muir M, Cvetkovic C, Krencik R. Concepts toward directing human astroplasticity to promote neuroregeneration. Dev Dyn 2018; 248:21-33. [DOI: 10.1002/dvdy.24655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
| | | | - Caroline Cvetkovic
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| |
Collapse
|